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Abstract 

Efficient glycosylation methods have been the focus of research in glycochemistry as 

it is a fundamental reaction for the preparation of glycosides and the synthesis of sugar 

chains.  Research on glycosylation reactions has focused on high yields and high 

stereoselectivity. Glycosylations are complicated processes as they are influenced by 

many factors, such as the choice of donors and acceptors, type of catalyst, choice of 

solvent, reaction time, and temperature, all of which have an impact on yield and 

stereoselectivity. In terms of donor selection, glycosyl fluorides offer significant 

advantages over other donors. Due to the stability of the carbon-fluorine bond, glycosyl 

fluorides are thermally and chemically stable and can therefore be purified by column 

chromatography, distillation, and other operations, and can be stored for long periods. 

In contrast, glycosyl fluorides can be readily activated by hard Lewis acids for use in 

glycosylation reactions. In recent years, with the development of artificial intelligence, 

machine learning can be a powerful tool for the efficient optimization of reaction 

conditions, thereby reducing time and saving the efforts of researchers.  

 

In this study, the author applied machine learning to glycochemistry; machine learning 

was used to analyze data to improve the yield and stereoselectivity of glycosylation 

reactions. Firstly, the author conducted a-glucosylation as a model study to investigate 

the integration of machine learning with glycosylation reaction. The author then chose 

to investigate the glycosylation reaction for the first step of the 𝛼-gal synthesis. After 

performing conditional exploration for collecting data sets for machine learning 

analysis, machine learning improved the reaction yield by 13% compared to the dataset.  

 

The author then investigated	 the	 𝛼-selective	 glycosylation	 of	 xylose.	 Machine	

learning	improved the 𝛼-selectivity from 1.3/1 to 1.5/1 in the batch analysis. The author 

next describes flow chemistry techniques, which are reproducible, easy to scale up, and 

effective in collecting data. By applying flow chemistry, machine learning optimization 

further improved the 𝛼-selectivity to 3.2. 
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Chapter 1. Introduction 

1.1. Background on Glycosylation Reactions 

Glycosylation reactions play a vital role in the synthesis of glycosides and 

oligosaccharides, which are essential components of numerous biological processes, 

including cell signaling, molecular recognition, and immune response.1 A key challenge 

in glycosylation reactions is to achieve high yields and stereoselectivity to control the 

formation of the desired product. The complexity of glycosylation reactions arises from 

the need to consider multiple factors, such as the donor and acceptor selection, the 

choice of solvent, the type of catalyst, reaction time, and temperature.2, 3 

Among many glycosylation donors, including thioglycosides, hemiacetals, glycosyl 

halides, and activated sugar derivatives,4 glycosyl fluorides, have gained significant 

attention due to their enhanced stability and versatility in glycosylation reactions. The 

unique properties of glycosyl fluorides, such as the strength and stability of the carbon-

fluorine bond, offer several advantages, including high thermal and chemical stability, 

ease of purification, and long-term storage.4 

Despite the considerable progress made in the field of glycochemistry, achieving high 

yields and selectivity in glycosylation reactions remains challenging. Recent advances 

in artificial intelligence (AI) and machine learning (ML) offer an opportunity to address 

these challenges by leveraging computational methods to optimize reaction conditions 

and analyze complex datasets.5 Integrating machine learning into glycochemistry can 

significantly improve research efficiency, reduce experimental time, and save 

researchers' efforts. 

 

1.2. Glycosyl Fluorides as Glycosylation Donors 

Glycosyl fluorides have emerged as promising glycosylation donors due to their unique 

properties and advantages over other donor types. The carbon-fluorine bond in glycosyl 

fluorides is characterized by its high stability, resistance to hydrolysis, and low 
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reactivity towards nucleophiles under mild conditions.6 These features confer 

significant benefits to glycosyl fluorides in glycosylation reactions; glycosyl fluorides 

have emerged as valuable glycosylation donors due to their stability, stereoselectivity, 

versatility, and compatibility with mild reaction conditions. The integration of machine 

learning techniques into glycosylation reactions involving glycosyl fluorides has the 

potential to further enhance their utility by optimizing yields and selectivity. 

 

1.3. Machine Learning in Chemical Synthesis 

Machine learning (ML), a subset of artificial intelligence (AI), has recently gained 

considerable attention for its potential applications in various scientific disciplines, 

including chemistry. The use of ML algorithms in chemical synthesis has demonstrated 

remarkable potential for optimizing reaction conditions, predicting reaction outcomes, 

and assisting in the design of new molecules and materials.10 This section will explore 

the impact of machine learning on chemical synthesis and its potential for advancing 

the field of glycochemistry. 

1.3.1. Reaction Optimization: One of the key applications of machine learning in 

chemical synthesis is the optimization of reaction conditions. ML algorithms can 

process vast amounts of experimental data to identify patterns and correlations between 

variables, such as temperature, catalyst, solvent, and concentration, and the resulting 

yields or selectivities.11-14 This information can be utilized to predict the most favorable 

conditions for a given reaction, thereby improving efficiency, and reducing 

experimental time. 

1.3.2. Predictive Modeling: Machine learning algorithms can be used to develop 

predictive models that estimate the outcome of a reaction based on specific input 

variables.10 These models can be particularly useful in guiding the design of new 

molecules or identifying promising synthetic routes, ultimately saving researchers’ time 

and resources by reducing the need for trial-and-error experimentation. 

1.3.3. Catalyst and Ligand Design: ML techniques have also been employed in the 
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design of new catalysts and ligands for chemical reactions.17 By analyzing existing data 

on catalyst performance and structural features, ML algorithms can generate predictions 

for the performance of new catalysts or ligands, guiding their synthesis and evaluation 

in experimental settings. 

1.3.4. Application to Glycochemistry: The integration of machine learning techniques 

into glycochemistry, such as in the optimization of glycosylation reactions involving 

glycosyl fluorides, has the potential to significantly improve yields and selectivities. By 

leveraging ML algorithms to analyze and optimize reaction conditions, researchers can 

enhance the efficiency of glycosylation reactions, reduce the time required for 

experimentation, and accelerate the discovery and synthesis of novel glycoconjugates 

with potential biological applications.18 

In conclusion, the application of machine learning in chemical synthesis offers 

numerous opportunities for improving reaction efficiency, predicting outcomes, and 

designing new catalysts and ligands. As the field of glycochemistry continues to evolve, 

the integration of ML techniques into the study of glycosylation reactions has the 

potential to significantly advance our understanding and control of these complex 

processes. 
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Chapter 2. Model Study: Integrating Machine Learning with 

Glycosylation Reactions  

2.1. Model Selection and Rationale 

In the application of machine learning to improve the yield of chemical reactions, key 

reaction conditions can be experimentally varied to obtain yield data under various 

conditions. By creating a dataset containing all the reaction conditions and their 

corresponding yields, machine learning can be applied to analyze the data and 

subsequently provide optimized reaction conditions.13, 14, 19 Several factors can 

influence the yield and stereoselectivity of glycosylation reactions, such as temperature, 

solvent, catalyst, concentration, and the types of protecting groups on the 

monosaccharides.20 

In this study, glycosylation shown in Scheme 2.1 was chosen as a model glycosylation 

reaction. BF3·Et2O was employed as the catalyst. This study primarily investigated the 

influence of temperature and catalyst equivalents on the yield of the α-configuration. 

Upon completing the dataset collection, machine learning was used to optimize reaction 

conditions for enhancing the yield and selectivity of the glycosylation reaction. 

 

Scheme 2.1. Glycosylation reaction for model study 
 

2.2. Data Collection and Analysis  

To obtain a high-quality dataset for machine learning analysis, the reaction conditions 

in the dataset should cover a range of temperatures and catalyst equivalents, from low 

to high values. Under an argon atmosphere, the donor (1.5 eq) and acceptor were 

dissolved in diethyl ether. The solution was stirred for 10 minutes at temperature X °C, 
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followed by the addition of Y equivalents of BF3·Et2O. After one hour, the reaction was 

quenched with a saturated sodium bicarbonate solution. The organic phase was 

extracted with dichloromethane, and dried over anhydrous sodium sulfate, and the 

residual solvent was removed under reduced pressure by rotary evaporation. The yield 

and stereoisomeric ratios of the products were determined using proton nuclear 

magnetic resonance (H1
NMR) spectroscopy, with tetrachloroethane as the internal 

standard. After an initial exploration of reaction conditions, the dataset's temperature 

range was controlled from -20°C to 34.6 °C, and the catalyst equivalents ranged from 

8 eq to 15 eq (Table 2.2). Nine sets of data were obtained through experimentation. A 

preliminary analysis revealed that the total yield of the glycosylation reaction increased 

from -20°C to 30°C and slightly decreased from 30°C to 34.6°C. The decline in yield 

might be due to the degradation of the donor under high-temperature conditions. The 

stereoselectivity of the α-configuration increased with temperature, from -20°C to 

34.6°C. 

Regarding catalyst equivalents, an increase in catalyst equivalents improved the 

reaction yield under both low and high-temperature conditions. Under low-temperature 

conditions at -20°C and 0°C, increasing the catalyst equivalents led to a decrease in the 

stereoselectivity of the α-configuration. Conversely, under high-temperature conditions 

* Estimated by H
1
NMR using tetrachloroethane as an internal standard 

Table 2.2. Data set for model study 



 9 

at 30°C, increasing the catalyst equivalents enhanced the stereoselectivity of the α-

configuration. This indicates that the influence of temperature and catalyst equivalents 

on the yield and stereoselectivity of glycosylation reactions is complex and variable. 

2.3. Machine Learning Optimization and Results 

2.3.1. Gaussian Process Machine Learning Method 

Gaussian process (GP) is a powerful and flexible machine learning method that has 

gained popularity in various fields, including chemistry, for its ability to model complex, 

nonlinear relationships between input features and output values.19 Gaussian process 

regression (GPR), also known as kriging, is a Bayesian non-parametric method that 

provides not only predictions but also uncertainty estimates for those predictions, 

making it particularly useful for optimization problems (Figure 2.3.1).22 

In a Gaussian process, the prior distribution over functions is defined by a mean 

function and a covariance function, often referred to as the kernel.23 The kernel 

determines the similarity between data points, and various kernel functions can be used 

depending on the problem at hand. In essence, a Gaussian process models the function 

as an infinite-dimensional Gaussian distribution, where the function values are 

correlated according to the kernel function.24 

One of the key advantages of Gaussian process regression is its ability to handle 

uncertainty in both input data and model predictions.25 This is particularly useful when 

modeling chemical reactions, as experimental data may have noise or uncertainties. The 

Gaussian process can incorporate these uncertainties during learning and provide 

predictions along with their confidence intervals.26 

normal distributions 

Figure 2.3.1. Gaussian process regression 
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This study employed Gaussian process regression to model the relationship between 

reaction conditions (temperature and catalyst equivalents) and the glycosylation 

reaction yield and stereoselectivity. The Gaussian process model provided optimized 

reaction conditions that led to improved yields and selectivities by optimizing the kernel 

parameters and incorporating the uncertainties in the experimental data. 

2.3.2 Machine learning optimization 

The dataset was processed by taking temperature and catalyst equivalents as 

independent variables, and the yield of the 𝛼-product as the dependent variable. This 

information was read in array form by a Python program, which utilized Gaussian 

process regression to fit the data and generate a model. High-confidence points within 

the model were chosen as optimized conditions for experimental verification.12 Dr. 

Takizawa and Prof. Sasai’s group have applied machine learning to the reaction 

optimization of several organic syntheses.12-14 The program code is based on the code 

framework from Kondo, M. et al.12,13 and the GPy authors.15, 16 It has been rewritten, 

and now includes an automatic peak location function for the model, which facilitates 

optimization. Additionally, a 3D model display has been added, allowing for a more 

intuitive observation of the reaction model. The obtained results were added as new 

data to the dataset, and a new round of optimization was conducted until the highest 

yield was achieved (Figure 2.3.2.1).  

 The first round of machine learning simulation results is shown in Figure 2.3.2.2. The 

blue solid line represents the fitted curve, and the light blue region represents the 

Figure 2.3.2.1 Machine learning optimization procedure 
 



 11 

confidence interval. High points within the confidence interval were chosen as 

optimized conditions, with catalyst equivalents of 6.2 and 12.7, and a temperature of 

25°C (Table 2.3.2 Entry 10, 11).  

After obtaining the experimental results, the data was added to the dataset for the next 

round of machine learning analysis and optimization, followed by experimental 

verification. After three rounds of optimization, the optimal glycosylation reaction 

conditions were obtained (Table 2.3.2 Entry 15): a temperature of 30°C and 12.1 

equivalents of catalyst. Under these conditions, the yield of the 𝛼-product was 50%. 

Although this yield improvement was relatively small compared to the initial dataset, 

the model study confirmed the potential applicability of machine learning in optimizing 

glycosylation reactions. 

 
 
 

 

 

Figure 2.3.2.2. Simulation result of the first run 

* Estimated by H
1
NMR using tetrachloroethane as an internal standard 

Table 2.3.2. Optimization process of glycosylation model study 
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Summary 

In Chapter 2, the authors conducted a model study to establish a general approach 

for using machine learning to optimize glycosylation reactions. The temperature and 

catalyst equivalents, these two parameters of the glycosylation, were optimized. 

Compared to traditional optimization methods that involve controlling a single variable, 

the Gaussian process regression machine learning method allows for the simultaneous 

optimization of two reaction conditions. This approach is more efficient than traditional 

methods, saving researchers time and effort. The findings of this study confirmed the 

potential applicability of machine learning in optimizing glycosylation reactions, 

providing a basis for further research in this area. 
  

Figure 2.3.2.3 Simulation result of 2nd and 3rd run 
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Chapter 3. Application to the Chemo-selective glycosylation 

reaction  

In Chapter 3, the author applied the machine learning optimization method developed 

in Chapter 2 to chemo-selective glycosylation reactions. Chemo-selective glycosylation 

is a crucial synthetic strategy in glycochemistry for constructing complex 

glycoconjugates.27 Achieving high chemo-selectivity in glycosylation reactions is 

critical for the development of novel pharmaceuticals, vaccines, and other biologically 

active compounds.26 For example, the author focused on synthesizing the α-gal epitope, 

which has significant implications in various biomedical applications.29, 30 

The α-gal epitope (Galα1-3Galβ1-4GlcNAc-R) is a carbohydrate structure found in 

various glycoconjugates, such as glycoproteins and glycolipids, and is present in non-

primate mammals, prosimians, and New World monkeys.31 The α-gal epitope has been 

widely studied due to its immunogenic properties and its role in the immune response 

to xenotransplantation, tick-borne diseases, and cancer.32 Humans and Old World 

monkeys lack the α-gal epitope due to the inactivation of the α1,3-galactosyltransferase 

(α1,3GT) gene, which leads to the production of anti-α-gal antibodies.33 These 

antibodies can cause hyperacute rejection in xenotransplantation procedures and can be 

exploited for the development of cancer immunotherapies and novel vaccine 

strategies.34 

The selected reaction for this study is the first step in the synthesis of the α-gal epitope, 

which involves the formation of a disaccharide through a glycosylation reaction. 

(Scheme 3) This reaction exhibits α-stereoselectivity due to the presence of a donor 

with a 2-equatorial phenyl group in a trans-decalin ring system, which hinders the attack 

of the acceptor from the β-face.35 
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The main object of this chapter is to demonstrate the effectiveness of the machine 

learning method in optimizing chemo-selective glycosylation reactions by improving 

the reaction yield and selectivity. To achieve this, the author investigated glycosylations 

under a series of conditions to get datasets and apply the Gaussian process regression 

machine learning method to optimize the reaction conditions. 

 

3.1. Donor and Acceptor Synthesis  

3.1.1 Synthesis Acceptors 10 and 13 

The synthesis of acceptor 10 began with D-galactose as the starting material (Scheme 

3.1.1.1). The D-galactose was fully acetylated with acetic anhydride in pyridine, 

followed by the introduction of p-methyl thiophenol at the anomeric position using 

boron trifluoride diethyl etherate (BF3·Et2O) as a Lewis acid, yielding compound 2 with 

61% yield. Deprotection of the acetate groups and subsequent isopropylidene 

protection at the C-3 and C-4 positions with 2,2-dimethoxy propane (2,2-DMP) 

afforded compound 4. Benzoylation at the C-2 and C-6 positions of 4, followed by acid 

treatment, led to compound 6, which was further protected as orthoester. Treatment of 

the obtained 7 with acetic acid resulted in selective ring opening, and after six steps, 

compound 8 was obtained with 57% yield. TBS protection at the C-3 position of 8 

provided 9 with 87% yield, which was then converted to acceptor 10 through a 
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Scheme 3. Synthesis of 𝛼-gal epitope 
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fluorination reaction with Xtalfluor-E. 

The synthesis of acceptor 13 started with compound 8 (Scheme 3.1.1.2), where the C-

3 position was protected with Lev, yielding 11 with 75% yield. A fluorination reaction 

with Xtalfluor-E provided 12 in 67% yield, and finally, the C-3 position was 

deprotected with hydrazine in acetic acid to obtain acceptor 13. 
 

 
Scheme 3.1.1.2. Synthesis of acceptor 13. 

 
3.1.2 Synthesis Donor 16 
The synthesis of donor 16 began with compound 2 as the starting material (Scheme 

3.1.2). After deacetylation, the 4,6-O-benzylidene protection was introduced, affording 

compound 14. The remaining hydroxy groups were benzylated by treating 14 with 

sodium hydride and benzyl bromide in DMF, yielding 15 with 39% yield in three steps. 

A fluorination reaction with Xtalfluor-E produced glycosyl fluoride donor 16 with 65% 

yield. 
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Scheme 3.1.2. Synthesis of glycosyl fluoride donor 16. 

3.2. Conditional Exploration and Data Collection  

The author conducted a conditional exploration with employing compound 10 as the 

glycosylation acceptor and compound 16 as the donor (Scheme 3.2.1, Table 3.2.2). 

When BF3·Et2O or B(OPh)3 was used as a catalyst, the disaccharide M1 yields were 

relatively low. This could be due to the steric hindrance of the C-3 TBS protecting group 

in compound 10, which hampers the attack on the C-1 carbon cation of the donor. To 

apply the Gaussian process regression machine learning method, an analyzable dataset 

is required, and a dataset consisting solely of low yields cannot be optimized. Therefore, 

this dataset is unsuitable for optimizing this glycosylation reaction. 

 
Scheme 3.2.1. Chemo-selective glycosylation by using acceptor 10. 
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Table 3.2.2. Condition screening by using acceptor 10. 

 

Subsequently, the author used compound 13 as the acceptor and compound 16 as the 

donor for exploring glycosylation reaction conditions (Scheme 3.2.3). When BF3·Et2O 

and B(OPh)3 was compared, it was found that more by-products were generated by 

using B(OPh)3. Thus, the author focused on employing BF3·Et2O to investigate the 

reaction conditions. By altering the catalyst equivalents (0.1 to 1), reaction temperature 

(-78°C to room temperature), and donor 16 equivalents (1 eq to 1.5 eq), 11 sets of data 

were obtained (Table 3.2.4, Entries 2-12). Among them, the highest yield, 70%, was 

achieved at -40°C, with 1 equivalent of the catalyst and 1.5 equivalents of the donor. 

The data with 1.5 equivalents of donor 16 were selected as the dataset for machine 

learning (Entries 2-10, 13-15), comprising 12 sets of data. 

 

Scheme 3.2.3. Chemo-selective glycosylation by using acceptor 13. 
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Table 3.2.4. Condition screening by using acceptor 13. 

 

3.3. Machine Learning Optimization and Yield Improvement 

The 12 sets of data were used as the dataset and read by the program. The Gaussian 

process regression machine learning method, established in the model study of Chapter 

2, was applied to fit and regress the dataset, optimizing the reaction conditions in a data-

driven manner. After three rounds of optimization, the highest yield of 83% was 

obtained, corresponding to 0.63 equivalents of BF3·Et2O at -36°C. Compared to the 

highest yield of 70% in the dataset, the glycosylation reaction yield improved by 13% 

after three rounds of machine learning optimization. 

* Estimated by TLC 
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Through this research, the effectiveness of a data-driven glycosylation reaction 

optimization approach centered on machine learning has been confirmed. 

Summary 

In Chapter 3, the authors successfully applied the machine learning optimization 

method developed in Chapter 2 to chemoselective glycosylation reactions. The primary 

object of this chapter was to demonstrate the effectiveness of the machine learning 

approach in optimizing chemoselective glycosylation reactions in terms of yield and 

selectivity. To achieve this, the authors selected a representative chemoselective 

glycosylation reaction, the synthesis of α-gal, as a case study. 

Figure 3.3.1. Simulation result of Gaussian progress regression. 

Table 3.3.2. Machine learning optimization process of chemo-selective 
glycosylation reaction 
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The synthesis of acceptors 10 and 13 and donor 16 was presented in Section 3.1. In 

Section 3.2, conditional exploration and data collection were conducted, and it was 

found that acceptor 10 was not suitable for optimization. Consequently, acceptor 13 

was used in the glycosylation reaction with donor 16. A total of 12 sets of data were 

collected with various reaction conditions, including different catalyst equivalents, 

temperatures, and donor equivalents. 

 

In Section 3.3, the Gaussian process regression machine learning method was employed 

to optimize the reaction conditions. After three rounds of optimization, the yield was 

increased to 83%, with a 13% improvement compared to the highest yield in the dataset. 

This successful application of the machine learning approach in optimizing 

chemoselective glycosylation reactions further confirmed its potential in advancing 

glycochemistry research and the synthesis of complex glycoconjugates. 
  



 21 

Chapter 4. α-Selective Glycosylation of Xylose Using Machine 

Learning  

Introduction 

Chapter 4 focuses on the application of machine learning to the α-selective xylosylation, 

fundamental glycosides found in various biomolecules such as hemicellulose and 

xyloglucans.36 Xylose is a five-carbon sugar that plays a crucial role in plant cell wall 

structures and has gained increasing interest in the field of carbohydrate chemistry due 

to its potential in the production of biofuels, biopolymers, and functional materials.37 

The stereocontrolled synthesis of xylose-containing glycoconjugates is essential for 

understanding their biological functions and developing novel therapeutic agents.38 

 

In this chapter, the author implemented the machine learning optimization method, 

previously established in Chapter 2, to enhance the α-selectivity and yield of 

xylosylation. By applying the Gaussian process regression machine learning approach 

to a representative α-selective xylosylation, the authors aim to demonstrate the method's 

effectiveness in simultaneously optimizing multiple reaction parameters. 

 

The chapter will provide a comprehensive account of the selected xylosylation reaction, 

the data collection and analysis process, and the machine learning optimization results. 

The author discusses the impact of various factors, such as temperature, catalyst type, 

solvent, and protecting groups, on the reaction yield and α-selectivity. The successful 

application of the machine learning method in optimizing α-selective xylosylation will 

further validate its potential to advance research in glycochemistry and the synthesis of 

complex glycoconjugates. 

 

4.1. Initial Batch Analysis and Optimization  

4.1.1 Synthesis of donor and acceptor for xylose glycosylation 
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In this chapter, α-selective glycosylation of xylose is chosen as the target reaction for 

investigation. The selected donor and acceptor are shown below (Scheme 4.1.1.1). The 

synthesis of donor and acceptor is initiated with D-xylose. 

 

Compound 1a is synthesized by refluxing D-xylose with TMSCl as a catalyst in allyl 

alcohol, introducing an allyl group at the C-1 position (Scheme 4.1.1.2). The remaining 

hydroxyl groups are benzylated using sodium hydride and benzyl bromide in DMF to 

obtain compounds 2a and 2b with yields of 10% and 19%, respectively. 

 
Scheme 4.1.1.2 Synthesis of 2a and acceptor 2b. 

Donor 5b was synthesized from compound 2b. Acetylation of the C-3 position affords 

compound 3b in 64% yield (Scheme 4.1.1.3). The allyl group at the C-1 position is 

removed by using an activated Ir (Cod)(MePh2P) PF6 catalyst, yielding compound 4b 

in 80% yield. Finally, the C-1 position is fluorinated using 2-fluoro-1-methylpyridinium 

p-toluenesulfonate to obtain donor 5b with 61% yield. 

Donor 7a was synthesized from compound 2a. The C-1 allyl group is removed using 

an activated Ir(Cod)(MePh2P)PF6 catalyst, yielding compound 4b in 58% yield 

(Scheme 4.1.1.4). Finally, the C-1 position is fluorinated using 2-fluoro-1-
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methylpyridinium p-toluenesulfonate to obtain donor 7a with a 61% yield. 

 

4.1.2 Investigation of xylosylation 

Initially, donor 5b was used in the glycosylation reaction with acceptor 2b. Reaction 

condition screening was performed using BF3・Et2O as the catalyst, with temperatures 

ranging from -30°C to 38°C and catalyst equivalents ranging from 0.2 to 1 eq. Five data 

points were collected as the dataset, and after two rounds of Gaussian process 

regression machine learning optimization, no significant improvement in the yield of 

α-product was observed. The author speculated that low temperatures favor high overall 

yields but exhibit poor α-selectivity. Although higher temperatures may promote α-

product formation, they also increase the likelihood of donor decomposition, leading to 

lower yields. 

 
Scheme 4.1.2.1. Xylose glycosylation investigates by using donor 5b.  
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Table 4.1.2.1. Xylose glycosylation optimized by using donor 5b. 
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Next, the author attempted to use compound 7a as the donor with BF3・Et2O as the 

catalyst. The temperature range set between -40 °C and 25 °C, and the catalyst 

equivalents range from 0.5 to 1.25 eq. Ten data points was collected, and seven of them 

(Entries 1-7) were used as the input dataset for machine learning optimization. After 

three rounds of optimization, the highest yield of α-Xa was 56.1% with a selectivity of 

α/β = 1.5/1 (Entry 13) under the conditions of 0.85 eq of catalyst at -30°C. This 

represents a 6% improvement in yield and enhanced selectivity compared to the highest 

yield in the input dataset (Entry 1, α-Xa yield of 50%, α/β = 1.3/1). In the next chapter, 

the author introduced the flow chemistry technic to carry out further investigation of 

this glycosylation reaction. 
 

Figure 4.1.2.1. GPR machine learning optimized by using donor 5b. 
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4.2. Flow Chemistry Techniques and Rationale  

Flow chemistry, a modern approach to synthetic chemistry, has emerged as a valuable 

* Estimated by HPLC 

Table 4.1.2.2. Xylose glycosylation optimized by using donor 7a. 

Figure 4.1.2.2. GPR machine learning optimized by using donor 7a. 
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tool to perform chemical reactions with high efficiency, precise control, and enhanced 

safety.39 The technique involves the continuous flow of reactants through a reactor, 

enabling rapid and efficient mixing, precise control of residence time, and enhanced 

heat and mass transfer.40 The application of flow chemistry in glycosylation reactions 

has demonstrated significant improvements in selectivity and yield, particularly in 

challenging reactions.41 

 

In the context of α-selective xylosylation, flow chemistry offers several advantages 

over traditional batch reactions. First, it enables better control of reaction conditions 

such as temperature, which is critical for achieving optimal selectivity and yield.42 

Second, it allows for rapid screening of reaction conditions, accelerating the 

optimization process and reducing the amount of starting materials and reagents 

required.40 Finally, flow chemistry reactions can be easily scaled up, enabling the 

synthesis of larger quantities of desired products while maintaining the reaction 

conditions and product quality.41 Here the author applied flow chemistry techniques to 

the α-xylosylation to improve the reaction yield and selectivity using the 

aforementioned advantages. 

4.3. Machine Learning Optimization and Selectivity Improvement 
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In this section, the author integrated flow chemistry techniques to optimize the 

xylosylation reaction. The flow chemistry setup is shown in Figure 4.3.1.1. To 

efficiently perform high-throughput screening, the author employed HPLC analysis to 

determine the yields of α-Xa and β-Xa. The quantification curve was shown in Figure 

4.3.1.2. 

 

4.3.1 Catalyst selection 

When using a flow chemistry device for xylosylation, donor 7a (1.5eq) and acceptor 

2b are first dissolved in a solvent to make a 0.1 M solution, which is fed into a 

Micromixer by pump A. The catalyst and solvent are fed separately by pumps B and C, 

respectively, to mix with the reactants and initiate the reaction. After 35 seconds, the 

mixture reaches a second Micromixer where it is quenched by mixing with 

triethylamine from pump D. The system can adjust the catalyst equivalents by adjusting 

the flow rates of the pumps. Samples are taken from the final outlet and analyzed by 

HPLC to determine the yield and ratio of α and β configuration. 

Figure 4.3.1.1. Microfluidic system for optimization. 

Figure 4.3.1.2. Liner regression of Xa by HPLC. 
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The author tested four catalysts, BF3・Et2O, B(C6F5)3, TfOH, and TMSOTf, and 

investigated the reaction temperature and catalyst equivalents for each (Scheme 4.3.1.1). 

With BF3·Et2O as the catalyst, a temperature of -20 ℃ and a catalyst equivalent of 1.0 

eq resulted in the highest α-Xa yield of 42.5%; however, the selectivity was poor 

(α/β=1.1/1, Table 4.3.1.1).  

When using B(C6F5)3 as the catalyst, the optimal reaction conditions were a temperature 

of -20 ℃ and a catalyst equivalent of 0.1 eq, which resulted in an α-Xa yield of 32.8% 

and selectivity of α/β=1.1/1(Table 4.3.1.2, Entry 6).  

With TfOH as the catalyst, the optimal conditions were a temperature of 0 ℃ and a 

catalyst equivalent of 1.0 eq, yielding an α-Xa yield of 32.0% and selectivity of 

α/β=1.5/1(Table 4.3.1.3, Entry 9).  

 

Table 4.3.1.1. Xylose glycosylation investigation by using BF3・Et2O as catalyst. 

* Estimated by HPLC 

Table 4.3.1.2. Xylose glycosylation investigation by using B(C6F5)3 as catalyst. 
 

* Estimated by HPLC 
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Among the four catalysts, TMSOTf produced the best results, with optimal conditions 

being a temperature of 0 ℃ and a catalyst equivalent of 1.0 eq, yielding an α-Xa yield 

of 43.1% and selectivity of α/β=1.9/1 (Table 4.3.1.4, Entry 9). Thus, TMSOTf was 

selected as the catalyst, and the reaction data using this catalyst were used as the dataset 

for machine learning reaction optimization. 

4.3.2 Machine Learning Optimization 

Nine data sets using TMSOTf as the catalyst was used, with temperatures ranging from 

-40 ℃ to 0 ℃ and catalyst equivalents from 0.1 to 1 eq. The data-driven machine 

learning optimization method established in Chapter 2 was employed to fit and optimize 

the dataset (Table 4.3.2.1). However, after one round of optimization, it was found that 

the temperature range of the nine datasets was insufficient. The authors added six 

datasets to supplement the original data (Table 4.3.2.1, entries 11-16), expanding the 

temperature range from -40 ℃ to 20 ℃. A total of 16 datasets, including the results 

Table 4.3.1.3. Xylose glycosylation investigation by using TfOH as catalyst. 
 

* Estimated by HPLC 

Table 4.3.1.4. Xylose glycosylation investigation by using TMSOTf as catalyst. 
 

* Estimated by HPLC 
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from the first round of optimization, were used for machine learning optimization. After 

three rounds of optimization, the best reaction conditions using TMSOTf as the catalyst 

were determined to be 2 ℃ and 1 eq of catalyst, resulting in an α-Xa yield of 42.2% 

and selectivity of α/β=2.4/1 (Table 4.3.2.1, Entry 19). Compared to the best reaction 

conditions in the dataset (Table 4.3.2.1, Entry 9), the optimized conditions resulted in a 

1% lower α-Xa yield but improved selectivity from α/β=1.9/1 to α/β=2.4/1. 

 

 

 

 

 

 

 

 

 

Table 4.3.2.1. Xylose glycosylation optimization by ML. 
 

* Estimated by HPLC 
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Figure 4.3.2.1. Xylose glycosylation optimization by ML. 

Figure 4.3.2.2. 3D ML model. 
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Summary  
 

In this chapter, the author explored the α-selective xylosylation, a challenging and 

complex reaction. The author first synthesized donor and acceptor molecules and 

screened different catalysts for the glycosylation reaction. After identifying TMSOTf 

as the most effective catalyst, they expanded the reaction dataset to include a broader 

temperature range and optimized the reaction conditions through machine learning. The 

optimization process led to improved selectivity, yielding an α-Xa yield of 42.2% and 

selectivity of α/β=2.4/1. 

 

This chapter demonstrates the potential of using machine learning algorithms and flow 

chemistry techniques to optimize challenging glycosylation reactions in organic 

chemistry. The approach not only streamlines the process but also provides valuable 

insights for enhancing reaction selectivity, which is crucial for the synthesis of complex 

molecules with multiple stereocenters. 
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Chapter 5. Multi-Factor Machine Learning Optimization  

5.1. Machine Learning Optimization Strategy  

In this section, the author introduces the multi-factor machine learning optimization 

strategy utilizing Bayesian regression machine learning methods.19 This approach 

allows us to investigate the effects of various factors, such as temperature, catalyst 

equivalents, and time, on the α-selective xylosylation. The use of TMSOTf as the 

catalyst and flow chemistry techniques further enhance the efficiency of the 

optimization process. 

 

In recent years, Bayesian regression techniques, such as Gaussian process regression 

(GPR),19 have been employed in various optimization problems. GPR is a non-

parametric, probabilistic model that provides predictions and uncertainty estimates for 

function values. This makes it particularly suitable for optimization tasks, as it can 

guide the search toward promising regions of the parameter space.19 

 

In the context of organic chemistry, multi-factor optimization using machine learning 

methods like GPR can significantly accelerate reaction development and improve 

selectivity.43 By integrating flow chemistry techniques, high-throughput 

experimentation can be conducted, enabling rapid data collection and analysis. This 

combination of machine learning optimization and flow chemistry has shown great 

potential in enhancing the discovery and optimization of chemical reactions.43 

 

In my study, the multi-factor machine learning optimization strategy is applied to 

investigate the effects of temperature, catalyst equivalents, and time on the α-

xylosylation using TMSOTf as the catalyst. The data collected through flow chemistry 

experiments are used to train the GPR model, which in turn guides the optimization 

process to find the most suitable conditions for achieving the desired selectivity. 
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5.2 Investigating the Effects of Temperature, Catalyst Equivalents, and Time 

In this section, the author explored the impact of various solvents (MTBE, Et2O, ACN, 

and Toluene) on the α-selective xylosylation using TMSOTf as the catalyst. The 

reaction temperature and catalyst equivalents were systematically investigated for each 

solvent (Scheme 5.2.1). When using MTBE and Et2O, two ether solvents, the reaction 

activity was weak (Table 5.2.2, Table 5.2.2), potentially due to the fact that ethers can 

act as Lewis bases and donate electron pairs to a Lewis acid, thus inhibiting the Lewis 

acid's activity. 
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The author then used acetonitrile (ACN) as a solvent and optimized the reaction 

conditions within a temperature range of -20 to 20 °C and catalyst equivalents of 0.1 to 

1.5 eq. The optimal conditions were found at 0 °C and 1 eq of catalyst, yielding a 43.7% 

α-Xa yield with a selectivity ratio of α/β = 2.3/1 (Table 5.2.4, Entry 4). Lastly, using 

toluene as a solvent, the authors investigated a temperature range of -20 to 65 °C and 

catalyst equivalents from 0.1 to 1.7 eq. The optimal conditions were found at 20 °C and 

1.5 eq of catalyst, yielding a 39.9% α-Xa yield with a selectivity ratio of α/β = 2.4/1 

(Table 5.2.5, Entry 12). The optimal conditions in the solvents ACN and Toluene 

yielded similar results, with slightly better selectivity observed in Toluene. 

Table 5.2.3. Xylose glycosylation investigation by using Et2O as solvent. 
 

* Estimated by HPLC 
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Table 5.2.4. Xylose glycosylation investigation by using ACN as solvent. 

Table 5.2.5. Xylose glycosylation investigation by using Toluene as solvent. 
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5.3. Improved α-Selectivity and Yield 

The author selected toluene as the solvent and investigated the influence of reaction 

time on yield and selectivity. The author modified the flow chemistry setup by adding 

a mixer, extending the pipeline length, and adjusting the flow rate to control the reaction 

time (Figure 5.2.6). The author explored a range of reaction times (2-20 min, Table 

5.2.7) and temperatures (-40 to -10 °C), obtaining 12 sets of data. The optimal reaction 

conditions were found at -10 °C, 1 eq of TMSOTf, and a reaction time of 20 min, 

yielding a 56.8% α-Xa yield with a selectivity ratio of α/β = 3.9/1 (Table 5.2.7, Entry 

12). 

Table 5.2.7. Optimizied of temperature and time. 

Figure 5.2.6. Microfluidic system for optimization. 
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5.3. Improved α-Selectivity and Yield 

The 28 data sets from Table 5.2.5 were combined with the new 12 data sets to form 40 

data sets, which were used for Bayesian machine learning optimization. The program 

code is based on the code framework from Kondo, M. et al.12,13 and The GPy authors.15, 

16 The optimization process included time, temperature, and catalyst equivalents as 

independent variables, and the α-Xa yield as the dependent variable (Table 5.3.1, 

Entries 1-2). After incorporating the optimization results and supplementary data (Table 

5.3.1, Entries 3-5), a total of 45 data sets were used for optimization. The optimal 

reaction conditions were found to be -10 °C, 1.6 eq of TMSOTf, and a reaction time of 

20 min, yielding a 60.5% α-Xa yield with a selectivity ratio of α/β = 3.2/1 (Table 5.3.1, 

Entry 6). The reaction was then scaled up (with 50 mg of acceptor 7a), resulting in a 

selectivity ratio of α/β = 4.0/1 and a 54.5% α-Xa yield. 

Summary 

In Chapter 5, the author focused on optimizing the α-selective xylosylation using a 

multi-factor machine learning method. The author investigated the effects of solvent, 

time, and catalyst equivalents on the reaction, utilizing TMSOTf as the catalyst. The 

authors found that the optimal solvent was toluene, with improved α-selectivity and 

yield achieved under the conditions of -10 °C, 1.6 eq of TMSOTf, and a reaction time 

of 20 minutes. A Bayesian machine learning approach was employed to analyze the 

data, optimize the reaction conditions, and achieve higher α-Xa yields and selectivity 

ratios. The results of this chapter provide a better understanding of the factors 

influencing the α-selective glycosylation reaction and offer valuable insights for further 

Table. 5.3.1. Multifactor ML optimization of Xylose glycosylation 

* Estimated by HPLC 
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research and application in organic chemistry. 
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Summary 

1. Summary of Key Findings 

This study has demonstrated the effectiveness of machine learning, specifically 

Gaussian process regression, in optimizing glycosylation reactions. Through various 

chapters, the machine learning optimization method was applied to different 

glycosylation reactions, such as the synthesis of the α-gal epitope and the α-selective 

xylosylation. The key factors affecting yield and selectivity, including temperature, 

catalyst type, solvent, and protecting groups, were analyzed, and their impact on 

chemo-selectivity was discussed. 

2. Potential Applications and Future Directions 

The successful application of machine learning to optimize chemo-selective 

glycosylation reactions paves the way for several potential applications and future 

research directions in glycochemistry: 

Expansion to other glycosylation reactions: The machine learning optimization method 

can be applied to other glycosylation reactions, including various donor and acceptor 

molecules, to enhance the efficiency and selectivity of glycoconjugate synthesis. 

Integration with other computational approaches: The machine learning method could 

be integrated with other computational approaches, such as quantum chemistry 

calculations and molecular dynamics simulations, to gain a deeper understanding of the 

reaction mechanisms and improve predictive accuracy. 

Automation and high-throughput screening: Machine learning optimization could be 

combined with automated synthesis platforms and high-throughput screening 

techniques to accelerate the discovery and optimization of new glycosylation reactions 

and catalysts. 

Development of novel therapeutic agents: Optimized glycosylation reactions can 

contribute to the synthesis of complex glycoconjugates, which are essential for 

understanding the biological functions of these molecules and developing novel 

therapeutic agents, including pharmaceuticals, vaccines, and immunotherapies. 
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Biofuels and biopolymers: The optimization of xylose glycosylation, for example, can 

have significant implications for the production of biofuels, biopolymers, and 

functional materials, as well as for understanding the biological functions of xylose-

containing glycoconjugates. 

Overall, the application of machine learning optimization in glycochemistry offers 

promising avenues for advancing research and the development of novel, biologically 

relevant compounds. By refining and expanding the use of these methods, future studies 

can continue to unlock the potential of glycosylation reactions and improve our 

understanding of the complex world of glycoconjugates. 
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Experimental 

General Information 
1H NMR spectra were recorded in an indicated solvent with JEOL ECA 500 MHz 

spectrometer equipped with a cryoprobe. The chemical shifts in CDCl3 are given δ 

values from TMS as an internal standard. Multiplicities abbreviations: s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiple, br = broad. Chemical purification was 

carried out using silica-gel column chromatography Keiselgel 60 F254 (Merk Co., 0.043-

0.063 mm) and Sephadex™ LH-20. TLC analysis of compounds was visualized by UV 

(254 nm) with p-methoxy benzaldehyde (p-anisaldehyde, 0.03% in the mixture of 

EtOH; H2SO4; AcOH). Anhydrous CH2Cl2 was distilled from calcium hydride. 

Anhydrous DMF was purchased from WAKO (Wako Pure Chemical Industries, Ltd.). 

The molecular sieve (MS4Å) was activated with microwave heating at 250 °C and dried 

in vacuo 3 times before use. A chemical reaction using an anhydrous solvent was 

carried out under an argon atmosphere (Ar). All other commercially available reagents 

and solvents were used as purchased. HPLC was carried out with a Shimadzu LC-20AD 

liquid chromatograph and analyzed by HPLC with a Cosmosil 5C18-P (Nacalai Tesque) 

column [4.6IDX250 mm: solvent: 50 mM ammonium acetate/MeCN; flow rate: 1.0 ml 

min-1: the peaks were detected with a Shimadzu fluorescence spectrophotometer by 

using an excitation wavelength of 254 nm. 

 

Synthesis procedure and characterization data 

 

 

1,2,3,4,6-Penta-O-acetyl-D-Galactopyranoside (1). In an evaporating flask at rt 

under Ar atmosphere, a solution of D-galactose (50 g, 0.528 mol) was dissolved in 

pyridine super dehydrate (150 mL, 1.67 mol) and treated with acetic anhydride (150 

mL, 1.67 mol). After being stirred for 19 h, the reaction mixture was concentrated in 

OAc
O

OAc
OAc

AcO

OAc
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vacuo and co-evaporated with toluene 4 times affording the crude product 1 as a 

yellow oil. Rf 0.43 (n-hexane/EtOAc=1/1). 

 

p-Tolyl-2,3,4,6-tetra-O-acetyl-1-thio-B-D-Galactopyranoside (2). In an 

evaporating flask at r under Ar atmosphere, the yellow oil of compound 1 (0.56 mol) 

in super dehydrated CH2Cl2 (350 mL, 5.48 mol) was added to heated p-toluene thiol 

(41 mL, 0.34 mol, heated at 60 °C) followed by cooling to 0 °C. After being stirred 

for 10 minutes, BF3・Et2O (43 mL, 0,34 mol) was slowly added into the mixture at 

0 °C under Ar atmosphere for 45 min. The mixture was stirred overnight (17 h) at rt 

under atmosphere and quenched with sat. aqueous NaHCO3 till pH = 7.0 followed by 

extraction with CHCl3 3 times. The organic layer was treated with brine, dried over 

Na2SO4, filtered, and concentrated in vacuo, and co-evaporated with toluene 3 times. 

The residue was purified by recrystallization using CHCl3/n-hexane yielding 

compound 2 as a white powder (76.3 g, 60.7% in 2 steps). 
1H NMR (500 MHz, CHLOROFORM-D) δ 7.41 (d, J = 8.2 Hz, 2H, -S-CH2-CH3), 

7.13 (d, J = 7.9 Hz, 2H, -S-CH2-CH3), 5.41 (d, J = 3.4 Hz, 1H, H-4), 5.22 (t, J = 9.9 

Hz, 1H, H-2), 5.04 (dd, J = 10.0, 3.4 Hz, 1H, H-3), 4.65 (d, J = 10.0 Hz, 1H, H-1), 

4.18 (dd, J = 11.4, 6.9 Hz, 1H, H-6), 4.10 (dd, J = 11.3, 6.3 Hz, 1H, H-6’), 3.95 – 3.88 

(m, 1H, H-5), 2.35 (s, 3H, -CH3), 2.12 (s, 3H, OAc), 2.10 (s, 3H, OAc), 1.97 (s, 3H, 

OAc).  

 

p-Tolyl 1-thio-𝛽-D-Galactopyranoside (3). In an evaporating flask at rt under Ar 

atmosphere, compound 2 (30 g, 66.3 mmol) was dissolved with the mixture of MeOH 

(300 mL, 8.08 mol) and THF (300mL, 3.98 mol) and cooled to 0 °C. 28% NaOMe-

MeOH (12.7 mL, 66.3m mol) was then added to the mixture. After being stirred for 

0.5 h at rt under Ar atmosphere, the reaction mixture was slowly quenched with acetyl 

OAc
O

STol
OAc

AcO

OAc

OH
O

STol
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HO
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chloride till PH = 7 and concentrated in vacuo followed by co-evaporated with 

toluene for 2 times yielded compound 3 as a crude product. 

 

p-Tolyl 3,4-O-isopropylidine-1-thio-𝛽-D-Galactopyranoside (4). In an evaporating 

flask at it under Ar atmosphere, to a solution of compound 3 (66.3 mol) in anhydrous 

CH2Cl2 (136 mL, 73.8 mmol) was added 2,2-dimethoxy propane (90.5 mL, 73.8 

mmol) and p-TsOH.H2O (0.74 g, 3.9 mmol) at 0°C under Ar atmosphere. After being 

stirred at rt for 18 h, the reaction mixture was slowly quenched with Et3N till pH = 7.0 

and treated with Pyridium p-toluenesulfonate (PPTS, 980 mg, 3.9 mmol). After 3 min 

the reaction was complete and quenched with Et3N. The mixture was then 

concentrated in vacuo, dissolved with EtOAc, treated with satd aq NaHCO3, and 

washed with brine. The organic layer was dried over Na2SO4, filtered, and 

concentrated in vacuo followed by being co-evaporated with toluene 3 times. 

dissolved with EtOAc and treated with PPTS (1.04 g, 4.1 mmol) and MeOH (40ml), 

After 4.5h add PPTS (0.5 g, 2 mmol), and the reaction was complete and dissolved 

with EtOAc, treated with sat. aqueous NaHCO3, and washed with brine. The organic 

layer was dried over Na2SO4, filtered, and concentrated in vacuo affording compound 

4 as a crude product, yellow oil. 

 

p-Tolyl 2,6-di-O-benzoyl-3,4-O-isopropylidine-1-thio-𝛽-D-Galactopyranoside (5). 

In an evaporating flask at it under Ar atmosphere, a solution of compound 4 (66.3 

mol) in pyridine (442 mL, 5.48 mol) was added benzoyl chloride (30.8 mL, 0.27 mol) 

and DMAP (809.6 mg, 6.63 mmol) under Ar atmosphere. After being stirred for 

10min, the mixture was then evaporated in vacuo. The residue was dissolved with 

EtOAc and treated with 1M aq HCI. After extracted for 3 times with EtOAc, the 

mixture was washed with sat. aqueous NaHCO3, and brine. The filtrated was dried 
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over Na2SO4, filtered, and concentrated in vacuo followed by co-evaporated with 

toluene for 3 times repetitions yielding compound 5 as a yellow oil. Rf 0.75 (n-

hexane/EtOAc = 3/1). 

 

p-Tolyl 2,6-di-O-benzoyl-1-thio-𝛽-D-Galactopyranoside (6). In an evaporating 

flask at rt under Ar atmosphere, a solution of compound 5 (66.3 mol) in MeOH (132.6 

mL, 3.22 mol) and THF (179 mL, 2.23 mol) was added to 1 M aqueous HCI (100.6 

mL, 2.85 mol) at rt under Ar atmosphere. After being stirred for 2 h at 60 °C, the 

reaction mixture was quenched with sat. aqueous NaHCO3 at 0 °C till PH = 7, 

extracted with EtOAc, and washed with brine. The filtrate was dried over Na2SO4, 

filtered, and concentrated in vacuo yielding compound 6 as a crude product. Rf 0.20 

(n-hexane/EtOAc= 3/2). 

 
p-Tolyl 2,6-di-O-benzoyl-3,4-O-ethoxyethane-1-thio-𝛽-D-Galactopyranoside (7). 

In an evaporating flask at rt under Ar atmosphere, compound 6 (66.3 mol) in dry 

toluene (442ml, 4.2 mol) was added triethyl orthoacetate (49 mL, 0.27 mol) and p-

TsOH.H2O (1.75 g, 10.0 mmol). After 20 minutes the reaction was complete and 

quenched with Et3N till PH = 7. The residue was concentrated in vacuo to give 

compound 7 as a crude product. Rf 0.60 (n-hexane/E10Ac = 3/2). 

 

p-Tolyl 4-O-acethyl-2,5-di-O-benzoyl-1-thio-𝛽-D-Galactopyranoside (8). In an 

evaporating flask at rt under Ar atmosphere, compound 7 (66.3 mol) was treated with 

67% AcOH (380mL, 7.3 mol). After being stirred for 20 min at 40 °C the reaction 

was complete as monitored by TLC and concentrated in vacuo. The solid residue was 

then dissolved in EtOAc and treated with sat. aqueous NaHCO3. After being extracted 
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with EtOAc for 3 times repetitions, the filtrate was washed with brine. The organic 

layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue 

was purified by recrystallization using CHCl3/n-hexane to afford the desired 

compound 8 (20.2 g, 56.8% in 6 steps). Rf 0.42 (r-hexane/EtOAc = 3/2). 
1H NMR (500 MHz, CHLOROFORM-D) δ 8.11 – 8.01 (m, 4H, Bz), 7.64 – 7.56 (m, 

2H, Bz), 7.47 (qd, J = 7.1, 1.7 Hz, 4H, Bz), 7.40 – 7.33 (m, 2H, S-CH2-CH3), 6.98 – 

6.92 (m, 2H, S-CH2-CH3), 5.50 (d, J = 3.6, 1H, H-4), 5.24 (t, J = 9.7 Hz, 1H, H-2), 

4.82 (d, J = 10.0 Hz, 1H, H-1), 4.50 (dd, J = 11.5, 7.5 Hz, 1H, H-6), 4.40 (dd, J = 

11.5, 5.3 Hz, 1H, H-6'), 4.09 – 4.00 (m, 2H, H-3, H-5), 2.27 (s, 3H, S-CH2-CH3), 2.20 

(s, 3H, -CH3). 

 

p-Tolyl 4-O-acethyl-2,5-di-O-benzoyl-3-O-tert-Butyldimethylsilyl-1-thio-𝛽-D-

Galactopyranoside (9). In an evaporating flask at rt under Ar atmosphere, compound 

8 (1 g, 1.86 mmol) and TBSCl (0.56 g, 3.72 mmol) were dissolved by dry DMF 

(19ml, 0.24 mol), treated Imidazole (0.25 g, 3.72 mmol). After being stirred for 3 h at 

rt, added TBSCl (0.56 g, 3.72 mmol) and Imidazole (0.25 g, 3.72 mmol), after 2.5 h, 

added TBSCl (0.56 g, 3.72 mmol) and Imidazole (0.25 g, 3.72 mmol). After being 

stirred for 24 h the reaction was complete, added n-hexane/EtOAc = 1/1 100ml, 

washed by H2O, and the organic layer was dried over Na2SO4 and concentrated in 

vacuo. The solid residue was then dissolved in EtOAc and treated with sat. aqueous 

NaHCO3. After being extracted with EtOAc for 3 times repetitions, the filtrate was 

washed with brine. The organic layer was dried over Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica-gel column chromatography 

(n-hexane/EtOAc = 5/1) to give 9 (1.05 g, 87%) as a white powder.  
1H NMR (500 MHz, CHLOROFORM-D) δ 8.21 (ddd, J = 8.5, 3.8, 1.4 Hz, 4H, Bz), 

7.80 – 7.71 (m, 2H, Bz), 7.62 (td, J = 7.8, 6.1 Hz, 4H, Bz), 7.53 – 7.43 (m, 2H, S-

CH2-CH3), 7.07 – 7.01 (m, 2H, S-CH2-CH3), 5.66 – 5.57 (m, 2H, H-2, H-4), 4.93 (d, J 

= 10.2 Hz, 1H, H-1), 4.67 – 4.55 (m, 2H, H-3, H-5), 4.23 (ddd, J = 8.0, 4.7, 1.1 Hz, 
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1H, H-6), 4.16 (d, J = 8.4 Hz, 1H, H-6’), 2.40 (s, 3H, S-CH2-CH3), 2.34 (s, 3H, -CH3), 

0.87 (s, 9H, Si-C-CH3), 0.20 (s, 3H, Si-CH3), 0.16 (s, 3H, Si-CH3). 

  

4-O-acetyl-2,5-di-O-benzoyl-3-O-tert-Butyldimethylsilyl-1-fluoride-D-

Galactopyranoside (10).  

In an evaporating flask at rt under Ar atmosphere, to a solution of 9 (1.0 g, 1.54 mmol) 

in CH2Cl2 (15.4 mL) was added XtalFluor-E ® (0.53 g, 2.37 mmol) at rt. After being 

stirred for 3.5 h at room temperature, the reaction mixture was added XtalFluor-E ® 

(0.18 g, 0.8 mmol). After being stirred for 2 h at room temperature, the reaction mixture 

was added XtalFluor-E ® (0.36 g, 1.6 mmol). After being stirred for 2 h at room 

temperature, the reaction mixture was added XtalFluor-E ® (0.36 g, 1.6 mmol). After 

being stirred for 2 h at room temperature, the reaction was quenched by sat. aqueous 

NaHCO3. The aqueous layer was extracted with CH2Cl2. The organic layer was washed 

with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified by silica-gel column chromatography (toluene/EtOAc = 20/1) to give 10 (358 

mg, 43%) as a white powder. 1H NMR (500 MHz, CHLOROFORM-D) δ 8.13 – 8.04 

(m, 4H, Bz), 7.65 – 7.56 (m, 2H, Bz), 7.51 – 7.37 (m, 4H, Bz), 7.22 – 7.09 (m, 1H, H-

1), 5.57 (dd, J = 3.6, 1.3 Hz, 1H, H-4), 5.44 (ddd, J = 24.9, 10.0, 2.7 Hz, 1H, H-2), 4.59 

– 4.46 (m, 2H, H-3, H-5), 4.43 – 4.34 (m, 2H, H-6, H-6’), 3.51 (s, 9H), 2.39 – 2.31 (m, 

1H), 2.20 (s, 3H, -CH3), 0.96 (s, 3H, Si-CH3), 0.75 (s, 9H, Si-C-CH3), 0.12 (s, 3H, Si-

CH3). 

 

p-Tolyl 4-O-acethyl-2,5-di-O-benzoyl-3-O-levulinoyl-1-thio-𝛽-D-

Galactopyranoside (11).21 In an evaporating flask at rt under Ar atmosphere, to a 

solution of 8 (1 g, 1.86 mmol) in CH2Cl2 (31 mL) were added EDC (529 mg, 2.76 

mmol), DMAP (22.7 mg, 186 µmol), levulinic acid (320 mg, 2.76 mmol) at rt. After 
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being stirred for 1 h, the reaction was evaporated. The residue was dissolved with 

EtOAc and washed with sat. aqueous NaHCO3 and brine. The organic layer was dried 

over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by 

recrystallization (benzene/n-hexane) to give 11 (887 mg, 75%) as a white powder. 1H 

NMR (500 MHz, CHLOROFORM-D) δ 8.02 (ddt, J = 6.8, 5.3, 1.3 Hz, 4H, Bz), 7.59 

(ddt, J = 7.8, 7.0, 1.3 Hz, 2H, Bz), 7.46 (tdd, J = 7.3, 4.7, 1.7 Hz, 4H, Bz), 7.39 – 7.31 

(m, 2H, S-CH2-CH3), 6.98 – 6.92 (m, 2H S-CH2-CH3), 5.57 (dd, J = 3.4, 1.1 Hz, 1H, 

H-4), 5.52 (t, J = 10.0 Hz, 1H, H-2), 5.25 (dd, J = 10.0, 3.4 Hz, 1H, H-3,), 4.84 (d, J = 

10.0 Hz, 1H, H-5), 4.53 (dd, J = 11.5, 7.4 Hz, 1H, H-6), 4.36 (dd, J = 11.5, 5.6 Hz, 1H, 

H-6’), 4.13 (ddd, J = 7.1, 5.6, 1.2 Hz, 1H), 2.74 (q, J = 5.4 Hz, 1H), 2.65 – 2.32 (m, 

5H), 2.18 (s, 3H, OAc), 2.01 (s, 3H, OAc). 

 

4-O-acethyl-2,5-di-O-benzoyl-3-O-levulinoyl-1-flouride-D-Galactopyranoside 

(12).21 In an evaporating flask at rt under Ar atmosphere, to a solution of 11 (60.0 mg, 

95.0 µmol) in CH2Cl2 (0.95 mL) was added XtalFluor-E® (32.4 mg, 0.126 mmol) at rt. 

After being stirred for 2.5 h, the reaction was quenched by sat. aqueous NaHCO3 till 

PH = 7, the aqueous layer was extracted with CHCl3. The organic layer was washed 

with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified by silica-gel column chromatography (n-hexane/EtOAc = 10/1) to give 12 

(33.6 mg, 67%) as a white solid. 1H NMR (500 MHz, CDCL3) δ 8.10 – 8.00 (m, 4H, 

Bz), 7.64 – 7.54 (m, 2H, Bz), 7.53 – 7.38 (m, 4H, Bz), 6.07 – 5.88 (m, 1H), 5.69 (dd, J 

= 3.3, 1.4 Hz, 1H), 5.67 – 5.59 (m, 1H), 5.47 (ddd, J = 23.6, 10.8, 2.7 Hz, 1H), 4.62 (td, 

J = 6.5, 1.4 Hz, 1H), 4.50 (dd, J = 11.3, 6.7 Hz, 1H, H-6), 4.36 (dd, J = 11.4, 6.4 Hz, 

1H, H-6’), 2.71 (dt, J = 18.3, 7.1 Hz, 1H), 2.66 – 2.48 (m, 2H), 2.41 (dt, J = 17.2, 6.5 

Hz, 1H), 2.20 (s, 3H, OAc), 2.06 (s, 3H, OAc). 
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4-O-acethyl-2,5-di-O-benzoyl-1-flouride-D-Galactopyranoside (13).21 In an 

evaporating flask at rt under Ar atmosphere, to a solution of 12 (60.0 mg, 0.113 mmol) 

in THF/MeOH = 9/1 (5 mL) was added hydrazine acetate (145 mg, 1.53 mmol) at rrt. 

After being stirred for 30 min, the reaction was evaporated. The residue was dissolved 

with EtOAc and washed with sat. aqueous NaHCO3 and brine. The organic layer was 

dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by 

silica-gel column chromatography (n-hexane/EtOAc = 5/1) to give 13 (42.7 mg, 87%) 

as a white solid. 1H NMR (500 MHz, CDCl3) δ 8.11-8.04 (m, 4H, Bz), 7.63-7.56 (m, 

2H, Bz), 7.49-7.44 (m 4H, Bz), 5.90 (dd, J = 49.3, 2.6 Hz, 1H), 5.64 (d, J = 3.3 Hz, 1H), 

5.33 (ddd, J = 23.7, 10.3, 2.6 Hz, 1H), 4.58-4.37 (m, 4H), 2.38 (d, J = 5.6 Hz, 1H), 2.22 

(s, 3H, OAc).  

 

p-Tolyl4,6-benzylidene-1-thio-D-galactopyranoside (14). In an evaporating flask at 

rt under Ar atmosphere, compound 2 (10g, 22 mmol) was dissolved with the mixture 

of MeOH (100 mL, 2.7 mol) and THF (100 mL, 1.3 mol) and cooled to 0 °C. 28% 

NaOMe-MeOH (4.24 mL, 22 mmol) was then added to the mixture. After being 

stirred for 0.5 h at rt under Ar atmosphere, the reaction mixture was slowly quenched 

with acetyl chloride till PH = 7 and concentrated in vacuo yielding compound 3 as a 

crude product, then compound 3 was dissolved in anhydrous MeCN (220mL, 4.2 mol) 

and benzaldehyde dimethyl acetal (9.9 mL, 66 mmol), p-TsOH.H2O (0.5 g, 2.7 mmol) 

was next added into the reaction mixture. After 2 h, added p-TsOH.H2O (0.5 g, 2.7 

mmol), after 2 h, added p-TsOH.H2O (0.5 g, 2.7 mmol) again, after 1 h, benzaldehyde 

dimethyl acetal (9.9 mL, 66 mmol), after 13 h, the reaction was complete and 

quenched with Et3N till PH = 7. Added CHCl3 200ml, the organic layers were washed 

with satd aq NaHCO3, brine, dried over Na2SO4, filtered, and concentrated in vacuo to 

afford compound 14 as a crude product.  
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p-Tolyl 2,3-di-O-benzyl-4-6-O-benzylidine-1-thio-𝛽-D-galactopyranoside (15). In 

an evaporating flask at rt under Ar atmosphere, to a solution of 14 (22 mmol) in 

anhydrous DMF (220 ml, 2.8 mol) was added benzyl bromide (7.84 mL, 66 mmol) 

dropwise to the stirring solution at 0 °C. NaH (2.64 g, 66 mmol) was next added to 

the reaction mixture slowly. After being stirred for 2 h the reaction was complete as 

monitored by TLC, the reaction mixture was treated with MeOH to quench the excess 

BnBr, add H2O 1.5L, extracted with CHCl3. The organic layer was washed with satd 

aq NaHCO3, brine, dried over Na2SO4, filtered, and concentrated in vacuo. The 

residue was purified by recrystallization (CHCl3/n-hexane) to afford 15 4.8 g (39% in 

3 steps) as a yellow crystal.  
1H NMR (500 MHz, CHLOROFORM-D) δ 7.64 – 7.57 (m, 2H, Ar), 7.55 – 7.48 (m, 

2H, Ar), 7.45 – 7.23 (m, 13H, Ar), 7.02 – 6.97 (m, 2H, Ar), 5.47 (s, 1H, -CHPh), 4.80 

– 4.66 (m, 4H, CH2Ph) x2, 4.57 (d, J = 9.5 Hz, 1H), 4.37 (dd, J = 12.3, 1.6 Hz, 1H), 

4.14 (dd, J = 3.4, 1.0 Hz, 1H), 3.98 (dd, J = 12.3, 1.7 Hz, 1H), 3.84 (t, J = 9.4 Hz, 

1H), 3.62 (dd, J = 9.2, 3.4 Hz, 1H), 3.40 (q, J = 1.5 Hz, 1H), 2.30 (s, 3H, -CH3). 

 

p-Tolyl 2,3-di-O-benzyl-4-6-O-benzylidine-1-fluoride-D-galactopyranoside (16) To 

a solution of 15 (2.0 g, 3.6 mmol) in CH2Cl2 (36 mL) was added XtalFluor-E ® (1.65 

g, 7.20 mmol) at room S3 temperature. After being stirred for 2.5 h at room temperature, 

to the reaction mixture was added XtalFluor-E ® (0.82 g, 3.60 mmol). After being 

stirred for 1 h at room temperature, to the reaction mixture was added XtalFluor-E ® 

(1.65 g, 7.20 mmol). After being stirred for 3.5 h at room temperature, to the reaction 

mixture was added XtalFluor-E ® (1.65 g, 7.20 mmol). After being stirred for 3 h at 

O
O

STol
OBn

BnO

O

Ph

O
O

FOBn
BnO

O

Ph



 51 

room temperature, the reaction was quenched by sat. aqueous NaHCO3. The aqueous 

layer was extracted with CH2Cl2. The organic layer was washed with brine, dried over 

Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica-gel 

column chromatography (toluene/EtOAc = 20/1) to give 16 (1.28 g, 79%) as a white 

powder. 1H NMR (500 MHz, CDCl3) δ 7.50 (d, J = 7.8 Hz, 2H, Ar), 7.41-7.24 (m, 13H, 

Ar), 5.69 (dd, J = 53.3, 1.7 Hz, 1H, -CHPh), 5.48 (s, 1H, -CHPh), 4.89 (d, J = 11.5 Hz, 

1H, CH2Ph), 4.81 (d, J = 12.0 Hz, 1H, CH2Ph), 4.76 (d, J = 12.0 Hz, 1H, CH2Ph), 4.72 

(d, J = 11.5 Hz, 1H, CH2Ph), 4.26-4.22 (m, 2H), 4.06 (ddd, J = 24.8, 10.0, 1.7 Hz, 1H), 

4.00-3.97 (m, 2H), 3.81 (s, 1H).  

 
4-O-acetyl-2,5-di-O-benzoyl-3-O-(2,3-di-O-benzyl-4-6-O-benzylidine-1-fluoride-

D-galactopyranosyl)-1-flouride-D-Galactopyranoside (M1). 21 In a pear-shaped 

flask at rt under Ar atmosphere, a suspension of donor 16 (156 mg, 0.348 mmol), 

acceptor 13 (100 mg. 0.232 mmol), activated MS 4Å in distilled CH2Cl2 (11.6 ml) 

was stirred at -40 °C under Ar atmosphere. BF3·Et2O (36.4 µl, 0.232 mmol) was 

added slowly to the stirring mixture. After being stirred for 1 h, then the mixture was 

quenched by sat. aqueous NaHCO3. The aqueous layer was extracted with CH2Cl2. 

The organic layer was washed with brine, dried over Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica-gel column chromatography 

(toluene/EtOAc = 40/1) to give M1 (140.6 mg, 70%) as a white powder. 1H NMR 

(500 MHz, CHLOROFORM-D) δ 8.08 – 8.02 (m, 2H), 8.00 – 7.94 (m, 2H), 7.63 (t, J 

= 7.4 Hz, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.50 – 7.43 (m, 6H), 7.38 – 7.21 (m, 15H), 

5.89 (dd, J = 53.5, 2.9 Hz, 1H), 5.76 (d, J = 3.3 Hz, 1H), 5.58 – 5.48 (m, 1H), 5.28 (s, 

1H), 5.21 (d, J = 3.4 Hz, 1H), 4.73 (d, J = 11.4 Hz, 1H), 4.68 – 4.60 (m, 2H), 4.54 (d, 

J = 12.2 Hz, 1H), 4.47 – 4.40 (m, 2H), 4.35 – 4.27 (m, 1H), 4.08 (d, J = 12.5 Hz, 1H), 

4.01 (dd, J = 10.0, 3.4 Hz, 1H), 3.78 (dd, J = 10.0, 3.5 Hz, 1H), 3.74 (d, J = 3.5 Hz, 
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1H), 3.67 (d, J = 12.5 Hz, 1H), 3.57 (s, 1H), 1.87 (d, J = 1.2 Hz, 3H). 

 

Ally 𝛼-D-xylopyranoside (1a). In an evaporating flask at rt under Ar atmosphere, D-

xylose (5 g, 33.3 mmol) was added Allyl-OH (67.9mL, 1 mol). After being stirred for 

5 mins at it under Ar atmosphere, TMSCI (21 mL, 166.5 mmol) was slowly added to 

the mixture. After being stirred overnight at 60 °C, the reaction mixture was 

concentrated in vacuo and followed by co-evaporated with toluene for 3 times 

repetitions to give compound 1a as a crude product. 

 

Ally 2, 3, 4-Tri-O-benzyl-𝛼-D-xylopyranoside (2a) 

 

Allyl 2,4-Di-O-benzyl-𝛼-D-xylopyranoside (2b). To a solution of compound 1a  

(6.30g, 33.3 mmol) in DMSO (200 ml) was added NaH (2.0 g, 83.3 mmol) under ice 

cooling, and the mixture was stirred at room temperature for 30 min. Benzyl bromide 

(9.9 ml, 83.3 mmol) was added to the mixture under ice cooling. The mixture was 

stirred at room temperature overnight. 1.5L water was added to the mixture. extracted 

with CHCl3. The organic layer was washed with brine, dried over Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica-gel column chromatography 

(Toluene-AcOEt = 92/8 to 90/10 to 88/12) to give an oily product 2a: Yield 1.49g (10 %)  
1H NMR (500 MHz, CHLOROFORM-D) δ 7.43 – 7.16 (m, 15H, Ar), 6.02 – 5.88 (m, 

1H, -CH=CH2), 5.32 (m, 1H, -CH=CH2), 5.25 – 5.12 (1H, -CH=CH2), 4.96 – 4.81 (m, 

2H), 4.80 – 4.69 (m, 2H), 4.68 – 4.48 (m, 2H), 4.42 – 4.32 (m, 1H), 4.20 – 3.81 (m, 

3H), 3.65 – 3.56 (m, 2H, H-5), 3.56 – 3.50 (m, 1H), 3.50 – 3.36 (m, 1H). 

and 2b: Yield 2.28 g (19 %) 1H NMR (500 MHz, CHLOROFORM-D) δ 7.40 – 7.27 

(m, 10H, Ar), 5.89 (dddd, J = 17.0, 10.3, 6.4, 5.1 Hz, 1H, OCH2CH=CH2), 5.31 (dq, J 
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= 17.2, 1.6 Hz, 1H), 5.20 (dq, J = 10.4, 1.4 Hz, 1H), 4.79 – 4.58 (m, 6H), 4.13 (ddt, J = 

12.9, 5.1, 1.5 Hz, 1H), 4.04 (ddd, J = 9.8, 8.5, 2.0 Hz, 1H), 3.91 (ddt, J = 13.0, 6.4, 1.3 

Hz, 1H), 3.59 (dd, J = 10.6, 5.5 Hz, 1H), 3.57 – 3.42 (m, 2H), 3.34 (dd, J = 9.6, 3.5 Hz, 

1H), 2.52 (d, J = 2.0 Hz, 1H). 

 

Allyl 3-O-acetyl-2,4-Di-O-benzyl-𝛼-D-xylopyranoside (3b). In an evaporating flask 

at rt under Ar atmosphere, a solution of 2b (1 g, 2.7 mmol) was dissolved in pyridine 

super dehydrate (1.3 mL, 16.2 mmol) and treated with acetic anhydride (0.16 mL, 3.24 

mmol). After being stirred for 22 h, added acetic anhydride (0.13 mL, 2.7 mmol). After 

1 d, the reaction mixture was concentrated in vacuo and co-evaporated with toluene 4 

times. The residue was purified by silica-gel column chromatography (n-hexane-EtOAc 

= 90/10 to 85/15) to give an oily product 3b: Yield 708 mg (64 %) 1H NMR (500 MHz, 

CHLOROFORM-D) δ 7.39 – 7.24 (m, 10H, Ar), 5.90 (dddd, J = 17.0, 10.2, 6.4, 5.1 Hz, 

1H OCH2CH=CH2), 5.46 (t, J = 9.6 Hz, 1H, H-3), 5.31 (dq, J = 17.2, 1.6 Hz, 1H, 

OCH2CH=CH2), 5.20 (dq, J = 10.3, 1.3 Hz, 1H, OCH2CH=CH2), 4.77 (d, J = 3.5 Hz, 

1H, H-1), 4.58 (s, 2H, CH2Ph), 4.56 – 4.49 (m, 2H, CH2Ph), 4.15 (ddt, J = 13.0, 5.1, 

1.5 Hz, 1H, OCH2CH=CH2), 3.95 (ddt, J = 12.9, 6.4, 1.3 Hz, 1H, OCH2CH=CH2), 3.62 

(d, J = 8.2 Hz, 2H, H-5,), 3.54 – 3.45 (m, 1H, H-4), 3.40 (dd, J = 10.0, 3.5 Hz, 1H, H-

2), 2.01 (s, 3H, Ac). 

 

3-O-acetyl-2,4-Di-O-benzyl-𝛼-D-xylopyranoside (4b). In a pear-shaped flask at rt 

under Ar atmosphere, to a solution of 3b (600 mg, 1.46 mmol) in anhydrous THF 

(14.6 ml) was added with the activated solution of [Ir(cod)(PPh2Me)2 PF6 (61.7 mg, 

0.073 mmol) in anhydrous THF (14.6 ml) after stirred for 5 minutes under H2 

atmosphere (yellow solution) at rt. After being stirred for 30 min at rt under Ar 

atmosphere. Distilled H2O (5 mL, 278 mmol) and I2 (1.1 g, 4.38 mmol) were next 

BnO O
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OH
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added to the stirring mixture and stirred for 1 h. The reaction was quenched by adding 

20% Na2S2O3 and extracted with EtOAc 3 times. The organic layer was then treated 

with sat. aqueous NaHCO3., brine, dried over Na2SO4, filtered, and concentrated in 

vacuo. The residue was purified with silica-gel column chromatography (n-hexane-

EtOAc = 90/10 to 85/15 to 80/20) yielded compound 4b 𝛼/𝛽=	1.5/1	(472 mg, 80%). 
1H NMR (500 MHz, CHLOROFORM-D) δ 7.37 – 7.23 (m, 18H, Ar), 5.39 (t, J = 8.8 

Hz, 1H, H-3), 5.19 – 5.12 (m, 2H), 4.84 (d, J = 11.9 Hz, 1H), 4.70 (dd, J = 7.4, 4.3 

Hz, 1H), 4.66 – 4.59 (m, 3H), 4.59 – 4.48 (m, 3H), 3.95 (dd, J = 11.7, 5.3 Hz, 1H), 

3.86 (dd, J = 11.4, 9.9 Hz, 1H), 3.69 (dd, J = 11.4, 5.2 Hz, 1H), 3.63 (d, J = 5.1 Hz, 

1H), 3.57 – 3.47 (m, 1H), 3.47 – 3.40 (m, 2H), 3.34 – 3.20 (m, 2H), 2.01 (s, 3H, Ac), 

1.94 (s, 2H). MS (ESI-QTOF) for C21H23NaO6
+ [M + Na] + = 395.1138 

 
3-O-acetyl-2.4-di-O-benzyl-𝛼-D-xylopyranosyl fluoride(5b) In a pear-shaped flask 

at rt under Ar atmosphere, to a solution of compound 4b (100 mg, 0.268 mmol) in 

CH2Cl2 (2.7 ml) were added 2-fluoro-1-methylpyridinium p-toluenesulfonate (152 

mg, 0.536 mmol) and triethylamine (0.149 ml, 1.07 mmol). The solution was stirred 

at room temperature for 3 h. EtOAc and water were added to the solution. Extracted 

with EtOAc 3 times. The organic layer was then treated with sat. aqueous NaHCO3., 

brine, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified with silica-gel column chromatography (n-hexane-EtOAc = 90/10 to 85/15) 

yielded compound 5b 61 mg, 61%, 𝛼/𝛽=	4/1. 1H NMR (500 MHz, 

CHLOROFORM-D) δ 7.38 – 7.21 (m, 10H, Ar), 5.49 – 5.40 (m, 1H), 4.67 – 4.50 (m, 

4H), 3.83 – 3.70 (m, 2H), 3.66 – 3.50 (m, 1H), 3.50 – 3.36 (m, 1H), 2.01 (s, 3H, 

OAc). MS (ESI-QTOF) for C21H23NaO5
+ [M + Na] + = 397.1477 
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2, 3, 4-tri-O-benzyl-𝛼-D-xylopyranose(6a). In a pear-shaped flask at rt under Ar 

atmosphere, to a solution of 2a (800 mg, 1.74 mmol) in anhydrous THF (17.4 ml) was 

added with the activated solution of [Ir(cod)(PPh2Me)2 PF6 (73.5 mg, 0.087 mmol) in 

anhydrous THF (17.4 ml) after stirred for 5 minutes under H2 atmosphere (yellow 

solution) at rt. After being stirred for 30 min at rt under Ar atmosphere. Distilled H2O 

(5 mL, 278 mmol) and I2 (1.3 g, 5.22 mmol) were next added to the stirring mixture 

and stirred for 1 h. The reaction was quenched by adding 20% Na2S2O3 and extracted 

with EtOAc 3 times. The organic layer was then treated with sat. aqueous NaHCO3., 

brine, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified with silica-gel column chromatography (n-hexane-EtOAc = 90/10 to 85/15 to 

80/20) yielded compound 6a (426 mg, 58%). MS (ESI-QTOF) for C26H28NaO5
+ [M + 

Na] + = 443.1956 

 
2, 3, 4-tri-O-benzyl-𝛼-D-xylopyranosyl fluoride(7a). In a pear-shaped flask at rt 

under Ar atmosphere, to a solution of compound 6a (100 mg, 0.238 mmol) in CH2Cl2 

(2.4 ml) was added 2-fluoro-1-methylpyridinium p-toluenesulfonate (135 mg, 0.476 

mmol) and triethylamine (0.133 ml, 0.95 mmol). The solution was stirred at room 

temperature for 3 h. EtOAc and water were added to the solution. Extracted with EtOAc 

3 times. The organic layer was then treated with sat. aqueous NaHCO3., brine, dried 

over Na2SO4, filtered, and concentrated in vacuo. The residue was purified with silica-

gel column chromatography (n-hexane-EtOAc = 95/5 to 90/10) yielded compound 7a 

62 mg, 61%. 1H NMR (500 MHz, CHLOROFORM-D) δ 7.39 – 7.23 (m, 15H, Ar), 5.44 

(dd, J = 53.1, 2.7 Hz, 1H, H-1), 4.90 – 4.60 (m, 6H, CH2Ph), 3.90 (t, J = 9.2 Hz, 1H, 

H-3), 3.76 (dd, J = 11.1, 5.7 Hz, 1H, H-4), 3.72 – 3.54 (m, 2H, H-5), 3.45 (ddd, J = 

25.7, 9.6, 2.7 Hz, 1H, H-2). 

 
Allyl O-(2,3,4-Tri-O-benzyl-𝛼-D-xylopyranosyl)-(1→3)-2,4-di-O-benzyl-𝛼-D-
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xylopyranoside(𝛼-Xa) and Allyl O-(2,3,4-Tri-O-benzyl-𝛼-D-xylopyranosyl)-

(1→3)-2,4-di-O-benzyl-𝛽-D-xylopyranoside(𝛽-Xa). In a pear-shaped flask at rt under 

Ar atmosphere, a suspension of donor 7a (40 mg, 94.8 µmol), acceptor 2b (23.4 mg. 

63.2 µmol), activated MS 4Å in distilled CH2Cl2 (3.16 ml) was stirred at -32 °C under 

Ar atmosphere. BF3·Et2O (6 µl, 47.4 µmol) was added slowly to the stirring mixture. 

After being stirred for 1 h, then the mixture was quenched by Et3N and filtered through 

a membrane filter (Fluoro pore®), and concentrated in vacuo. The residue was purified 

by silica-gel column chromatography (n-hexane/EtOAc = 10/1) to give Xa (45.63 mg, 

94%) as a white powder. 𝛼/𝛽	= 1.4/1, Estimated by HPLC, flow rate: 1ml/min, C18-

AR-300(4.6ID×250mm), MeCN/50mM NH4COOCH3= 85/15.	Resident time	𝛼-Xa	is	

14 min, 𝛽-Xa is 15 min 30 s. 

 

Flow synthesis of Xa 

In a pear-shaped flask at rt under Ar atmosphere, donor 7a (158.2 mg, 0.375mmol), 

accepter 2b (31.46 mg, 0.25 mmol), was dissolved in super dehydrate toluene (2.5 ml) 

and transferred into 5 mL syringe HAMILTON CO., RENO. NEVADA (pump A). On 

the other side, pump B was filled out with TMSOTf (54.2µl, 0.3 mmol) in super 

dehydrate toluene (3 mL) in a 5 mL syringe. Pump C filled out with super dehydrate 

toluene (8 mL) into a 10 mL syringe, and Pump D filled out 5% TEA in MeCN (50 ml) 

into a 50 mL syringe. Pump A and B were set up in a syringe pump (HARVARD 11 

ELITE single syringe pump) and ran with a flow rate of 20 µL/min at -40 °C. Pump C 

ran with a flow rate of 60 µL/min, Pump D ran with a flow rate of 1900 µL/min. After 

5 mins, the reaction mixture was collected 400 µl as a sample, then change the flow 

Figure 4.3.1.1. Microfluidic system for optimization. 



 57 

rate for the next condition. HPLC automatic sample injection analysis of the yield and 

the	ratio	of	𝛼-Xa	and 𝛽-Xa.		

	

Machine learning programming code12-16 

Gaussian process regression  

 



 58 
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Bayesian process regression 
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