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Abstract—This paper addresses the problem of top-k inner
product join, which, given two sets of high-dimensional vectors
and a result size k, outputs k pairs of vectors that have the
largest inner product. This problem has important applica-
tions, such as recommendation, information extraction, and
finding outlier correlation. Unfortunately, computing the exact
answer incurs an expensive cost for large high-dimensional
datasets. We therefore consider an approximate solution frame-
work that efficiently retrieves k pairs of vectors with large
inner products. To exploit this framework and obtain an
accurate answer, we extend a state-of-the-art proximity graph
for inner product search. We conduct experiments on real
datasets, and the results show that our solution is faster and
more accurate than baselines with state-of-the-art techniques.

Index Terms—top-k inner product join, high-dimensional vec-
tor, approximation algorithm, proximity graph

1. Introduction

This paper considers the top-k inner product join prob-
lem, which is defined as follows: Given two sets X and
Y of high-dimensional vectors and a result size k, top-k
inner product join between X and Y retrieves k pairs of
vectors 〈x,y〉, where x ∈ X and y ∈ Y, with the largest
inner product among X × Y. This problem has important
applications, such as recommendation [1]–[3], information
extraction [4], and finding outlier correlations [5]. More
specifically, Figure 1 depicts a histogram of inner products
of 1 million randomly sampled vector pairs in a Yahoo!
dataset1. We see that most of them have small inner prod-
ucts, while some vectors have much larger inner products,
namely outlier correlations [5]. Our problem is useful for
finding such interesting pairs that behave abnormally in
correlation analyses.

An intuitive approach for the top-k inner product join
problem is to run a k-maximum inner product search (k-
MIPS) algorithm for each vector in Y (or X). Given a query
vector q and k, the k-MIPS problem is to retrieve k vectors
such that the inner products of them and q are the largest.
Informally, after iterating k-MIPS on X by using the vectors

1. https://webscope.sandbox.yahoo.com

Figure 1. Example of outlier correlation. Most vector pairs have small inner
products, whereas some vector pairs have much larger inner products.

in Y as queries, we can obtain the top-k inner product
join result by merging the k-MIPS results. However, solving
the k-MIPS problem exactly is computationally expensive,
because it needs O(n) or O(m) time, where n = |X| and
m = |Y|, so the above exact solution for the top-k inner
product join needs O(nm) time in total. We hence consider
an approximate solution to the top-k inner product join
problem. Actually, approximate k-MIPS algorithms have
also been studied extensively [6]–[13]. There are four main
approaches, sampling [7], locality-sensitive hashing [6], [8],
quantization [9], and proximity graphs [10]–[13]. Among
these, proximity graphs have the best trade-off relationship
between speed and accuracy [14]. We therefore consider a
solution based on proximity graphs.

Note that simply employing approximate k-MIPS algo-
rithms still has some issues. First, simply iterating approx-
imate k-MIPS is not efficient and is very slow in practice
(see TABLE 2). Second, the state-of-the-art proximity graph
[12] suffers from an overhead cost incurred by the need
to traverse multiple graphs. To overcome theses issues, we
make the following contributions:

(1) We propose a general framework for approximate top-k
inner product join with a proximity graph. Our framework
can employ any proximity graphs and does not necessar-
ily run approximate k-MIPS iteratively. This framework
avoids unnecessary inner product computations by consid-
ering norm-based access order. Therefore, those vector pairs
that cannot be the top-k join result are pruned.

(2) We propose a new proximity graph for inner product



spaces. The state-of-the-art [12] considers vector norm and
cosine similarity to quickly access vectors such that the inner
products of them and a given query are large. (Because
the inner product of x and y is obtained via ‖x‖‖y‖ cos θ,
where θ is the angle between these vectors, norm and cosine
similarity are important.) However, [12] considers norm
and cosine similarity separately. Specifically, it builds two
proximity graphs, one for norm and the other for cosine
similarity. It therefore needs to traverse the two proximity
graphs, incurring unnecessary computational costs. We take
norm and cosine similarity into account simultaneously and
propose Hybrid-ip-NSW, which, in a more effective manner,
builds a single proximity graph that supports quick access to
vectors which have large inner products with a given query.

(3) We conduct experiments on real datasets with multiple
domains. Our experimental results demonstrate that (i) our
framework provides much faster join processing than simply
running k-MIPS iteratively and (ii) our proximity graph
yields faster processing and a more accurate result than the
state-of-the-art proximity graphs.

2. Preliminary

Problem definition. Let x be a d-dimensional real-valued
vector in Rd, and we assume that d is high. Given two
vectors x and y, their inner product, x · y, is obtained as
follows: x · y =

∑d
i=1 x[i]× y[i], where x[i] represents the

i-th element of x. Then, our problem is defined as follows:

DEFINITION 1 (TOP-K INNER PRODUCT JOIN). Given two
sets X and Y of vectors and a result size k, this problem
finds k vector pairs such that their inner products are the
largest among all pairs in X×Y.

For vector sets with a large d, this problem incurs
O(nm) time (for a fixed d), where n = |X| and m = |Y|.
This paper hence proposes an approximate solution.

Related work. Inner product join has been receiving atten-
tion and has important applications, as introduced in Section
1. LEMP is the state-of-the-art exact inner product join al-
gorithm. LEMP partitions the vector sets so that it can select
an optimal search algorithm (a cosine similarity search or a
linear scan) for each partition. Approximate inner product
join has also been considered in [7] and the theory field
[5], [15], [16]. However, [7] assumes non-negative vectors,
losing generality. Also, [5], [15], [16] do not consider top-
k joins and do assume binary vectors, whereas we assume
dense real-valued vectors.

In addition to the above algorithms, k-MIPS algorithms
can be employed in our problem. Our proposed framework
employs a proximity graph, which yields state-of-the-art k-
MIPS performance, as a function. Furthermore, we extend
ip-NSW+ [12], a state-of-the-art proximity graph for the
inner product search problem, to exploit our framework.

3. Our Solution

Main idea. Our idea for solving the top-k inner product
join efficiently and accurately is to exploit Cauchy–Schwarz

Algorithm 1: FRAMEWORK FOR APPROXIMATE
TOP-K INNER PRODUCT JOIN

Input: X (proximity graph), Y, and k
Output: R (a set of k vector pairs)

1 /* Threshold initialization */
2 τ ← 0, R← ∅
3 for each yi ∈ Y where i ∈ [1, k] do
4 q← yi, Q← {x1}
5 while Q 6= ∅ do
6 x← Q[0]
7 Pop Q[0] from Q
8 if This is the first time for q to visit x then
9 γ ← x · q

10 if γ > τ then
11 Update R and τ
12 for each x′ ∈ x.E do
13 Q← Q ∪ {x′}

14 /* Result verification */
15 for each yj ∈ Y where j ∈ [k + 1,m] do
16 if ‖yj‖‖x1‖ ≤ τ then
17 return R
18 else
19 Execute lines 4–13

inequality and a proximity graph. Given two vectors x and
y, we have

x · y ≤ ‖x‖‖y‖,

where ‖x‖ is the Euclidean norm of x. Assume that the
vectors in X and Y are sorted in descending order of norm:
‖x1‖ ≥ · · · ≥ ‖xn‖ and ‖y1‖ ≥ · · · ≥ ‖ym‖ without loss
of generality. Assume furthermore that we have a threshold
τ for the top-k inner product join. If ‖x1‖‖yi‖ < τ , yi never
has pairs that can be the top-k result, from Cauchy–Schwarz
inequality. That is, we need to run a k-MIPS only for vectors
yj such that ‖x1‖‖yj‖ ≥ τ .

3.1. Framework

Assume that vectors in X and Y are sorted offline, as
mentioned above. Our proposed framework assumes that a
proximity graph is (or proximity graphs are) specified as
an input, and we assume that X is indexed by a proximity
graph. (If |X| < |Y|, Y is indexed by a proximity graph.)
In a nutshell, a proximity graph of X consists of nodes
and edges, where nodes are the vectors x ∈ X and an
edge is created between nodes xi and xj if they satisfy
the requirements of a given graph building algorithm. (In
inner product spaces, such requirements are usually high
inner products or cosine similarities.) We use x.E to denote
the set of edges held by a node (i.e., vector) x. Note that
the graph building is done offline and only once.

Algorithm 1 describes our framework. Lines 2–13 ini-
tialize the threshold τ and result set (k vector pairs) R. To



get a tight threshold for pruning many unnecessary vector
pairs, we use the observation that vectors with large norms
tend to have large inner products [1]. For each yi where
i ∈ [1, k], we run a breadth-first-search in the proximity
graph of X from x1, by setting yi as a query. By using
the accessed vector pairs in the breadth-first-searches, we
initialize τ and R. After this initialization, in lines 15–19,
we update R and τ by using the remaining vectors yj ∈ Y,
where j ∈ [k + 1,m]. Note that this is done iff we have
‖yj‖‖x1‖ > τ . This is because, if ‖yj‖‖x1‖ ≤ τ , all yj′

such that j′ ≥ j cannot have vector pairs with inner products
> τ from Cauchy–Schwarz inequality. For vectors yj such
that ‖yj‖‖x1‖ > τ , we do the same graph traversal as in
the initialization to update the result.

3.2. Hybrid-ip-NSW

The state-of-the-art proximity graph for inner product
search, ip-NSW+ [12], considers norm and cosine similarity
separately, thereby it needs to traverse the two proximity
graphs. (Considering only inner products [17] has been
shown not to be effective in [12].) It is intuitively seen
that a single graph, which considers both norm and cosine
similarity simultaneously, is a better approach. We hence
design such a proximity graph.

Recall that vectors are sorted by the norm order. We
incrementally build a proximity graph based on this order to
take into account norm size. (In other words, at initialization
the graph has no nodes, and in each iteration a node is added
to the intermediate graph.) Given a vector xi ∈ X, in an
intermediate proximity graph, we use the greedy algorithm
[17] to find ε×µ nodes (vectors) that have (approximately)
the largest inner product with xi. Note that ε ≥ 1 and µ ≥ 1,
which controls the degree, are hyper-parameters to balance
speed and accuracy. We compute nodes with the µ largest
cosine similarity with xi, among the ε×µ nodes. Then, we
create edges between xi and the µ nodes. We do the above
operations for each xi ∈ X.

We call the graph built by this algorithm Hybrid-ip-
NSW. Although a Hybrid-ip-NSW can be built by a simple
algorithm2, it provides a better performance than the state-
of-the-art, which is shown in the next section.

4. Experiment

This section reports our experimental results. All experi-
ments were conducted on a machine with 2.5GHz Intel Core
i9-9900 CPU and 8GB RAM.

Algorithms. We evaluated the following algorithms.

• LEMP [4]: A state-of-the-art exact algorithm.
• IPJ with ip-NSW: This algorithm incorporates ip-NSW

[17] into our framework proposed in Section 3.1.
• IPJ with ip-NSW+: This algorithm incorporates ip-

NSW+ [12] into our framework.

2. This graph building approach follows [17], but how to connect nodes
is totally different.

TABLE 1. DATASET STATISTICS

Dataset |X| |Y| d

Deep1M 1,000,000 10,000 256
ImageNet 2,340,373 80,000 150

WordVector 1,000,000 10,000 300
Yahoo! Music 136,736 100,900 300

TABLE 2. RESULTS OF LEMP AND ITERATIVE HYBRID-IP-NSW
(k = 1000)

LEMP Iterative Hybrid-ip-NSW
Dataset Time [sec] Time [sec] Recall
Deep1M 43.50 240.55 0.72
ImageNet 126.35 409.30 0.75

WordVector 40.10 267.38 0.81
Yahoo! Music 28.00 41.12 0.88

• IPJ with Hybrid-ip-NSW: This algorithm incorporates
Hybrid-ip-NSW into our framework.

• Iterative Hybrid-ip-NSW: This algorithm employs
Hybrid-ip-NSW and iteratively runs approximate k-
MIPS.

All algorithms were single threaded, implemented by C++,
and compiled by using g++ 7.4.0 with -O3 flag.

Datasets. We used the real datasets3 listed in TABLE 1.

Result. We evaluated the running time and accuracy (recall)
of each algorithm. We set µ = 50 and k = 1000. TABLE
2 shows the results of LEMP and Iterative Hybrid-ip-NSW,
while Figure 3 shows the time-recall curves of IPJ with ip-
NSW, IPJ with ip-NSW+, and IPJ with Hybrid-ip-NSW. By
comparing the results shown in TABLE 2 with the ones in
Figure 3, we see that LEMP and Iterative Hybrid-ip-NSW
are much slower than the algorithms that use our frame-
work. (LEMP and Iterative Hybrid-ip-NSW are second-
scale, whereas the algorithms that use our framework are
microsecond-scale.) This observation suggests that (i) the
exact solution (LEMP) is not efficient and (ii) our framework
provides much faster processing than the iterative approach.

Now we focus on Figure 3, i.e., IPJ with ip-NSW, IPJ
with ip-NSW+, and IPJ with Hybrid-ip-NSW. (The time-
recall curves were obtained by tuning ε). Notice that the
performance differences are directly derived from the effec-
tiveness of the proximity graphs (ip-NSW, ip-NSW+, and
Hybrid-ip-NSW), since they use the same framework. Then,
it is clear that Hybrid-ip-NSW has the best trade-off rela-
tionship between time and recall. (Shorter time with higher
recall is better.) As confirmed in [12], we also confirmed
that simply considering inner products in a proximity graph
(ip-NSW) provides a lower performance than those of the
others. In addition, our experimental results demonstrate that
Hybrid-ip-NSW, which considers norm and cosine similarity
simultaneously, is better than ip-NSW+, which considers
norm and cosine similarity separately.

For a different value of k (e.g., k = 5000), their per-
formance tendencies are similar and Hybrid-ip-NSW keeps

3. http://www.cse.cuhk.edu.hk/systems/hash/gqr/datasets.html
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Figure 2. Time-recall curve (k = 1000)
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Figure 3. Time-recall curve (k = 5000)

outperforming ip-NSW and ip-NSW+, as shown in Figure
3. (The results of LEMP and Iterative Hybrid-ip-NSW are
omitted, as they are much slower than the others.)

5. Conclusion

This paper addressed the problem of top-k inner product
join and proposed an approximate solution. Specifically, we
proposed a general framework for approximate algorithms
that employ proximity graphs. To exploit this framework, we
extended a state-of-the-art proximity graph. We conducted
experiments by using real datasets, and the results show
that our framework and proximity graph have the best time-
accuracy trade-off.
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