
Title Retrieving Top-N Weighted Spatial k-cliques

Author(s) Taniguchi, Ryosuke; Amagata, Daichi; Hara,
Takahiro

Citation Proceedings - 2022 IEEE International Conference
on Big Data, Big Data 2022. 2022, p. 4952-4961

Version Type AM

URL https://hdl.handle.net/11094/92857

rights

© 2022 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Retrieving Top-N Weighted Spatial k-cliques
Ryosuke Taniguchi

Osaka University
Osaka, Japan

taniguchi.ryosuke@ist.osaka-u.ac.jp

Daichi Amagata
Osaka University

Osaka, Japan
amagata.daichi@ist.osaka-u.ac.jp

Takahiro Hara
Osaka University

Osaka, Japan
hara@ist.osaka-u.ac.jp

Abstract—Spatial data analysis is a classic yet important topic
because of its wide range of applications. Recently, as a spatial
data analysis approach, a neighbor graph of a set P of spatial
points has often been employed. This paper also considers a
spatial neighbor graph and addresses a new problem, namely
top-N weighted spatial k-clique retrieval. This problem searches
for the N minimum weighted cliques consisting of k points in P ,
and it has important applications, such as community detection
and co-location pattern mining. Recent spatial datasets have
many points, and efficiently dealing with such big datasets is
one of the main requirements of applications. A straightforward
approach to solving our problem is to try to enumerate all k-
cliques, which incurs O(nkk2) time. Since k ≥ 3, this approach
cannot achieve the main requirement, so computing the result
without enumerating unnecessary k-cliques is required. This
paper achieves this challenging task and proposes a simple
practically-efficient algorithm that returns the exact answer. We
conduct experiments using two real spatial datasets consisting
of million points, and the results show the efficiency of our
algorithm, e.g., it can return the exact top-N result within 1
second when N ≤ 1000 and k ≤ 7.

Index Terms—spatial data, top-N retrieval, k-clique, algorithm

I. INTRODUCTION

Nowadays, IoT devices, such as smartphones, tablets, and
wearable watches, are everywhere. Through these devise, we
usually receive location-based services [1]–[5], and, at the
same time, many geo-spatial data are generated (e.g., via
GPS) [6]–[8]. For example, even 10 years ago, Google was
generating approximately 25 PB of data per day, and most of
them were spatial data [9]. Another example is NASA, which
generates approximately 4 TB of spatial data per day [10].
It is well known that useful observations and knowledge are
hidden in such big spatial data. Dealing with big spatial data is,
however, not a trivial task, so many works developed efficient
algorithms for analysing such data [11]–[18]. Recently, as one
of spatial data analysis approaches, graph-based mining has
receiving attention [19]–[25]. This paper also considers graph-
based spatial data analysis.

A. Motivation

Let P be a set of geo-spatial (i.e., 2-dimensional) points.
We use dist(p, p′) to denote the distance between two points
p, p′ ∈ P . Furthermore, let r be a distance threshold. A spatial
neighbor graph Gr consists of P (i.e., a point in P is regarded
as a node) and E, where an edge exists between two nodes
p and p′ iff dist(p, p′) ≤ r. Fig. 1 illustrates a concrete
example. The intuition of using the spatial neighbor graph is to

(a) Point set P

𝑟

(b) Neighbor graph Gr

Fig. 1. A neighbor graph Gr of P (r is a given distance threshold)

focus only on near points, because there is some relationship
between points existing near each other [26]. Also, by consid-
ering P as a graph structure, we can find some interesting inner
structures (i.e., sub-graphs). These structures are useful for
important applications, e.g., community detection [27], motif
detection [28], and co-location pattern mining [29]. As an
inner structure, some works considered spatial cliques [24],
[30], [31], because the clique is a fundamental structure for
the above applications. For example, [20] demonstrated that
non-trivial co-location patterns are observable by retrieving
triangles (i.e., cliques consisting of three nodes).

As shown above, finding spatial cliques has important
applications. Simply enumerating all cliques is, however, not
helpful for these applications, for two reasons. First, there is
usually a significant number of cliques in a spatial neighbor
graph G when G has many points (nodes). Such a significant
output size overwhelms users and makes interesting knowl-
edge hard to observe. Second, when analyzing an output,
the size of cliques should be fixed; otherwise, the output
may contain cliques consisting of many points. Such large
cliques are not easy to analyze, as there are too many point
combinations. These two reasons indicate that both the output
size and clique size should be controllable. In other words,
it is desirable that users can specify the output size N and
clique size k. Motivated by this, we consider the problem of
retrieving the top-N weighted spatial k-cliques, which finds
the N minimum weighted cliques consisting of k points. (The
formal definition appears in Section II.) To the best of our
knowledge, this is the first work to address this problem.

978-1-6654-8045-1/22/$31.00 © 2022 IEEE

B. Challenge

One of the main requirements of spatial data analysis is
efficiency, because it has to deal with many spatial points.
Considering our problem, this is not easy to achieve. A
straightforward algorithm that solves our problem is to con-
sider all possible combinations of points that form k-cliques.
This algorithm requires O(nkk2) time. Because k ≥ 3,
this algorithm is not feasible in practice, even for moderate-
sized datasets. Therefore, we need to focus only on points
(or k-cliques) that can be in the top-N result by ignoring
unnecessary points.

To achieve this, we consider a threshold-based strategy.
Given a threshold τ , which is the weight of (intermediate)
top N -th k-clique, we can filter points forming only k-cliques
with larger weights than τ , thus can ignore unnecessary points.
However, to make this strategy function well, we have to
overcome the following two challenges: (i) τ needs to be tight,
and (ii) τ needs to be computed efficiently. The first challenge
is a trivial requirement. If τ is loose, the filtering efficiency
decreases, and we still have to enumerate many unnecessary
k-cliques. The second challenge implies that computing a tight
τ with long running time does not make sense.

C. Contribution

We overcome the above challenges and propose a
practically-efficient algorithm that returns the exact answer.
We show that, by using an i-nearest neighbor graph, which
is built offline, a tight threshold is efficiently obtained. Our
algorithm exploits this threshold τ and employs an iterative
filter-and-verify approach. In this approach, we filter unnec-
essary points by using τ and focus on only points that are
not filtered. Then, we verify whether these points can form k-
cliques with smaller weights than τ . We repeat this operation
while updating the top-N result and τ until we have no
more candidate points. In addition to this, we propose some
techniques that avoid enumerating unnecessary k-cliques in
the verification step to further improve the efficiency. Our
empirical results show that our algorithm functions well on
million-scale datasets.

To summarize, this paper makes the following contributions.
• We address the problem of retrieving the top-N weighted

spatial k-cliques. This is the first work to tackle this
problem.

• We propose a simple, efficient, and exact algorithm for
this problem.

• We conduct extensive experiments using two real spatial
datasets. The results demonstrate the efficiency of our
algorithm. For example, when N ≤ 1000 and k ≤ 7, our
algorithm returns the answer within 1 second.

Organization. The rest of this paper is organized as follows.
Section II introduces preliminary information for presenting
our algorithm. We propose our algorithm in Section III,
and then report our experimental results in Section IV. We
review related studies in Section V. Finally, in Section VI, we
conclude this paper.

II. PRELIMINARY

In this section, we define some notations and the problem
we address. Table I summarizes the notations frequently used
in this paper. Let P be a set of n geo-spatial points, and
we assume that P is static and memory-resident. Each point
p ∈ P is represented as a 2-dimensional coordinate ⟨x, y⟩ in
Euclidean space R2. Given two points p, p′ ∈ P , the Euclidean
distance between p and p′ is shown by dist(p, p′).

Before defining our problem, we consider a spatial neighbor
graph of P .

DEFINITION 1 (SPATIAL NEIGHBOR GRAPH). Given a set P
of points and a distance threshold r, the spatial neighbor
graph of P is an undirected graph Gr = (P,Er). Each node
of Gr is a point in P . In addition, Er is a set of undirected
weighed edges, and there is an edge e(p, p′) between two
nodes (i.e., points) p and p′ iff dist(p, p′) ≤ r. The weight
of edge e(p, p′), denoted by w(e(p, p′)), is dist(p, p′).

Next, we define k-clique.

DEFINITION 2 (k-CLIQUE). Given a spatial neighbor graph
Gr of P , a k-clique C is a set of k points in P such that
there is an edge ∈ Er between any two points in C.

In this paper, we design the weight of a k-clique as follows.

DEFINITION 3 (WEIGHT OF k-CLIQUE). Given k-clique C,
define E(C) as E(C) = {e(p, p′) | p, p′ ∈ C}. The weight of
C, denoted by w(C), is defined as

w(C) = max
E(C)

w(e(p, p′)). (1)

It is important to notice that a k-clique C having small w(C)
consists of points existing near each other, because a small
w(C) means that the farthest pair of two points in C is still
close. That is, w(C) effectively represents the cohesiveness
of C, and it is an important measure for evaluating a set of
spatial points [22], [24].

Based on this concept1, we rank k-cliques in Gr and define
our problem.

DEFINITION 4 (TOP-N WEIGHTED SPATIAL k-CLIQUE RE-
TRIEVAL PROBLEM). Given a set P of points, a distance
threshold r, an output size N , and a clique size k, this problem
retrieves N k-cliques with the smallest weight in Gr.

The objective of this paper is to solve the problem in Definition
4 exactly in a practically-efficient manner. In Section III, we
propose an in-memory algorithm that achieves this objective.

III. OUR ALGORITHM

A straightforward algorithm for solving the problem in Def-
inition 4 builds a spatial neighbor graph Gr of P , enumerates
all k-cliques in Gr, and then computes N k-cliques with
the minimum weight among the enumerated ones. This is
not feasible in practice, since the number of k-cliques in Gr

1The other definitions of the weight of k-clique are out of the scope of this
paper and can be addressed in a future work.

TABLE I
OVERVIEW OF NOTATIONS

Notation Description
P set of n spatial points
p spatial (2-dimensional) point
e(p, p′) edge between p and p′

w(e(p, p′)) weight of e(p, p′)
C k-clique
w(C) weight of k-clique
k clique size
N output size
Gr spatial neighbor graph
Gi i-nearest neighbor graph
pk k-nearest neighbor point of p in P\{p}
τ threshold: weight of (intermediate) top N -th k-clique

is O(nk) and k ≥ 3. Trivially, we have N ≪ O(nk), so
enumerating all k-cliques in Gr is too redundant.

A. Main idea

Equation (1) suggests that the points in k-cliques have to
be located near each other so as to be included in the top-N
result. This observation derives an intuition that, for each point
p in a k-clique C with a small w(C), p′ ∈ C (p ̸= p′) is in
the k-nearest neighbors (k-NNs) of p among the points in P .
Then, we see that an i-NN graph, which is defined below, is
useful to retrieve k-cliques with small weights.

DEFINITION 5 (i-NEAREST NEIGHBOR GRAPH). Given a set
P of points and an integer i ≥ 1, the i-NN graph of P , Gi,
consists of all points in P and i · n edges. Specifically, given
a point p ∈ P , for each j ∈ [1, i], there is an edge between p
and pj , where pj is the j-th nearest neighbor of p in P\{p},
and w(e(p, pj)) is dist(p, pj).

It is important to notice that Gi needs only O(n) space and
is independent of r, so it can fit into main-memory and can
be built offline. By setting a sufficiently large value as i
(i = 30 in our experiments) such that i > k for reasonable
values of N and k in applications, we can find k-cliques with
small weights, without building Gr. Furthermore, in practice,
a point p ∈ P and its (k − 1)-NN points form a k-clique.
Thanks to Gi, such k-cliques are easy to enumerate, and they
have small weights, yielding a tight threshold τ with a small
computational cost. This tight threshold contributes to filtering
many unnecessary points and k-cliques.

B. Overview

Based on the above main idea, we devise an efficient
algorithm for our problem. Our algorithm has offline and
online processing.

• Offline processing. We build Gi by using a tree-structure,
e.g., a kd-tree [32], offline. This processing is done only once
in general.

• Online processing. Given N , k, and r, our algorithm runs
its online processing, which is described in Algorithm 1. Our
online algorithm has the following steps:

Algorithm 1: PROPOSED-ALGORITHM

Input: Gi (i-NN graph of P), r (distance threshold),
N (output size), and k (clique size)

1 τ ← r ▷ initialize threshold τ

2 R← ∅ ▷ initialize the result set R

3 Pcand ← P ▷ initialize a candidate set Pcand

4 Gi,r ← Gi
5 Remove all edges e(p, p′) in Gi,r s.t. w(e(p, p′)) > r
6 f ← Get-Threshold ▷ use Algorithm 2, 3, or 4

7 j ← 0
8 if (f = 0) ∧ (Algorithm 3 or 4 is used) then
9 j ← −1

10 while Pcand ̸= ∅ do
11 Filter(k, j, τ, Pcand)
12 Verify(Gi,r, k, j, τ, Pcand, N,R)
13 j ← j + 1
14 if k + j = i+ 1 then
15 return ∅ ▷ abort case

16 return R

1) It first initializes the threshold τ , the result set R, and
the candidate point set Pcand (lines 1–3).

2) Next, it makes a copy of Gi, denoted by Gi,r, and re-
moves all edges e(p, p′) in Gi,r such that w(e(p, p′)) > r
(lines 4–5).

3) Then, it computes intermediate τ and R through Get-
Threshold (line 6).

4) After that, it filters unnecessary points through Filter
and enumerates additional k-cliques while updating τ
and R in Verify. At the first iteration of this step, we
have j = 0 and Verify considers k-cliques having p and
its (k + j)-NN for each p ∈ Pcand. (In some cases, j
is initialized as −1, not to miss k-cliques that have not
been considered so far, see line 8.) At the end of the
iteration, j is incremented by one. This step is iterated
until Pcand = ∅2.

Notice that Gi,r ⊆ Gr, so it is clear that the top-N result in
Gi,r is the one in Gr.

The efficiency of Algorithm 1 depends on (i) that of
Get-Threshold and (ii) the tightness of τ obtained in Get-
Threshold, because a tight τ can filter many points in Filter
and enumerate less k-cliques in Verify. In the following
subsections, we elaborate these functions.

C. Threshold Computation

To get a tight threshold τ , considering a k-clique consisting
of a point p and its (k − 1)-NN points is promising. The
number of such k-cliques is at most n = |P |, and we usually
have N ≪ n. Hence, enumerating all of them is redundant.

2If we find that the top-N result cannot be obtained in Gi,r during the
iterations, we abort the retrieval. In this case, we need to build an i′-NN
graph, where i′ > i. (In our experimental setting, this abort case did not
occur.)

Algorithm 2: Get-Threshold-with-Sorting
Input: Gi,r, N , k, τ , Pc, and R

1 E ← a set of all edges e(p, pk−1) where p ∈ Pcand

2 Sort every e(p, pk−1) ∈ E in ascending order of
w(e(p, pk−1))

3 C ← ∅
4 f ← 0
5 for each e(p, pk−1) ∈ E do
6 if τ ≤ w(e(p, pk−1)) then
7 f ← 1
8 break
9 C ← k-clique consisting of p and its (k − 1)-NNs

10 if (w(C) < τ) ∧ (C /∈ C) then
11 C ← C ∪ {C}
12 Update R and τ

13 return f

To alleviate this redundancy, we propose three heuristic ap-
proaches for Get-Threshold. (Our empirical studies compare
the performances of these approaches.) Note that all the
heuristic approaches need only O(n) space.

• Sorting-based approach. We first propose a sorting-based
heuristic, which is shown in Algorithm 2. For each p ∈ P ,
we focus on the edge between p and its (k − 1)-th NN, i.e.,
e(p, pk−1). If w(e(p, pk−1)) is small, the k-clique consisting
of p and its (k−1)-NN points would have a small weight. On
the other hand, if w(e(p, pk−1)) ≥ τ , p is not necessary.

PROPOSITION 1. If w(e(p, pk−1)) ≥ τ , any k-cliques C
having p have w(C) ≥ τ .

PROOF. From Definitions 2 and 3, we have w(C) ≥
w(e(p, pk−1)). Then, this proposition immediately holds. □

Based on the above observations, we maintain such edges in
E in ascending order of weight. Then, we access each edge in
E in this order. Assume that we now access e(p, pk−1) ∈ E.
If τ ≤ w(e(p, pk−1)), p cannot form any k-cliques that can be
in the top-N result from Proposition 1. As E is regarded as an
ordered array, the subsequent points fall into the same case,
so Algorithm 2 terminates. Otherwise, we consider p and its
(k− 1)-NN points. If these points form a k-clique C and this
clique has not been considered so far, we use C to update R
and τ .

Algorithm 2 assumes that at least N distinct k-cliques can
be enumerated by using some points and their (k − 1)-NN
points. Our experiments confirm that this assumption holds in
practice. Even if this assumption does not hold, extending this
approach so that we can enumerate N distinct k-cliques is still
straightforward. Specifically, we can replace Algorithm 2 with
Algorithm 6, which considers (k + j)-NN points (j ≥ 0). Its
detail is shown in Section III-E. (This discussion holds for the
other two heuristic approaches.)

• Sampling-based approach. The second approach is a simple

Algorithm 3: Get-Threshold-with-Sampling
Input: Gi,r, N , k, τ , Pcand, R, and s (sample size)

1 Psample ← a set of s randomly sampled points in
Pcand

2 Get-Threshold-with-Sorting w/o line 7

Algorithm 4: Get-Threshold-with-Priority-Queue
Input: Gi,r, N , k, τ , Pc, R, and q (queue size)

1 E ← a set of q distinct edges e(p, pk−1) with the
smallest w(e(p, pk−1)), where p ∈ Pcand

▷ implemented by a priority queue

2 Run lines 2–12 of Algorithm 2

variant of Algorithm 2. Notice that Algorithm 2 needs to sort n
edges and needs to consider at most n k-cliques. We alleviate
this cost via random sampling.

Algorithm 3 describes the second approach. It randomly
samples s points from P = Pcand and then runs Get-
Threshold-with-Sorting (i.e., Algorithm 2) on a set of the
s samples.

• Priority queue-based approach. Although the second ap-
proach can reduce the cost of computing τ , it may yield a
looser threshold than the one obtained by the first approach. To
mitigate this drawback (with a small sacrifice in computational
cost), we use only q ≪ n edges (or points) with the smallest
weight, in the expectation that these points form k-cliques with
small weights.

Algorithm 4 shows the last approach, which is also a variant
of Get-Threshold-with-Sorting. Consider the edge set E
computed in Algorithm 2, and we have |E| = n. In Algorithm
4, we use only q edges with the smallest weight among E.
This can be done efficiently by using a priority queue (i.e.,
q is the queue size). Then, we run the same operations as in
Get-Threshold-with-Sorting on the q edges (or points).

D. Candidate Point Removal

After getting (or updating) τ , we remove unnecessary points
in Filter. We note that Filter confirms whether p ∈ Pcand can
form k-cliques having p and its (k + j)-th nearest neighbor,
where j ≥ −1. (Recall that we run Filter and Verify in an
iterative manner by using the variable j, see Algorithm 1.) If
p cannot do it, p is not necessary any more, which is trivially
derived from Proposition 1. Based on this rationale, Algorithm
5 removes points, which are unnecessary for retrieving the
correct top-N result, from Pcand.

E. Additional k-clique Enumeration

When Pcand ̸= ∅, the points in Pcand may form a k-clique
C such that w(C) < τ . To find such k-cliques, given p ∈
Pcand and j (see Algorithm 1), we enumerate k-cliques having
p and pk+j for each p ∈ Pcand. Because, for p, we consider k-
cliques consisting of p and some of its (k+j)-nearest neighbor
points, the number of k-cliques having p and pk+j is

(
k+j−1
k−2

)
.

Algorithm 5: Filter
Input: k, j, τ , and Pcand

1 for each p ∈ Pcand s.t. w(e(p, pk+j)) ≥ τ do
2 Pcand ← Pcand\{p}

Enumerating this number of k-cliques incurs a non-negligible
cost, particularly when j increases. Therefore, we propose two
techniques that can avoid brute-force enumeration.

Pruning p ∈ Pcand. Given a point p ∈ Pcand and j, to avoid
enumerating unnecessary k-cliques having p and pk+j , we
consider the following point set:

Pk+j = {pl | pl ∈ P, l ∈ [1, k + j − 1], dist(pl, pk+j < τ}.

Given p and pk+j , to form a k-clique C having these two
points, we select (k − 2) points from the set of (k + j − 1)-
nearest neighbor points of p. In addition, to have w(C) < τ , it
is necessary to have dist(pl, pk+j) < τ where l ∈ [1, k+j−1].
Note that, for p, Pk+j is a set of points that satisfy these
constraints. Now focus on the size of Pk+j . If |Pk+j | < k−2,
we have |Pk+j ∪{p, pk+j}| < k, meaning that there are no k-
cliques C having p and pk+j such that w(C) < τ . Therefore,
if p has this case, we can skip enumerating

(
k+j−1
k−2

)
k-cliques

without losing correctness. Because computing Pk+j needs
only O(k+ j) time and O(k+ j)≪

(
k+j−1
k−2

)
, this pruning is

efficient.

Early termination of k-clique enumeration. Even when we
cannot prune p in the above technique, we still can skip
enumerating

(
k+j−1
k−2

)
k-cliques by using an updated τ . The ra-

tionale is the same as that of Algorithm 2. Consider that every
p ∈ Pcand is sorted in ascending order of w(e(p, pk+j)). By
using the sorted access approach, we (i) enumerate additional
k-cliques to update R and τ , and (ii) ignore all p such that
w(e(p, pk+j)) ≥ τ .

Algorithm 6 uses the above techniques to enumerate addi-
tional k-cliques while skipping redundant enumerations. Its
overall approach is the same as that of Algorithm 2 (so
Algorithm 6 also needs only O(n) space). The main difference
is that it employs the pruning technique before enumerating
k-cliques, see lines 6–7.

F. Discussion

Our algorithm uses data structures with O(n) space (the i-
NN graph and the data structure for Get-Threshold), so the
space complexity of our algorithm is O(n). As our filtering
techniques are heuristic, its worst time complexity is still
O(nk). However, different from this theoretical result, our
empirical studies show that our algorithm scales well to both
n and k.

Last, recall that, for each p ∈ Pcand, our algorithm considers
k-cliques having p, pk+j , and (k−2) points in its (k+j−1)-
nearest neighbors. Since (1) j is initialized as −1, (ii) j is
incremented by one, and (iii) p is filtered iff w(p, pk+j) ≥ τ ,

Algorithm 6: Verify
Input: Gi,r, N , k, j, τ , Pcand, and R

1 E ← a set of all edges e(p, pk+j) where p ∈ Pcand

2 Sort every e(p, pk+j) ∈ E in ascending order of
w(e(p, pk+j))

3 for each e(p, pk+j) ∈ E do
4 if τ ≤ w(e(p, pk+j)) then
5 break
6 Pk+j ← {pl | pl ∈ P, l ∈

[1, k + j − 1], dist(pl, pk+j) < τ}
7 if |Pk+j | ≥ k − 2 then
8 C ← a set of all k-cliques having p, pk+j , and

(k − 2) points in Pk+j

9 for each C ∈ C s.t. (w(C) < τ) ∧ (C /∈ R) do
10 Update R and τ

our algorithm does not miss any k-cliques that are in the top-N
result. This clarifies the correctness of our algorithm.

IV. EXPERIMENT

In this section, we report our experimental results. All
experiments were conducted on a Ubuntu 20.04 LTS machine
equipped with Intel Core i9-9900K CPU@3.6GHz and 128GB
RAM.

A. Setting

Algorithms. We evaluated the following algorithms.
• SA: Algorithm 1 employing Get-Threshold-with-

Sorting in line 6.
• SSA: Algorithm 1 employing Get-Threshold-with-

Sampling in line 6. We used two samples sizes, i.e.,
s = 0.01 · |P | and s = 0.1 · |P |.

• PQA: Algorithm 1 employing Get-Threshold-with-
Priority-Queue in line 6. We set q = 5N .

• Triangle: the algorithm proposed in [19]. This algorithm
can deal with only k = 3, as it is specific to triangles.
We therefore used this algorithm as a baseline in the case
where k = 3.

• Brute-force: an algorithm that builds the spatial neighbor
graph Gr, enumerates all k-cliques with a state-of-the-art
enumeration algorithm DDegCol [33], and computes the
top-N k-cliques among them. For the k-clique enumera-
tion, we used the original implementation of [33].

The above algorithms were implemented in C++, compiled by
g++ 9.3.0 with -O3 optimization, and single-threaded.

Dataset. We used two real spatial datasets, CaStreet3 and
Places4. CaStreet consists of the minimum bounding rectan-
gles of road segments in the U.S.A. We used bottom-left and
upper-right points, and obtained 4,499,454 points. Then, we
removed the duplicated points. Places consists of 9,356,750

3http://chorochronos.datastories.org/?q=node/59
4https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces

TABLE II
RUNNING TIME COMPARISON IN SECONDS AT THE DEFAULT PARAMETER

SETTING

Algorithm CaStreet Places
SA 0.167 0.226
SSA (s = 0.01|P |) 5.164 0.767
SSA (s = 0.1|P |) 0.164 0.228
PQA 0.068 0.153
Brute-force > 10000 > 10000

coordinates of public places in the U.S.A. As with CaStreet,
we removed the duplicated points in Places.

Default parameter. We set r = 0.01 and i = 30, and they
were fixed. This is because r = 0.01 yields a sufficiently large
spatial neighbor graph (more than 50 million edges both on
CaStreet and Places), and i = 30 was also able to consider
large (resp. reasonable) values of N (resp. k).

The default values of N and k were 1,000 and 5, respec-
tively. For each dataset, we ran random sampling to obtain
1 random million points, and we used them as the default
dataset. When we investigated the impact of a given parameter,
we fixed the other parameters.

B. Result

The evaluated algorithms except for Brute-force share the
same offline processing. (Brute-force has no pre-processing.)
This section hence focuses on the online running time.

Comparison and ablation studies. We first compare the per-
formances of the evaluated algorithms. TABLE II shows the
running time result. (Triangle cannot deal with k ≥ 4, so
it cannot work at the default parameter setting.) It clarifies
that SSA with s = 0.01|P | needs the longest time among
the three Get-Threshold functions proposed in Section III-C.
This is reasonable, because a small number of samples yields
a loose threshold, which increases the number of k-cliques
enumerated. Recall that the number of k-clique candidates can
be O(nk). Nevertheless, SA, SSA with s = 0.1|P |, and PQA
are significantly fast: they need only a few hundred millisec-
onds to retrieve top-1000 5-cliques. Among them, we see that
PQA is the fastest. It computes a tight threshold efficiently,
so its the other time is the shortest. It is also clear that Brute-
force is significantly slower than the other algorithms. We
terminated Brute-force before it finishes enumerating all k-
cliques, because Brute-force did not do this within reasonable
time. Actually, just building a spatial neighbor graph already
incurred more than 25 seconds. It can be seen that PQA
is x147000 (x65000) faster than Brute-force on CaStreet
(Places). Hence, we did not use Brute-force as a baseline in
the subsequent experiments.

In Fig. 2, we investigate the efficiency of the pruning
and early termination techniques proposed in Section III-E.
Note that “time to compute threshold” and “the other time”
respectively represent the running time of line 6 of Algorithm
1 and that of lines 10–15. We used SA and PQA to do this,

and SA (PQA) w/o pruning represents SQ (PQA) that does not
employ these techniques. Fig. 2 shows that the total running
time of SA (PQA) w/o pruning is longer than that of SA
(PQA). This result demonstrates that the techniques contribute
to the efficiency improvement.

Impact of k. We show how the clique size k affects the
performance of each algorithm in Fig. 3. First, we focus
on the k = 3 case. On CaStreet, Triangle has a similar
performance to that of PQA, whereas our algorithms are much
faster than Triangle on Places. For example, PQA is one order
of magnitude faster than Triangle. A possible reason for this
result is that our pruning and early termination techniques
function better on Places than on CaStreet. Since PQA is
general to any k, its advantage (against Triangle) is clear.

We observe that each algorithm does not have an exponen-
tial growth of running time with increase of k. In addition, we
see that PQA is the most robust against k and fastest in most
cases. On CaStreet, its running time is around 100 [msec] for
k ∈ [3, 7]. On Places, on the other hand, its running time scales
only linearly to k (note that the plot is log-scale). Furthermore,
by comparing SA (PQA) with SA (PQA) w/o pruning, we see
that the impact of our pruning and early termination techniques
becomes larger when k is relatively large (e.g., k is 6 and 7).

Impact of |P |. We next study the scalablity to the cardinality
of a given dataset by using random sampling. Fig. 4 shows
that, on CaStreet (Places), SA, SSA with s = 0.1|P |, and
PQA scale linearly (or sub-linearly) to |P |. This result clarifies
the efficiencies of these algorithms. (Actually, this result is
theoretically reasonable, because, for a fixed k, i.e., k = O(1),
Gr has O(nk) = O(n) k-cliques.)

On the other hand, SSA with s = 0.01|P | has a different
behavior. For example, its running time on CaStreet with 1
million points is longer than that on CaStreet with 2.6 million
points. Since this algorithm uses only a small number of
samples, it cannot obtain a tight threshold when |P | is small.
Because of this, SSA with s = 0.01|P | took this counter-
intuitive behavior.

Impact of N . Last, we study the influence of the output size
N . Fig. 5 shows our experimental results.

When N = 100, PQA and SSA have similar running times.
However, as N increases, the performance difference between
PQA and SSA becomes larger, suggesting that the priority-
queue-based threshold computation yields a clear advantage.
On the other hand, SA is (much) slower than PQA when N is
small. This is because, when N is small, the main bottleneck
of SA is Get-Threshold-with-Sorting, which incurs a larger
cost than Get-Threshold-with-Priority-Queue.

Let us focus on a large N . In this case, SA and PQA show
similar performances. This is also reasonable, because when
N is large, the main bottleneck of these algorithms is Verify.

V. RELATED WORK

A. Spatial data analysis
As mentioned in Section I, spatial datasets are generated in

many environments. To find interesting patterns, knowledge,

Time to compute threshold The other time

(a) CaStreet (b) Places

Fig. 2. Decomposed time [msec]

SA SA w/o pruning SSA (𝑠 = 0.1|𝑃|) SSA (𝑠 = 0.01|𝑃|) PQA PQA w/o pruning Triangle

(a) CaStreet (b) Places

Fig. 3. Impact of k

and emerging events hidden in spatial datasets, existing works
developed many problems, such as query processing [34], [35],
minimum spanning tree construction [36], [37], and visualiza-
tion [38], [39]. Moreover, to support efficient processing of
big spatial data, some works designed (distributed) systems
[6], [8], [11], [40] and machine learning models [41]–[44]. As
this paper considers a spatial neighbor graph to find interesting
patterns, we review existing works on spatial graphs. (Some
studies, e.g., [26], [45], propose efficient spatial graph building
approaches, but they do not consider finding patterns in spatial
graphs. In addition, studies on road networks, e.g., [46], are
different from our work, because road networks have different
constraints.)

The problem of enumerating all maximal spatial cliques in
a spatial neighbor graph Gr was addressed in [24]. Different
from our work, this problem cannot control both output and
clique sizes and cannot be solved in polynomial time. This may
overwhelm users. For example, the experimental results of [24]
report that the output size can be million-scale, and it is not
trivial to deal with such a large-scale output (particularly for
ordinal users). Literature [30] also considers spatial cliques but
under a different assumption (i.e., it considers fuzzy model).
Similar to [24], the problem in [30] cannot control both output
and clique sizes.

Given a sub-graph, [47] (resp. [23]) tackled the problem of
finding all (resp. top-N) subsets of P that match the given

SA SA w/o pruning SSA (𝑠 = 0.1|𝑃|) SSA (𝑠 = 0.01|𝑃|) PQA PQA w/o pruning

(a) CaStreet (b) Places

Fig. 4. Impact of |P |

SA SA w/o pruning SSA (𝑠 = 0.1|𝑃|) SSA (𝑠 = 0.01|𝑃|) PQA PQA w/o pruning

(a) CaStreet (b) Places

Fig. 5. Impact of N

sub-graph pattern. This problem is also NP-hard, so [23], [47]
devised practically-efficient algorithms. Since this problem
requires a graph pattern (i.e., sub-graph) as an input, some
interesting (or required) pattern needs to be known in advance.
It is clear, from this fact, that this pattern matching problem
targets different applications.

Literature [19] is the work most related to this paper. It
addressed the problem of retrieving top-N weighted spatial
triangles. To efficiently solve this problem, [19] proposed
an algorithm that exploits a pruning technique based on
triangle inequality. Its theoretical analysis (under a practical
assumption) demonstrates that the algorithm scales linearly
to n = |P |. It is trivial that this problem is a special case

of the problem in our paper, as triangles are 3-cliques. (In
other words, our problem generalizes the problem of [19].)
Recall that we compared the performance of our algorithm
with that of the algorithm proposed in [19], and the result
shows the advantage of our algorithm (i.e., PQA). Literature
[20] assumes that P is dynamic and addressed the problem
of monitoring top-N weighted spatial triangles. We consider
such a dynamic dataset case as future work.

B. Clique enumeration in graph databases

Similar to [24], the problem of clique enumeration has been
studied extensively under sequential [48] and parallel compu-
tation setting [49], because it has important applications, e.g.,

social network analysis [50]. Many works focus on maximal
clique or k-clique enumeration.

Because of the NP-hardness, maximal clique enumeration is
a computationally-expensive task. Therefore, parallel enumer-
ation algorithms have been extensively developed [49], [51],
[52]. As noted earlier, even if we have a spatial neighbor graph
Gr of P , these algorithms are not available to compute the
top-N k-cliques.

Similar to maximal cliques, k-cliques are also important for
finding dense sub-graphs [53], [54]. There are some studies
that enumerate all k-cliques [33], [55]–[57]. If we run one of
these algorithms after building a spatial neighbor graph Gr of
P , we can compute the top-N k-cliques. However, building
Gr already incurs a larger computational cost. In addition, all
k-clique enumeration incurs a larger computational cost, even
when we use the stat-of-the-art [33]. This observation suggests
that this approach is not appropriate for efficiently solving our
problem. Our experimental result confirmed this, see Section
IV-B.

VI. CONCLUSION & FUTURE WORK

Due to the importance of big spatial data analysis, many
works proposed (i) problems that effectively analyze/mine
spatial data and (ii) efficient algorithms for the problems.
This paper also contributed to this trend. Specifically, we
addressed a new problem, namely top-N weighted spatial k-
clique retrieval, and proposed a practically-efficient algorithm.
This algorithm exploits a threshold-based iterative filter-and-
verify approach. To compute a tight threshold efficiently,
we proposed three techniques. Furthermore, to enable ef-
ficient verification, we proposed two techniques that avoid
unnecessary k-clique enumeration. We conducted experiments
using two real spatial datasets, and the results show that (i)
our algorithm is efficient, (ii) priority queue-based threshold
computation is effective, and (ii) our verification technique
improves the efficiency.

As this paper is the first work for the top-N weighted spatial
k-clique retrieval problem, there are some future works. In
this paper, we focued on practical implementations to solve
the problem, and designing theoretical algorithms that can
reduce the upper-bound time complexity is an open problem.
Moreover, this paper considered a static dataset, but some
scenarios need to deal with dynamic (or streaming) spatial
data. In such a dynamic data case, we need to monitor the
up-to-date result in real-time. How to deal with this case
efficiently is also an open problem.

ACKNOWLEDGEMENTS

This research is partially supported by JST PRESTO Grant
Number JPMJPR1931, JSPS Grant-in-Aid for Scientific Re-
search (A) Grant Number 18H04095, and JST CREST Grant
Number JPMJCR21F2.

REFERENCES

[1] D. Amagata and T. Hara, “Monitoring maxrs in spatial data streams.”
in EDBT, 2016, pp. 317–328.

[2] S. Nishio, D. Amagata, and T. Hara, “Geo-social keyword top-k data
monitoring over sliding window,” in DEXA, 2017, pp. 409–424.

[3] D. Amagata and T. Hara, “A general framework for maxrs and maxcrs
monitoring in spatial data streams,” ACM Transactions on Spatial
Algorithms and Systems, vol. 3, no. 1, pp. 1–34, 2017.

[4] V. Pandey, A. Kipf, T. Neumann, and A. Kemper, “How good are modern
spatial analytics systems?” PVLDB, vol. 11, no. 11, pp. 1661–1673,
2018.

[5] N. Taguchi, D. Amagata, and T. Hara, “Geo-social keyword skyline
queries,” in DEXA, 2017, pp. 425–435.

[6] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework
for spatial data,” in ICDE, 2015, pp. 1352–1363.

[7] Y. Nakayama, D. Amagata, and T. Hara, “An efficient method for
identifying maxrs location in mobile ad hoc networks,” in DEXA, 2016,
pp. 37–51.

[8] J. Yu and M. Sarwat, “Geosparkviz: a cluster computing system for
visualizing massive-scale geospatial data,” The VLDB Journal, vol. 30,
no. 2, pp. 237–258, 2021.

[9] R. R. Vatsavai, A. Ganguly, V. Chandola, A. Stefanidis, S. Klasky, and
S. Shekhar, “Spatiotemporal data mining in the era of big spatial data:
algorithms and applications,” in SIGSPATIAL Workshop, 2012, pp. 1–10.

[10] S. V. Mehta, S. Sodhani, and D. Patel, “Spatial co-location pat-
tern mining-a new perspective using graph database,” arXiv preprint
arXiv:1810.09007, 2018.

[11] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework
for processing large-scale spatial data,” in SIGSPATIAL, 2015, pp. 1–4.

[12] D. Amagata, T. Hara, and S. Nishio, “Distributed top-k query processing
on multi-dimensional data with keywords,” in SSDBM, 2015, pp. 10:1–
10:12.

[13] K. Feng, G. Cong, C. S. Jensen, and T. Guo, “Finding attribute-aware
similar region for data analysis,” PVLDB, vol. 12, no. 11, pp. 1414–
1426, 2019.

[14] Y. Nakayama, D. Amagata, and T. Hara, “Probabilistic maxrs queries
on uncertain data,” in DEXA, 2017, pp. 111–119.

[15] S. Tsuruoka, D. Amagata, S. Nishio, and T. Hara, “Distributed spatial-
keyword knn monitoring for location-aware pub/sub,” in SIGSPATIAL,
2020, pp. 111–114.

[16] Y. Chen, Z. Chen, G. Cong, A. R. Mahmood, and W. G. Aref, “Sstd:
a distributed system on streaming spatio-textual data,” PVLDB, vol. 13,
no. 12, pp. 2284–2296, 2020.

[17] D. Amagata, S. Tsuruoka, Y. Arai, and T. Hara, “Feat-sksj: Fast and ex-
act algorithm for top-k spatial-keyword similarity join,” in SIGSPATIAL,
2021, pp. 15–24.

[18] D. Amagata, Y. Sasaki, T. Hara, and S. Nishio, “Probabilistic nearest
neighbor query processing on distributed uncertain data,” Distributed
and Parallel Databases, vol. 34, no. 2, pp. 259–287, 2016.

[19] R. Taniguchi, D. Amagata, and T. Hara, “Efficient retrieval of top-k
weighted spatial triangles,” in DASFAA, 2022, pp. 224–231.

[20] ——, “Efficient retrieval of top-k weighted triangles on static and
dynamic spatial data,” IEEE Access, vol. 10, pp. 55 298–55 307, 2022.

[21] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu, “Effective community
search over large spatial graphs,” PVLDB, vol. 10, no. 6, pp. 709–720,
2017.

[22] Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu, and X. Chen, “On
spatial-aware community search,” IEEE Transactions on Knowledge and
Data Engineering, vol. 31, no. 4, pp. 783–798, 2018.

[23] Y. Fang, Y. Li, R. Cheng, N. Mamoulis, and G. Cong, “Evaluating
pattern matching queries for spatial databases,” The VLDB Journal,
vol. 28, no. 5, pp. 649–673, 2019.

[24] C. Zhang, Y. Zhang, W. Zhang, L. Qin, and J. Yang, “Efficient maximal
spatial clique enumeration,” in ICDE, 2019, pp. 878–889.

[25] J. Kim, T. Guo, K. Feng, G. Cong, A. Khan, and F. M. Choudhury,
“Densely connected user community and location cluster search in
location-based social networks,” in SIGMOD, 2020, pp. 2199–2209.

[26] Y. Wang, S. Yu, L. Dhulipala, Y. Gu, and J. Shun, “Geograph: A
framework for graph processing on geometric data,” ACM SIGOPS
Operating Systems Review, vol. 55, no. 1, pp. 38–46, 2021.

[27] L. Chen, C. Liu, R. Zhou, J. Li, X. Yang, and B. Wang, “Maximum
co-located community search in large scale social networks,” PVLDB,
vol. 11, no. 10, pp. 1233–1246, 2018.

[28] Y. Du and C. Yan, “An improved clique-based method for discovery of
novel spatial motifs in protein structures,” in BIBE, 2018, pp. 1–5.

[29] X. Bao and L. Wang, “A clique-based approach for co-location pattern
mining,” Information Sciences, vol. 490, pp. 244–264, 2019.

[30] Z. Hu, L. Wang, V. Tran, and H. Chen, “Efficiently mining spatial co-
location patterns utilizing fuzzy grid cliques,” Information Sciences, vol.
592, pp. 361–388, 2022.

[31] P. Yang, L. Wang, and X. Wang, “A mapreduce approach for spatial
co-location pattern mining via ordered-clique-growth,” Distributed and
Parallel Databases, vol. 38, no. 2, pp. 531–560, 2020.

[32] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[33] R.-H. Li, S. Gao, L. Qin, G. Wang, W. Yang, and J. X. Yu, “Ordering
heuristics for k-clique listing,” PVLDB, vol. 13, no. 11, pp. 2536–2548,
2020.

[34] S. Nishio, D. Amagata, and T. Hara, “Lamps: Location-aware moving
top-k pub/sub,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 34, no. 1, pp. 352–364, 2022.

[35] D. Amagata and T. Hara, “Identifying the most interactive object in
spatial databases,” in ICDE, 2019, pp. 1286–1297.

[36] S. Chatterjee, M. Connor, and P. Kumar, “Geometric minimum spanning
trees with GEOFILTERKRUSKAL,” in SEA, 2010, pp. 486–500.

[37] W. B. March, P. Ram, and A. G. Gray, “Fast euclidean minimum
spanning tree: algorithm, analysis, and applications,” in KDD, 2010,
pp. 603–612.

[38] T. Guo, K. Feng, G. Cong, and Z. Bao, “Efficient selection of geospatial
data on maps for interactive and visualized exploration,” in SIGMOD,
2018, pp. 567–582.

[39] T. N. Chan, R. Cheng, and M. L. Yiu, “Quad: quadratic-bound-based
kernel density visualization,” in SIGMOD, 2020, pp. 35–50.

[40] Y. Fang, R. Cheng, J. Wang, L. Budiman, G. Cong, and N. Mamoulis,
“Spacekey: exploring patterns in spatial databases,” in ICDE, 2018, pp.
1577–1580.

[41] S. Wang, J. Cao, and P. Yu, “Deep learning for spatio-temporal data
mining: A survey,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 34, no. 8, pp. 3681–3700, 2022.

[42] D. Amagata, Y. Arai, S. Fujita, and T. Hara, “Learned k-nn distance
estimation,” in SIGSPATIAL, 2022.

[43] J. Qi, G. Liu, C. S. Jensen, and L. Kulik, “Effectively learning spatial
indices,” PVLDB, vol. 13, no. 12, pp. 2341–2354, 2020.

[44] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan, “Lisa: A learned index
structure for spatial data,” in SIGMOD, 2020, pp. 2119–2133.

[45] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online minimum
matching in real-time spatial data: experiments and analysis,” PVLDB,
vol. 9, no. 12, pp. 1053–1064, 2016.

[46] M. Zhang, L. Li, W. Hua, R. Mao, P. Chao, and X. Zhou, “Dynamic
hub labeling for road networks,” in ICDE, 2021, pp. 336–347.

[47] Y. Fang, R. Cheng, G. Cong, N. Mamoulis, and Y. Li, “On spatial pattern
matching,” in ICDE, 2018, pp. 293–304.

[48] Z. Chen, L. Yuan, X. Lin, L. Qin, and J. Yang, “Efficient maximal bal-
anced clique enumeration in signed networks,” in The Web Conference,
2020, pp. 339–349.

[49] A. Das, S.-V. Sanei-Mehri, and S. Tirthapura, “Shared-memory parallel
maximal clique enumeration,” in HiPC, 2018, pp. 62–71.

[50] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maximal
cliques in massive networks,” ACM Transactions on Database Systems,
vol. 36, no. 4, pp. 1–34, 2011.

[51] A. Das, S.-V. Sanei-Mehri, and S. Tirthapura, “Shared-memory parallel
maximal clique enumeration from static and dynamic graphs,” ACM
Transactions on Parallel Computing, vol. 7, no. 1, pp. 1–28, 2020.

[52] Y.-W. Wei, W.-M. Chen, and H.-H. Tsai, “Accelerating the bron-
kerbosch algorithm for maximal clique enumeration using gpus,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp.
2352–2366, 2021.

[53] C. Tsourakakis, “The k-clique densest subgraph problem,” in World Wide
Web, 2015, pp. 1122–1132.

[54] B. Sun, M. Danisch, T. H. Chan, and M. Sozio, “Kclist++: A simple
algorithm for finding k-clique densest subgraphs in large graphs,”
PVLDB, vol. 13, no. 10, pp. 1628–1640, 2020.

[55] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”
SIAM Journal on computing, vol. 14, no. 1, pp. 210–223, 1985.

[56] M. Danisch, O. Balalau, and M. Sozio, “Listing k-cliques in sparse real-
world graphs,” in World Wide Web, 2018, pp. 589–598.

[57] I. Finocchi, M. Finocchi, and E. G. Fusco, “Clique counting in mapre-
duce: Algorithms and experiments,” Journal of Experimental Algorith-
mics, vol. 20, pp. 1–20, 2015.

