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Abstract

Unsupervised learning is an important category in machine learning algorithms. Unsu-

pervised learning provides a powerful tool for exploring unlabeled datasets and extract-

ing useful information. Unlike supervised learning, unsupervised learning is trained

without any explicit supervision. This makes unsupervised learning an attractive option

since human-labeled data can be expensive to obtain, while unlabeled data are easily

collected. On the other hand, large-scale and high-dimensional datasets are common

in fields such as computer vision, natural language processing, and biology. Therefore,

there is a growing demand for efficient and high-performance unsupervised learning

algorithms that can handle the complexity of large-scale and high-dimensional datasets.

In the first part, we study convex clustering. Clustering is a popular unsupervised learn-

ing technique. There are many famous clustering methods, such as k-means and hier-

archical clustering methods. Convex clustering is a modern clustering framework with

both features of k-means and hierarchical clustering. We proposed a highly efficient L1-

convex clustering method that is capable of visualizing the clusterpath on large datasets.

Results show the proposed method is significantly more efficient than existing methods

in finding the optimal solution.

In the second part, we study the hypothesis test on conditional independence. Condi-

tional Independence (CI) test is a fundamental problem in statistics. It aims to deter-

mine whether variables X and Y are conditionally independent given another variable

Z fixed. However, when the conditioning set Z is continuous and high-dimensional, it

becomes a challenging problem. We proposed a robust CI test that outperforms exist-

ing tests against the growth of the dimension of Z. Results show the proposed method

provides a more accurate and reliable way of determining conditional independence.
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1 | Introduction

1.1 Motivation

The increasing availability of large-scale and high-dimensional datasets has cre-

ated a need for efficient and better-performed unsupervised learning methods.

This thesis addresses the following two tasks in unsupervised learning. We de-

scribe current challenges and clarify motivations for developing better algorithms.

Convex clustering is a modern unsupervised learning technique that has recently

gained popularity. The convex clustering algorithms involve two steps: first, solv-

ing a fused Lasso problem and then determining the clusters based on the esti-

mated parameters of the fused Lasso problem. The major bottleneck of convex

clustering lies in the difficulty of solving the fused Lasso problem. Although

significant progress has been made in developing fast optimization algorithms,

applying convex clustering on large-scale datasets is still challenging. This lim-

its the practical application of convex clustering to small datasets. To overcome

this challenge, we aim to develop a more efficient convex clustering optimization

procedure to make convex clustering applicable to large-scale datasets.

Conditional independence test aims to find whether variables X, Y are indepen-

dent give another variable Z. Independence test and conditional independence

test play a central role in constrained-based causal discovery. CI tests are ap-

plied to identify the presence or absence of causal links between variables. In

that case, usually, the conditioning Z is high-dimensional. However, current CI

tests have difficulty dealing with high-dimensional conditioning Z. To address

this problem, we aim to develop a robust and efficient nonparametric CI test that

can handle high-dimensional conditioning Z.
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1.2 Thesis organization and contribution

The thesis is organized as follows: In Chapter 1, we briefly introduce the motiva-

tion of this thesis and present a summary of contributions. In Chapter 2, we pro-

vide related background information that is crucial for understanding the follow-

ing contents. For convex clustering, we introduce sparse estimation, particularly

the fused Lasso problem, because the fused Lasso problem is a critical component

in the loss of convex clustering methods. For conditional independence test, we

provide a background on kernel methods and the characterizations of indepen-

dence and conditional independence. In Chapter 3, we propose a method called

C-PAINT for L1 convex clustering with identical weight, an important special

case for L1 convex clustering. In particular,

Contribution of Chapter 3

• We reveal that the sub-problem of L1 convex clustering with identical weight

can be reformulated into a weighted 1d-fused Lasso problem.

• We propose a refined DP algorithm to solve the reformulated weighted 1d-

fused Lasso problem.

• We propose C-PAINT to construct a full clusterpath. In practice, we show

that C-PAINT is highly efficient and possible for large datasets.

In Chapter 4, we propose a novel procedure to perform a non-parametric CI test.

In particular,

Contribution of Chapter 4

• We design a procedure to find a novel test statistic. We first subdivide the

conditioning set Z into several local clusters, measure the unconditional

independence of (X, Y ) in each cluster, and consider the sum of local un-

2



conditional independence measures as the test statistic.

• We propose a local bootstrap to sample from the CI case H0 : X ?? Y | Z.

The local bootstrap method works well with the proposed test statistic and

can be applied to other CI tests.

In Chapter 5, we summarize the proposed methods and provide a comprehensive

discussion of their strengths and limitations. We provide a discussion about pos-

sible directions for the follow-up work.
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2 | Background

2.1 Background on convex clustering

Clustering methods play a vital role in the field of unsupervised learning. Clus-

tering methods are powerful tools in exploratory data analysis and have a wide

range of applications in various fields. Numerous methods have been developed

over the years; among them, convex clustering is a modern framework designed

to perform clustering by minimizing a convex loss function. The convex cluster-

ing’s loss function is closely related to the sparse models, specifically to the fused

Lasso problem. Therefore, we provide some helpful background information on

sparse estimation and fused Lasso.

2.1.1 Lasso regression

We consider a linear regression model as follows:

y = X� + " (2.1)

where the y 2 Rn is the response vector and X 2 Rn⇥p is a design matrix of

the predictor variables, and � 2 Rp is a p-dimensional coefficient vector. " 2

Rp is the error vector that each element is assumed to be i.i.d. with zero mean.

The linear model is a simple framework and provides predictive performance in

many practical situations. However, in scenarios where the predictor variables are

high-dimensional and only a few true coefficients are non-zero, the least squares

estimator may not be a feasible option. To address the problem, penalized models

have become of interest for applications that aim to promote the recovery of the

true coefficients � and learn a sparse representation.
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Penalized models have been a well-studied subject, and among them, the Least

Absolute Shrinkage and Selection Operator (Lasso) [1] is a famous model. Lasso

adds a penalty term on � with a tuning parameter � to the squared error loss

function. In the linear regression setting, Lasso minimizes the loss:

1

2
||y �X�||22 + �

pX

i=1

|�i|. (2.2)

The penalty terms of absolute value | · | promote sparsity in the coefficient vector.

As the tuning parameter � increases, the estimated coefficients are progressively

shrunk toward zero, resulting in a model with fewer non-zero estimated elements

in the parameter vector �̂.

2.1.2 Fused Lasso

The fused Lasso [2] is an extension of the Lasso that was initially proposed to

encourage the smoothness and local constancy of coefficients. In the linear re-

gression setting, the fused Lasso minimizes the following loss:

1

2
||y �X�||22 + �

n�1X

i=1

|�i � �i+1|. (2.3)

The penalty terms are the absolute value of the difference between adjacent coef-

ficients, which encourages the similarities between adjacent coefficients.

A more widely applied use of the fused Lasso is to decrease noise and restore the

original signal. The one dimension Fused Lasso Signal Approximator (FLSA) [3]

considers the case with X = I and the loss function becomes:

1

2
||y � �||22 + �

n�1X

i=1

|�i � �i+1|. (2.4)
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In the above loss function, the parameter vector � is used to approximate the true

signal from noisy input y. We observe that additional penalty terms are placed on

the difference between neighboring coefficients. Such penalty terms are applied

to smooth the signals if the input data has a natural order. However, we may

consider the penalty terms of different connected pairs beyond the local neighbors

in a more general form. We have the following loss function of the generalized

fused Lasso [4]:
1

2
||y � �||22 + �

X

(i,j)2E

|�i � �i+1|. (2.5)

The E is an edge set of a general graph, and the penalty terms can be placed on any

pairs between coefficients. If the graph is a chain graph, then the problem (2.5)

degenerates to the problem (2.4). It is worth noting that in addition to L1 norm

penalty, replacing it with L2 norm penalty in the FLSA framework can also pro-

duce good results. The main difference is that the L2 penalty produces smoother

solutions, while the L1 penalty promotes sparsity. Therefore, the choice between

L1 and L2 penalty should depend on the specific application and the desired prop-

erties of the resulting solution. Additionally, joint-learning algorithms such as

[5, 6] also use the fusion penalties of L1 or L2 norms to encourage similarities in

parameters.

2.1.3 Optimization algorithms

The fused Lasso problem shares a key property with Lasso, that both of their

loss functions (2.2) and (2.5) are convex [2]. The convex formulation ensures the

uniqueness of the optimal solution for fused Lasso. However, solving the fused

Lasso problem can be a challenging task. Several algorithms have been developed

for the fused Lasso. Some methods are designed for the chain-structured fused

Lasso problem (2.4) while others are for the general fused Lasso problem (2.5).

6



We summarize some representative methods in the following table.

Method Application
CVX (general solver for convex problem) (2.5)
Component-wise algorithm [7] (2.5)
Path algorithm [3] (2.5)
DFS-fused Lasso [8] (2.5)
general FLSA approximator [3] (2.5)
1d-FLSA approximator [3] (2.4)
Dynamic Programming [9] (2.4)

Table 2.1: Optimization methods for the fused Lasso problems.

For the chain-structured fused Lasso problem (2.4), the dynamic programming

(DP) method proposed by Johnson [9] is so far the most efficient optimization

method. Unlike some general solvers for the convex optimization problems (e.g.,

alternating direction method of multipliers (ADMM) [10]), the dynamic program-

ming method does not require iterative updating parameters. The dynamic pro-

gramming method takes only O(n)-operations to obtain the exact solution. There

are also some variants of the DP method [8, 11], but the structure of weight is

limited to chain and tree graphs [9, 12, 11].

In Chapter 3, we demonstrate the application of fusion penalty in clustering, lead-

ing to a framework known as convex clustering. Similar to the fused Lasso formu-

lation, convex clustering faces optimization challenges. Various efforts have been

made to accelerate the optimization procedure. It is worth mentioning that the

optimization methods proposed in the context of convex clustering are not listed

here. These methods will be introduced in Chapter 3.2.

7



2.2 Background on conditional independence

Independence and conditional independence are two fundamental concepts in statis-

tics. Given observations of variables, reliable independence and conditional in-

dependence testing methods are essential in constrained-based causal discovery

[13, 14]. On the other hand, kernel-based method is an important category in

machine learning methods and is widely applied in independence and conditional

independence testing. First, we include a gentle introduction to build a basic un-

derstanding of kernel. Next, we provide some background information on the

definitions and characterizations of unconditional independence and conditional

independence, which are closely related.

2.2.1 About kernel methods

This subsection introduces notation, definitions, and basic propositions about ker-

nel methods. See [15, 16, 17] for further details. Throughout the thesis, we con-

sider the positive-definite kernels defined below.

Definition 2.2.1 (Positive-definite Kernel) Let X be a nonempty set. Suppose a

function k : X ⇥X ! R is symmetric, i.e. k(x1, x2) = k(x2, x1), 8x1, x2 2 X . k

is said to be positive definite if 8(x1, . . . , xn) 2 X n(n � 1), the gram matrix

0

BBB@

k(x1, x1) . . . k(x1, xn)
...

...

k(xn, x1) . . . k(xn, xn)

1

CCCA
2 Rn⇥n (2.6)

is a positive semi-definite matrix.

Proposition 1 Let k1, k2, . . . be positive-definite kernels, then the following func-

tions are positive-definite kernels.

8



1. ↵k1 + �k2, ↵, � � 0.

2. k1 ⇥ k2.

3. k(x, y) = f(x)f(y), where f(x) 2 R, x 2 X .

The following binary functions are some well-known positive-definite kernels:

Gaussian kernel: k(x, y) = exp(� 1

�
||x� y||22), � > 0.

Laplacian kernel: k(x, y) = exp(↵||x� y||1),↵ > 0.

Polynomial kernel: k(x, y) = exp(xTy + ↵)d,↵ � 0, d : degree parameter.

Among them, Gaussian kernel is the most widely applied kernel [18, 17, 19].

Based on the above proposition, the product of Gaussian kernels is also a positive-

definite kernel. In the later chapters, we will use Gaussian kernel as a default

choice, if not specified.

Definition 2.2.2 (Hilbert Space) A vector space H with an inner product defined

is called a Hilbert space if it is also a complete metric space with respect to the

distance function induced by the inner product.

Definition 2.2.3 (Reproducing Kernel) Let H be a Hilbert space which consists

of functions f : X ! R. A kernel is called a reproducing kernel if the following

two conditions are satisfied:

• 8x 2 X , k(x, ·) 2 H.

• 8f 2 H, 8x 2 X , f(x) = hf, k(x, ·)iH.

H is called a Reproducing Kernel Hilbert Space (RKHS) with a reproducing ker-

nel k whose span is dense in H. A positive-definite kernel k can be used to define

9



a feature map  : X ! H, such that  (x) := k(x, ·) and

k(x1, x2) = h (x1), (x2)iH

for x1, x2 2 X . The h·, ·iH is the inner product of the Hilbert space H. Such an H

is a reproducing kernel Hilbert space (RKHS) for the kernel k, denoted as Hk.

Next, we define the following mapping of a measure to an RKHS.

Definition 2.2.4 (Kernel Embedding) Let P be a set of measures. The kernel

embedding of the measure µ into the RKHS Hk is the map mk : P ! Hk defined

by

P 3 µ 7! mk(µ) :=

ˆ
k(·, x)dµ(x) 2 Hk ,

From the above definition, a direct consequence is

ˆ
f(x)dµ(x) = hf,mk(µ)iHk

, 8f 2 Hk.

A kernel is said to be characteristic if the above mapping is injective; in other

words, mk(µ) is uniquely embedded in H. For example, Gaussian kernel is known

to be a characteristic kernel [15, 16]. Such a mapping is used in comparison to

different distributions. Next, we introduce a distance measure defined between

two probability distributions.

Definition 2.2.5 (Maximum Mean Discrepancy (MMD)) The Maximum Mean

Discrepancy (MMD) between P,Q 2 P is defined as

MMD(P,Q) := ||mk(P )�mk(Q)||Hk
.

By definition, it is easy to notice that MMD takes non-negative values. In partic-

10



ular, for characteristic kernels, the MMD(P,Q) becomes zero if and only if the

measures P,Q coincide [19]. The squared MMD has an alternative expression as

follows:

MMD2(P,Q) = ||mk(P )�mk(Q)||2
Hk

= EXX0 [k(X,X 0)] + EY Y 0 [k(Y, Y 0)]� 2EXY [k(X, Y )]

And an unbiased estimator of squared MMD [19] is given by

\MMD
2
=

1

m(m� 1)

mX

j=1

X

i 6=j

k(xi, xj) +
1

n(n� 1)

nX

j=1

X

i 6=j

k(yi, yj)

� 2

mn

mX

i=1

nX

j=1

k(xi, yj)

Finally, we consider an unconditional dependence measure for variables X and

Y . Let kX and kY be kernels on X and Y , and HkX and HkY be the corresponding

RKHSs. Gretton et al. [17] defined the Hilbert-Schmidt independence criterion

(HSIC), which can be viewed as the squared MMD between PXY and the product

PXPY of the marginalized measures PX , PY . HSIC is a state-of-the-art depen-

dence measure that suits both continuous and discrete variables.

Definition 2.2.6 (Hilbert-Schmidt independence criterion (HSIC))

HSIC(X, Y ) := ||mk �mkXmkY ||2H

= ||EXY [kX (X, ·)kY(Y, ·)]� EX [kX (X, ·)]EY [kY(Y, ·)]||2H,

where the H is the corresponding RKHS of the kernel k := kXkY defined by

k((x, y), (x0, y0)) = kX (x, x
0)kY(y, y

0)

11



for (x, y), (x0, y0) 2 X ⇥ Y .

For a characteristic kernel, the HSIC(X, Y ) is zero if and only if PXY = PXPY .

2.2.2 Independence

In this subsection, we introduce the definition of independence and some measures

for dependence between two variables X, Y .

Definition Given random variables X, Y and we assume the joint probability den-

sity pXY and pX , pY exist. X, Y are independent, denoted as X ?? Y , when

pXY = pXpY

Based on finite observation values {(xi, yi)}ni=1 for variables X, Y , we may con-

sider different dependence measures between X, Y . For example,

Spearman’s ⇢:

⇢ =
cov(rx, ry)
�rx�ry

.

where the rx, ry are the converted rank variables of X, Y . We may convert {(xi, yi)}ni=1

to rx(xi), ry(yi), 8i = 1, . . . , n as their ranks. Let the di := rx(xi)� ry(yi) be the

difference between the ranks of the pair (xi, yi), we have

⇢ = 1� 6
Pn

i=1 d
2
i

n(n2 � 1)
.

Kendall’s ⌧ :

⌧ =
1

n2

nX

i 6=j

sign(xi � xj)sign(yi � yj).

where sign(a) = 1[a > 0] takes 1 if a > 0 or 0 otherwise. The ties of (xi, xj)

and (yi, yj) pairs are overlooked for simplicity. Both Spearman’s ⇢ and Kendall’s

12



⌧ are rank correlation statistics. Beyond that category, we may also use the dis-

tance between the joint distribution PXY and the marginal distributions PX and

PY as dependence measures. We show an information-based measure (Mutual

Information) and a kernel-based measure (HSIC).

Mutual Information (MI):

I(X, Y ) = DKL(PXY || PX ⌦ PY ) =

¨
pXY log

pXY

pXpY
dxdy

where the DKL is the Kullback-Leibler divergence and pXY , pX , pY are the prob-

ability density functions.

Hilbert-Schmidt independence criterion (HSIC)

HSIC(X, Y ) = ||mk �mkXmkY ||2H

For both MI and HSIC, they become 0 if and only if X ?? Y . However, esti-

mating them on a finite sample can be challenging in practice. Though we are

unable to directly "check" the independence given only the observation, we may

use the above dependence measures to characterize the independence of X, Y . In

practice, they can be applied as test statistics in independent testing.

2.2.3 Conditional independence

In this subsection, we introduce the definition of conditional independence, which

is a natural extension of independence with another variable Z. We also show

some measures for conditional dependence.

Definition Given random variables X, Y, Z and we assume joint probability den-

sity function pXY Z is continuous and pX , pY , pZ exist. X, Y are conditional inde-

13



pendent given Z, denoted as X ?? Y | Z, is defined as

pXY |Z = pX|ZpY |Z

or equivalently
pXY Z = pX|ZpY |ZpZ

pX|Y Z = pX|Z

pY |XZ = pY |Z

pXY ZpZ = pXZpY Z

Several characterizations of CI have been proposed and applied to CI tests [20].

We may start by considering a simple case when X, Y, Z are joint Gaussian dis-

tributed, the conditional independence of X, Y given Z is equivalent to the partial

correlation being zero [14].

Partial Correlation

⇢XY,Z =
cov(X � E[X | Z], Y � E[Y | Z])p
var(X � E[X | Z]) var(Y � E[Y | Z])

where E[·|·] and var(·) denote the conditional expectation and variance, respec-

tively, and cov(·, ·) denotes the covariance between two variables. The property

that ⇢XY,Z = 0 if and only if X ?? Y | Z only holds under the assumption

that X, Y, Z follow a jointly Gaussian distribution. In general, partial correlation

becoming zero does not necessarily imply conditional independence.

On the other hand, there are also some characterizations of CI unaffected by the

assumption on the joint distribution of X, Y, Z. We will show the example of

conditional mutual information, which is an extension of mutual information.

14



Conditional Mutual Information

I(X, Y | Z) =
˚

pXY Z log(
pZpXY Z

pXZpY Z
)dxdydz

The following holds true for an arbitrary joint distribution of X, Y, Z.

I(X, Y | Z) = 0 () X ?? Y | Z.

In Chapter 4, we discuss some other nonparametric CI tests based on different

characterizations of CI, and propose a novel CI test.
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3 | Convex clustering

3.1 Introduction

Clustering is a popular unsupervised learning task that involves exploring data to

identify groups of similar objects. There are several traditional clustering meth-

ods, including hierarchical clustering, partitive clustering, and model-based clus-

tering. More recently, researchers have been studying convex clustering [21, 22,

23], which is known for its global optimality due to the problem’s convex for-

mulation. Unlike methods like k-means, which require a predetermined number

of clusters, convex clustering uses a tuning parameter to control the number of

clusters in the output.

Given n points x1, . . . ,xn in Rp, convex clustering minimizes the following prob-

lem:

L(A) =
1

2

nX

i=1

||xi � ai||22 + �
X

i<j

!ij||ai � aj||q. (3.1)

In the above loss function, each ai 2 Rp represents an alternative vector to rep-

resent the point xi 2 Rp. The A is a matrix whose rows correspond to these

alternative vectors. The Lq-norm, denoted by || · ||q, is typically chosen as 1, 2,

or1 [21]. The tuning parameter � is a positive constant, and the weights !ij are

chosen based on the input data. By solving the optimization problem, the optimal

solution Â = (â1, . . . , ân)T is obtained. To assign samples to the same cluster,

we check whether the corresponding alternative vectors are equal. We assign the

samples i and j to a same cluster if and only if âi = âj .

The solution path of the optimization problem has a meaningful visual interpre-

tation known as the "clusterpath" (Figure 3.1). By varying the tuning parameter

�, the clusterpath shows how each point becomes merged along the path, provid-
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ing rich information about the cluster structure of the data. Specifically, when

� = 0, each point occupies a unique cluster, and as � increases, the clusters begin

to coalesce. Eventually, for a sufficiently large �, all the points coalesce into a

single cluster. The clusterpath visualization is a valuable tool for exploring and

understanding the clustering behavior of the proposed method.

In general, constructing the clusterpath involves a high computational cost. To

solve (3.1), Hocking et al. [21] proposed to use three algorithms for different

regularization terms corresponding to L1, L2, and L1. Subsequently, general

solvers for convex problems such as the alternating direction method of multipli-

ers (ADMM) and the alternating minimization algorithm (AMA) [24] have been

applied to solve (3.1) with L1 and L2 penalties. To obtain the clusterpath effi-

ciently, Weylandt et al. [25] proposed the CARP algorithm, which uses a novel

computational technique to approximate the path-wise visualizations with suf-

ficient precision. For the L1 penalty case with identical weights setting (i.e.

!ij = 1), Radchenko and Mukherjee [26] considered two efficient algorithms

that successively merge the clusters in a bottom-up fashion or split the clusters

in a top-down fashion to detect all the fusion or split events. Additionally, they

studied the sample behavior of convex clustering with L1 penalty and identical

weights, providing theoretical support. However, their methods cannot estimate
bA and therefore cannot provide a clusterpath.

In this chapter, we consider the same setting as Radchenko and Mukherjee [26]:

L1 convex clustering with identical weights. However, we propose a completely

different approach and develop an efficient algorithm to handle the computational

bottleneck in the convex clustering problem. Fortunately, for the problem (3.1)

with the L1 penalty, Hocking et al. [21] noted that the problem is separable along

dimensions. In addition, for each dimension the sub-problem becomes the fol-

lowing general fused Lasso problem [2]. The problem (3.1) is decomposed into p
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Figure 3.1: An example shows the clusterpath generated under L1 norm. The
clusterpath shows individual cluster centers start to merge and finish as a single
cluster.

separate sub-problems as follows:

min
a2Rn

1

2

nX

i=1

(xi � ai)
2 + �

n�1X

i=1

nX

j=i+1

|ai � aj| (3.2)

Hocking et al. [21] applied the FLSA algorithm [3] to solve the problem (3.2).

However, based on our experience, it still remains very challenging for large-

scale problems. Therefore, we employ a dynamic programming (DP) method to

obtain the exact solution of the problem (3.2). Johnson [9] first proposed the

dynamic programming method for the chain-graph fused lasso, or simply, the

chain-structured 1d fused Lasso, which penalizes the neighbor terms:

min
a2Rn

1

2

nX

i=1

(xi � ai)
2 + �

n�1X

i=1

|ai � ai+1| (3.3)
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Although (3.2) and (3.3) may appear different at first glance, we demonstrate in

this chapter that there is a close relation. Specifically, we begin by reformulat-

ing the sub-problem of convex clustering expressed in (3.2) as a weighted one-

dimensional fused lasso problem in (3.3). This reformulation enables us to utilize

a modified version of the dynamic programming method, which efficiently solves

the problem in linear time. Our numerical experiments validate the effectiveness

of our proposed method, which outperforms existing approaches. We summarize

our contributions in detail:

• Based on an important observation regarding the case of identical weights,

we demonstrate that each sub-problem of convex clustering can be trans-

formed into a weighted 1d fused lasso problem.

• We utilize a DP algorithm to solve the reformulated problem. In addition,

we refine the problem’s formulation to improve its efficiency further. Our

proposed algorithm, C-PAINT, builds upon the DP approach to construct a

full clusterpath. The complexity of C-PAINT is O(pn log n) + O(pnK),

where K is the length of � sequence, n is the sample size, and p is the

feature dimension of each sample. In the later simulation, we show that the

C-PAINT takes O(pnK), which is scalable to large datasets.

The remaining article is arranged as follows. Specifically, we begin by discussing

related work in Section 3.2. In Section 3.3, we introduce the preliminaries and

present some key properties of L1 convex clustering, which will be utilized to re-

formulate problem (3.2) later on. Next, in Section 3.4, we outline our DP method

and C-PAINT algorithm, which allow us to draw a full clusterpath. To evaluate the

effectiveness of our approach, we report our experimental results in Section 3.5,

which includes both synthetic and real data. Finally, in Section 3.6, we conclude

the article. For more detailed information about the DP algorithm, please refer to
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the supplementary material.

3.2 Related work

Convex clustering has several variants in the literature. For instance, Chi et al.

[27] introduced convex bi-clustering, while Wang et al. [28] proposed sparse con-

vex clustering, which enables simultaneous clustering and feature selection. In

addition, Wang et al. [29] proposed robust convex clustering, which is designed

to detect outlier features.

From the computational perspective, several theoretical studies have been done

on convex clustering. For example, Tan and Witten [30] demonstrated that when

identical weights are employed, convex clustering is closely related to single-

linkage hierarchical clustering and the k-means method. Radchenko and Mukher-

jee [26] analyzed the asymptotic properties of the solution path and provided con-

ditions for it to yield the true dendrogram under L1 fusion penalty with identical

weights. Furthermore, Zhu et al. [31] investigated the conditions required for

convex clustering to recover clusters correctly.

From the computational perspective, studies are focused on fast computational

methods for convex clustering. Lindsten et al. [22] proposed to use the off-the-

shelf solver CVX to generate the solution path. Hocking et al. [21] introduced

three algorithms for three different penalty norms (L1, L2, and L1). They used

the FLSA algorithm for L1 penalties. Chi and Lange [24] proposed to use the

ADMM and the AMA for the convex clustering problem. However, the conver-

gence rate is not fast enough during the iterative process when the sample size n

and the dimension of data p are large. Yuan et al. [32] proposed a semi-smooth

Newton-based algorithm to solve the convex clustering problem. Weylandt et al.

[25] proposed an ADMM-based approximation method to obtain a complete so-
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lution path. Radchenko and Mukherjee [26] proposed efficient methods that suc-

cessively merge or split the clusters, but these methods are unable to find the exact

solution of the estimated centroids Â, thus is impossible for the visualization of

the clusterpath.

Despite its many competitive features, convex clustering remains computationally

challenging due to its high computational burden.

3.3 Preliminaries

In this chapter, we use small bold letters to denote vectors, such as x, and use

ordinary letters to denote scalars, such as x.

At first, we discuss the decomposition of the L1 convex clustering loss function

into sub-problems by each dimension. Next, we introduce some essential prop-

erties about the loss function of each sub-problem, which will be useful for our

problem reformulation in Section 3.4.

Each sample point has p features xi = (xi1, . . . , xip)T and its corresponding pa-

rameter vectors ai = (ai1, . . . , aip)T . Consider the following convex clustering

problem with L1 fusion penalty and identical weights:

1

2

nX

i=1

||xi � ai||22 + �
X

i<j

||ai � aj||1

=
pX

k=1

"
1

2

nX

i=1

(xik � aik)
2 + �

n�1X

i=1

nX

j=i+1

|aik � ajk|
# (3.4)

It is easy to notice that solving the minimization problem in (3.1) is equivalent

to solving p separate sub-problems, one for each dimension. In the following

discussion, we focus on the sub-problem (3.2).

21



Now, we introduce the following theorem and lemma that prepare us for the re-

formulation in the next section. [21] first shows that in the L1 clusterpath, no split

happens in the identical weights setting 3.3.1. In other words, for a small �1, if

two parameters become the same value âi(�1) = âj(�1), they will become the

same value i.e. âi(�2) = âj(�2) for any bigger �2 > �1. Next, we have lemma

3.3.2 that the order of the original input is preserved in estimated centroids.

Theorem 3.3.1 (Hocking et al. [21]) Taking !ij = 1 for all i and j is sufficient

to ensure that the `1 clusterpath contains no splits.

Lemma 3.3.2 (Chiquet et al. [33]) The absence of splits is equivalent to the preser-

vation of the order along the path for problem (3.2).

3.4 Proposed method

In this section, we demonstrate how to reformulate the problem (3.2) by substi-

tuting the penalty term in Section 3.4.1. Subsequently, we describe how to apply

the DP method to solve the reformulated objective function, providing the specific

modifications in Section 3.4.2. While Algorithm 1 presents a high-level overview

of the DP algorithm, we provide additional details in Algorithm 2. Next, we pro-

pose the C-PAINT algorithm, which is based on the DP algorithm and is outlined

in Algorithm 3 in Section 3.4.3. Finally, we analyze the time complexity of the

proposed procedure in Section 3.4.4.

3.4.1 Idea

Our idea is simple: to reformulate each original sub-problem into an equivalent

form. On the theoretical side, a direct consequence of Theorem 3.3.1 and Lemma

3.3.2 is that for problem (3.2), the order of the elements in x is preserved in â. In
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other words, the estimated centroids preserve the original order of the input data.

x(1)  x(2)  · · ·  x(n) �! â(1)  â(2)  · · ·  â(n)

where the x(i), i = 1, . . . , n are the x that sorted in a non-decreasing order. Thus

the order of the centroids to be estimated can be obtained directly from the input

data. Let us take a look at the penalty term in problem (3.2):

n�1X

i=1

nX

j=i+1

|ai � aj|.

Suppose the order of (a1, . . . , an) is known, then the absolute value can be re-

moved. For example, let n = 4, then for a(1)  a(2)  a(3)  a(4), the absolute

value of |a(1)�a(3)| = a(3)�a(1) = a(3)�a(2)+a(2)�a(1), which can be written

as |a(2) � a(3)|+ |a(1) � a(2)|. By decomposing each penalty term, we can rewrite

it into the absolute values of the differences between neighbor items.

a(1) a(2) a(3) a(4)

a(1) a(2) a(3) a(4)

Figure 3.2: Replacement of the penalty graph. The edges are the absolute values
of the differences between nodes. The total sums of the edges’ lengths are identi-
cal for the two graphs, which inspires us to reformulate the penalty term.

Figure 3.2 shows a graphical representation of the transformation from a complete

graph to a weighted chain graph. The complete graph is shown in the above figure,

where each vertex represents a centroid parameter, and all pairs of vertices are

connected by edges. The weighted chain graph is shown below, where each vertex
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still represents a centroid parameter, but the vertices are connected in a linear

chain. The edges between the vertices in the weighted chain graph represent the

absolute differences between neighboring items, as discussed. And the number of

edges becomes the weights. Inspired by this important observation, we have the

following lemma 3.4.1.

Lemma 3.4.1 Given the sequence (a1, . . . , an), we can sort it in a non-decreasing

order a(1)  · · ·  a(n), then

n�1X

i=1

nX

j=i+1

|ai � aj| =
n�1X

i=1

i(n� i)|a(i) � a(i+1)|. (3.5)

Lemma 3.4.1 suggests the possibility to replace the penalty term in (3.2) with the

right side one in (3.5). By the replacement, the original fused lasso problem is

turned into a weighted chain-structured fused Lasso as follows:

min
a2Rn

1

2

nX

i=1

(xi � ai)
2 + �

n�1X

i=1

i(n� i)|a(i) � a(i+1)| (3.6)

Next, we show how to apply the dynamic programming method [9] to solve the

problem (3.6). In addition, we know â(i)  â(i+1) always hold for i, thus we only

need to consider the cases â(i) = â(i+1) and â(i) < â(i+1), which refines the DP

algorithm to be more efficient. In the following subsection 3.4.2, we introduce the

modified DP algorithm in further detail.

3.4.2 DP algorithm

Given a sequence of sorted data points x1  x2  · · ·  xn. Suppose the corre-

sponding centroids are a1, . . . , an. By Lemma 3.3.2, the order are preserved for
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the centroids â1  â2  · · ·  ân, we consider the following problem:

(â1, . . . , ân) := argmin
â

1

2

nX

i=1

(xi � ai)
2 +

n�1X

i=1

�i|ai � ai+1|

where �i = �i(n�i). Before showing the details about the dynamic programming

algorithm, we prepare some notation here. Let

h1(b) :=
1

2
(x1 � b)2

for k = 2, 3, . . . , n,

• �k(b) := arg min
b̃

hk(b̃) + �k|b̃� b|.

• hk(b) :=
1
2(xk � b)2 + hk�1(�k�1(b)) + �k�1|�k�1(b)� b|1

Theorem 3.4.2 (Johnson [9]) The function hk(b) is convex, differentiable, and

piecewise quadratic.

The b and b̃ in the definition of �k correspond to the former centroid parameter ak

and the latter centroid ak+1 respectively. Once âk+1 is known, by definition, âk

can be expressed as a functional form of âk+1:

âk = �k(âk+1).

From the above theorem 3.4.2, we know hk(b) is differentiable, hence we define

some intermediate notation:

gk(b) :=
@hk(b)

@b
, Uk := arg min

b
hk(b)� �kb.

It is not straightforward to see, but once we know the âk+1, the âk = �k(âk+1)
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Algorithm 1: DP algorithm
Input: sorted input x1  · · ·  xn, �.
Output: (â1, . . . , ân)

1 Initialize �i  i(n� i)�, for i = 1, . . . , n� 1.
2 for k  1 to n� 1 do
3 Find the Uk

4 end
5 Solve ân such that hn(ân) = 0.
6 for k  n� 1 to 1 do
7 âk = min(âk+1, Uk)
8 end

can be written in a closed form. Because the former centroid ak is always equal

or smaller than ak+1, in other words b̃  b, thus the |b̃� b| in �k takes either b� b̃

or 0. In the case of b̃ < b, which corresponds to the case that âk < âk+1,

âk = arg min
b̃

hk(b̃) + �k(b� b̃)

= arg min
b

hk(b̃)� �kb̃ = Uk.

Otherwise b̃ � b = 0, which corresponds to the case that âk = âk+1. By the

assumption we already know the âk+1, we can simply assign the known âk+1 to

âk. In short, we take the minimum between âk+1 and Uk and assign it to âk. It is

easy to see that once we find ân and U1, . . . , Un�1, we can obtain all the centroids

by tracking back from n � 1, . . . , 1. Algorithm 1 provides a high-level overview

of the detailed DP algorithm.

Next, we show how to find Uk for k = 1, . . . , n � 1. The details are explained in

algorithm 2. By KKT conditions, Uk satisfies

gk(Uk)� �k = 0.
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When k = 1, g1(U1)��1 = U1�x1��1 and U1 = x1+�1. For k = 2, . . . , n�1,

by the definition of hk(b), we have the derivative of hk(b) is:

gk(b) = gk�1(b)I[b  Uk�1] + �k�1I[b > Uk�1] + (b� xk),

where I is the indicator function. It is easy to see the function gk is a piecewise

linear function connected by a knot point Uk�1. Specifically, when b > Uk�1, gk

is a line with the slope 1 and the intercept �k�1 � xk. On the other hand, when

b  Uk�1, again, it becomes piecewise linear with a new knot point Uk�2, and so

on. This iterative process continues until the last knot point U1. We notice that

gk�1(b) includes the term (b� xk�1), so the slope becomes steeper when the first

condition b  Uk�1 is satisfied. Because gk is a piecewise linear function, the key

to finding the Uk that satisfies gk(Uk) = �k is to decide which part of the line is

Uk on. To do that, we start to search from the right to the left. If the Uk is not

on the current line, move left and update the intercept and slope until we find the

line where (Uk,�k) is. As for ân, it is the same as finding the Un that satisfying

gn(Un) = �n with �n = 0.

In addition, we need to be careful when searching for each Uk to ensure that it has

a worst-case performance of O(n), which is achieved through the erase step in

line 11 of Algorithm 2. In Algorithm 2, the U⇤, S⇤, and I⇤ can be viewed as three

different stacks, each time we enter the inner loop in line 9, we pop the last items

of U⇤, S⇤ and I⇤ out, and after finding the Uk, in line 20 we push the new Uk, Sk

and Ik into each stack respectively.

The technical details here may be challenging to understand. In order not to inter-

rupt the flow of the chapter, we include an example of n = 3 in the supplementary

materials, which we believe is helpful in understanding the algorithm.
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Algorithm 2: Finding U

Input: x1  · · ·  xn, (�1, . . . ,�n�1).
Output: (U1, . . . , Un�1)

1 // Initialization;
2 U1  x1 + �1.
3 U⇤  U1, S⇤  1, I⇤  �x1.
4 for k  2 to n� 1 do
5 Sk  1, Ik  �xk.
6 �  (�k � �k�1 � Ik)/Sk.
7 // search from the right side.
8 // .end denotes the last item of a sequence.
9 while U⇤.end > � do

10 update Sk  Sk + S⇤.end, Ik  Ik + I⇤.end
11 erase the last item of U⇤, S⇤, I⇤.
12 // suppose the index of U⇤.end is Um,
13 // then update the � as follows:
14 �  (�k � �m � Ik)/Sk.
15 if U⇤ is empty then
16 break
17 end
18 end
19 update Uk  �.
20 update U⇤ (U⇤, Uk), S⇤  (S⇤, Sk), I⇤  (I⇤, Ik).
21 end

3.4.3 C-PAINT algorithm

The dynamic programming algorithm is intended for a single tuning parameter

�. However, it is of our interest to visualize the complete clusterpath. Using the

proposition’s result, we can first find the maximum value of �max that yields a

non-trivial solution. In other words, any tuning parameter larger than �max results

in just one cluster. Next, we propose the C-PAINT algorithm.
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Proposition 3.4.3 (Radchenko and Mukherjee [26])

Given data x = (x1, . . . , xn) 2 Rn. In the problem 3.2, the tuning parameter �max

that yields non-trivial solution is:

�max(x) = max
j=1,...,n�1

✓
x̄� 1

j

jX

k=1

xk

◆
/(n� j)

where the x̄ = 1
n

Pn
k=1 xk.

Similarly, for a given matrix X = (x1, . . . ,xp) 2 Rn⇥p, we can obtain the �max

by taking the maximum value of all dimensions:

�max(X) = max
i=1,...,p

�max(xi).

This is useful because it simplifies the computational burden by reducing the num-

ber of tuning parameters that need to be considered. Instead of considering all

possible values of �, we only need to consider a sequence of � up to �max. This

reduces the computational complexity and makes the algorithm more efficient. In

Algorithm 3, an arithmetic sequence is used to select the values of �. However, it

is also possible to use a geometric sequence. The choice of the sequence depends

on the specific problem.

3.4.4 Time complexity

To analyze the time complexity of the C-PAINT algorithm, we need to consider

the number of operations involved in each step.

In Algorithm 2, U1 can be founded in O(1). In finding U2, . . . , Un�1, lines 2-3,

lines 5-6, and line 19-20 can be calculated in O(1), and inside the while loop, line

10-16 also takes O(1), so the key problem is how many times we need to enter
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Algorithm 3: C-PAINT algorithm
Input: Data matrix X 2 Rn⇥p, � sequence length K.
Output: (Â1, . . . , ÂK), and Âk = (âk

1, . . . , â
k
n)

T 2 Rn⇥p.
1 // find the �max(X).
2 Initialize �k  �max · k/K, k = 1, . . . , K.
3 for i = 1 to p do
4 Sort xi 2 Rn in a descending order as x(i) and save the order of the xi.
5 for k = 1 to K do
6 // for each dimension i, use the DP algorithm.
7 â

k
(i)  DP(x(i),�k).

8 end
9 rematch the â

k
i [order] â

k
(i).

10 end

the inner loop. Every time we enter the inner loop, the last item of the sequence

U⇤ is deleted and never used, and from line 19, we know every Uk will be added

once and deleted at most once. Thus we can enter the inner loop at most n � 2

times, and each time it takes O(1), so in total, Algorithm 2 is O(n).

To summarize, in order to reformulate the second penalty term in the problem,

first, we need to sort (x1, . . . , xn) in ascending order. The time complexity de-

pends on the choice of the sorting algorithm; we adapt the quick sort algorithm,

which on average takes O(n log n). Next, for each tuning parameter �, the DP

algorithm takes only O(n). For the C-PANT algorithm, for each dimension,

we only need to sort it once to obtain the order to construct the clusterpath, we

solve each sub-problem K times with different � using the DP algorithm, which

takes O(pnK). In total, the time complexity of C-PAINT becomes O(pn log n)+

O(pnK).
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3.5 Experimental evaluation

In this section, we will first compare the runtimes of different methods for L1 con-

vex clustering. The C-PAINT is compared with several representative methods:

FLSA [3], ADMM, AMA [24], CARP [25], and the FUSION algorithm [26]. The

results demonstrate the effectiveness and efficiency of our proposed method in

finding clusterpaths. As the proposed method is a novel optimization method that

yields the exact solution, we focus on showing the visualizations of the obtained

clusterpaths, which clearly illustrate how the clusters evolve along the path. In

the synthetic data example, we generated five clusters with varying shapes, and

the obtained clusterpath shows the merging of the clusters along the path. In the

real data examples, we applied C-PAINT and other methods to relatively small

datasets and presented the runtimes. We also demonstrated the applicability of

C-PAINT to larger datasets, which were not possible for existing methods.

3.5.1 Implementation details

Our proposed DP algorithm and C-PAINT are implemented in Rcpp, which are

implemented in the dpcc R package. We compare with the CARP function,

which is implemented in C++ in the clustRviz R package, and the tuning pa-

rameters are set as recommended values. The FLSA function is in the flsa R

package, which is implemented in C++. To make a fair comparison, we run the

FLSA function without checking the splits based on theorem 3.3.1. The ADMM

and AMA are implemented in the cvxclustr R package using R and C. For

ADMM and AMA, we set the step size to be 1/n, and the convergence tolerance

to be 10�5. The FUSION algorithm is implemented in R in the fusionclust

R package. To make a fair comparison, we implemented the code in Rcpp by our-

selves and made some modifications to accelerate the algorithm. Because Rad-
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chenko and Mukherjee [26] proposed two similar methods, we only consider the

one that successively merges in a bottom-up fashion. As for the modifications,

specifically, instead of storing most of the fusion events, we stored the clustering

results for only K times, which is equivalent to the length of the � sequence used

in C-PAINT, ADMM, and AMA. This modification makes the algorithm much

more efficient. Even that, FUSION is still slower than the C-PAINT for large

sample size cases. Our experiments are performed on a MacBook Air with M1

CPU with 8 GB memory. The elapsed times (wall clock times) are taken as the

runtimes.

3.5.2 Time comparison

The simulated data in this experiment consists of points sampled from a Gaussian

mixture model with three components in R2. We generate datasets with sizes

ranging from 100 to 50, 000 points. For each dataset, we construct a � sequence

consisting of K = 10 values, evenly spaced between 0 and �max. The reported

runtimes are the means of 30 replications. Due to computational limitations, we

only allowed the CARP algorithm to run on data sets with up to 500 points and

restricted the FLSA, ADMM, and AMA algorithms to data sets with up to 1000

points. In contrast, we ran the FUSION algorithm and the proposed method on

larger data sets of 5000, 10000, and 50000 points. While it is possible to solve

each sub-problem in parallel for the L1 case in C-PAINT, FLSA, and FUSION,

we did not pursue it in our experiments.

Figure 3.3 displays the time comparison results. The x-axis corresponds to the

sample size n, while the y-axis represents the runtimes in seconds on a logarithmic

scale.

We notice for the identical weights and L1 penalty setting, CARP is slower than
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Figure 3.3: Comparison of the runtimes in computing clustering solution path in
logarithmic scale. Each line represents the runtimes of different methods.

other methods when the length K is small. FLSA, ADMM, and AMA show quite

close performance and is generally slower than C-PAINT and FUSION algorithm.

FUSION algorithm is highly efficient but is unable to create a clusterpath visual-

ization because it does not estimate the exact value of centroids with a given tun-

ing parameter �. In terms of visualizing the clusterpath and performing clustering,

C-PAINT is the most efficient method. In particular, C-PAINT can find the full so-

lution path of 107 samples in R2 within two minutes. Additionally, the simulation

results demonstrate that the runtimes of C-PAINT increase linearly, confirming

the time complexity analysis presented in Section 3.4. When the sample size n

becomes large, C-PAINT is generally faster than FUSION. The possible explana-

tion for this is that FUSION has to go through every fusion event, which results
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in decreased efficiency as the sample size increases. On the other hand, the pro-

posed method independently performs the DP algorithm with each single tuning

parameter �. To summarize, in terms of finding the clusterpath, C-PAINT out-

performs CARP, FLSA, ADMM, and AMA, and can handle large-scale problems

effectively. Please refer to the Appendix for detailed results.

Figure 3.4: Visualization of the clusterpath generated with a � sequence with
length K = 10. The colors show the clustering results with the biggest tuning
parameter of the lambda sequence. The threshold � are set to be 10�6.

3.5.3 Synthetic dataset

We generate the synthetic data into five clusters with different shapes, each includ-

ing 200 data points. For better interpretability of the clustering results, we set a

small threshold � = 10�6 that for all the estimated centroids within the Euclidean

distance of �, we put them into the same cluster.
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In Figure 3.4, both the clustering results and clusterpath are presented in the same

plot. The colors represent the clusters obtained by the DP algorithm with a certain

parameter �. Instead of drawing the full clusterpath, we stop it halfway before all

the points collapse into one final cluster. By distinguishing the merged centers,

convex clustering successfully separates different clusters.

3.5.4 Small real dataset

We use two small real datasets to investigate the performance of our proposed

algorithm and other methods.

• Lymphoma [34] dataset includes 62 samples categorized into three differ-

ent lymphoma types.

• Gene expression [35] dataset includes the gene expression features of 801

samples with four different types of tumor as labels.

To enhance the visualization of high-dimensional datasets, we first utilize the

UMAP [36] to reduce the dimensions to two. The dimensionality reduction is

carried out using the umap function in the uwot R package. Subsequently, we

apply C-PAINT to the projected coordinates and use the original labels to denote

the clusters in different colors.

Both the full clusterpaths and runtimes are reported in the table 3.1. Here, we

only report the ADMM since the ADMM, AMA, FLSA have similar runtimes, as

shown in Figure 3.3. From the result, we can see C-PAINT is much faster than

other methods.
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Sample size : n = 62 n = 801
runtime (second)

CARP: 6.6⇥ 10�2 223
ADMM: 1.1⇥ 10�2 8.6
C-PAINT: 4.7⇥ 10�4 0.012

Table 3.1: Visualization of the clusterpath generated with a � sequence with length
K = 10. The colors show the original labels of the samples. runtimes are the
means over 30 replications.

3.5.5 Large real dataset

Next, we use relatively large datasets to investigate the performance of the pro-

posed algorithm. In particular, we use:

• Frey faces dataset includes 1965 images of Brendan Frey’s face, taken from

sequential frames of a small video. This is included in the snedata R

package.

• RNA sequence [37] multi-datasets include 5683 cells consisting of 11 cell

types and differentially expressed genes as their features.

• Anuran (frog) calls [38] dataset includes the extracted features from 7195

frog calls records, and each frog has family, genus and species labels, among

which we choose the family.
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Frey faces RNA sequence

Sample size : n = 7195 n = 70000
runtime (s) : 8.4⇥ 10�3 2.6⇥ 10�2

Anuran (frog) calls Fashion-MNIST

Sample size : n = 1965 n = 5683
runtime (s) : 5.6⇥ 10�2 15.8

Table 3.2: Visualization of the clusterpaths of real datasets. The clusterpaths are
drawn by C-PAINT using the coordinates obtained by UMAP. The length of the �
sequence is set to be K = 5. The runtimes of each real dataset are the means over
10 replications.
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• Fashion-MNIST [39] dataset consists of 70000 grayscale images of items

such as T-shirt, Trouser and Bag. Fashion-MNIST includes 10 labels and

each label has the same number of items.

• Kuzushiji-MNIST [40] dataset consists of 70000 grayscale images of hi-

ragana characters in Japanese. Fashion-MNIST includes 10 labels and each

label has the same number of characters.

Here we focus on showing the clusterpaths on large datasets. Table 3.2 shows the

results of the first four datasets. Both the sample sizes and the runtimes of the

C-PAINT are presented. We choose the Kuzushiji-MNIST dataset [40] to explain

in further detail.

Kuzushiji-MNIST is a drop-in replacement for the MNIST dataset, consisting of

ten rows of Japanese Hiraganas. Different from the ordinary Hiragana used in

Japanese nowadays, the kuzushiji came from ancient Chinese characters variants.

Thus, each has several variants. For example, we can see in Figure 3.5 that except

for the Hiragana Ha, others have two or more variants that look quite unlike. To

be more specific, on the right side of the clusterpath, we can see that Ha and Tsu

merge early on as they share a high degree of similarity in their image projections.

3.6 Summary

We have developed a new algorithm for L1 convex clustering. To the best of our

knowledge, it is the first time that dynamic programming has been applied to the

convex clustering problem. By formulating the sub-problems for each dimension

as weighted one-dimensional fused lasso problems, we can apply a dynamic pro-

gramming algorithm to solve them efficiently.

In order to visualize the clusterpath, we proposed the C-PAINT based on the dy-
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namic programming algorithm. The time complexity of C-PAINT is O(pn log n)+

O(pnK). However, in practical applications, the run time of our algorithm grows

linearly as the sample size n and dimensionality p increase. The proposed algo-

rithm is highly efficient and outperforms existing algorithms in terms of scalabil-

ity. For the important special case of L1 convex clustering with identical weights,

the simulation results show our proposed method overcomes the computational

bottleneck, making it possible to recover the full clusterpath for large datasets.

Our methods are implemented in the R package dpcc, which is also available at

https://github.com/bingyuan-zhang/dpcc.

A possible direction for future work is to explore a more general structure of

weights. Currently, C-PAINT algorithm is an efficient method, but it is limited

to the identical weight setting. On the other hand, it is pointed out that general

weights result in advanced performance [41] e.g. weights that have a k-Nearest

Neighbor graph structure and assigned the values using Gaussian kernel.
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Figure 3.5: Some representative variants of kuzushiji and the legend are shown on
the top. The middle figure show the visualization of the clusterpath of kuzushiji-
MNIST. The length of the � sequence is set to be K = 5. The mean runtime is
11.578 seconds over ten replications.
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4 | Conditional independence test

4.1 Introduction

Conditional Independence (CI) test is a statistical hypothesis test used to deter-

mine if variables X and Y are conditionally independent, given another variable

Z fixed. If variable X and Y are conditional independent given Z, we denote it as

X ?? Y | Z. The CI test is an important tool to analyze the relationship between

variables and is applied in causal discovery [42, 43, 13].

The CI test is easy to perform with a large sample size n and discrete variable Z.

At that case, we can test the independence of X and Y for each possible value of

Z. On the other hand, if X , Y , and Z have a joint Gaussian distribution, then CI of

X, Y given Z is equivalent to the zero partial correlation between X and Y given

Z [14], which can be easily tested as well. In this chapter, we aim to examine

the conditional independence of X , Y , and Z without making any assumptions

about their joint distribution, regardless of whether they are continuous or discrete

variables. However, the challenge arises when the dimension dZ grows, which

results in the curse of dimensionality [44]. When Z is a set of dZ variables or any

dZ-dimensional random vector, the problem becomes more complex.

One of the major challenges in CI tests is the requirement to obtain a sample from

the null distribution H0 : X ?? Y | Z. In statistical hypothesis testing, it is

generally necessary to determine the distribution of the test statistic under the null

hypothesis H0. However, in the case of CI tests where we only have access to the

observations, it is impossible to know the exact distribution of any test statistic

under the null hypothesis H0 : X ?? Y | Z. To address the problem, there are two

popular approaches for obtaining an approximate null distribution:

41



• Asymptotic method

One approach utilizes the asymptotic distributions of the test statistics [45,

18, 46]. For some test statistics, their asymptotic distributions are derived.

And for such cases, the asymptotic distribution can be used to approximate

the null distribution. Though these asymptotic distributions can be gener-

ated efficiently, they may become less accurate when the sample size n is

small or with a high-dimensional Z [47, 48].

• Permutation method

The other approach is by permuting the observed samples. Suppose samples

{xi}, {yi}, {zi}, i = 1, . . . , n are available for X, Y, Z. In independence test

where H0 : X ?? Y , though X and Y in each pair (x1, y1), . . . , (xn, yn) are

not independent, we may regard X and Y of shifted pairs of (x1, y2), . . . ,

(xn�1, yn), (xn, y1) to be independent. Thus we can compute the test statis-

tic values on the shifted pairs, which mimic H0 and obtain a histogram as an

approximated null distribution. However, in CI test, as the conditioning set

Z exists, we cannot shift {xi}, {yi}, {zi} in order to make them conditional

independent [49, 47].

In this chapter, we propose a new CI test including a novel test statistic and com-

bined with a local bootstrap method to sample from the H0 : X ?? Y | Z. In CI

tests, many test statistics are calculated based on a direct evaluation of the condi-

tioning set Z. This can be challenging, particularly when Z is high-dimensional

or has a complex density. Our proposed test statistic does not directly rely on

the conditioning set Z, which mitigates the issue of the curse of dimensionality.

The test is expected to be more robust in situations where the conditioning set is

high-dimensional. The experimental results show that our proposed test has com-

parable performance when the conditioning set Z is low-dimensional and notably

outperforms other methods when Z is high-dimensional. Moreover, our proposed
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method can be computed efficiently as the sample size n and the dimension of Z

grow. We summarize our main contributions in detail:

• We proposed a novel test statistic that is calculated in the following way:

first, we divide the variable Z into multiple local clusters. Next, we mea-

sure the unconditional independence within each cluster, and finally, we

aggregate these unconditional independence measures to obtain a single

statistic to measure conditional independence. In particular, we apply the

k-means algorithm to perform clustering on Z, and for each cluster, we use

the Hilbert-Schmidt Independence Criterion (HSIC) [17] as the measure of

unconditional independence. This approach allows us to avoid direct access

to Z and thus alleviate the curse of dimensionality, making the proposed

method more robust for high-dimensional conditioning sets.

• We apply a local bootstrap method to mimic sample from H0 : X ?? Y | Z.

We extended the local bootstrap strategy in [50]. When combined with the

proposed test statistic, the local bootstrap method shows good performance

and provides higher power on both linear and non-linear cases. The local

bootstrap method can be applied not only to the proposed test statistic but

also to other CI tests.

This chapter is organized as follows. In Section 4.2, we discuss some related

work on the CI testing. In Section 4.3, we introduce the notations and provide

an overview of the HSIC, a kernel-based measure of unconditional independence.

In Section 4.4, we present the test procedure and explain the test statistic and the

local bootstrap method in detail. In Section 4.5, we compare our proposed method

with other representative CI tests using synthetic data. Finally, we summarize our

results in Section 4.6.
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4.2 Related work

Recently, numerous nonparametric methods have been proposed for CI testing.

Many test statistics are constructed by embedding distributions in reproducing

kernel Hilbert spaces (RKHS). Fukumizu et al. [49] proposed a measure of CI

based on cross-covariance operators. However, its asymptotic distribution under

the null hypothesis is unknown, and the bin-based permutation degrades as the

dimension of conditioning variable Z grows. Later, KCIT was proposed Zhang

et al. [18] based on the partial association of functions in RKHS. KCIT has the

advantage that its asymptotic distribution is known, which can be efficiently ap-

proximated. To improve KCIT for testing on large-scale datasets, Strobl et al.

[46] proposed RCIT and RCoT to use random Fourier features to approximate

KCIT efficiently. Huang et al. [51] proposed a Kernel Partial Correlation (KPC),

a generalization of partial correlation to measure conditional dependence. Beyond

kernel-based methods, Runge [48] used a Conditional Mutual Information (CMI)

estimator as the test statistic and proposed a k-nearest neighbor-based permutation

to generate samples from the null distribution. Shah and Peters [52] proposed a

generalized covariance measure (GCM) as the test statistic based on the regres-

sion method. On the other hand, CI can be turned into other problems. Doran

et al. [47] turned the CI test into a two-sample test by finding a permutation ma-

trix and measuring the Maximum Mean Discrepancy (MMD [19]) between the

two distributions. Sen et al. [53] proposed a method called CCIT which turned

the CI test into a classification problem. In [47, 53], they both have an additional

sampling step involving data-splitting, which potentially reduces the power when

the dataset is small. Some other model-powered methods also make use of deep

learning: GAN [54, 55] and Double GAN [56].

While a nonparametric CI test makes no assumption about the joint distribution
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of X, Y, Z, imposing additional assumptions can help simplify the problem. One

of the mild assumptions is that X and Y are functions of the variable Z, plus an

additive independent noise term with a zero mean:

X = f(Z) + "x, Y = g(Z) + "y,

If the estimated noise terms are independent "x ?? "y, we conclude that X ?? Y |

Z [57, 58, 59, 60, 61]. The methods in this category find a regression function and

then test for the unconditional independence of the residuals.

For some current different characterizations of CI, see for example, [20]. From

a theoretical perspective, Shah and Peters [52] proved there exists no universally

valid CI testing for all CI cases. In other words, no CI test can control Type-I error

for all the CI cases while having a higher power against any alternative. However,

a desirable CI test is supposed to be computationally efficient and widely applica-

ble for different linear and non-linear cases.

4.3 Background on kernel methods

For random variables X, Y, Z, we use x 2 X , y 2 Y , z 2 Z to denote their

observed samples, and use X ,Y ,Z to denote the associated domains. We consider

a positive-definite kernel k : X ⇥ X ! R. The k has a corresponding a Hilbert

space H and a feature map  : X ! H such that

k(x1, x2) = h (x1), (x2)iH

for x1, x2 2 X . h·, ·iH is the inner product of a reproducing kernel Hilbert space

H.
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Let kX and kY be kernels on X and Y , and HkX and HkY be the corresponding

RKHSs. Gretton et al. [17] defined the Hilbert-Schmidt independence criterion

(HSIC) which can be viewed as the squared MMD between a measure PXY of

X, Y and the product PXPY of measures PX , PY . HSIC has been well studied as

a test statistic in independence test [17, 18, 19]. For a characteristic kernel, the

HSIC(X, Y ) is zero if and only if PXY = PXPY , which indicates X ?? Y .

The HSIC is defined as follows.

HSIC(X, Y ) := ||mk �mkXmkY ||2H

= ||EXY [kX (X, ·)kY(Y, ·)]� EX [kX (X, ·)]EY [kY(Y, ·)]||2H,

where the H is the corresponding RKHS of the kernel k := kXkY defined by

k((x, y), (x0, y0)) = kX (x, x
0)kY(y, y

0)

for (x, y), (x0, y0) 2 X ⇥ Y .

HSIC(X, Y ) is known to have an alternative expression:

HSIC(X, Y ) = EXYX0Y 0 [C(X, Y,X 0, Y 0)] (4.1)

where C(X, Y,X 0, Y 0) is

h
kX (X,X 0)� EX00 [kX (X,X 00)]

ih
kY(Y, Y

0)� EY 00 [kY(Y
0, Y 00)]

i
, (4.2)

and (X 0, Y 0) are independent copies of (X, Y ).

Given data points (x1, y1), . . . , (xn, yn), we consider the following estimator [17]:

[HSIC(X, Y ) =
1

n2
tr(KXHKYH) (4.3)
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where (KX)ij = k(xi, xj), (KY )ij = k(yi, yj), H = I � 1
n11

T , and 1 is a n

vector of ones. For HSIC, the asymptotic distribution under the null hypothesis

H0 : X ?? Y is derived [17, 18]. When we use it in the unconditional indepen-

dence test, we can approximate the null distribution by using either permutation

or its asymptotic distribution. Intuitively, we expect an estimator of HSIC to be a

small value when X ?? Y .

4.4 Proposed method

This section shows our proposed procedure for performing the CI test. First, we

present a novel test statistic. The proposed test statistic is a kernel-based measure

using characteristic kernels as a default choice, i.e., Gaussian kernel. Next, we

explain the local bootstrap algorithm to generate samples from H0 : X ?? Y | Z.

The local bootstrap algorithm sample x, y independently from discrete distribu-

tions, which mimic the distribution of H0. We repeatedly find the test statistics

on the samples to obtain a histogram to calculate the p-value. We summarize the

proposed test in Algorithm 4. Finally, we discuss the effect of parameters and

provide a time complexity analysis of the overall procedure.

By definition, the conditional independence of X and Y given Z means variables

X, Y are independent for any fixed value of Z, denoted as X ?? Y | Z. Here,

we use the notation HSIC(X, Y | Z = z) := EXYX0Y 0 [C(X, Y,X 0, Y 0)|Z = z] to

represent the HSIC on (X, Y ) with fixed Z value, where the (X 0, Y 0) are copies

of (X, Y ).

X ?? Y | Z () X ?? Y | Z = z, 8z 2 Z.

() HSIC(X, Y | Z = z) = 0, 8z 2 Z.

As a direct result, we have the following proposition.
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Proposition 4.4.1 (Characterization of CI)

X ?? Y | Z ()
ˆ

HSIC(X, Y | Z)dµ(Z) = 0 (4.4)

where µ(Z) is a probability measure on Z.

Proof sketch: By the definition of HSIC, HSIC(X, Y | Z = z) = 0 always takes

non-negative values. Thus, for a characteristic kernel, the integral becomes zero

if and only if HSIC(X, Y | Z = z) = 0, 8z 2 Z , which indicates X ?? Y | Z.

Thus, we consider measuring conditional dependence using the marginal uncon-

ditional dependence measures. However, it is unrealistic to assume that for all

observations z, we have enough (x, y) pairs that share the same z values. As

an alternative, we combine the clustering technique to divide Z into subgroups.

Thus, observations of Z are grouped into different clusters with similar z values.

As a result, we consider the following procedure to find our test statistic:

1. Perform clustering algorithm to subdivide Z into M clusters.

2. Measure the unconditional dependence of the (X, Y ) pairs in the m-th clus-

ter using estimators [HSICm(X, Y ).

3. Find the sum of values as a single number

T =
MX

m=1

[HSICm(X, Y ). (4.5)

We use the sum of the local unconditional dependence measure as the conditional

dependence measure, which is similar in spirit to [62]. Margaritis [62] considers

dividing a univariate Z 2 R1 into local bins and using the product of the local

measures. Our method applies to a high-dimensional Z and takes the sum of
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kernel-based measures.

Given data {(xi, yi, zi)}, i = 1, . . . , n, we divide them into M clusters based on

the value of Z using k-means. Let the index set of m-th cluster be Cm, and

Cm ⇢ {1, . . . , n}, [Mm=1Cm = {1, . . . , n}, Ci\Cj = ?, 8i, j 2 {1, . . . ,M}. The

estimator [HSICm in (4.5) is

[HSICm(X, Y ) =
1

|Cm|2
tr(K(m)

X HK
(m)
Y H)

where |Cm| is the size of Cm, and K
(m)
X and K

(m)
Y are the corresponding kernel

matrices for samples (xi, yi), i 2 Cm. The conditioning set Z is only used in

deciding the local clusters in the first step of the procedure. By doing that, we

avoid a direct evaluation of the high-dimensional conditioning set Z.

4.4.1 Local bootstrap

In this subsection, we show a local bootstrap method to sample from H0 : X ??

Y | Z. We calculate the test statistic on generated samples multiple times and

obtain a histogram to approximate the distribution of the test statistic under H0,

which completes the CI test. The key in sampling is to break the dependence

between X and Y while keeping the dependence between (X,Z) and (Y, Z). An

example of an ideal CI permutation is explained in Figure 4.1.

In the above Figure 4.1, we first divide different bins (green, red, and blue), and

each bin x̃ includes samples that have the same z. From that we fix y and z

and shuffle x within each bin with some permutations (⇡1, ⇡2, ⇡3) to generate new

data (x̃, y, z). An ideal permutation successfully generates samples that keep the

dependence between (X,Z) and (Y, Z) while satisfying X ?? Y . However, it is

impossible to perform the ideal permutation in practice because we do not have
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Permute x Fix y, z

x̃3

x̃2

x̃1

x

x̃3(⇡3)

x̃2(⇡2)

x̃1(⇡1) z = z1

z = z2

z = z3

x̃ y z

Figure 4.1: An ideal permutation in CI.

enough samples that have the same z values.

As an alternative approach, we use a local bootstrap. First, given with different

z⇤, we generate (x⇤, y⇤) independently from the following discrete distribution:

x⇤ ⇠ Ĝx|z⇤ :

0

@x1 x2 . . . , xn

w1 w2 . . . , wn

1

A ,

y⇤ ⇠ Ĝy|z⇤ :

0

@y1 y2 . . . , yn

w1 w2 . . . , wn

1

A ,

(4.6)

where wj =
K(zj�z⇤/�)Pn
j=1 K(zj�z⇤/�) is the probability to sample the index j.

This local bootstrap strategy is an extension of [50], originally designed to sample

(x, y) according to a regression model. We extend it using a Nadaraya-Waston

kernel estimator [63] to assign the weights for indexes to be sampled. If zj is close

to z⇤, the wj is large, and the index j is more likely to be sampled. Moreover, the

x⇤ and y⇤ are sampled independently. Thus, it is less likely for xj and yj to be

sampled simultaneously, which breaks the dependence between X and Y . Shi

[50] suggested that the bandwidth � should be varied for different z⇤. Here, we
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Algorithm 4: Local Bootstrap
Input: Data (xi, yi, zi), i = 1, . . . , n.
Output: New samples: (x⇤

i , y
⇤

i , z
⇤

i ), i = 1, . . . , n
1 for i 1 to n do
2 Let z⇤i = zi
3 Sample x⇤

i ⇠ Ĝx|z⇤i
, y⇤i ⇠ Ĝy|z⇤i

.
4 end

Algorithm 5: Test
Input: Data (xi, yi, zi), i = 1, . . . , n.

Cluster number M .
Times to repeat K.

Output: p-value.
1 Find M Clusters.
2 Estimate the T .
3 for k  1 to K do
4 Generate samples with Algorithm 4
5 Estimate Ti on the generated samples.
6 end
7 Compute the p value:

p = 1
K

PK
k=1 {Tk � T}.

narrow the candidates from 1, . . . , n to 10-nearest neighbors of each z⇤, and let

the local bandwidth � of z⇤ be the squared Euclidean distance between z⇤ and its

10-th nearest neighbor.

The local bootstrap is summarized in Algorithm 4. We generate samples multiple

times and calculate the test statistic values T . We repeat it for K times on the

generated samples and calculate the p-value based on the obtained histogram. We

reject H0 if the p value is smaller than a predefined significance level. Otherwise,

we accept H0. We summarize the procedure in Algorithm 5.
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4.4.2 Effect of M

The choice of the cluster number M can have an impact on the performance of

the test. It is essential to choose M properly to ensure that the pairs (x, y) in each

local cluster have similar z values while also ensuring enough pairs in each local

cluster to obtain an accurate estimate of the local HSIC. The choice of the number

of clusters M also impacts the computational complexity. A smaller M would

result in larger clusters on average, requiring more time to calculate the local

HSICs. In practice, we use k-means to decide the clusters and fix the average

cluster size. We let M be dn/C̄e, where dxe takes the least integer that is not

smaller than x and C̄ is the predefined average cluster size.

4.4.3 Complexity analysis

We provide an analysis of the time complexity of the test procedure. Initially, our

method finds M clusters of Z using k-means. At the same time, the local bootstrap

method requires the weights to be calculated once for each observation of Z. Both

of these steps are calculated once and take little time. The major computational

cost is in finding the histogram, where the test statistic T is calculated repeatedly

for K times. Estimating a single T takes O(M |C̃|2) operations, where M is the

number of clusters, and |C̃| is the maximum set size among all clusters and is

smaller than n. This is repeated K times over generated samples to obtain the

histogram of the null distribution. Overall, the proposed test takes O(Mn2K).

The bootstrap part can be easily parallelized to promote the speed further, but it is

beyond the scope of the paper.
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4.5 Experiments

In this section, we compare the proposed methods with other nonparametric CI

tests. Our proposed method is denoted as BHSIC (Bundle of HSICs). We evaluate

the Type-I error rate, Type-II error rate, and runtime of the methods. A good

CI test should have a lower Type-II error rate and be computationally efficient.

We compare with some representative methods: KCIT [18], RCIT, RCoT [46],

CCIT [53], and CMIknn [48]. Details about these methods can be found in

Section 4.2. All methods have source codes available online. We compare how

these methods scale with sample size and the dimension of Z instead of a direct

comparison of runtimes.

We aim to evaluate the performance of the methods under different scenarios. For

our simulations, we consider two models: a simple linear regression model and a

post-nonlinear noise model. The post-nonlinear noise model is a commonly used

setting in evaluating CI tests [18, 46, 48], and the functional forms of X and Y on

Z are as follows:

Model 1 : X =
dZX

i=1

↵iZi + c"b + "1, Y =
dZX

i=1

�iZi + c"b + "2,

Model 2 : X = g1(
dZX

i=1

Zi + c"b + "1), Y = g2(
dZX

i=1

Zi + c"b + "2),

where the Z = (Z1, . . . , ZdZ ), "1, "2 and "b are independent standard Gaussian.

The coefficients ↵i, �i ⇠ U(�0.5/dz, 0.5/dz) follows a uniform distribution and

g1(·) and g2(·) are uniformly chosen from {(·), (·)2, (·)3, tanh(·), exp(�|| · ||2)}.

We consider (a) H0 : X ?? Y | Z with c = 0 and (b) H1 : X 6?? Y | Z with c = 1.

In the following simulations, we study the test performance on different sample
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sizes and dimensions of Z. The sample sizes n varies from {100, 200, 400, 600, 800}

with fixed dimensions of dZ = 1 and dZ = 10. The dimensions dZ varies from

{1, 2, 5, 10, 20} with a fixed sample size of n = 400. We also study the effect of

the cluster number M in our proposed method. The significance levels are set to

be ↵ = 0.05 in all simulations. Evaluations of Type-I error rate, Type-II error rate,

and mean runtimes are reported over 100 replications. Type-I error rate is the false

rejection percentage when the underlying truth is H0 : X ?? Y | Z with c = 0,

and Type-II error rate is the false acceptance percentage when the underlying truth

is H1 : X 6?? Y | Z with c = 1. Runtime is the average time to perform one test.

4.5.1 Hyperparameters setting

The choice of hyperparameters affects the results. For KCIT, RCIT and RCoT,

the bandwidths in Gaussian kernels are set to be the squared median Euclidean

distance between (X, Y ) using all the pairs (or the first 500 pairs if n > 500)

double the conditioning set size, which is recommended in [46]. CMIknn has

two hyperparameters: the neighbor size kCMI = 0.1n in finding the estimator of

the CMI, and the kperm = 5 in the permutation, respectively. The permutation in

CMIknn is repeated for 1000 times as default [48].

In our proposed methods, the bandwidths are set to be the squared median Eu-

clidean distance between (X, Y ) in each local cluster. The number of clusters M

is set to be dn/50e when n <= 200 and dn/80e when n > 200, where dxe takes

the least integer that is bigger than or equal to x. On average, each cluster has

50 samples when n <= 200 and 80 samples otherwise. The local bootstrap is

repeated for 1000 times.
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4.5.2 When Z is low-dimensional

We first examine the performance when Z is generated independently from a stan-

dard Gaussian distribution. The sample size n changes from 100 to 800. Simula-

tion results on linear model 1 and non-linear model 2 are reported in Figure 4.2

and Figure 4.3, respectively. Both Type-I and Type-II error rate are reported. We

only report runtime in Figure 4.3 because it is not affected the models.

Figure 4.2: Simulation results on linear model 1 (dZ = 1). The significant level is
↵ = 0.05. Type-I error rates, Type-II error rates are reported.

Figure 4.3: Simulation results on non-linear model 2 (dZ = 1). The significant
level is ↵ = 0.05. Type-I error rates, Type-II error rates and mean runtimes are
reported.

The linear model 1 setting with a single conditioning variable Z is a simple case.

All methods have controlled Type-I error rates around ↵ = 0.05 and almost zero
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Type-II error rates, except for CCIT. In our experiments, the performance of CCIT

is constantly among the worst. The data split procedure in CCIT seems to reduce

the power of the test when the sample size is small. In the non-linear model 2

setting, all methods have controlled Type-I error rates around ↵ = 0.05. However,

it shows that the proposed method and CMIknn have better powers against others

when the sample size n is smaller. It matches the result in [48] that CMIknn

performs well with low-dimensional conditioning set Z. When the sample size n

is larger than 400, most methods have relatively low Type-II error rates. As for

the runtime, the proposed method is less efficient compared to KCIT, RCIT and

RCoT, which are asymptotic distribution-based methods. Though BHSIC and

CMIknn are slower, the sampling procedure can readily be parallelized.

4.5.3 When Z is high-dimensional

We next examine the performance when Z is a set of 10 variables, and each vari-

able in conditioning set Z is generated independently from a standard Gaussian

distribution. The sample size n changes from 100 to 800. Simulation results on

linear model 1 and non-linear model 2 are reported in Figure 4.4 and Figure 4.5,

respectively.

Figure 4.4: Simulation results on linear model 1 (dZ = 10). The significant level
↵ = 0.05. Type-I error rates, Type-II error rates are reported.
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Figure 4.5: Simulation results on non-linear model 2 (dZ = 10). The significant
level ↵ = 0.05. Type-I error rates, Type-II error rates and mean runtimes are
reported.

In both linear and non-linear settings, RCIT and RCoT fail and have high Type-I

error rates. RCIT and RCoT approximate KCIT by using random Fourier fea-

tures and are designed for large-scale datasets. Though they are more scalable

than KCIT, their performances are poor when the sample size is relatively small.

KCIT, CMIknn, and BHSIC perform well in the linear model setting. In the non-

linear model setting, KCIT shows greater Type I error rates and Type II error rates

because high-dimensional Z leads to a less accurate estimation of asymptotic dis-

tribution. We notice that BHSIC shows a higher power compared with other meth-

ods. As we expected, it is beneficial to avoid evaluating the high-dimensional Z

directly, which makes the method more robust.

4.5.4 When dZ changes

Now we evaluate the performance of the methods when the dimension of Z varies.

We keep the sample size n fixed at 400 and change the dimension of Z from 1 to

20 for non-linear model 2. The results are presented in Figure 4.6. Our proposed

method, BHSIC, shows good performance even with the increase in the dimension

of Z, and exhibits higher power compared to other methods. It is worth noting
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that the dimension of Z does not impact the runtimes since Z is only used once

in the k-means algorithm, which is consistent with our computational complexity

analysis.

Figure 4.6: Simulation results on different dimensions of Z (dZ = 1, 5, 10, 15, 20).
The sample size n = 400 is fixed. The significant level ↵ = 0.05. Type-I error
rates, Type-II error rates and mean runtimes are reported.

4.5.5 Effect on cluster number M

Now We study the effect on the cluster number M . We fix the sample size n =

400 on non-linear model 2 and change M from 2 to 20. We examine both low

dimensional (dZ = 1) and high dimensional (dZ = 10) cases. The results are

shown in Figure 4.7.

We observe that the Type I error rates are well controlled when dZ = 1 and

dZ = 10. However, as the number of clusters M increases beyond 10, the Type-II

error rate increases while the runtimes decrease. This is because when the sample

points are divided into more clusters, each cluster has fewer points, leading to less

accurate estimation of each local HSIC value. On the other hand, as the number

of clusters increases, the computational cost of the proposed test decreases since

each cluster has fewer samples and the test statistic becomes easy to calculated.

The choice of clustering algorithm also affects the number of samples in each

58



Figure 4.7: Simulation results on a different cluster number M . The sample size
n = 400 is fixed. Results on different dimensionality of Z are reported (dZ = 1,
red line; dZ = 10, blue line). The significant level ↵ = 0.05. Type-I error rates,
Type-II error rates and mean runtimes are reported.

cluster. In this experiment, we used naive k-means.

4.6 Summary

In this chapter, a novel CI test is proposed. The CI test includes a new test statistic

and a local bootstrap method to generate samples from the null hypothesis. In the

proposed test procedure, we perform clustering method to avoid directly evaluat-

ing the high-dimensional conditioning set Z. In particular, we use the clustering

result and combine several local dependence measures as a measure of conditional

dependence. Consequently, the problems caused by a high-dimensional Z can be

suppressed. The experimental results show that our method is robust and performs

well against the growth of the dimension of the conditioning set Z.
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5 | Conclusions and future work

In this chapter, we provide a summary of conclusions and a discussion about pos-

sible directions for the follow-up research.

5.1 Conclusions

Our work in Chapter 3 focuses on convex clustering, we have proposed a novel

L1 convex clustering method C-PAINT, which is highly efficient and makes it

possible to visualize clusterpaths of large-scale datasets. Our proposed proce-

dure is based on a key observation that the penalty term in L1 convex clustering

with identical weights can be reformulated into a chain-structured weighted fused

Lasso. Then, we applied a refined dynamic programming optimization procedure

to solve the reformulated problem. Eventually, we proposed C-PAINT algorithm

to visualize the whole clusterpath. In the experiments, we demonstrate that C-

PAINT outperforms existing methods including ADMM, AMA, FLSA, CARP

and FUSION method in terms of efficiency while obtaining the exact solution.

Our proposed method overcomes the computational challenges posed by this spe-

cial case of identical weights. The runtime of C-PAINT grows almost linearly

with respect to sample size n, dimension of data point p, and length of lambda

sequence K, which largely expanded the application scope of convex clustering.

Our work in Chapter 4 focuses on conditional independence test, we have pro-

posed a robust CI test that can handle high-dimensional conditioning sets Z. Our

proposed CI test has two main components: a novel test statistic and a local boot-

strap to sample from H0. For the test statistic, first, we perform k-means clustering

on Z to avoid directly evaluating high-dimensional Z. Next, we measure the un-

conditional dependence measure HSIC for all pairs of (X, Y ) in each cluster and
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combine them into a single test statistic. In order to calculate the p-value, we intro-

duce a local bootstrap sampling method to approximate the distribution under the

null hypothesis. In the simulation study, we have compared our proposed method

to several representative CI testing methods, including KCIT, CMIknn, RCIT,

RCoT and CCIT. We have considered both a linear model and a non-linear model,

with both low-dimensional and high-dimensional conditioning set Z. By combin-

ing the test statistic and local bootstrap, our proposed CI test, BHSIC, not only

showed competitive performance in the low-dimensional setting but also demon-

strated higher power and robust performance in cases with high-dimensional Z.

5.2 Discussion

Finally, we point out the limitations of the current works and discuss the possible

directions for further improvement.

On convex clustering, though C-PAINT is highly efficient, it has two main restric-

tions. The first limitation is that the structure of weight in C-PAINT method is

restricted to the identical weight case. However, a proper weight has a crucial

effect on the performance of convex clustering, and in some scenarios, identical

weights may be an infeasible choice [41]. On the other hand, though C-PAINT

grows linearly as the number of � increases when we want to obtain a more pre-

cise clusterpath or a complete dendrogram, we have to repeatedly optimize with a

large number of parameters �, which is computationally expensive.

On CI test, the proposed method is an exploration that combines clustering tech-

niques in CI test. However, clustering results in different sizes of clusters. Thus,

it is meaningful to improve the current test statistic, which is a simple mean of

cluster-wise dependence measurements. Moreover, we may replace HSIC with

other dependence measures or conditional dependence measures.

61



6 | Appendix

6.1 An example N = 3

Consider the case n = 3, given x1  x2  x3, we want to minimize the following

problem to obtain â1  â2  â3.

(â1, â2, â3) = arg min
(a1,a2,a3)

⇢
1

2

⇥
(x1 � a1)

2 + (x2 � a2)
2 + (x3 � a3)

2
⇤

+ �1|a1 � a2|+ �2|a2 � a3|
�

Suppose â2 is known, by definition â1 is equal to:

â1 = arg min
b

1

2
(x1 � b)2 + �1|b� â2|

= arg min
b

h1(b) + �1|b� â2|

Since the b here represents â1 and is always smaller than â2. We only need to

consider two cases:

• (1) b < â2. At that case, by KKT condition it is easy to find â1 = U1.

• (2) b = â2. In other words, â1 = â2.

From that we get

â1 = arg min
b

h1(b) + �1|b� â2| = min(â2, U1)
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Similarly for â2, we suppose â3 is known:

â2 = arg min
b


1

2
{(x1 � �1(b))

2 + (x2 � b)2}+ �1|�1(b)� b|+ �2|b� â3|
�

= arg min
b

h2(b) + �2|b� â3| = min(â3, U2)

Next we need to find U1, U2 and â3, with whom â1 and â2 can be obtained imme-

diately. We solve it in the following order:

U1 ! U2 ! â3 ! â2 ! â1.

For U1, it is straightforward that U1 = x1 + �1. Then for U2, the U2 satisfies

g2(U2) = �2, and g2(b) is a continuous piecewise linear function shown in the

figure 6.1.

g2(b) = g1(b)I[b  U1] + �1I[b > U1] + (b� x2)

= (b� x1)I[b  U1] + �1I[b > U1] + (b� x2)

Because g2 is composed of two lines, the key is to locate which line is (U2,�2)

on. According to the algorithm 2, we first search from the right by assuming the

(U2,�2) is on the right line, and get � = �2 � �1 + x2 which makes (�,�2) the

intersection point of y = �2 with the right line. Next we compare the � with U1

in figure 6.1. If � >= U1, (U2,�2) is indeed on the right part of the line, then we

have U2 = �; otherwise we update the slope and intercept to be those of the left

line and let U2 = �new = �2 + (x1 + x2)/2.

This search process is efficient enough but is still not linear. In order to make the

search more efficient, some care needs to be taken.
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b

y

U1

g2(b)
�2

�2

�� �new

Figure 6.1: An image of g2(b): the solid line is an example of g2(b) with a branch
point U1. The search starts to find the � first and if � does not qualify � > U1,
then we go to find the �new.

Here we illustrate the erase step in line 11 of Algorithm 2. We consider the case

when U2 < U1. We want to find â3 and search from the right part of the g3

function. The only difference between searching U2 and â3 is we let � satisfy

g3(�) = 0. We first compare the � with U2, and if � < U2, the comparison

between � and U1 is no longer necessary because we already know U2 < U1.

Thus we can delete the U1 after obtaining a U2 that is smaller than U1. In the end,

all the Ui can be deleted at most once: once a Uj, j > i is found such that Uj < Ui,

the former Ui can be deleted immediately and never used again. By doing this,

the DP algorithm becomes much more efficient and finally takes linear time.

6.2 Simulation details

Both standard errors and means over 30 replications are reported in the following

table. From the table, we observed that C-PAINT is more efficient than FUSION

as the sample size n grows.
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Sample size n 100 500 1000 5000 10000 50000
CARPl1 0.32(2.7e-3) 232.5(69) * * * *
FLSA 0.04(5.2e-4) 3.4(4.8e-2) 35.6(0.4) * * *
ADMM 0.07(9.3e-4) 4.9(4.8e-2) 50.8(20) * * *
AMA 0.07(1.1e-3) 3.3(2.7e-2) 42.7(15) * * *
FUSION 5.0e-4(9.2e-5) 4.0e-3(1.1e-4) 1.2e-2(2.0e-4) 3.3e-1(3.1e-3) 1.1(7.4e-3) 27.7(2.8e-2)
C-PAINT 9.7e-4(2.6e-4) 3.8e-3(1.2e-4) 8.9e-3(1.5e-4) 1.5e-1(7.5e-3) 0.41(1.1e-2) 5.6(4.2e-2)

Table 6.1: Run times Comparison. The means and standard errors of each method
over 30 replications are reported. Here ⇤ means we cannot obtain the solutions
within a reasonable time.
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