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Abstract

Efficient glycosylation methods have been the focus of research in glycochemistry as
it is a fundamental reaction for the preparation of glycosides and the synthesis of sugar
chains. Research on glycosylation reactions has focused on high yields and high
stereoselectivity. Glycosylations are complicated processes as they are influenced by
many factors, such as the choice of donors and acceptors, type of catalyst, choice of
solvent, reaction time, and temperature, all of which have an impact on yield and
stereoselectivity. In terms of donor selection, glycosyl fluorides offer significant
advantages over other donors. Due to the stability of the carbon-fluorine bond, glycosyl
fluorides are thermally and chemically stable and can therefore be purified by column
chromatography, distillation, and other operations, and can be stored for long periods.
In contrast, glycosyl fluorides can be readily activated by hard Lewis acids for use in
glycosylation reactions. In recent years, with the development of artificial intelligence,
machine learning can be a powerful tool for the efficient optimization of reaction

conditions, thereby reducing time and saving the efforts of researchers.

In this study, the author applied machine learning to glycochemistry; machine learning
was used to analyze data to improve the yield and stereoselectivity of glycosylation
reactions. Firstly, the author conducted a-glucosylation as a model study to investigate
the integration of machine learning with glycosylation reaction. The author then chose
to investigate the glycosylation reaction for the first step of the a-gal synthesis. After
performing conditional exploration for collecting data sets for machine learning

analysis, machine learning improved the reaction yield by 13% compared to the dataset.

The author then investigated the a-selective glycosylation of xylose. Machine
learning improved the a-selectivity from 1.3/1 to 1.5/1 in the batch analysis. The author
next describes flow chemistry techniques, which are reproducible, easy to scale up, and
effective in collecting data. By applying flow chemistry, machine learning optimization

further improved the a-selectivity to 3.2.



Chapter 1. Introduction

1.1. Background on Glycosylation Reactions

Glycosylation reactions play a vital role in the synthesis of glycosides and
oligosaccharides, which are essential components of numerous biological processes,
including cell signaling, molecular recognition, and immune response.! A key challenge
in glycosylation reactions is to achieve high yields and stereoselectivity to control the
formation of the desired product. The complexity of glycosylation reactions arises from
the need to consider multiple factors, such as the donor and acceptor selection, the
choice of solvent, the type of catalyst, reaction time, and temperature.? *

Among many glycosylation donors, including thioglycosides, hemiacetals, glycosyl
halides, and activated sugar derivatives,* glycosyl fluorides, have gained significant
attention due to their enhanced stability and versatility in glycosylation reactions. The
unique properties of glycosyl fluorides, such as the strength and stability of the carbon-
fluorine bond, offer several advantages, including high thermal and chemical stability,
ease of purification, and long-term storage.*

Despite the considerable progress made in the field of glycochemistry, achieving high
yields and selectivity in glycosylation reactions remains challenging. Recent advances
in artificial intelligence (Al) and machine learning (ML) offer an opportunity to address
these challenges by leveraging computational methods to optimize reaction conditions
and analyze complex datasets.’ Integrating machine learning into glycochemistry can
significantly improve research efficiency, reduce experimental time, and save

researchers' efforts.

1.2. Glycosyl Fluorides as Glycosylation Donors

Glycosyl fluorides have emerged as promising glycosylation donors due to their unique
properties and advantages over other donor types. The carbon-fluorine bond in glycosyl
fluorides is characterized by its high stability, resistance to hydrolysis, and low
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reactivity towards nucleophiles under mild conditions.® These features confer
significant benefits to glycosyl fluorides in glycosylation reactions; glycosyl fluorides
have emerged as valuable glycosylation donors due to their stability, stereoselectivity,
versatility, and compatibility with mild reaction conditions. The integration of machine
learning techniques into glycosylation reactions involving glycosyl fluorides has the

potential to further enhance their utility by optimizing yields and selectivity.

1.3. Machine Learning in Chemical Synthesis

Machine learning (ML), a subset of artificial intelligence (AI), has recently gained
considerable attention for its potential applications in various scientific disciplines,
including chemistry. The use of ML algorithms in chemical synthesis has demonstrated
remarkable potential for optimizing reaction conditions, predicting reaction outcomes,
and assisting in the design of new molecules and materials.'® This section will explore
the impact of machine learning on chemical synthesis and its potential for advancing
the field of glycochemistry.

1.3.1. Reaction Optimization: One of the key applications of machine learning in
chemical synthesis is the optimization of reaction conditions. ML algorithms can
process vast amounts of experimental data to identify patterns and correlations between
variables, such as temperature, catalyst, solvent, and concentration, and the resulting
yields or selectivities.!!"!* This information can be utilized to predict the most favorable
conditions for a given reaction, thereby improving efficiency, and reducing
experimental time.

1.3.2. Predictive Modeling: Machine learning algorithms can be used to develop
predictive models that estimate the outcome of a reaction based on specific input
variables.! These models can be particularly useful in guiding the design of new
molecules or identifying promising synthetic routes, ultimately saving researchers’ time
and resources by reducing the need for trial-and-error experimentation.

1.3.3. Catalyst and Ligand Design: ML techniques have also been employed in the



design of new catalysts and ligands for chemical reactions.!” By analyzing existing data
on catalyst performance and structural features, ML algorithms can generate predictions
for the performance of new catalysts or ligands, guiding their synthesis and evaluation
in experimental settings.

1.3.4. Application to Glycochemistry: The integration of machine learning techniques
into glycochemistry, such as in the optimization of glycosylation reactions involving
glycosyl fluorides, has the potential to significantly improve yields and selectivities. By
leveraging ML algorithms to analyze and optimize reaction conditions, researchers can
enhance the efficiency of glycosylation reactions, reduce the time required for
experimentation, and accelerate the discovery and synthesis of novel glycoconjugates
with potential biological applications.!®

In conclusion, the application of machine learning in chemical synthesis offers
numerous opportunities for improving reaction efficiency, predicting outcomes, and
designing new catalysts and ligands. As the field of glycochemistry continues to evolve,
the integration of ML techniques into the study of glycosylation reactions has the
potential to significantly advance our understanding and control of these complex

Pprocessces.



Chapter 2. Model Study: Integrating Machine Learning with

Glycosylation Reactions

2.1. Model Selection and Rationale

In the application of machine learning to improve the yield of chemical reactions, key
reaction conditions can be experimentally varied to obtain yield data under various
conditions. By creating a dataset containing all the reaction conditions and their
corresponding yields, machine learning can be applied to analyze the data and

14,19 Qeveral factors can

subsequently provide optimized reaction conditions.'?
influence the yield and stereoselectivity of glycosylation reactions, such as temperature,
solvent, catalyst, concentration, and the types of protecting groups on the
monosaccharides.?

In this study, glycosylation shown in Scheme 2.1 was chosen as a model glycosylation
reaction. BF3-Et;O was employed as the catalyst. This study primarily investigated the
influence of temperature and catalyst equivalents on the yield of the a-configuration.

Upon completing the dataset collection, machine learning was used to optimize reaction

conditions for enhancing the yield and selectivity of the glycosylation reaction.

OBn o
OBn OH BnO
BnO Q ., Bno O BF-Ep0_ BnO
BnO BnO MS4A Et,0 1h oBn_ O 0
BnO
OBn F OBn 0.02M
BnO
OMe OBn
Donor 1.5 eq Acceptor L1

OMe

Scheme 2.1. Glycosylation reaction for model study

2.2. Data Collection and Analysis

To obtain a high-quality dataset for machine learning analysis, the reaction conditions
in the dataset should cover a range of temperatures and catalyst equivalents, from low
to high values. Under an argon atmosphere, the donor (1.5 eq) and acceptor were

dissolved in diethyl ether. The solution was stirred for 10 minutes at temperature X °C,



followed by the addition of Y equivalents of BF3-Et,O. After one hour, the reaction was
quenched with a saturated sodium bicarbonate solution. The organic phase was
extracted with dichloromethane, and dried over anhydrous sodium sulfate, and the
residual solvent was removed under reduced pressure by rotary evaporation. The yield

and stereoisomeric ratios of the products were determined using proton nuclear

. 1 . .
magnetic resonance (H NMR) spectroscopy, with tetrachloroethane as the internal

standard. After an initial exploration of reaction conditions, the dataset's temperature
range was controlled from -20°C to 34.6 °C, and the catalyst equivalents ranged from
8 eq to 15 eq (Table 2.2). Nine sets of data were obtained through experimentation. A
preliminary analysis revealed that the total yield of the glycosylation reaction increased
from -20°C to 30°C and slightly decreased from 30°C to 34.6°C. The decline in yield
might be due to the degradation of the donor under high-temperature conditions. The
stereoselectivity of the a-configuration increased with temperature, from -20°C to
34.6°C.

Regarding catalyst equivalents, an increase in catalyst equivalents improved the
reaction yield under both low and high-temperature conditions. Under low-temperature
conditions at -20°C and 0°C, increasing the catalyst equivalents led to a decrease in the

stereoselectivity of the a-configuration. Conversely, under high-temperature conditions

Table 2.2. Data set for model study

Entry Temp.(°C) Eq(BF;Et,0) L1(%)
a B alB a+p
1 -20 10 7 9 0.78 16
2 -20 15 8 12 0.67 20
3 0 10 21 26 0.81 47
4 0 15 23 33 0.70 56
5 24 14 43 51 0.84 94
6 30 8 46 49 0.94 95
7 30 12 48 46 1.04 94
8 34.6 10 39 35 1.11 74
9 34.6 14 42 38 1.11 80

* Estimated by H NMR using tetrachloroethane as an internal standard



at 30°C, increasing the catalyst equivalents enhanced the stereoselectivity of the a-
configuration. This indicates that the influence of temperature and catalyst equivalents

on the yield and stereoselectivity of glycosylation reactions is complex and variable.

2.3. Machine Learning Optimization and Results

2.3.1. Gaussian Process Machine Learning Method

Gaussian process (GP) is a powerful and flexible machine learning method that has
gained popularity in various fields, including chemistry, for its ability to model complex,
nonlinear relationships between input features and output values.!” Gaussian process
regression (GPR), also known as kriging, is a Bayesian non-parametric method that
provides not only predictions but also uncertainty estimates for those predictions,

making it particularly useful for optimization problems (Figure 2.3.1).2

2.0 1.5

normal distributions

Prior Posterior

?20.2, =—
2210, m—
2250,

220.5, =

-1.5

Prediction with Uncertainty

Figure 2.3.1. Gaussian process regression

In a Gaussian process, the prior distribution over functions is defined by a mean
function and a covariance function, often referred to as the kernel.?*> The kernel
determines the similarity between data points, and various kernel functions can be used
depending on the problem at hand. In essence, a Gaussian process models the function
as an Infinite-dimensional Gaussian distribution, where the function values are
correlated according to the kernel function.?*

One of the key advantages of Gaussian process regression is its ability to handle
uncertainty in both input data and model predictions.?® This is particularly useful when
modeling chemical reactions, as experimental data may have noise or uncertainties. The
Gaussian process can incorporate these uncertainties during learning and provide
predictions along with their confidence intervals.?®

9



This study employed Gaussian process regression to model the relationship between
reaction conditions (temperature and catalyst equivalents) and the glycosylation
reaction yield and stereoselectivity. The Gaussian process model provided optimized
reaction conditions that led to improved yields and selectivities by optimizing the kernel
parameters and incorporating the uncertainties in the experimental data.

2.3.2 Machine learning optimization

Figure 2.3.2.1 Machine learning optimization procedure

The dataset was processed by taking temperature and catalyst equivalents as
independent variables, and the yield of the a-product as the dependent variable. This
information was read in array form by a Python program, which utilized Gaussian
process regression to fit the data and generate a model. High-confidence points within
the model were chosen as optimized conditions for experimental verification.!? Dr.
Takizawa and Prof. Sasai’s group have applied machine learning to the reaction
optimization of several organic syntheses.!*'4 The program code is based on the code
framework from Kondo, M. ef al.!*!3 and the GPy authors.!> !¢ It has been rewritten,
and now includes an automatic peak location function for the model, which facilitates
optimization. Additionally, a 3D model display has been added, allowing for a more
intuitive observation of the reaction model. The obtained results were added as new
data to the dataset, and a new round of optimization was conducted until the highest
yield was achieved (Figure 2.3.2.1).

The first round of machine learning simulation results is shown in Figure 2.3.2.2. The

blue solid line represents the fitted curve, and the light blue region represents the
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40

30

20

10

-10

-20

confidence interval. High points within the confidence interval were chosen as

Table 2.3.2. Optimization process of glycosylation model study

Entry Temp.(°C) Eq(BF;Et,0) L1(%)
a B alB atf
10 25 6.2 37 31 1.20 68
11 25 12.7 45 43 1.05 88
12 33 7.4 47 42 1.12 89
13 33 12.5 47 40 1.18 87
14 30 7.4 45 37 1.22 82
15 30 12.1 50 45 1.11 95

1
* Estimated by H NMR using tetrachloroethane as an internal standard

optimized conditions, with catalyst equivalents of 6.2 and 12.7, and a temperature of

25°C (Table 2.3.2 Entry 10, 11).

After obtaining the experimental results, the data was added to the dataset for the next

round of machine learning analysis and optimization, followed by experimental

verification. After three rounds of optimization, the optimal glycosylation reaction

conditions were obtained (Table 2.3.2 Entry 15): a temperature of 30°C and 12.1

equivalents of catalyst. Under these conditions, the yield of the a-product was 50%.

Although this yield improvement was relatively small compared to the initial dataset,

the model study confirmed the potential applicability of machine learning in optimizing

glycosylation reactions.

60
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50

R 45

©

© 40

B

]

5 35
30
25
20

—— Mean

— 6.2

— 12.7
Confidence

Yield of a%

—— Mean
— 25°C

~

Confidence

8 10 12 14 16
CatalystEq [Cat./Acceptor]

8 10 12 14

CatalystEq [Cat./Acceptor]

16

-30

Figure 2.3.2.2. Simulation result of the first run
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s : : nd rd
Figure 2.3.2.3 Simulation result of 2"* and 3™ run
Summary

In Chapter 2, the authors conducted a model study to establish a general approach

for using machine learning to optimize glycosylation reactions. The temperature and

catalyst equivalents, these two parameters of the glycosylation, were optimized.

Compared to traditional optimization methods that involve controlling a single variable,

the Gaussian process regression machine learning method allows for the simultaneous

optimization of two reaction conditions. This approach is more efficient than traditional

methods, saving researchers time and effort. The findings of this study confirmed the

potential applicability of machine learning in optimizing glycosylation reactions,

providing a basis for further research in this area.
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Chapter 3. Application to the Chemo-selective glycosylation

reaction

In Chapter 3, the author applied the machine learning optimization method developed
in Chapter 2 to chemo-selective glycosylation reactions. Chemo-selective glycosylation
is a crucial synthetic strategy in glycochemistry for constructing complex
glycoconjugates.?’” Achieving high chemo-selectivity in glycosylation reactions is
critical for the development of novel pharmaceuticals, vaccines, and other biologically
active compounds.?® For example, the author focused on synthesizing the a-gal epitope,
which has significant implications in various biomedical applications.? 3

The a-gal epitope (Galal-3Galf1-4GlcNAc-R) is a carbohydrate structure found in
various glycoconjugates, such as glycoproteins and glycolipids, and is present in non-
primate mammals, prosimians, and New World monkeys.?! The a-gal epitope has been
widely studied due to its immunogenic properties and its role in the immune response
to xenotransplantation, tick-borne diseases, and cancer.’> Humans and Old World
monkeys lack the a-gal epitope due to the inactivation of the al,3-galactosyltransferase
(a1,3GT) gene, which leads to the production of anti-a-gal antibodies.’* These
antibodies can cause hyperacute rejection in xenotransplantation procedures and can be
exploited for the development of cancer immunotherapies and novel vaccine
strategies.>*

The selected reaction for this study is the first step in the synthesis of the a-gal epitope,
which involves the formation of a disaccharide through a glycosylation reaction.
(Scheme 3) This reaction exhibits a-stereoselectivity due to the presence of a donor
with a 2-equatorial phenyl group in a trans-decalin ring system, which hinders the attack

of the acceptor from the B-face.*
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Scheme 3. Synthesis of a-gal epitope

The main object of this chapter is to demonstrate the effectiveness of the machine
learning method in optimizing chemo-selective glycosylation reactions by improving
the reaction yield and selectivity. To achieve this, the author investigated glycosylations
under a series of conditions to get datasets and apply the Gaussian process regression

machine learning method to optimize the reaction conditions.

3.1. Donor and Acceptor Synthesis

3.1.1 Synthesis Acceptors 10 and 13

The synthesis of acceptor 10 began with D-galactose as the starting material (Scheme
3.1.1.1). The D-galactose was fully acetylated with acetic anhydride in pyridine,
followed by the introduction of p-methyl thiophenol at the anomeric position using
boron trifluoride diethyl etherate (BF3-Et,O) as a Lewis acid, yielding compound 2 with
61% yield. Deprotection of the acetate groups and subsequent isopropylidene
protection at the C-3 and C-4 positions with 2,2-dimethoxy propane (2,2-DMP)
afforded compound 4. Benzoylation at the C-2 and C-6 positions of 4, followed by acid
treatment, led to compound 6, which was further protected as orthoester. Treatment of
the obtained 7 with acetic acid resulted in selective ring opening, and after six steps,
compound 8 was obtained with 57% yield. TBS protection at the C-3 position of 8

provided 9 with 87% yield, which was then converted to acceptor 10 through a

14



fluorination reaction with Xtalfluor-E

OAc ;
p-toluenethiol, OAc
Ac20 Pyridine ﬁ/ BF,-E1,0 OA((:) MeOH, THF
_—
RT 19h AcO OAc  CH,Cl,, RT,18h, AcO STol NaOMe-MeOH,
OAc 61% in 2 steps OAc RT, 0.5 h
D- Galactose 1 2
OH 2, 2-DMP,
& p-TsOH.H,0 A< BzCl, DMAP A< 0Bz HCI, MeOH,
, reflux
HO STol PPTs CH2012 &/ Pyrldlne, S , 5 _—
OH RT, 10 min STol  goe°c,2h

3

OH (Et0)sCCH;,
HOAc: H,0(2:1), OAc

OBf) p-TsOH. H20 OB
_Reflux, 40°C_ 5 TBSCI, Imidazole
HO STol Toluene, RT, _—
OBz STol

20 min 20 min, HO STol RT, dry DMF, 24 h,
6 57% in 6 steps 8 OBz 87%

OAc

OBz OAc

&/ Xtalfluor-E 0Bz

_ Aafuort

TBSO STol CH,CI &M
0Bz 2Cla, TBSO

9 RT, 9.5 h, 43% 10 OBz™“MF

Scheme 3.1.1.1. Synthesis of acceptor 10.
The synthesis of acceptor 13 started with compound 8 (Scheme 3.1.1.2), where the C-

3 position was protected with Lev, yielding 11 with 75% yield. A fluorination reaction
with Xtalfluor-E provided 12 in 67% yield, and finally, the C-3 position was

deprotected with hydrazine in acetic acid to obtain acceptor 13.

OAc OAc
A OBz 0Bz
OAc OBf) LevOH, EDC ﬁ/ X-talfluor-E ﬁ«“
- _—
HO&/STQI 0°C ~RT,CH,Cl,  -evO ons S0 CHCl,2d,  LevO OB
o 0Bz 1h, 75% 1 RT, 67% 12
OAc OBz
HO
AcOH, 87% OBZ" " F

13
Scheme 3.1.1.2. Synthesis of acceptor 13.

3.1.2 Synthesis Donor 16

The synthesis of donor 16 began with compound 2 as the starting material (Scheme
3.1.2). After deacetylation, the 4,6-O-benzylidene protection was introduced, affording
compound 14. The remaining hydroxy groups were benzylated by treating 14 with
sodium hydride and benzyl bromide in DMF, yielding 15 with 39% yield in three steps.
A fluorination reaction with Xtalfluor-E produced glycosyl fluoride donor 16 with 65%

yield.
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Scheme 3.1.2. Synthesis of glycosyl fluoride donor 16.

3.2. Conditional Exploration and Data Collection

BnBr, NaH
—_—
DMF, RT, 2 h,
39% in 3 steps

The author conducted a conditional exploration with employing compound 10 as the

glycosylation acceptor and compound 16 as the donor (Scheme 3.2.1, Table 3.2.2).

When BF3-Et;O or B(OPh); was used as a catalyst, the disaccharide M1 yields were

relatively low. This could be due to the steric hindrance of the C-3 TBS protecting group

in compound 10, which hampers the attack on the C-1 carbon cation of the donor. To

apply the Gaussian process regression machine learning method, an analyzable dataset

is required, and a dataset consisting solely of low yields cannot be optimized. Therefore,

this dataset is unsuitable for optimizing this glycosylation reaction.

Ph

OAc

BnO

16 F 10

00 OBz BF,-Et,0 or B(OPh),
0 + TBSO

&W oo g CH:Clo, MS4A, 1h
OBn

PL
o (0]
(o]
BnO
OBn
(o]
M1

OAc

0Bz
m
OBz "\ F

Scheme 3.2.1. Chemo-selective glycosylation by using acceptor 10.
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Table 3.2.2. Condition screening by using acceptor 10.
Entry Donor(eq) BF; - Et;0 B(OPh); Temp.(°C) Conc. Yield(%)

1 1.5 - 0.1eq -78 to 25 0.02M trace
2 1.5 - 1.5eq -78 to 25 0.02M 11

2 1.5+1.5 0.1 - -78 to 25 0.02M 22

3 1.5 1 - -78 0.02M ND
4 1.5 0.1 - -40 0.02M ~10%
5 1.5 0.1+0.4 - 0 0.02M ~20%
6 3 0.5 - 0 0.02M ~20%
7 1.5 0.1+0.4 - 0 0.1IM ~25%
8 L5 1 - -40 0.02M ~10%

* Estimated by TLC

Subsequently, the author used compound 13 as the acceptor and compound 16 as the
donor for exploring glycosylation reaction conditions (Scheme 3.2.3). When BF3-Et,O
and B(OPh); was compared, it was found that more by-products were generated by
using B(OPh)s. Thus, the author focused on employing BF3;-Et;O to investigate the
reaction conditions. By altering the catalyst equivalents (0.1 to 1), reaction temperature
(-78°C to room temperature), and donor 16 equivalents (1 eq to 1.5 eq), 11 sets of data
were obtained (Table 3.2.4, Entries 2-12). Among them, the highest yield, 70%, was
achieved at -40°C, with 1 equivalent of the catalyst and 1.5 equivalents of the donor.
The data with 1.5 equivalents of donor 16 were selected as the dataset for machine
learning (Entries 2-10, 13-15), comprising 12 sets of data.

Ph Ph

\\ OAc \\
)
00 ﬂ“ BF5+Et,0 or B(OPh), o
(0} + HO 0 OAc
B om 0Bz CHeCl MSSA TR g 0Bz
" OBn "™ F OBn 0
16 13 o)
OBz "\ F

M1

Scheme 3.2.3. Chemo-selective glycosylation by using acceptor 13.
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Table 3.2.4. Condition screening by using acceptor 13.

Entry  Catalyst Eq(Donor) Eq (Cat.) Temp.  Yield(%)

1 B(OPh), 1.5 1 RT 10*
2 BF, * Et,0 1.5 0.1 RT 25%
3 BF, * Et,0 1.5 0.5 RT 56
4 BF, - Et,0 1.5 1 RT 10*
5 BF, - Et,0 1.5 0.1 -20°C 25
6 BF, - Et,0 1.5 0.5 -20°C 60*
7 BF, * Et,0 1.5 1 -20°C 38
8 BF, - Et,0 1.5 0.1 -40°C 26
9 BF, - Et,0 1.5 0.5 -40°C 66
10  BF,; - E,0 1.5 1 -40°C 70
11 BF, - Et0 1.2 1 -40°C 45%
12 BF,:E,0 1 1 -40°C 39
13 BF; - E,0 1.5 1 -60°C 38
14  BF,; - E,0 1.5 1 -78°C 26
15  BF,; - Et,0 1.5 1.5 -78°C 37

* Estimated by TLC

3.3. Machine Learning Optimization and Yield Improvement

The 12 sets of data were used as the dataset and read by the program. The Gaussian
process regression machine learning method, established in the model study of Chapter
2, was applied to fit and regress the dataset, optimizing the reaction conditions in a data-
driven manner. After three rounds of optimization, the highest yield of 83% was
obtained, corresponding to 0.63 equivalents of BF3-Et,O at -36°C. Compared to the
highest yield of 70% in the dataset, the glycosylation reaction yield improved by 13%

after three rounds of machine learning optimization.
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Through this research, the effectiveness of a data-driven glycosylation reaction

optimization approach centered on machine learning has been confirmed.
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Figure 3.3.1. Simulation result of Gaussian progress regression.
Summary

Table 3.3.2. Machine learning optimization process of chemo-selective
glycosylation reaction

Entry Catalyst Eq(Donor) Eq (Cat)  Temp.  Yield(%)

1 BF, - Et,0 1.5 0.63 -33°C 81
2 BF, - Et,0 1.5 0.79 -35°C 72
3 BF,; - E,0 1.5 0.63 -36°C 83

In Chapter 3, the authors successfully applied the machine learning optimization
method developed in Chapter 2 to chemoselective glycosylation reactions. The primary
object of this chapter was to demonstrate the effectiveness of the machine learning
approach in optimizing chemoselective glycosylation reactions in terms of yield and
selectivity. To achieve this, the authors selected a representative chemoselective

glycosylation reaction, the synthesis of a-gal, as a case study.
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The synthesis of acceptors 10 and 13 and donor 16 was presented in Section 3.1. In
Section 3.2, conditional exploration and data collection were conducted, and it was
found that acceptor 10 was not suitable for optimization. Consequently, acceptor 13
was used in the glycosylation reaction with donor 16. A total of 12 sets of data were
collected with various reaction conditions, including different catalyst equivalents,

temperatures, and donor equivalents.

In Section 3.3, the Gaussian process regression machine learning method was employed
to optimize the reaction conditions. After three rounds of optimization, the yield was
increased to 83%, with a 13% improvement compared to the highest yield in the dataset.
This successful application of the machine learning approach in optimizing
chemoselective glycosylation reactions further confirmed its potential in advancing

glycochemistry research and the synthesis of complex glycoconjugates.
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Chapter 4. a-Selective Glycosylation of Xylose Using Machine

Learning

Introduction

Chapter 4 focuses on the application of machine learning to the a-selective xylosylation,
fundamental glycosides found in various biomolecules such as hemicellulose and
xyloglucans.*® Xylose is a five-carbon sugar that plays a crucial role in plant cell wall
structures and has gained increasing interest in the field of carbohydrate chemistry due
to its potential in the production of biofuels, biopolymers, and functional materials.?’
The stereocontrolled synthesis of xylose-containing glycoconjugates is essential for

understanding their biological functions and developing novel therapeutic agents.*®

In this chapter, the author implemented the machine learning optimization method,
previously established in Chapter 2, to enhance the a-selectivity and yield of
xylosylation. By applying the Gaussian process regression machine learning approach
to a representative a-selective xylosylation, the authors aim to demonstrate the method's

effectiveness in simultaneously optimizing multiple reaction parameters.

The chapter will provide a comprehensive account of the selected xylosylation reaction,
the data collection and analysis process, and the machine learning optimization results.
The author discusses the impact of various factors, such as temperature, catalyst type,
solvent, and protecting groups, on the reaction yield and a-selectivity. The successful
application of the machine learning method in optimizing a-selective xylosylation will
further validate its potential to advance research in glycochemistry and the synthesis of

complex glycoconjugates.

4.1. Initial Batch Analysis and Optimization

4.1.1 Synthesis of donor and acceptor for xylose glycosylation
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In this chapter, a-selective glycosylation of xylose is chosen as the target reaction for
investigation. The selected donor and acceptor are shown below (Scheme 4.1.1.1). The

synthesis of donor and acceptor is initiated with D-xylose.

BnO 0
HO
R =Ac or Bn OBn
OAllyl (0]
RO (0]
OBn F OBn OBn
OAllyl

Donor
Scheme 4.1.1.1. a-Selective xylose glycosylation

Compound 1a is synthesized by refluxing D-xylose with TMSCI as a catalyst in allyl

alcohol, introducing an allyl group at the C-1 position (Scheme 4.1.1.2). The remaining

hydroxyl groups are benzylated using sodium hydride and benzyl bromide in DMF to

obtain compounds 2a and 2b with yields of 10% and 19%, respectively.

HO 0 tmsci  HO ° BnBrNaH  BnO ° BnO °

“%W Hm “DMSORT Bn;man‘ + H%
D(+)-Xylose ©°H 1a OAllyl 2a10%  OAllyl 2b19% OAllyl
Scheme 4.1.1.2 Synthesis of 2a and acceptor 2b.

Donor Sb was synthesized from compound 2b. Acetylation of the C-3 position affords

compound 3b in 64% yield (Scheme 4.1.1.3). The allyl group at the C-1 position is

removed by using an activated Ir (Cod)(MePhaP) PFs catalyst, yielding compound 4b

in 80% yield. Finally, the C-1 position is fluorinated using 2-fluoro-1-methylpyridinium

p-toluenesulfonate to obtain donor Sb with 61% yield.

BnO ¢} Ac,0, Pyridine BnO 0 1) Ir(Cod)(MePh,P)PFg, Hy, THF
_—
HO = RT, 2d, 64% AcO OBn 2) Iy, H,0, 80%
2b  OAllyl 3b  OAllyl

2-Fluoro-1-methylpyridinium o
BnO O p-toluenesulfonate Bnomlh
AcO
AcO OBn CH,Cl,, 2.5h, RT, 61% OBn

5b

F

Scheme 4.1.1.3. Synthesis of donor 5b.
Donor 7a was synthesized from compound 2a. The C-1 allyl group is removed using

an activated Ir(Cod)(MePh,P)PF¢ catalyst, yielding compound 4b in 58% yield

(Scheme 4.1.1.4). Finally, the C-1 position is fluorinated using 2-fluoro-1-
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methylpyridinium p-toluenesulfonate to obtain donor 7a with a 61% yield.

o
BnO ° 1) Ir(Cod)(MePh,P)PF, Hp, THF BNC

BnO
Bn0 oBn 2)1, H,0, 58% y—

2a OAllyl 6a OH

2-Fluoro-1-methylpyridinium
p-toluenesulfonate BnO o
CH,Cl,, 2.5h, RT, 61% B“%
F
7a

Scheme 4.1.1.4. Synthesis of donor 7a.

4.1.2 Investigation of xylosylation

Initially, donor 5b was used in the glycosylation reaction with acceptor 2b. Reaction
condition screening was performed using BF; * Et;0 as the catalyst, with temperatures

ranging from -30°C to 38°C and catalyst equivalents ranging from 0.2 to 1 eq. Five data
points were collected as the dataset, and after two rounds of Gaussian process
regression machine learning optimization, no significant improvement in the yield of
a-product was observed. The author speculated that low temperatures favor high overall
yields but exhibit poor a-selectivity. Although higher temperatures may promote o-
product formation, they also increase the likelihood of donor decomposition, leading to

lower yields.

Table 4.1.2.1. Xylose glycosylation optimized by using donor Sb.

No. Catalyst Eq (Cat)  Temp(°C). Yield(%)

a B
1 BF; - Et,0 1 -30 26 64
2 BF;: En0 0.8 10 27 12
3 BF; - Et,0 0.5 27 27 16
4 BF; - Et,0 0.2 38 34 27
5 BF; - Et,0 0.8 38 18 16
6 BF; * Et,0 0.25 32 25 40
7 BF; * Et,0 0.61 19 32 35

BnO o\, B"ﬁo ° BF; - E;0, CH,Cl, °N° °\ B0 0
Ac% % SRR pco =~ %
5b15eq | 2b OAllyl  MS4A, 1h Xb OAllyl

Scheme 4.1.2.1. Xylose glycosylation investigates by using donor Sb.
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Figure 4.1.2.1. GPR machine learning optimized by using donor 5b.

Next, the author attempted to use compound 7a as the donor with BF3 -

Et,O as the

catalyst. The temperature range set between -40 °C and 25 °C, and the catalyst

equivalents range from 0.5 to 1.25 eq. Ten data points was collected, and seven of them

(Entries 1-7) were used as the input dataset for machine learning optimization. After

three rounds of optimization, the highest yield of a-Xa was 56.1% with a selectivity of

a/f = 1.5/1 (Entry 13) under the conditions of 0.85 eq of catalyst at -30°C. This

represents a 6% improvement in yield and enhanced selectivity compared to the highest

yield in the input dataset (Entry 1, a-Xa yield of 50%, a/p = 1.3/1). In the next chapter,

the author introduced the flow chemistry technic to carry out further investigation of

this glycosylation reaction.

o)
(o] BnO
BnO +  HO BF; - Et,0, CH,Cl,
BnO o8 OB
n
7a 1.5eq F 2b OAllyl MS4A, 1h

Scheme 4.1.2.1. Xylose glycosylation investigates by using donor 7a.
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Table 4.1.2.2. Xylose glycosylation optimized by using donor 7a.

Eq . Yield(%) .

Entry Catalyst (Cat.) Temp ( (‘_).T 8 alp
1 BF; - Et,0 0.5 -40 50.3 38.7 1.3/1
2 BF; - Et,0 1 -40 49.6 45.0 1.1/1

3 BF; - Et,0 0.5 -20 42.0 42.0 1/1
4 BF; - Et,0 1 -20 41.9 322 1.3/1
5 BF; - Et,0 1.25 -20 18.2 52.1 0.35/1

6 BF; - Et,0 0.75 0 18.6 18.6 1/1
7 BF; - Et,0 1.5 0 9.7 8.8 1.1/1
8 BF; - Et,0 0.25 25 11.7 9 1.3/1
9 BF; - Et,0 0.5 25 11.8 9.1 1.3/1
10 BF; - Et,0 1 25 44 34 1.3/1
11 BF; * Et,0 0.75 -32 54.5 39.0 1.4/1
12 BF; * Et,0 0.85 -45 47.5 43.1 1.11
13 BF; - Et,0 0.85 -30 56.1 37.4 1.5/1

* Estimated by HPLC
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Figure 4.1.2.2. GPR machine learning optimized by using donor 7a.

4.2. Flow Chemistry Techniques and Rationale

Flow chemistry, a modern approach to synthetic chemistry, has emerged as a valuable
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tool to perform chemical reactions with high efficiency, precise control, and enhanced
safety.>® The technique involves the continuous flow of reactants through a reactor,
enabling rapid and efficient mixing, precise control of residence time, and enhanced
heat and mass transfer.*® The application of flow chemistry in glycosylation reactions
has demonstrated significant improvements in selectivity and yield, particularly in

challenging reactions.*!

In the context of a-selective xylosylation, flow chemistry offers several advantages
over traditional batch reactions. First, it enables better control of reaction conditions
such as temperature, which is critical for achieving optimal selectivity and yield.*?
Second, it allows for rapid screening of reaction conditions, accelerating the
optimization process and reducing the amount of starting materials and reagents
required.*’ Finally, flow chemistry reactions can be easily scaled up, enabling the
synthesis of larger quantities of desired products while maintaining the reaction
conditions and product quality.*! Here the author applied flow chemistry techniques to
the o-xylosylation to improve the reaction yield and selectivity using the
aforementioned advantages.

4.3. Machine Learning Optimization and Selectivity Improvement

0 o]
o BnO
BnO + HO Y eq Catalyst Bgo(m o
BnO OBn EV—— n OBn (o]
0Bn . CH,Cly, X °C OBn
7a1.5eq 2b OAlly! Xa OAllyl

Scheme 4.3.1.1. Catalyst selection for ML optimization.
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Figure 4.3.1.2. Liner regression of Xa by HPLC.
B: BF, - Et,00.1Min A: Dongr (1.5 eq) + Acceptor 0.1 M in CH,Cl, AN
ol
E F
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1 J Collection
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Final concentration: 1 mM Xa (100% reaction) | HPLC |

Figure 4.3.1.1. Microfluidic system for optimization.

In this section, the author integrated flow chemistry techniques to optimize the
xylosylation reaction. The flow chemistry setup is shown in Figure 4.3.1.1. To
efficiently perform high-throughput screening, the author employed HPLC analysis to
determine the yields of a-Xa and B-Xa. The quantification curve was shown in Figure

4.3.1.2.

4.3.1 Catalyst selection

When using a flow chemistry device for xylosylation, donor 7a (1.5eq) and acceptor
2b are first dissolved in a solvent to make a 0.1 M solution, which is fed into a
Micromixer by pump A. The catalyst and solvent are fed separately by pumps B and C,
respectively, to mix with the reactants and initiate the reaction. After 35 seconds, the
mixture reaches a second Micromixer where it is quenched by mixing with
triethylamine from pump D. The system can adjust the catalyst equivalents by adjusting
the flow rates of the pumps. Samples are taken from the final outlet and analyzed by

HPLC to determine the yield and ratio of o and B configuration.
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The author tested four catalysts, BF3 + Et0, B(CesFs)3, TfOH, and TMSOTT, and

investigated the reaction temperature and catalyst equivalents for each (Scheme 4.3.1.1).
With BF3-Et;O as the catalyst, a temperature of -20 °C and a catalyst equivalent of 1.0
eq resulted in the highest a-Xa yield of 42.5%; however, the selectivity was poor
(o/p=1.1/1, Table 4.3.1.1).

Table 4.3.1.1. Xylose glycosylation investigation by using BF3 + Et:O as catalyst.

BF; - Etx,0O
Entry Temp(°C) Eq Yield(a)| Yield(8) a/B(HPLC)
1 -40 0.1 0.8 1.3 0.7
2 -40 0.5 6.7 17.6 0.4
3 -40 1.0 9.1 24.1 0.4
4 -20 0.1 18.3 21.1 0.9
5 -20 0.5 30.5 45.2 0.7
6 -20 1.0 42.5 40.2 1.1

* Estimated by HPLC
When using B(CgFs); as the catalyst, the optimal reaction conditions were a temperature
of -20 °C and a catalyst equivalent of 0.1 eq, which resulted in an a-Xa yield of 32.8%
and selectivity of o/f=1.1/1(Table 4.3.1.2, Entry 6).

Table 4.3.1.2. Xylose glycosylation investigation by using B(CeF5s)3 as catalyst.

B(CgFs)3
Entry Temp(®C) Eq |Yield(@)| Yield(8) a/B(HPLC)
1 -40 0.1 0.9 0.5 0.8
2 -40 0.5 14.1 17.1 0.8
3 -40 1.0 20.6 23.9 0.9
4 -20 0.1 6.3 8.2 0.8
5 -20 0.5 27.0 28.9 0.9
6 -20 1.0 32.8 30.1 1.1
7 0 0.1 30.7 29.2 1.1
8 0 0.5 28.7 18.6 1.5
9 0 1.0 14.3 13.2 1.1
10 20 0.1 15.7 11.4 1.3
11 20 0.5 52 5.8 0.8
12 20 1.0 2.0 3.4 0.5

* Estimated by HPLC
With TfOH as the catalyst, the optimal conditions were a temperature of 0 °C and a
catalyst equivalent of 1.0 eq, yielding an a-Xa yield of 32.0% and selectivity of
a/B=1.5/1(Table 4.3.1.3, Entry 9).
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Table 4.3.1.3. Xylose glycosylation investigation by using TfOH as catalyst.

TfOH
Entry Temp(°C) Eq Yield(a) | Yield(8) a/B(HPLC)
1 -40 0.1 3.7 2.5 1.4
2 -40 0.5 4.9 3.0 1.5
3 -40 1.0 7.7 5.2 1.4
4 -20 0.1 12.0 10.3 1.2
5 -20 0.5 16.2 133 1.2
6 -20 1.0 20.8 16.5 1.3
7 0 0.1 11.1 10.4 1.1
8 0 0.5 259 22.0 1.2
9 0 1.0 32.0 223 1.5

* Estimated by HPLC

Among the four catalysts, TMSOTTf produced the best results, with optimal conditions
being a temperature of 0 °C and a catalyst equivalent of 1.0 eq, yielding an a-Xa yield
of 43.1% and selectivity of a/p=1.9/1 (Table 4.3.1.4, Entry 9). Thus, TMSOT{ was
selected as the catalyst, and the reaction data using this catalyst were used as the dataset

for machine learning reaction optimization.

Table 4.3.1.4. Xylose glycosylation investigation by using TMSOTT as catalyst.

TMSOTf
Entry Temp(°C) Eq Yield(a)| Yield(8) a/B(HPLC)
1 -40 0.1 4.0 3.7 1.1
2 -40 0.5 4.1 2.3 1.6
3 -40 1.0 5.8 2.8 1.9
4 -20 0.1 8.5 52 1.6
5 -20 0.5 15.9 10.9 1.5
6 -20 1.0 18.1 12.4 1.5
7 0 0.1 20.1 15.9 1.3
8 0 0.5 353 24.5 1.5
9 0 1.0 43.1 22.8 1.9

* Estimated by HPLC

4.3.2 Machine Learning Optimization

Nine data sets using TMSOTT as the catalyst was used, with temperatures ranging from
-40 °C to 0 °C and catalyst equivalents from 0.1 to 1 eq. The data-driven machine
learning optimization method established in Chapter 2 was employed to fit and optimize
the dataset (Table 4.3.2.1). However, after one round of optimization, it was found that
the temperature range of the nine datasets was insufficient. The authors added six
datasets to supplement the original data (Table 4.3.2.1, entries 11-16), expanding the

temperature range from -40 °C to 20 °C. A total of 16 datasets, including the results
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from the first round of optimization, were used for machine learning optimization. After
three rounds of optimization, the best reaction conditions using TMSOTT as the catalyst
were determined to be 2 °C and 1 eq of catalyst, resulting in an a-Xa yield of 42.2%
and selectivity of a/B=2.4/1 (Table 4.3.2.1, Entry 19). Compared to the best reaction
conditions in the dataset (Table 4.3.2.1, Entry 9), the optimized conditions resulted in a

1% lower a-Xa yield but improved selectivity from o/f=1.9/1 to a/p=2.4/1.

Table 4.3.2.1. Xylose glycosylation optimization by ML.

TMSOTf
Entry Temp(°C) Eq |Yield(@)| Yield(8) a/B(HPLC)
1 -40 0.1 4.0 3.7 1.1
2 -40 0.5 4.1 2.3 1.6
3 -40 1.0 5.8 2.8 1.9
4 -20 0.1 8.5 5.2 1.6
5 -20 0.5 15.9 10.9 1.5
6 -20 1.0 18.1 12.4 1.5
7 0 0.1 20.1 15.9 1.3
8 0 0.5 353 24.5 1.5
9 0 1.0 43.1 22.8 1.9
10 10 0.85 33.8 16.2 2.1
11 10 0.1 25.7 22.9 1.1
12 10 0.5 36.1 18.8 1.9
13 10 1.0 36.4 17.2 2.1
14 20 0.1 28.0 22.1 1.3
15 20 0.5 223 10.4 2.1
16 20 1.0 10.0 49 1.8
17 2 1.1 42.1 17.6 2.4
18 2 0.9 40.3 16.7 2.4
19 2 1.0 422 17.2 2.4
20 2 1.5 35.7 14.6 2.4

* Estimated by HPLC
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Figure 4.3.2.1. Xylose glycosylation optimization by ML.

Figure 4.3.2.2. 3D ML model.
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Summary

In this chapter, the author explored the a-selective xylosylation, a challenging and
complex reaction. The author first synthesized donor and acceptor molecules and
screened different catalysts for the glycosylation reaction. After identifying TMSOTf
as the most effective catalyst, they expanded the reaction dataset to include a broader
temperature range and optimized the reaction conditions through machine learning. The
optimization process led to improved selectivity, yielding an a-Xa yield of 42.2% and

selectivity of o/B=2.4/1.

This chapter demonstrates the potential of using machine learning algorithms and flow
chemistry techniques to optimize challenging glycosylation reactions in organic
chemistry. The approach not only streamlines the process but also provides valuable
insights for enhancing reaction selectivity, which is crucial for the synthesis of complex

molecules with multiple stereocenters.

32



Chapter 5. Multi-Factor Machine Learning Optimization

5.1. Machine Learning Optimization Strategy

In this section, the author introduces the multi-factor machine learning optimization
strategy utilizing Bayesian regression machine learning methods.!® This approach
allows us to investigate the effects of various factors, such as temperature, catalyst
equivalents, and time, on the a-selective xylosylation. The use of TMSOTT as the
catalyst and flow chemistry techniques further enhance the efficiency of the

optimization process.

In recent years, Bayesian regression techniques, such as Gaussian process regression
(GPR)," have been employed in various optimization problems. GPR is a non-
parametric, probabilistic model that provides predictions and uncertainty estimates for
function values. This makes it particularly suitable for optimization tasks, as it can

guide the search toward promising regions of the parameter space.'”

In the context of organic chemistry, multi-factor optimization using machine learning
methods like GPR can significantly accelerate reaction development and improve
selectivity.** By integrating flow chemistry techniques, high-throughput
experimentation can be conducted, enabling rapid data collection and analysis. This
combination of machine learning optimization and flow chemistry has shown great

potential in enhancing the discovery and optimization of chemical reactions.*’

In my study, the multi-factor machine learning optimization strategy is applied to
investigate the effects of temperature, catalyst equivalents, and time on the o-
xylosylation using TMSOTT as the catalyst. The data collected through flow chemistry
experiments are used to train the GPR model, which in turn guides the optimization

process to find the most suitable conditions for achieving the desired selectivity.
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5.2 Investigating the Effects of Temperature, Catalyst Equivalents, and Time

BnO ° BnO ° Y eq TMSOTf  BnO % o o
BnO * HO 0OBn _  » BnO o
OBn F Solvent, X °C, Z min OBn o

7a 1.5eq 2b OAllyl Xa OAllyl

Scheme 5.2.1. Xylosylation investigation by solvent, and catalyst equivalent.

In this section, the author explored the impact of various solvents (MTBE, Et,O, ACN,
and Toluene) on the a-selective xylosylation using TMSOTT as the catalyst. The
reaction temperature and catalyst equivalents were systematically investigated for each
solvent (Scheme 5.2.1). When using MTBE and Et:O, two ether solvents, the reaction
activity was weak (Table 5.2.2, Table 5.2.2), potentially due to the fact that ethers can
act as Lewis bases and donate electron pairs to a Lewis acid, thus inhibiting the Lewis

acid's activity.

Table 5.2.2. Xylose glycosylation investigation by using MTBE as solvent.

TMSOTf in MTBE
Entry Temp(°C) Eq [Yield(@) |Yield(8) a/B(HPLC)
1 -20 0.5 - - -
2 -20 1.0 - - -
3 -20 3.0 - - -
-+ 0 0.1 - - -
5 0 0.5 - - -
6 0 1.0 0.1 - -
7 0 3.0 0.1 - -
8 20 0.1 0.2 0.1 0.9
9 20 0.5 0.2 - -
10 20 1.0 0.1 0.0 0.7
11 20 3.0 0.3 0.1 0.9

* Estimated by HPLC
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Table 5.2.3. Xylose glycosylation investigation by using Et:O as solvent.

TMSOTf in Et2O
Entry Temp(°C) Eq [Yield(@)|] Yield(8) a/B(HPLC)
1 -40 0.1 0 0 -
2 -40 0.5 0 0 -
3 -40 1.0 0 0 -
-+ -40 2.0 0 0 -
5 -40 4.0 0 0 -
6 -20 0.1 0 0 -
7 -20 0.5 0 0 -
8 -20 1.0 0 0 -
9 -20 2.0 0 0 -
10 -20 4.0 0 0.4 -
11 0 0.1 0 0 -
12 0 0.5 0 0 -
13 0 1.0 0.2 0.3 0.6
14 0 2.0 0.5 1.1 0.5
15 0 4.0 1.6 2.7 0.6
16 19 0.1 7.0 12.1 0.6
17 19 0.5 1.1 2.5 0.5
18 19 1.0 1.7 4.2 0.4
19 19 2.0 4.2 9.9 0.4
20 19 4.0 5.8 13.0 0.5
21 0 10 4.7 7.0 0.7
22 0 20 4.9 6.5 0.7
23 0 30 7.4 9.5 0.8
24 20 10 7.1 12.9 0.6
25 20 20 7.5 15.0 0.5
26 20 30 11.2 19.6 0.6
27 30 10 7.3 18.3 0.4
28 30 20 83 194 0.4
29 30 30 10.9 22.2 0.5

* Estimated by HPLC
The author then used acetonitrile (ACN) as a solvent and optimized the reaction
conditions within a temperature range of -20 to 20 °C and catalyst equivalents of 0.1 to
1.5 eq. The optimal conditions were found at 0 °C and 1 eq of catalyst, yielding a 43.7%
a-Xa yield with a selectivity ratio of o/ff = 2.3/1 (Table 5.2.4, Entry 4). Lastly, using
toluene as a solvent, the authors investigated a temperature range of -20 to 65 °C and
catalyst equivalents from 0.1 to 1.7 eq. The optimal conditions were found at 20 °C and
1.5 eq of catalyst, yielding a 39.9% a-Xa yield with a selectivity ratio of o/p = 2.4/1
(Table 5.2.5, Entry 12). The optimal conditions in the solvents ACN and Toluene

yielded similar results, with slightly better selectivity observed in Toluene.
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Table 5.2.4. Xylose glycosylation investigation by using ACN as solvent.

TMSOTf in ACN
Entry Temp (°C) Eq Yield(@)| Yield(B) a/B(HPLC)
1 -20 1.0 33.6 40.4 0.8
2 0 0.1 10.0 19.9 0.5
3 0 0.5 43.5 24.9 1.8
4 0 1.0 43.7 18.9 2.3
5 20 0.1 17.6 19.8 0.9
6 20 0.5 31.0 16.0 2.0
7 20 1.0 11.0 4.2 2.5
8 -2 0.45 20.3 28.0 0.7
9 -2 0.55 30.7 30.1 1.0
10 -2 0.95 41.2 23.2 1.8
11 -2 1.05 429 22.5 1.9
12 2 0.45 31.9 29.1 1.1
13 2 0.55 35.8 26.5 1.4
14 2 0.95 40.4 19.5 2.1
15 2 1.05 41.8 19.6 2.1
16 4 0.65 17.6 26.9 0.7
17 4 1.0 27.1 27.0 1.0
18 4 1.5 32.2 22.5 1.4

Table 5.2.5. Xylose glycosylation investigation by using Toluene as solvent.

TMSOTT in Toluene
Entry Temp (°C) Eq [Yield(a)| Yield(f) a/B(HPLC)

1 -20 0.1 - 0.1 -
2 -20 0.5 2.9 13.3 0.2
3 -20 1.0 4.3 18.9 0.2
4 -10 0.5 3.6 17.8 0.2
5 0 0.1 0.4 2.7 0.2
6 0 0.5 6.0 22.6 0.3
7 0 1.0 10.2 28.1 0.4
8 10 0.5 9.1 26.8 0.3
9 20 0.1 2.6 18.2 0.2
10 20 0.5 18.1 30.6 0.6
11 20 1.0 38.2 27.4 1.4
12 20 1.5 39.9 16.2 2.4
13 35 0.5 18.1 8.1 2.2
14 35 1.0 6.8 33 1.9
15 35 1.5 4.7 3.0 1.4
16 50 0.5 7.0 3.1 2.0
17 50 1.0 1.7 1.0 1.3
18 50 1.5 0.6 0.4 0.9
19 65 0.5 0.4 0.1 1.2
20 65 1.0 - - -
21 65 1.5 - - -
22 15 1.35 37.0 29.0 1.3
23 15 1.58 41.0 22.9 1.8
24 25 1.5 37.6 15.2 2.4
25 22 1.15 342 14.4 2.3
26 22 1.72 349 14.2 2.4
27 6 1.07 20.1 32.2 0.6
28 6 1.68 27.2 35.2 0.8
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5.3. Improved a-Selectivity and Yield

A: Acceptor 0.1M in Toluene

% B: Donor 0.1M in Toluene
C: TMSOTf 0.1M in Toluene
D: 5% TEA in ACN
Collectio

2min (A+B+C=100ul/min) Speed:l/ . C SuUmi

4min (A+B+C=50ul/min) A: 20ul/min, 10ul/min, Sul/min
B: Eq*A

8min (A+B+C=25ul/min) HPLC C:4A-B

D: 95*A

Final concentration: ImM Xa (100% reaction)

B .
[ H
1 Collection|

Smin (A+B+C=100ul/min)

10min (A+B+C=50ul/min)
20min (A+B+C=25ul/min) HPLC

Figure 5.2.6. Microfluidic system for optimization.

The author selected toluene as the solvent and investigated the influence of reaction
time on yield and selectivity. The author modified the flow chemistry setup by adding
a mixer, extending the pipeline length, and adjusting the flow rate to control the reaction
time (Figure 5.2.6). The author explored a range of reaction times (2-20 min, Table
5.2.7) and temperatures (-40 to -10 °C), obtaining 12 sets of data. The optimal reaction
conditions were found at -10 °C, 1 eq of TMSOTTY, and a reaction time of 20 min,
yielding a 56.8% a-Xa yield with a selectivity ratio of o/ = 3.9/1 (Table 5.2.7, Entry
12).

Table 5.2.7. Optimizied of temperature and time.
Entry Temp (°C) Cat.Eq Time (min) Yield(@) Yield(B) a/B

+ 2 Mixer
1 -40 1 2 0.9 43 0.2
2 -40 1 4 2.5 9.2 0.3
3 -40 1 8 4.1 154 0.3
4 -20 1 2 3.9 17.4 0.2
5 -20 1 4 5.2 20.7 0.3
6 -20 1 8 8.1 26.6 0.3
+ 2 Mixer + 1 m tube
7 -40 1 5 4.1 14.7 0.3
8 -40 1 10 5.0 18.2 0.3
9 -40 1 20 5.8 20.3 0.3
10 -10 1 5 19.3 39.2 0.5
11 -10 1 10 53.5 26.0 2.0
12 -10 1 20 56.8 14.4 3.9
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5.3. Improved a-Selectivity and Yield

The 28 data sets from Table 5.2.5 were combined with the new 12 data sets to form 40
data sets, which were used for Bayesian machine learning optimization. The program
code is based on the code framework from Kondo, M. et al.'>!3 and The GPy authors.!>:
16 The optimization process included time, temperature, and catalyst equivalents as
independent variables, and the a-Xa yield as the dependent variable (Table 5.3.1,
Entries 1-2). After incorporating the optimization results and supplementary data (Table
5.3.1, Entries 3-5), a total of 45 data sets were used for optimization. The optimal
reaction conditions were found to be -10 °C, 1.6 eq of TMSOTT, and a reaction time of
20 min, yielding a 60.5% a-Xa yield with a selectivity ratio of a/p = 3.2/1 (Table 5.3.1,
Entry 6). The reaction was then scaled up (with 50 mg of acceptor 7a), resulting in a

selectivity ratio of o/ =4.0/1 and a 54.5% a-Xa yield.
Table. 5.3.1. Multifactor ML optimization of Xylose glycosylation

Entry Temp (°C) Cat.Eq Time (min) Yield(a) Yield(B) a/B
1 -10 0.54 20 40.7 29.6 1.4
2 -10 1.43 20 56.4 16.8 33
3 -30 2 20 4.4 12.4 0.4
4 0 1 20 26.3 10.2 2.5
5 0 0.5 10 48.2 18.5 2.6
6 -10 1.6 20 60.5 18.5 3.2
7 -10 2 20 57.9 16.1 3.6
* Estimated by HPLC
Summary

In Chapter 5, the author focused on optimizing the a-selective xylosylation using a
multi-factor machine learning method. The author investigated the effects of solvent,
time, and catalyst equivalents on the reaction, utilizing TMSOTT as the catalyst. The
authors found that the optimal solvent was toluene, with improved a-selectivity and
yield achieved under the conditions of -10 °C, 1.6 eq of TMSOTT, and a reaction time
of 20 minutes. A Bayesian machine learning approach was employed to analyze the
data, optimize the reaction conditions, and achieve higher a-Xa yields and selectivity
ratios. The results of this chapter provide a better understanding of the factors

influencing the a-selective glycosylation reaction and offer valuable insights for further

38



research and application in organic chemistry.
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Summary

1. Summary of Key Findings

This study has demonstrated the effectiveness of machine learning, specifically
Gaussian process regression, in optimizing glycosylation reactions. Through various
chapters, the machine learning optimization method was applied to different
glycosylation reactions, such as the synthesis of the a-gal epitope and the a-selective
xylosylation. The key factors affecting yield and selectivity, including temperature,
catalyst type, solvent, and protecting groups, were analyzed, and their impact on
chemo-selectivity was discussed.

2. Potential Applications and Future Directions

The successful application of machine learning to optimize chemo-selective
glycosylation reactions paves the way for several potential applications and future
research directions in glycochemistry:

Expansion to other glycosylation reactions: The machine learning optimization method
can be applied to other glycosylation reactions, including various donor and acceptor
molecules, to enhance the efficiency and selectivity of glycoconjugate synthesis.
Integration with other computational approaches: The machine learning method could
be integrated with other computational approaches, such as quantum chemistry
calculations and molecular dynamics simulations, to gain a deeper understanding of the
reaction mechanisms and improve predictive accuracy.

Automation and high-throughput screening: Machine learning optimization could be
combined with automated synthesis platforms and high-throughput screening
techniques to accelerate the discovery and optimization of new glycosylation reactions
and catalysts.

Development of novel therapeutic agents: Optimized glycosylation reactions can
contribute to the synthesis of complex glycoconjugates, which are essential for
understanding the biological functions of these molecules and developing novel

therapeutic agents, including pharmaceuticals, vaccines, and immunotherapies.
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Biofuels and biopolymers: The optimization of xylose glycosylation, for example, can
have significant implications for the production of biofuels, biopolymers, and
functional materials, as well as for understanding the biological functions of xylose-
containing glycoconjugates.

Overall, the application of machine learning optimization in glycochemistry offers
promising avenues for advancing research and the development of novel, biologically
relevant compounds. By refining and expanding the use of these methods, future studies
can continue to unlock the potential of glycosylation reactions and improve our

understanding of the complex world of glycoconjugates.
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Experimental

General Information

"H NMR spectra were recorded in an indicated solvent with JEOL ECA 500 MHz

spectrometer equipped with a cryoprobe. The chemical shifts in CDCI3 are given 6

values from TMS as an internal standard. Multiplicities abbreviations: s = singlet, d =

doublet, t = triplet, q = quartet, m = multiple, br = broad. Chemical purification was

carried out using silica-gel column chromatography Keiselgel 60 F2s54 (Merk Co., 0.043-

0.063 mm) and Sephadex™ LH-20. TLC analysis of compounds was visualized by UV

(254 nm) with p-methoxy benzaldehyde (p-anisaldehyde, 0.03% in the mixture of
EtOH; H>SO4; AcOH). Anhydrous CH:Cl> was distilled from calcium hydride.

Anhydrous DMF was purchased from WAKO (Wako Pure Chemical Industries, Ltd.).

The molecular sieve (MS4A) was activated with microwave heating at 250 °C and dried

in vacuo 3 times before use. A chemical reaction using an anhydrous solvent was

carried out under an argon atmosphere (Ar). All other commercially available reagents

and solvents were used as purchased. HPLC was carried out with a Shimadzu LC-20AD

liquid chromatograph and analyzed by HPLC with a Cosmosil 5C18-P (Nacalai Tesque)
column [4.6IDX250 mm: solvent: 50 mM ammonium acetate/MeCN; flow rate: 1.0 ml

min-': the peaks were detected with a Shimadzu fluorescence spectrophotometer by

using an excitation wavelength of 254 nm.
Synthesis procedure and characterization data

OAc

OAc
2
AcO OAc

OAc
1,2,3,4,6-Penta-O-acetyl-D-Galactopyranoside (1). In an evaporating flask at rt
under Ar atmosphere, a solution of D-galactose (50 g, 0.528 mol) was dissolved in
pyridine super dehydrate (150 mL, 1.67 mol) and treated with acetic anhydride (150

mL, 1.67 mol). After being stirred for 19 h, the reaction mixture was concentrated in
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vacuo and co-evaporated with toluene 4 times affording the crude product 1 as a
yellow oil. Rf 0.43 (n-hexane/EtOAc=1/1).

OAc

OAc
2
AcO STol

OAc
p-Tolyl-2,3,4,6-tetra-O-acetyl-1-thio-B-D-Galactopyranoside (2). In an
evaporating flask at r under Ar atmosphere, the yellow oil of compound 1 (0.56 mol)
in super dehydrated CH2Clz (350 mL, 5.48 mol) was added to heated p-toluene thiol
(41 mL, 0.34 mol, heated at 60 °C) followed by cooling to 0 °C. After being stirred

for 10 minutes, BF3; + Et:O (43 mL, 0,34 mol) was slowly added into the mixture at

0 °C under Ar atmosphere for 45 min. The mixture was stirred overnight (17 h) at rt
under atmosphere and quenched with sat. aqueous NaHCO:s till pH = 7.0 followed by
extraction with CHCl3 3 times. The organic layer was treated with brine, dried over
NaxSOq, filtered, and concentrated in vacuo, and co-evaporated with toluene 3 times.
The residue was purified by recrystallization using CHCls/n-hexane yielding
compound 2 as a white powder (76.3 g, 60.7% in 2 steps).

"H NMR (500 MHz, CHLOROFORM-D) § 7.41 (d, J= 8.2 Hz, 2H, -S-CH»-CH3),
7.13 (d, J=7.9 Hz, 2H, -S-CH»-CH3), 5.41 (d, /= 3.4 Hz, 1H, H-4), 5.22 (t,J=9.9
Hz, 1H, H-2), 5.04 (dd, J=10.0, 3.4 Hz, 1H, H-3), 4.65 (d, /= 10.0 Hz, 1H, H-1),
4.18 (dd, J=11.4, 6.9 Hz, 1H, H-6),4.10 (dd, J=11.3, 6.3 Hz, 1H, H-6"), 3.95 — 3.88
(m, 1H, H-5), 2.35 (s, 3H, -CH3), 2.12 (s, 3H, OAc), 2.10 (s, 3H, OAc), 1.97 (s, 3H,
OAc).

OH OH
ﬁ&
HO STol
OH

p-Tolyl 1-thio-S-D-Galactopyranoside (3). In an evaporating flask at rt under Ar
atmosphere, compound 2 (30 g, 66.3 mmol) was dissolved with the mixture of MeOH
(300 mL, 8.08 mol) and THF (300mL, 3.98 mol) and cooled to 0 °C. 28% NaOMe-
MeOH (12.7 mL, 66.3m mol) was then added to the mixture. After being stirred for

0.5 h at rt under Ar atmosphere, the reaction mixture was slowly quenched with acetyl
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chloride till PH = 7 and concentrated in vacuo followed by co-evaporated with

toluene for 2 times yielded compound 3 as a crude product.

A<° OH

T

(o} on STol

p-Tolyl 3,4-O-isopropylidine-1-thio-f-D-Galactopyranoside (4). In an evaporating
flask at it under Ar atmosphere, to a solution of compound 3 (66.3 mol) in anhydrous
CH:Cl (136 mL, 73.8 mmol) was added 2,2-dimethoxy propane (90.5 mL, 73.8
mmol) and p-TsOH.H20 (0.74 g, 3.9 mmol) at 0°C under Ar atmosphere. After being
stirred at rt for 18 h, the reaction mixture was slowly quenched with EiN till pH = 7.0
and treated with Pyridium p-toluenesulfonate (PPTS, 980 mg, 3.9 mmol). After 3 min
the reaction was complete and quenched with EtsN. The mixture was then
concentrated in vacuo, dissolved with EtOAc, treated with satd aq NaHCOs3, and
washed with brine. The organic layer was dried over Na;SOs, filtered, and
concentrated in vacuo followed by being co-evaporated with toluene 3 times.
dissolved with EtOAc and treated with PPTS (1.04 g, 4.1 mmol) and MeOH (40ml),
After 4.5h add PPTS (0.5 g, 2 mmol), and the reaction was complete and dissolved
with EtOAc, treated with sat. aqueous NaHCO3, and washed with brine. The organic
layer was dried over Na>SOy, filtered, and concentrated in vacuo affording compound

4 as a crude product, yellow oil.

0 OBz
2
(0] STol
OBz

p-Tolyl 2,6-di-O-benzoyl-3,4-O-isopropylidine-1-thio-f-D-Galactopyranoside (5).
In an evaporating flask at it under Ar atmosphere, a solution of compound 4 (66.3
mol) in pyridine (442 mL, 5.48 mol) was added benzoyl chloride (30.8 mL, 0.27 mol)
and DMAP (809.6 mg, 6.63 mmol) under Ar atmosphere. After being stirred for
10min, the mixture was then evaporated in vacuo. The residue was dissolved with
EtOAc and treated with 1M aq HCI. After extracted for 3 times with EtOAc, the

mixture was washed with sat. aqueous NaHCOs3, and brine. The filtrated was dried
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over NaxSQyq, filtered, and concentrated in vacuo followed by co-evaporated with
toluene for 3 times repetitions yielding compound 5 as a yellow oil. Rf 0.75 (n-

hexane/EtOAc = 3/1).

OH OBz
2
HO STol
OBz

p-Tolyl 2,6-di-O-benzoyl-1-thio-B-D-Galactopyranoside (6). In an evaporating
flask at rt under Ar atmosphere, a solution of compound 5 (66.3 mol) in MeOH (132.6
mL, 3.22 mol) and THF (179 mL, 2.23 mol) was added to 1 M aqueous HCI (100.6
mL, 2.85 mol) at rt under Ar atmosphere. After being stirred for 2 h at 60 °C, the
reaction mixture was quenched with sat. aqueous NaHCOs3 at 0 °C till PH =7,
extracted with EtOAc, and washed with brine. The filtrate was dried over Na;SOas,

filtered, and concentrated in vacuo yielding compound 6 as a crude product. Rf 0.20

(n-hexane/EtOAc= 3/2).

Q0 OBz
RN
(o) STol
OBz

p-Tolyl 2,6-di-O-benzoyl-3,4-0O-ethoxyethane-1-thio-f-D-Galactopyranoside (7).
In an evaporating flask at rt under Ar atmosphere, compound 6 (66.3 mol) in dry
toluene (442ml, 4.2 mol) was added triethyl orthoacetate (49 mL, 0.27 mol) and p-
TsOH.H20 (1.75 g, 10.0 mmol). After 20 minutes the reaction was complete and

quenched with Et;N till PH = 7. The residue was concentrated in vacuo to give

compound 7 as a crude product. Rf 0.60 (n-hexane/E10Ac = 3/2).

OAc OBz
=
HO STol
OBz

p-Tolyl 4-0-acethyl-2,5-di-O-benzoyl-1-thio-f-D-Galactopyranoside (8). In an
evaporating flask at rt under Ar atmosphere, compound 7 (66.3 mol) was treated with
67% AcOH (380mL, 7.3 mol). After being stirred for 20 min at 40 °C the reaction
was complete as monitored by TLC and concentrated in vacuo. The solid residue was
then dissolved in EtOAc and treated with sat. aqueous NaHCOs. After being extracted
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with EtOAc for 3 times repetitions, the filtrate was washed with brine. The organic
layer was dried over Na,SOs, filtered, and concentrated in vacuo. The crude residue
was purified by recrystallization using CHCls/n-hexane to afford the desired
compound 8 (20.2 g, 56.8% in 6 steps). Rf 0.42 (r-hexane/EtOAc = 3/2).

"H NMR (500 MHz, CHLOROFORM-D) § 8.11 — 8.01 (m, 4H, Bz), 7.64 — 7.56 (m,
2H, Bz), 7.47 (qd, J= 7.1, 1.7 Hz, 4H, Bz), 7.40 — 7.33 (m, 2H, S-CH»-CH3), 6.98 —
6.92 (m, 2H, S-CH»-CH3), 5.50 (d, J= 3.6, 1H, H-4), 5.24 (t, /= 9.7 Hz, 1H, H-2),
4.82 (d, J=10.0 Hz, 1H, H-1), 4.50 (dd, J=11.5, 7.5 Hz, 1H, H-6), 4.40 (dd, J =
11.5, 5.3 Hz, 1H, H-6"), 4.09 — 4.00 (m, 2H, H-3, H-5), 2.27 (s, 3H, S-CH»-CH3), 2.20
(s, 3H, -CH3).

OAc

OBz
2
TBSO STol
(o]

Bz
p-Tolyl 4-O-acethyl-2,5-di-O-benzoyl-3-O-tert-Butyldimethylsilyl-1-thio-B-D-
Galactopyranoside (9). In an evaporating flask at rt under Ar atmosphere, compound
8 (1 g, 1.86 mmol) and TBSCI (0.56 g, 3.72 mmol) were dissolved by dry DMF
(19ml, 0.24 mol), treated Imidazole (0.25 g, 3.72 mmol). After being stirred for 3 h at
rt, added TBSCI (0.56 g, 3.72 mmol) and Imidazole (0.25 g, 3.72 mmol), after 2.5 h,
added TBSCI (0.56 g, 3.72 mmol) and Imidazole (0.25 g, 3.72 mmol). After being
stirred for 24 h the reaction was complete, added n-hexane/EtOAc = 1/1 100ml,
washed by H>O, and the organic layer was dried over Na;SO4 and concentrated in
vacuo. The solid residue was then dissolved in EtOAc and treated with sat. aqueous
NaHCOs. After being extracted with EtOAc for 3 times repetitions, the filtrate was
washed with brine. The organic layer was dried over Na>SO4, filtered, and
concentrated in vacuo. The residue was purified by silica-gel column chromatography
(n-hexane/EtOAc = 5/1) to give 9 (1.05 g, 87%) as a white powder.
"H NMR (500 MHz, CHLOROFORM-D) § 8.21 (ddd, J=8.5, 3.8, 1.4 Hz, 4H, Bz),
7.80 —7.71 (m, 2H, Bz), 7.62 (td, J = 7.8, 6.1 Hz, 4H, Bz), 7.53 — 7.43 (m, 2H, S-
CH,-CHs3), 7.07 — 7.01 (m, 2H, S-CH»-CH3), 5.66 — 5.57 (m, 2H, H-2, H-4), 4.93 (d, J
=10.2 Hz, 1H, H-1), 4.67 — 4.55 (m, 2H, H-3, H-5), 4.23 (ddd, /= 8.0, 4.7, 1.1 Hz,
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1H, H-6), 4.16 (d, J = 8.4 Hz, 1H, H-6"), 2.40 (s, 3H, S-CH,-CH3), 2.34 (s, 3H, -CHs),
0.87 (s, 9H, Si-C-CHs), 0.20 (s, 3H, Si-CHs), 0.16 (s, 3H, Si-CH).

OAc

OBz
ﬁ%
TBSO
OBz “"F

4-0-acetyl-2,5-di-O-benzoyl-3-O-tert-Butyldimethylsilyl-1-fluoride-D-
Galactopyranoside (10).

In an evaporating flask at rt under Ar atmosphere, to a solution of 9 (1.0 g, 1.54 mmol)
in CH2Cl> (15.4 mL) was added XtalFluor-E ® (0.53 g, 2.37 mmol) at rt. After being
stirred for 3.5 h at room temperature, the reaction mixture was added XtalFluor-E ®
(0.18 g, 0.8 mmol). After being stirred for 2 h at room temperature, the reaction mixture
was added XtalFluor-E ® (0.36 g, 1.6 mmol). After being stirred for 2 h at room
temperature, the reaction mixture was added XtalFluor-E ® (0.36 g, 1.6 mmol). After
being stirred for 2 h at room temperature, the reaction was quenched by sat. aqueous
NaHCO:s. The aqueous layer was extracted with CH2Cl,. The organic layer was washed
with brine, dried over Na>SQOy, filtered, and concentrated in vacuo. The residue was
purified by silica-gel column chromatography (toluene/EtOAc = 20/1) to give 10 (358
mg, 43%) as a white powder. 'H NMR (500 MHz, CHLOROFORM-D) § 8.13 — 8.04
(m, 4H, Bz), 7.65 — 7.56 (m, 2H, Bz), 7.51 — 7.37 (m, 4H, Bz), 7.22 — 7.09 (m, 1H, H-
1),5.57(dd, J=3.6, 1.3 Hz, 1H, H-4), 5.44 (ddd, /= 24.9, 10.0, 2.7 Hz, 1H, H-2), 4.59
—4.46 (m, 2H, H-3, H-5), 4.43 — 4.34 (m, 2H, H-6, H-6), 3.51 (s, 9H), 2.39 — 2.31 (m,
1H), 2.20 (s, 3H, -CH3), 0.96 (s, 3H, Si-CH3), 0.75 (s, 9H, Si-C-CH3), 0.12 (s, 3H, Si-

CHs).
OAc OBz
T
LevO STol
OBz
p-Tolyl 4-0-acethyl-2,5-di-O-benzoyl-3-O-levulinoyl-1-thio-#-D-

Galactopyranoside (11).2! In an evaporating flask at rt under Ar atmosphere, to a
solution of 8 (1 g, 1.86 mmol) in CH>Cl> (31 mL) were added EDC (529 mg, 2.76
mmol), DMAP (22.7 mg, 186 umol), levulinic acid (320 mg, 2.76 mmol) at rt. After
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being stirred for 1 h, the reaction was evaporated. The residue was dissolved with
EtOAc and washed with sat. aqueous NaHCO3 and brine. The organic layer was dried
over NaxSQOqs, filtered, and concentrated in vacuo. The residue was purified by
recrystallization (benzene/n-hexane) to give 11 (887 mg, 75%) as a white powder. 'H
NMR (500 MHz, CHLOROFORM-D) 6 8.02 (ddt, J = 6.8, 5.3, 1.3 Hz, 4H, Bz), 7.59
(ddt, /=17.8,7.0, 1.3 Hz, 2H, Bz), 7.46 (tdd, /= 7.3, 4.7, 1.7 Hz, 4H, Bz), 7.39 — 7.31
(m, 2H, S-CH»-CH3), 6.98 — 6.92 (m, 2H S-CH»-CH3), 5.57 (dd, J = 3.4, 1.1 Hz, 1H,
H-4),5.52 (t,J=10.0 Hz, 1H, H-2), 5.25 (dd, /= 10.0, 3.4 Hz, 1H, H-3,), 4.84 (d, J =
10.0 Hz, 1H, H-5),4.53 (dd, J=11.5, 7.4 Hz, 1H, H-6), 4.36 (dd, J=11.5, 5.6 Hz, 1H,
H-6’), 4.13 (ddd, J = 7.1, 5.6, 1.2 Hz, 1H), 2.74 (q, J = 5.4 Hz, 1H), 2.65 — 2.32 (m,
5H), 2.18 (s, 3H, OAc), 2.01 (s, 3H, OAc).

OAc

OBz
&%
LevO
OBz F

4-0-acethyl-2,5-di-O-benzoyl-3-O-levulinoyl-1-flouride-D-Galactopyranoside
(12).2! In an evaporating flask at rt under Ar atmosphere, to a solution of 11 (60.0 mg,
95.0 umol) in CH2Cl> (0.95 mL) was added XtalFluor-E® (32.4 mg, 0.126 mmol) at rt.
After being stirred for 2.5 h, the reaction was quenched by sat. aqueous NaHCOs till
PH = 7, the aqueous layer was extracted with CHCls. The organic layer was washed
with brine, dried over Na>SQOy, filtered, and concentrated in vacuo. The residue was
purified by silica-gel column chromatography (n-hexane/EtOAc = 10/1) to give 12
(33.6 mg, 67%) as a white solid. '"H NMR (500 MHz, CDCL3) & 8.10 — 8.00 (m, 4H,
Bz), 7.64 — 7.54 (m, 2H, Bz), 7.53 — 7.38 (m, 4H, Bz), 6.07 — 5.88 (m, 1H), 5.69 (dd, J
=3.3, 1.4 Hz, 1H), 5.67 —5.59 (m, 1H), 5.47 (ddd, J=23.6, 10.8, 2.7 Hz, 1H), 4.62 (td,
J=6.5,14Hz, 1H), 4.50 (dd, J = 11.3, 6.7 Hz, 1H, H-6), 4.36 (dd, J = 11.4, 6.4 Hz,
1H, H-6"), 2.71 (dt, J = 18.3, 7.1 Hz, 1H), 2.66 — 2.48 (m, 2H), 2.41 (dt,J=17.2, 6.5
Hz, 1H), 2.20 (s, 3H, OAc), 2.06 (s, 3H, OAc).
OAc

OBz
o
HO
OB F

r4
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4-0-acethyl-2,5-di-O-benzoyl-1-flouride-D-Galactopyranoside  (13).2! In an
evaporating flask at rt under Ar atmosphere, to a solution of 12 (60.0 mg, 0.113 mmol)
in THF/MeOH = 9/1 (5 mL) was added hydrazine acetate (145 mg, 1.53 mmol) at rrt.
After being stirred for 30 min, the reaction was evaporated. The residue was dissolved
with EtOAc and washed with sat. aqueous NaHCO3 and brine. The organic layer was
dried over Na,SOs, filtered, and concentrated in vacuo. The residue was purified by
silica-gel column chromatography (n-hexane/EtOAc = 5/1) to give 13 (42.7 mg, 87%)
as a white solid. 1H NMR (500 MHz, CDCI3) & 8.11-8.04 (m, 4H, Bz), 7.63-7.56 (m,
2H, Bz), 7.49-7.44 (m 4H, Bz), 5.90 (dd, ] =49.3,2.6 Hz, 1H), 5.64 (d, ] = 3.3 Hz, 1H),
5.33(ddd, J=23.7,10.3,2.6 Hz, 1H), 4.58-4.37 (m, 4H), 2.38 (d, J = 5.6 Hz, 1H), 2.22
(s, 3H, OAc).

Ph

o o
&/
HO STol
OH

p-Tolyl4,6-benzylidene-1-thio-D-galactopyranoside (14). In an evaporating flask at
rt under Ar atmosphere, compound 2 (10g, 22 mmol) was dissolved with the mixture
of MeOH (100 mL, 2.7 mol) and THF (100 mL, 1.3 mol) and cooled to 0 °C. 28%
NaOMe-MeOH (4.24 mL, 22 mmol) was then added to the mixture. After being
stirred for 0.5 h at rt under Ar atmosphere, the reaction mixture was slowly quenched
with acetyl chloride till PH = 7 and concentrated in vacuo yielding compound 3 as a
crude product, then compound 3 was dissolved in anhydrous MeCN (220mL, 4.2 mol)
and benzaldehyde dimethyl acetal (9.9 mL, 66 mmol), p-TsOH.H>O (0.5 g, 2.7 mmol)
was next added into the reaction mixture. After 2 h, added p-TsOH.H2O (0.5 g, 2.7
mmol), after 2 h, added p-TsOH.H>O (0.5 g, 2.7 mmol) again, after 1 h, benzaldehyde
dimethyl acetal (9.9 mL, 66 mmol), after 13 h, the reaction was complete and
quenched with Et;N till PH = 7. Added CHCl; 200ml, the organic layers were washed
with satd aqg NaHCO3, brine, dried over NaxSOg, filtered, and concentrated in vacuo to

afford compound 14 as a crude product.
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Ph

oo

%&
BnO STol

OBn
p-Tolyl 2,3-di-O-benzyl-4-6-0O-benzylidine-1-thio-f-D-galactopyranoside (15). In
an evaporating flask at rt under Ar atmosphere, to a solution of 14 (22 mmol) in
anhydrous DMF (220 ml, 2.8 mol) was added benzyl bromide (7.84 mL, 66 mmol)
dropwise to the stirring solution at 0 °C. NaH (2.64 g, 66 mmol) was next added to
the reaction mixture slowly. After being stirred for 2 h the reaction was complete as
monitored by TLC, the reaction mixture was treated with MeOH to quench the excess
BnBr, add H>O 1.5L, extracted with CHCls. The organic layer was washed with satd
aq NaHCOs, brine, dried over Na;SOys, filtered, and concentrated in vacuo. The
residue was purified by recrystallization (CHCls/n-hexane) to afford 15 4.8 g (39% in
3 steps) as a yellow crystal.
'"H NMR (500 MHz, CHLOROFORM-D) § 7.64 — 7.57 (m, 2H, Ar), 7.55 — 7.48 (m,
2H, Ar), 7.45 —17.23 (m, 13H, Ar), 7.02 — 6.97 (m, 2H, Ar), 5.47 (s, 1H, -CHPh), 4.80
—4.66 (m, 4H, CH,Ph) x2, 4.57 (d, /= 9.5 Hz, 1H), 4.37 (dd, /= 12.3, 1.6 Hz, 1H),
4.14 (dd,J=3.4,1.0 Hz, 1H), 3.98 (dd, J=12.3, 1.7 Hz, 1H), 3.84 (t, /= 9.4 Hz,
1H), 3.62 (dd, J=9.2, 3.4 Hz, 1H), 3.40 (q, /= 1.5 Hz, 1H), 2.30 (s, 3H, -CHs).

Ph

o 0
%&%
BnO
OBn"'"“f

p-Tolyl 2,3-di-O-benzyl-4-6-O-benzylidine-1-fluoride-D-galactopyranoside (16) To
a solution of 15 (2.0 g, 3.6 mmol) in CH>Cl, (36 mL) was added XtalFluor-E ® (1.65
g, 7.20 mmol) at room S3 temperature. After being stirred for 2.5 h at room temperature,
to the reaction mixture was added XtalFluor-E ® (0.82 g, 3.60 mmol). After being
stirred for 1 h at room temperature, to the reaction mixture was added XtalFluor-E ®
(1.65 g, 7.20 mmol). After being stirred for 3.5 h at room temperature, to the reaction
mixture was added XtalFluor-E ® (1.65 g, 7.20 mmol). After being stirred for 3 h at
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room temperature, the reaction was quenched by sat. aqueous NaHCOs. The aqueous
layer was extracted with CH»Cl,. The organic layer was washed with brine, dried over
NazSO0qs, filtered, and concentrated in vacuo. The residue was purified by silica-gel
column chromatography (toluene/EtOAc = 20/1) to give 16 (1.28 g, 79%) as a white
powder. 'H NMR (500 MHz, CDCl3)  7.50 (d, J = 7.8 Hz, 2H, Ar), 7.41-7.24 (m, 13H,
Ar), 5.69 (dd, J = 53.3, 1.7 Hz, 1H, -CHPh), 5.48 (s, 1H, -CHPh), 4.89 (d, ] = 11.5 Hz,

1H, CH>Ph), 4.81 (d, ] = 12.0 Hz, 1H, CH>Ph), 4.76 (d, J = 12.0 Hz, 1H, CH,Ph), 4.72
(d, J=11.5 Hz, 1H, CH,Ph), 4.26-4.22 (m, 2H), 4.06 (ddd, J =24.8, 10.0, 1.7 Hz, 1H),

4.00-3.97 (m, 2H), 3.81 (s, 1H).
Ph

0 OAc

OBz
BnO
OBn 0
(0]
OBz F

4-0-acetyl-2,5-di-O-benzoyl-3-0-(2,3-di-O-benzyl-4-6-0-benzylidine-1-fluoride-
D-galactopyranosyl)-1-flouride-D-Galactopyranoside (M1). 2! In a pear-shaped
flask at rt under Ar atmosphere, a suspension of donor 16 (156 mg, 0.348 mmol),
acceptor 13 (100 mg. 0.232 mmol), activated MS 4A in distilled CH>Cl (11.6 ml)
was stirred at -40 °C under Ar atmosphere. BF3-Et:O (36.4 pl, 0.232 mmol) was
added slowly to the stirring mixture. After being stirred for 1 h, then the mixture was
quenched by sat. aqueous NaHCOs3. The aqueous layer was extracted with CH>Cl.
The organic layer was washed with brine, dried over Na>SOs, filtered, and
concentrated in vacuo. The residue was purified by silica-gel column chromatography
(toluene/EtOAc = 40/1) to give M1 (140.6 mg, 70%) as a white powder. '"H NMR
(500 MHz, CHLOROFORM-D) 6 8.08 — 8.02 (m, 2H), 8.00 — 7.94 (m, 2H), 7.63 (t, J
=7.4 Hz, 1H), 7.58 (t,J = 7.4 Hz, 1H), 7.50 — 7.43 (m, 6H), 7.38 — 7.21 (m, 15H),
5.89 (dd, J=53.5,2.9 Hz, 1H), 5.76 (d, J= 3.3 Hz, 1H), 5.58 — 5.48 (m, 1H), 5.28 (s,
1H), 5.21 (d, J=3.4 Hz, 1H), 4.73 (d, /= 11.4 Hz, 1H), 4.68 — 4.60 (m, 2H), 4.54 (d,
J=12.2 Hz, 1H), 4.47 — 4.40 (m, 2H), 4.35 —4.27 (m, 1H), 4.08 (d, /= 12.5 Hz, 1H),
4.01 (dd, J=10.0, 3.4 Hz, 1H), 3.78 (dd, /= 10.0, 3.5 Hz, 1H), 3.74 (d, /= 3.5 Hz,
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1H), 3.67 (d, J=12.5 Hz, 1H), 3.57 (s, 1H), 1.87 (d, /= 1.2 Hz, 3H).
HO 0
HO
OH
OAllyl

Ally a-D-xylopyranoside (1a). In an evaporating flask at rt under Ar atmosphere, D-
xylose (5 g, 33.3 mmol) was added Allyl-OH (67.9mL, 1 mol). After being stirred for
5 mins at it under Ar atmosphere, TMSCI (21 mL, 166.5 mmol) was slowly added to
the mixture. After being stirred overnight at 60 °C, the reaction mixture was

concentrated in vacuo and followed by co-evaporated with toluene for 3 times

repetitions to give compound 1a as a crude product.

BnO 0

BnO
OBn

OAllyl
Ally 2, 3, 4-Tri-O-benzyl-a-D-xylopyranoside (2a)
BnO 0

HO
OBn

OAllyl

Allyl 2,4-Di-O-benzyl-a-D-xylopyranoside (2b). To a solution of compound la

(6.30g, 33.3 mmol) in DMSO (200 ml) was added NaH (2.0 g, 83.3 mmol) under ice

cooling, and the mixture was stirred at room temperature for 30 min. Benzyl bromide

(9.9 ml, 83.3 mmol) was added to the mixture under ice cooling. The mixture was

stirred at room temperature overnight. 1.5L water was added to the mixture. extracted

with CHCIs. The organic layer was washed with brine, dried over Na,SOs, filtered, and

concentrated in vacuo. The residue was purified by silica-gel column chromatography

(Toluene-AcOEt=92/8 to 90/10 to 88/12) to give an oily product 2a: Yield 1.49¢g (10 %)
"H NMR (500 MHz, CHLOROFORM-D) § 7.43 —7.16 (m, 15H, Ar), 6.02 — 5.88 (m,

1H, -CH=CH>), 5.32 (m, 1H, -CH=CH>), 5.25 - 5.12 (1H, -CH=CH>), 4.96 — 4.81 (m,

2H), 4.80 — 4.69 (m, 2H), 4.68 — 4.48 (m, 2H), 4.42 — 4.32 (m, 1H), 4.20 — 3.81 (m,

3H), 3.65 —3.56 (m, 2H, H-5), 3.56 — 3.50 (m, 1H), 3.50 — 3.36 (m, 1H).

and 2b: Yield 2.28 g (19 %) 'H NMR (500 MHz, CHLOROFORM-D) & 7.40 — 7.27

(m, 10H, Ar), 5.89 (dddd, J=17.0, 10.3, 6.4, 5.1 Hz, 1H, OCH,CH=CH>»), 5.31 (dq, J
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=17.2, 1.6 Hz, 1H), 5.20 (dq, J = 10.4, 1.4 Hz, 1H), 4.79 — 4.58 (m, 6H), 4.13 (ddt, J =
12.9, 5.1, 1.5 Hz, 1H), 4.04 (ddd, J= 9.8, 8.5, 2.0 Hz, 1H), 3.91 (ddt, J = 13.0, 6.4, 1.3
Hz, 1H), 3.59 (dd, J= 10.6, 5.5 Hz, 1H), 3.57 — 3.42 (m, 2H), 3.34 (dd, J= 9.6, 3.5 Hz,
1H), 2.52 (d, J = 2.0 Hz, 1H).

BnO 0
AcO

OBn
OAllyl

Allyl 3-0-acetyl-2,4-Di-O-benzyl-a-D-xylopyranoside (3b). In an evaporating flask
at rt under Ar atmosphere, a solution of 2b (1 g, 2.7 mmol) was dissolved in pyridine
super dehydrate (1.3 mL, 16.2 mmol) and treated with acetic anhydride (0.16 mL, 3.24
mmol). After being stirred for 22 h, added acetic anhydride (0.13 mL, 2.7 mmol). After
1 d, the reaction mixture was concentrated in vacuo and co-evaporated with toluene 4
times. The residue was purified by silica-gel column chromatography (n-hexane-EtOAc
=90/10 to 85/15) to give an oily product 3b: Yield 708 mg (64 %) 'H NMR (500 MHz,
CHLOROFORM-D) § 7.39 — 7.24 (m, 10H, Ar), 5.90 (dddd, J=17.0, 10.2, 6.4, 5.1 Hz,
1H OCH>CH=CH>), 5.46 (t, J = 9.6 Hz, 1H, H-3), 5.31 (dq, J = 17.2, 1.6 Hz, 1H,
OCH2CH=CH>), 5.20 (dq, J = 10.3, 1.3 Hz, 1H, OCH.CH=CH>), 4.77 (d, J = 3.5 Hz,
1H, H-1), 4.58 (s, 2H, CH2Ph), 4.56 — 4.49 (m, 2H, CH,Ph), 4.15 (ddt, J = 13.0, 5.1,
1.5 Hz, 1H, OCH,CH=CH>), 3.95 (ddt,J=12.9, 6.4, 1.3 Hz, 1H, OCH,CH=CH2>), 3.62
(d, J= 8.2 Hz, 2H, H-5,), 3.54 — 3.45 (m, 1H, H-4), 3.40 (dd, J=10.0, 3.5 Hz, 1H, H-
2), 2.01 (s, 3H, Ac).

BnO 0
AcO

OBn
OH
3-0-acetyl-2,4-Di-O-benzyl-a-D-xylopyranoside (4b). In a pear-shaped flask at rt
under Ar atmosphere, to a solution of 3b (600 mg, 1.46 mmol) in anhydrous THF
(14.6 ml) was added with the activated solution of [Ir(cod)(PPh.Me), PFs (61.7 mg,
0.073 mmol) in anhydrous THF (14.6 ml) after stirred for 5 minutes under H»

atmosphere (yellow solution) at rt. After being stirred for 30 min at rt under Ar

atmosphere. Distilled H>O (5 mL, 278 mmol) and I (1.1 g, 4.38 mmol) were next

53



added to the stirring mixture and stirred for 1 h. The reaction was quenched by adding
20% NazS203 and extracted with EtOAc 3 times. The organic layer was then treated
with sat. aqueous NaHCO:3., brine, dried over NaxSOs, filtered, and concentrated in
vacuo. The residue was purified with silica-gel column chromatography (n-hexane-
EtOAc =90/10 to 85/15 to 80/20) yielded compound 4b a/f= 1.5/1 (472 mg, 80%).
'"H NMR (500 MHz, CHLOROFORM-D) § 7.37 — 7.23 (m, 18H, Ar), 5.39 (t, J = 8.8
Hz, 1H, H-3), 5.19 - 5.12 (m, 2H), 4.84 (d, J=11.9 Hz, 1H), 4.70 (dd, J=7.4,4.3
Hz, 1H), 4.66 —4.59 (m, 3H), 4.59 — 4.48 (m, 3H), 3.95 (dd, J=11.7, 5.3 Hz, 1H),
3.86 (dd,J=11.4,9.9 Hz, 1H), 3.69 (dd, J=11.4, 5.2 Hz, 1H), 3.63 (d, /= 5.1 Hz,
1H), 3.57 - 3.47 (m, 1H), 3.47 — 3.40 (m, 2H), 3.34 — 3.20 (m, 2H), 2.01 (s, 3H, Ac),
1.94 (s, 2H). MS (ESI-QTOF) for C, H ,NaO," [M + Na] " = 395.1138

BnO 0
AcO
OBn

F
3-0-acetyl-2.4-di-O-benzyl-a-D-xylopyranosyl fluoride(5b) In a pear-shaped flask

at rt under Ar atmosphere, to a solution of compound 4b (100 mg, 0.268 mmol) in
CHxCl; (2.7 ml) were added 2-fluoro-1-methylpyridinium p-toluenesulfonate (152
mg, 0.536 mmol) and triethylamine (0.149 ml, 1.07 mmol). The solution was stirred
at room temperature for 3 h. EtOAc and water were added to the solution. Extracted
with EtOAc 3 times. The organic layer was then treated with sat. aqueous NaHCO:3.,
brine, dried over Na;SQOy, filtered, and concentrated in vacuo. The residue was
purified with silica-gel column chromatography (n-hexane-EtOAc = 90/10 to 85/15)
yielded compound 5b 61 mg, 61%, a/B=4/1. '"H NMR (500 MHz,
CHLOROFORM-D) 3 7.38 — 7.21 (m, 10H, Ar), 5.49 — 5.40 (m, 1H), 4.67 — 4.50 (m,
4H), 3.83 — 3.70 (m, 2H), 3.66 — 3.50 (m, 1H), 3.50 — 3.36 (m, 1H), 2.01 (s, 3H,

OAc). MS (ESI-QTOF) for C, H,,NaO_* [M + Na] * = 397.1477

BnO 0

BnO
OBn

OH
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2, 3, 4-tri-O-benzyl-a-D-xylopyranose(6a). In a pear-shaped flask at rt under Ar
atmosphere, to a solution of 2a (800 mg, 1.74 mmol) in anhydrous THF (17.4 ml) was
added with the activated solution of [Ir(cod)(PPhoMe), PF¢ (73.5 mg, 0.087 mmol) in
anhydrous THF (17.4 ml) after stirred for 5 minutes under H, atmosphere (yellow
solution) at rt. After being stirred for 30 min at rt under Ar atmosphere. Distilled H.O
(5§ mL, 278 mmol) and I> (1.3 g, 5.22 mmol) were next added to the stirring mixture
and stirred for 1 h. The reaction was quenched by adding 20% Na,S,03 and extracted
with EtOAc 3 times. The organic layer was then treated with sat. aqueous NaHCO:3.,
brine, dried over Na>SQy, filtered, and concentrated in vacuo. The residue was

purified with silica-gel column chromatography (n-hexane-EtOAc = 90/10 to 85/15 to

80/20) yielded compound 6a (426 mg, 58%). MS (ESI-QTOF) for C NaO," [M +

26H28
Na] * = 443.1956

BnO 0
BnO
OBn

F

2, 3, 4-tri-O-benzyl-a-D-xylopyranosyl fluoride(7a). In a pear-shaped flask at rt
under Ar atmosphere, to a solution of compound 6a (100 mg, 0.238 mmol) in CH>Cl,»
(2.4 ml) was added 2-fluoro-1-methylpyridinium p-toluenesulfonate (135 mg, 0.476
mmol) and triethylamine (0.133 ml, 0.95 mmol). The solution was stirred at room
temperature for 3 h. EtOAc and water were added to the solution. Extracted with EtOAc
3 times. The organic layer was then treated with sat. aqueous NaHCOs., brine, dried
over NaySQOy, filtered, and concentrated in vacuo. The residue was purified with silica-
gel column chromatography (n-hexane-EtOAc = 95/5 to 90/10) yielded compound 7a
62 mg, 61%. '"HNMR (500 MHz, CHLOROFORM-D) § 7.39 —7.23 (m, 15H, Ar), 5.44
(dd, J=53.1, 2.7 Hz, 1H, H-1), 4.90 — 4.60 (m, 6H, CH2Ph), 3.90 (t, /= 9.2 Hz, 1H,
H-3), 3.76 (dd, J = 11.1, 5.7 Hz, 1H, H-4), 3.72 — 3.54 (m, 2H, H-5), 3.45 (ddd, J =
25.7,9.6,2.7 Hz, 1H, H-2).
PAER v
OAllyl

Allyl 0-(2,3,4-Tri-O-benzyl-a-D-xylopyranosyl)-(1—3)-2,4-di-O-benzyl-a-D-
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xylopyranoside(a-Xa) and Allyl 0-(2,3,4-Tri-O-benzyl-a-D-xylopyranosyl)-
(1-3)-2,4-di-O-benzyl-B-D-xylopyranoside(f-Xa). In a pear-shaped flask at rt under
Ar atmosphere, a suspension of donor 7a (40 mg, 94.8 umol), acceptor 2b (23.4 mg.
63.2 pmol), activated MS 4A in distilled CH2Cl, (3.16 ml) was stirred at -32 °C under
Ar atmosphere. BF3-Et2O (6 pl, 47.4 pmol) was added slowly to the stirring mixture.
After being stirred for 1 h, then the mixture was quenched by Et;N and filtered through
a membrane filter (Fluoro pore®), and concentrated in vacuo. The residue was purified
by silica-gel column chromatography (n-hexane/EtOAc = 10/1) to give Xa (45.63 mg,
94%) as a white powder. a/f = 1.4/1, Estimated by HPLC, flow rate: 1ml/min, C18-
AR-300(4.6ID*250mm), MeCN/50mM NH4COOCH;3= 85/15. Resident time a-Xa is
14 min, f-Xa is 15 min 30 s.

Flow synthesis of Xa

B: BF; - Et,0 0.1 Min A: Donor (1.5 eq) + Acceptor 0.1 M in CH,Cl,
o Al 20viimin D: 5% TEA in CAN
o gl 1900 pl/min

M
l J Collection

C: CH,Cl, | 35s(A+B+C =100 pl/min) |
20-Buimn 1.5 min (A+ B+ C = 100 pl/min )

Final concentration: 1 mM Xa (100% reaction) | HPLC I

Figure 4.3.1.1. Microfluidic system for optimization.

In a pear-shaped flask at rt under Ar atmosphere, donor 7a (158.2 mg, 0.375mmol),
accepter 2b (31.46 mg, 0.25 mmol), was dissolved in super dehydrate toluene (2.5 ml)
and transferred into 5 mL syringe HAMILTON CO., RENO. NEVADA (pump A). On
the other side, pump B was filled out with TMSOTT (54.2ul, 0.3 mmol) in super
dehydrate toluene (3 mL) in a 5 mL syringe. Pump C filled out with super dehydrate
toluene (8 mL) into a 10 mL syringe, and Pump D filled out 5% TEA in MeCN (50 ml)
into a 50 mL syringe. Pump A and B were set up in a syringe pump (HARVARD 11
ELITE single syringe pump) and ran with a flow rate of 20 pL/min at -40 °C. Pump C
ran with a flow rate of 60 pL/min, Pump D ran with a flow rate of 1900 pL/min. After

5 mins, the reaction mixture was collected 400 pl as a sample, then change the flow
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rate for the next condition. HPLC automatic sample injection analysis of the yield and

the ratio of a-Xa and f-Xa.

Machine learning programming code!%

Gaussian process regression

#!/usr/bin/env python3
# —x— coding: utf-8 —k-—

Created on Mon Feb 20 18:56:59 2023

@author: daichanghao
import csv
import warnings
import GPy
import numpy as np
from matplotlib import pyplot as plt
warnings.filterwarnings('ignore"')
# catalystEq, temp
with open('catatemp.csv', encoding='utf-8-sig') as csv_file:
csv_reader = csv.reader(csv_file, delimiter="',")
X =1l
for row in csv_reader:
X.append([float(row[@]), float(row[1])])
X = np.array(X)
with open('catatemp.csv', encoding='utf-8-sig') as csv_file:
csv_reader = csv.reader(csv_file, delimiter="',")
Y =[]
for row in csv_reader:
Y.append(float(row[2]))
Y = np.array(Y)[:, np.newaxis]
# standardization
X_std = np.copy(X)
for i in range(X.shape[1]):
X_std[:, i:i + 1] = (X[:, i:i + 1] - np.mean(X[:, i:i + 11)) / np.sqrt(np.var(X[:, i:i + 1]))

# GPR and visualization

kernel = GPy.kern.RBF(input_dim=2)

model = GPy.models.GPRegression(X_std, Y, kernel=kernel, normalizer=True, noise_var=0.001)
model.optimize(max_iters=3, messages=True)
mean, variance = model.predict(X_std)
top_point = X_std[np.argmax(mean)]
model.plot()

print(model)

temp_prediected = top_point[0]
eq_prediected = top_point[1]
print(temp_prediected)
print(eq_prediected)

print(top_point)

x0_list_law = [1, 2, 3, 4, 5, 6, 7, 8]

x1_list_law = [-40, -30, -20, -10, 0, 10, 20]

x0_list_std = []

x1_list_std = []

x0_list_std = (np.array(x0_list_law) - np.mean(X[:, @:1])) / np.sqrt(np.var(X[:, 0:1]))
x1_list_std = (np.array(x1_list_law) - np.mean(X[:, 1:2]1)) / np.sqrt(np.var(X[:, 1:2]))

plt.xticks(x0_list_std, x0_list_law)
plt.yticks(x1_list_std, x1_list_law)
plt.xlabel("CatalystEq [Cat./Donor]", fontsize=15)
plt.ylabel("temperature['(]", fontsize=15)
plt.tick_params(labelsize=15)
plt.legend(bbox_to_anchor=(1, 0.5), fontsize=15)
plt.show()

from mpl_toolkits.mplot3d import Axes3D
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# Plot original data

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d")
ax.scatter(X[:,0], X[:,1], Y[:,0], c="'red', s=20)

# Plot predicted mean
X_mesh, Y_mesh = np.meshgrid(np.linspace(X[:,0].min(), X[:,0].max(), 100),
np.linspace(X[:,1].min(), X[:,1].max(), 100))
X_mesh_std = np.column_stack(((X_mesh.flatten() - np.mean(X[:,0]1)) / np.sqrt(np.var(X[:,0])),
(Y_mesh.flatten() - np.mean(X[:,11)) / np.sqgrt(np.var(X[:,1]))))
mean_mesh, variance_mesh = model.predict(X_mesh_std)
ax.plot_surface(X_mesh, Y_mesh, mean_mesh.reshape(X_mesh.shape), alpha=1l, cmap=plt.cm.rainbow)

# Set axis labels and display plot
ax.set_xlabel('CatalystEq [Cat./Donor]")
ax.set_ylabel('temperature ['(]")
ax.set_zlabel('yield [%]")

plt.show()

model.plot(fixed_inputs=[(1, eq_prediected)], plot_data=False, lower=25, upper=75)
x0_list_law [1, 2, 3, 4, 5, 6]

x0_list_std 1

x0_list_std = (np.array(x0_list_law) - np.mean(X[:, ©:11)) / np.sqrt(np.var(X[:, 0:1]))
plt.xticks(x0_list_std, x0_list_law)

x0_line = 1.05

x0_line_std = (x@_line - np.mean(X[:, 0:1])) / np.sqrt(np.var(X[:, 0:1]))

plt.plot([x@0_line_std, x@_line_std], [5, 60], color='red', linewidth=1, linestyle='-', label=x0_line)
plt.xlabel("CatalystEq [Cat./Donor]", fontsize=15)

plt.ylabel("yield[%]", fontsize=15)

plt.tick_params(labelsize=15)

plt.legend(("Mean", x0_line, "Confidence"), loc="lower right", borderaxespad=0.2, fontsize=15)
plt.show()

model.plot(fixed_inputs=[(0@, temp_prediected)], plot_data=False, lower=25, upper=75)

x1_list_law = [-40, -30, -20, -10, @, 10, 20]

x1_list_std [1

x1_list_std (np.array(x1_list_law) - np.mean(X[:, 1:2])) / np.sqrt(np.var(X[:, 1:2]1))
plt.xticks(x1_list_std, x1_list_law)

x1_line = -2

x1_line_std = (x1_line - np.mean(X[:, 1:2])) / np.sqrt(np.var(X[:, 1:2]))

plt.plot([x1_line_std, x1_line_std], [5, 70], color='red', linewidth=1, linestyle='-', label=x1_line)
plt.xlabel("temperature ['(]", fontsize=15)

plt.ylabel("yield [%]", fontsize=15)

plt.tick_params(labelsize=15)

plt.legendﬁ(”Mean”, f"{x1_line}'(", "Confidence"), loc="lower right", borderaxespad=0.2, fontsize=15)
plt.show()

V- AanA~
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Bayesian process regression

import csv

import numpy as np

import GPyOpt

import warnings
warnings.filterwarnings('ignore")

with open('Flow-Tol-T-B-Con-a-b.csv', encoding='utf-8-sig') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',")
X = Il
for row in csv_reader:
X.append([float(row[0]), float(rowl[1]l), float(row[21)])
X = np.array(X)
with open('Flow-Tol-T-B-Con-a-b.csv', encoding='utf-8-sig') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',")
Y =[]
for row in csv_reader:
Y.append(float(row[3]))

Y = -np.array(Y)[:, np.newaxis]

initial_x = X

initial_y = Y

bounds = [{'name': 'temp', 'type': 'continuous', 'domain‘': (-78, 70)},
{'name': 'cat.eq', 'type': 'continuous', 'domain': (0.1, 10)},
{'name': 'time/min', 'type': 'continuous', 'domain': (0, 100)}]

myBopt = GPyOpt.methods.BayesianOptimization(f=None,
domain=bounds,
X=initial_x,
Y=initial_y,
acquisition_type='EI', )

next_x = myBopt.suggest_next_locations()
print(next_x)
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