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Abstract

Unsupervised learning is an important category in machine learning algorithms. Unsu-
pervised learning provides a powerful tool for exploring unlabeled datasets and extract-
ing useful information. Unlike supervised learning, unsupervised learning is trained
without any explicit supervision. This makes unsupervised learning an attractive option
since human-labeled data can be expensive to obtain, while unlabeled data are easily
collected. On the other hand, large-scale and high-dimensional datasets are common
in fields such as computer vision, natural language processing, and biology. Therefore,
there is a growing demand for efficient and high-performance unsupervised learning

algorithms that can handle the complexity of large-scale and high-dimensional datasets.

In the first part, we study convex clustering. Clustering is a popular unsupervised learn-
ing technique. There are many famous clustering methods, such as k-means and hier-
archical clustering methods. Convex clustering is a modern clustering framework with
both features of k-means and hierarchical clustering. We proposed a highly efficient -
convex clustering method that is capable of visualizing the clusterpath on large datasets.
Results show the proposed method is significantly more efficient than existing methods

in finding the optimal solution.

In the second part, we study the hypothesis test on conditional independence. Condi-
tional Independence (CI) test is a fundamental problem in statistics. It aims to deter-
mine whether variables X and Y are conditionally independent given another variable
Z fixed. However, when the conditioning set Z is continuous and high-dimensional, it
becomes a challenging problem. We proposed a robust CI test that outperforms exist-
ing tests against the growth of the dimension of Z. Results show the proposed method

provides a more accurate and reliable way of determining conditional independence.
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1| Introduction

1.1 Motivation

The increasing availability of large-scale and high-dimensional datasets has cre-
ated a need for efficient and better-performed unsupervised learning methods.
This thesis addresses the following two tasks in unsupervised learning. We de-

scribe current challenges and clarify motivations for developing better algorithms.

Convex clustering is a modern unsupervised learning technique that has recently
gained popularity. The convex clustering algorithms involve two steps: first, solv-
ing a fused Lasso problem and then determining the clusters based on the esti-
mated parameters of the fused Lasso problem. The major bottleneck of convex
clustering lies in the difficulty of solving the fused Lasso problem. Although
significant progress has been made in developing fast optimization algorithms,
applying convex clustering on large-scale datasets is still challenging. This lim-
its the practical application of convex clustering to small datasets. To overcome
this challenge, we aim to develop a more efficient convex clustering optimization

procedure to make convex clustering applicable to large-scale datasets.

Conditional independence test aims to find whether variables X, Y are indepen-
dent give another variable Z. Independence test and conditional independence
test play a central role in constrained-based causal discovery. CI tests are ap-
plied to identify the presence or absence of causal links between variables. In
that case, usually, the conditioning Z is high-dimensional. However, current CI
tests have difficulty dealing with high-dimensional conditioning Z. To address
this problem, we aim to develop a robust and efficient nonparametric CI test that

can handle high-dimensional conditioning Z.



1.2 Thesis organization and contribution

The thesis is organized as follows: In Chapter 1, we briefly introduce the motiva-
tion of this thesis and present a summary of contributions. In Chapter 2, we pro-
vide related background information that is crucial for understanding the follow-
ing contents. For convex clustering, we introduce sparse estimation, particularly
the fused Lasso problem, because the fused Lasso problem is a critical component
in the loss of convex clustering methods. For conditional independence test, we
provide a background on kernel methods and the characterizations of indepen-
dence and conditional independence. In Chapter 3, we propose a method called
C-PAINT for L, convex clustering with identical weight, an important special

case for L; convex clustering. In particular,
Contribution of Chapter 3

* We reveal that the sub-problem of L; convex clustering with identical weight

can be reformulated into a weighted 1d-fused Lasso problem.

* We propose a refined DP algorithm to solve the reformulated weighted 1d-

fused Lasso problem.

* We propose C-PAINT to construct a full clusterpath. In practice, we show

that C-PAINT is highly efficient and possible for large datasets.

In Chapter 4, we propose a novel procedure to perform a non-parametric CI test.

In particular,
Contribution of Chapter 4

* We design a procedure to find a novel test statistic. We first subdivide the
conditioning set Z into several local clusters, measure the unconditional

independence of (X,Y’) in each cluster, and consider the sum of local un-




conditional independence measures as the test statistic.

» We propose a local bootstrap to sample from the Clcase Hy : X L Y | Z.
The local bootstrap method works well with the proposed test statistic and

can be applied to other CI tests.

In Chapter 5, we summarize the proposed methods and provide a comprehensive
discussion of their strengths and limitations. We provide a discussion about pos-

sible directions for the follow-up work.




2| Background

2.1 Background on convex clustering

Clustering methods play a vital role in the field of unsupervised learning. Clus-
tering methods are powerful tools in exploratory data analysis and have a wide
range of applications in various fields. Numerous methods have been developed
over the years; among them, convex clustering is a modern framework designed
to perform clustering by minimizing a convex loss function. The convex cluster-
ing’s loss function is closely related to the sparse models, specifically to the fused
Lasso problem. Therefore, we provide some helpful background information on

sparse estimation and fused Lasso.

2.1.1 Lasso regression

We consider a linear regression model as follows:
y=XpB+e (2.1)

where the y € R” is the response vector and X € R"*? is a design matrix of
the predictor variables, and 3 € RP? is a p-dimensional coefficient vector. € €
RP is the error vector that each element is assumed to be i.i.d. with zero mean.
The linear model is a simple framework and provides predictive performance in
many practical situations. However, in scenarios where the predictor variables are
high-dimensional and only a few true coefficients are non-zero, the least squares
estimator may not be a feasible option. To address the problem, penalized models
have become of interest for applications that aim to promote the recovery of the

true coefficients 3 and learn a sparse representation.



Penalized models have been a well-studied subject, and among them, the Least
Absolute Shrinkage and Selection Operator (Lasso) [1] is a famous model. Lasso
adds a penalty term on 3 with a tuning parameter A to the squared error loss

function. In the linear regression setting, Lasso minimizes the loss:
1 p
Sl = XBIE+ D15 (2.2)
i=1

The penalty terms of absolute value | - | promote sparsity in the coefficient vector.
As the tuning parameter \ increases, the estimated coefficients are progressively
shrunk toward zero, resulting in a model with fewer non-zero estimated elements

in the parameter vector B .

2.1.2 Fused Lasso

The fused Lasso [2] is an extension of the Lasso that was initially proposed to
encourage the smoothness and local constancy of coefficients. In the linear re-

gression setting, the fused Lasso minimizes the following loss:

n—1

1

Sl = XBIE+AY 16— Bl (2.3)
i=1

The penalty terms are the absolute value of the difference between adjacent coef-

ficients, which encourages the similarities between adjacent coefficients.

A more widely applied use of the fused Lasso is to decrease noise and restore the
original signal. The one dimension Fused Lasso Signal Approximator (FLSA) [3]

considers the case with X = I and the loss function becomes:

1 n—1
§Hy—ﬂ|!§+A;\@—ﬁi+1l. 2.4)




In the above loss function, the parameter vector 3 is used to approximate the true
signal from noisy input y. We observe that additional penalty terms are placed on
the difference between neighboring coefficients. Such penalty terms are applied
to smooth the signals if the input data has a natural order. However, we may
consider the penalty terms of different connected pairs beyond the local neighbors
in a more general form. We have the following loss function of the generalized

fused Lasso [4]:
1
§||y—,3||§+)\ Z B — Bital- (2.5)

(i,§)€E
The FE is an edge set of a general graph, and the penalty terms can be placed on any
pairs between coefficients. If the graph is a chain graph, then the problem (2.5)
degenerates to the problem (2.4). It is worth noting that in addition to L; norm
penalty, replacing it with L, norm penalty in the FLSA framework can also pro-
duce good results. The main difference is that the L, penalty produces smoother
solutions, while the L; penalty promotes sparsity. Therefore, the choice between
Ly and L, penalty should depend on the specific application and the desired prop-
erties of the resulting solution. Additionally, joint-learning algorithms such as
[5, 6] also use the fusion penalties of L; or L, norms to encourage similarities in

parameters.

2.1.3 Optimization algorithms

The fused Lasso problem shares a key property with Lasso, that both of their
loss functions (2.2) and (2.5) are convex [2]. The convex formulation ensures the
uniqueness of the optimal solution for fused Lasso. However, solving the fused
Lasso problem can be a challenging task. Several algorithms have been developed
for the fused Lasso. Some methods are designed for the chain-structured fused

Lasso problem (2.4) while others are for the general fused Lasso problem (2.5).




We summarize some representative methods in the following table.

Method Application
CVX (general solver for convex problem) (2.5
Component-wise algorithm [7] (2.5)
Path algorithm [3] (2.5)
DFS-fused Lasso [8] (2.5
general FLSA approximator [3] (2.5)
1d-FLSA approximator [3] (2.4)
Dynamic Programming [9] 2.4)

Table 2.1: Optimization methods for the fused Lasso problems.

For the chain-structured fused Lasso problem (2.4), the dynamic programming
(DP) method proposed by Johnson [9] is so far the most efficient optimization
method. Unlike some general solvers for the convex optimization problems (e.g.,
alternating direction method of multipliers (ADMM) [10]), the dynamic program-
ming method does not require iterative updating parameters. The dynamic pro-
gramming method takes only O(n)-operations to obtain the exact solution. There
are also some variants of the DP method [8, 11], but the structure of weight is

limited to chain and tree graphs [9, 12, 11].

In Chapter 3, we demonstrate the application of fusion penalty in clustering, lead-
ing to a framework known as convex clustering. Similar to the fused Lasso formu-
lation, convex clustering faces optimization challenges. Various efforts have been
made to accelerate the optimization procedure. It is worth mentioning that the
optimization methods proposed in the context of convex clustering are not listed

here. These methods will be introduced in Chapter 3.2.




2.2 Background on conditional independence

Independence and conditional independence are two fundamental concepts in statis-
tics. Given observations of variables, reliable independence and conditional in-
dependence testing methods are essential in constrained-based causal discovery
[13, 14]. On the other hand, kernel-based method is an important category in
machine learning methods and is widely applied in independence and conditional
independence testing. First, we include a gentle introduction to build a basic un-
derstanding of kernel. Next, we provide some background information on the
definitions and characterizations of unconditional independence and conditional

independence, which are closely related.

2.2.1 About kernel methods

This subsection introduces notation, definitions, and basic propositions about ker-
nel methods. See [15, 16, 17] for further details. Throughout the thesis, we con-

sider the positive-definite kernels defined below.

Definition 2.2.1 (Positive-definite Kernel) Ler X' be a nonempty set. Suppose a
function k : X x X — R is symmetric, i.e. k(x1,1s) = k(x2,21),Vr1, 29 € X. k

is said to be positive definite if ¥(xy,...,x,) € X™(n > 1), the gram matrix

k(xi,z1) ... k(z1,z,)
: e R™*" (2.6)

k(xn,x1) ... k(zp,zn)
is a positive semi-definite matrix.

Proposition 1 Let kq, ko, . .. be positive-definite kernels, then the following func-

tions are positive-definite kernels.




1. Ozk?l + /Bk’g, Oz,ﬂ Z 0.
2. k’l X /{2.

3. k(z,y) = f(x)f(y), where f(z) e R,z € X.
The following binary functions are some well-known positive-definite kernels:

1
Gaussian kernel:  k(x,y) = exp(——||z — y|[3),0 > 0.
o

Laplacian kernel: k(x,y) = exp(a||z — y||1),a > 0.

Polynomial kernel: k(z,y) = exp(z’y + a)?, o > 0,d : degree parameter.

Among them, Gaussian kernel is the most widely applied kernel [18, 17, 19].
Based on the above proposition, the product of Gaussian kernels is also a positive-
definite kernel. In the later chapters, we will use Gaussian kernel as a default

choice, if not specified.

Definition 2.2.2 (Hilbert Space) A vector space H with an inner product defined
is called a Hilbert space if it is also a complete metric space with respect to the

distance function induced by the inner product.

Definition 2.2.3 (Reproducing Kernel) Let H be a Hilbert space which consists
of functions f : X — R. A kernel is called a reproducing kernel if the following

two conditions are satisfied:
e Ve X, k(x,-) € H.
VfeHVreX, f(z)= ([ Kk, ))n

‘H 1s called a Reproducing Kernel Hilbert Space (RKHS) with a reproducing ker-

nel £ whose span is dense in ‘H. A positive-definite kernel k£ can be used to define




a feature map ¥ : X — H, such that ¥(z) := k(z, -) and
k(w1 m2) = (V(z1), U(2))n
for 1, x5 € X. The (-, -)4 is the inner product of the Hilbert space H. Such an H

is a reproducing kernel Hilbert space (RKHS) for the kernel &, denoted as Hy.

Next, we define the following mapping of a measure to an RKHS.

Definition 2.2.4 (Kernel Embedding) Let P be a set of measures. The kernel
embedding of the measure [ into the RKHS Hy, is the map my, : P — Hy, defined
by

P> p— my(p) = /k(-,x)du(x) € Hy,

From the above definition, a direct consequence is
[ F@uta) = (fmh, 1 € e

A kernel is said to be characteristic if the above mapping is injective; in other
words, my, () is uniquely embedded in . For example, Gaussian kernel is known
to be a characteristic kernel [15, 16]. Such a mapping is used in comparison to
different distributions. Next, we introduce a distance measure defined between

two probability distributions.

Definition 2.2.5 (Maximum Mean Discrepancy (MMD)) The Maximum Mean
Discrepancy (MMD) between P, () € P is defined as

MMD(P, Q) = ||mi(P) — mp(Q)||,

By definition, it is easy to notice that MMD takes non-negative values. In partic-

10



ular, for characteristic kernels, the MMD(P, () becomes zero if and only if the
measures P, () coincide [19]. The squared MMD has an alternative expression as

follows:

MMD?(P, Q) = [[mx(P) — mx(Q)|f3,,

= Exx [k(X, X")] + Eyy/ [k(Y,Y")] = 2Exy [k(X,Y)]

And an unbiased estimator of squared MMD [19] is given by

9 1 m 1 n
MMD = ——— S5 k(znay) + ———— 3> k(i ys
m(m — 1) &~ £— (xz’xj)+n(n—1) o L (o v3)
J=1 iy J=1 iy

= 2SS k)

i=1 j=1

Finally, we consider an unconditional dependence measure for variables X and
Y. Let kx and ky be kernels on X and V), and H.,, and Hy,, be the corresponding
RKHSs. Gretton et al. [17] defined the Hilbert-Schmidt independence criterion
(HSIC), which can be viewed as the squared MMD between Py and the product
Px Py of the marginalized measures Py, Py. HSIC is a state-of-the-art depen-

dence measure that suits both continuous and discrete variables.

Definition 2.2.6 (Hilbert-Schmidt independence criterion (HSIC))

HSIC(X,Y) = ||my — mymu |12,

= |[Exy [k (X, )ky(Y, )] = Ex[ka (X, )| Ey [ky (Y, )]

where the H is the corresponding RKHS of the kernel k = kxky defined by

k((xu y)> (33/, y/)) = kX(x> a:/)ky(y, y/)

11



for (z,y), (@',y) € X x .

For a characteristic kernel, the HSIC(X, Y) is zero if and only if Pxy = Px Py

2.2.2 Independence

In this subsection, we introduce the definition of independence and some measures

for dependence between two variables X, Y.

Definition Given random variables X, Y and we assume the joint probability den-

sity pxy and px, py exist. X, Y are independent, denoted as X 1 Y, when

Pxy = PxDPy

Based on finite observation values {(x;, y;)}", for variables X, Y, we may con-
sider different dependence measures between X, Y. For example,

Spearman’s p:

cov(ry, ry)

p=——"—"
O-ngo-ry

where the r,, r,, are the converted rank variables of X, Y. We may convert {(z;,y;) }1,
to ry(z;),ry (i), Vi = 1, ..., n as their ranks. Let the d; := r,(z;) — 7,(y;) be the

difference between the ranks of the pair (x;, y;), we have

63 i di

p=L——— 3

n(n?—1)

Kendall’s 7:

1 . :
T= Z sign(x; — x;)sign(y; — y;)-
i#]

where sign(a) = 1[a > 0] takes 1 if @ > 0 or O otherwise. The ties of (x;, z;)

and (y;, y;) pairs are overlooked for simplicity. Both Spearman’s p and Kendall’s

12



7 are rank correlation statistics. Beyond that category, we may also use the dis-
tance between the joint distribution Pxy and the marginal distributions Py and
Py as dependence measures. We show an information-based measure (Mutual

Information) and a kernel-based measure (HSIC).

Mutual Information (MI):

I(X,Y) = Dkr(Pxy || Px ® Py) = //pr log Pxy dzxdy
PxPpy

where the Dy, is the Kullback-Leibler divergence and pxy, px, py are the prob-

ability density functions.

Hilbert-Schmidt independence criterion (HSIC)

HSIC(X,Y) = |[my, — myymy ||,

For both MI and HSIC, they become 0 if and only if X 1 Y. However, esti-
mating them on a finite sample can be challenging in practice. Though we are
unable to directly "check" the independence given only the observation, we may
use the above dependence measures to characterize the independence of X, Y. In

practice, they can be applied as test statistics in independent testing.

2.2.3 Conditional independence

In this subsection, we introduce the definition of conditional independence, which
is a natural extension of independence with another variable Z. We also show

some measures for conditional dependence.

Definition Given random variables X, Y, Z and we assume joint probability den-

sity function pxy 7 is continuous and px, py, pz exist. X, Y are conditional inde-

13



pendent given Z, denoted as X 1 Y | Z, is defined as

Pxy|z = PXx|zPy|z

or equivalently

Pxvyz = Px|zPy|zPz
Px|\yz = PX|z
Pyvixz = Pv|z
PxyzPz = PxzPyz
Several characterizations of CI have been proposed and applied to CI tests [20].
We may start by considering a simple case when X, Y, Z are joint Gaussian dis-

tributed, the conditional independence of X, Y given Z is equivalent to the partial

correlation being zero [14].

Partial Correlation

_ cov(X —E[X [ Z].Y —E[Y | Z])
P Vvar(X —E[X | Z])var(Y — E[Y | Z])

where E[-|-] and var(-) denote the conditional expectation and variance, respec-
tively, and cov(-, -) denotes the covariance between two variables. The property
that pxy,z = 0 if and only if X 1 Y | Z only holds under the assumption
that X, Y, Z follow a jointly Gaussian distribution. In general, partial correlation

becoming zero does not necessarily imply conditional independence.

On the other hand, there are also some characterizations of CI unaffected by the
assumption on the joint distribution of XY, Z. We will show the example of

conditional mutual information, which is an extension of mutual information.

14



Conditional Mutual Information

16.Y12) = [[f pevziosCZ222) iy

PxzPyz

The following holds true for an arbitrary joint distribution of X, Y, Z.
I(X)Y|Z2)=0 < X 1Y |Z

In Chapter 4, we discuss some other nonparametric CI tests based on different

characterizations of CI, and propose a novel CI test.

15



3| Convex clustering

3.1 Introduction

Clustering is a popular unsupervised learning task that involves exploring data to
identify groups of similar objects. There are several traditional clustering meth-
ods, including hierarchical clustering, partitive clustering, and model-based clus-
tering. More recently, researchers have been studying convex clustering [21, 22,
23], which is known for its global optimality due to the problem’s convex for-
mulation. Unlike methods like k-means, which require a predetermined number
of clusters, convex clustering uses a tuning parameter to control the number of

clusters in the output.

Given n points &1, . . . , ©,, in R?, convex clustering minimizes the following prob-
lem:
1 n
L(A) = 5D Il — a3+ A ) willai — agl,. G.1)
i=1 i<j

In the above loss function, each a; € RP represents an alternative vector to rep-
resent the point &; € RP. The A is a matrix whose rows correspond to these
alternative vectors. The L,-norm, denoted by || - ||g, is typically chosen as 1, 2,
or oo [21]. The tuning parameter \ is a positive constant, and the weights w;; are
chosen based on the input data. By solving the optimization problem, the optimal
solution A = (ai,...,a,)" is obtained. To assign samples to the same cluster,
we check whether the corresponding alternative vectors are equal. We assign the

samples ¢ and j to a same cluster if and only if a; = a;.

The solution path of the optimization problem has a meaningful visual interpre-
tation known as the "clusterpath" (Figure 3.1). By varying the tuning parameter

A, the clusterpath shows how each point becomes merged along the path, provid-

16



ing rich information about the cluster structure of the data. Specifically, when
A = 0, each point occupies a unique cluster, and as A increases, the clusters begin
to coalesce. Eventually, for a sufficiently large A, all the points coalesce into a
single cluster. The clusterpath visualization is a valuable tool for exploring and

understanding the clustering behavior of the proposed method.

In general, constructing the clusterpath involves a high computational cost. To
solve (3.1), Hocking et al. [21] proposed to use three algorithms for different
regularization terms corresponding to Ly, Lo, and L. Subsequently, general
solvers for convex problems such as the alternating direction method of multipli-
ers (ADMM) and the alternating minimization algorithm (AMA) [24] have been
applied to solve (3.1) with L, and L. penalties. To obtain the clusterpath effi-
ciently, Weylandt et al. [25] proposed the CARP algorithm, which uses a novel
computational technique to approximate the path-wise visualizations with suf-
ficient precision. For the L; penalty case with identical weights setting (i.e.
w;; = 1), Radchenko and Mukherjee [26] considered two efficient algorithms
that successively merge the clusters in a bottom-up fashion or split the clusters
in a top-down fashion to detect all the fusion or split events. Additionally, they
studied the sample behavior of convex clustering with L; penalty and identical
weights, providing theoretical support. However, their methods cannot estimate

A and therefore cannot provide a clusterpath.

In this chapter, we consider the same setting as Radchenko and Mukherjee [26]:
L, convex clustering with identical weights. However, we propose a completely
different approach and develop an efficient algorithm to handle the computational
bottleneck in the convex clustering problem. Fortunately, for the problem (3.1)
with the L; penalty, Hocking et al. [21] noted that the problem is separable along
dimensions. In addition, for each dimension the sub-problem becomes the fol-

lowing general fused Lasso problem [2]. The problem (3.1) is decomposed into p
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Figure 3.1: An example shows the clusterpath generated under L; norm. The
clusterpath shows individual cluster centers start to merge and finish as a single
cluster.

separate sub-problems as follows:

n n—1 n
1
m%{n 3 E (zi — a;)® + A\ E E la; — aj] (3.2)
acR™
i=1 1=1 j=i+1

Hocking et al. [21] applied the FLSA algorithm [3] to solve the problem (3.2).
However, based on our experience, it still remains very challenging for large-
scale problems. Therefore, we employ a dynamic programming (DP) method to
obtain the exact solution of the problem (3.2). Johnson [9] first proposed the
dynamic programming method for the chain-graph fused lasso, or simply, the

chain-structured 1d fused Lasso, which penalizes the neighbor terms:

n

n—1
1 )
lil’elkl;ll§ o~ (ZL’Z — CL»L‘) + A ZZI |CLZ' — CLi+1| (33)
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Although (3.2) and (3.3) may appear different at first glance, we demonstrate in
this chapter that there is a close relation. Specifically, we begin by reformulat-
ing the sub-problem of convex clustering expressed in (3.2) as a weighted one-
dimensional fused lasso problem in (3.3). This reformulation enables us to utilize
a modified version of the dynamic programming method, which efficiently solves
the problem in linear time. Our numerical experiments validate the effectiveness
of our proposed method, which outperforms existing approaches. We summarize

our contributions in detail:

* Based on an important observation regarding the case of identical weights,
we demonstrate that each sub-problem of convex clustering can be trans-

formed into a weighted 1d fused lasso problem.

* We utilize a DP algorithm to solve the reformulated problem. In addition,
we refine the problem’s formulation to improve its efficiency further. Our
proposed algorithm, C-PAINT, builds upon the DP approach to construct a
full clusterpath. The complexity of C-PAINT is O(pnlogn) + O(pnkK),
where K is the length of A\ sequence, n is the sample size, and p is the
feature dimension of each sample. In the later simulation, we show that the

C-PAINT takes O(pnK), which is scalable to large datasets.

The remaining article is arranged as follows. Specifically, we begin by discussing
related work in Section 3.2. In Section 3.3, we introduce the preliminaries and
present some key properties of L; convex clustering, which will be utilized to re-
formulate problem (3.2) later on. Next, in Section 3.4, we outline our DP method
and C-PAINT algorithm, which allow us to draw a full clusterpath. To evaluate the
effectiveness of our approach, we report our experimental results in Section 3.5,
which includes both synthetic and real data. Finally, in Section 3.6, we conclude

the article. For more detailed information about the DP algorithm, please refer to
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the supplementary material.

3.2 Related work

Convex clustering has several variants in the literature. For instance, Chi et al.
[27] introduced convex bi-clustering, while Wang et al. [28] proposed sparse con-
vex clustering, which enables simultaneous clustering and feature selection. In
addition, Wang et al. [29] proposed robust convex clustering, which is designed

to detect outlier features.

From the computational perspective, several theoretical studies have been done
on convex clustering. For example, Tan and Witten [30] demonstrated that when
identical weights are employed, convex clustering is closely related to single-
linkage hierarchical clustering and the k-means method. Radchenko and Mukher-
jee [26] analyzed the asymptotic properties of the solution path and provided con-
ditions for it to yield the true dendrogram under L, fusion penalty with identical
weights. Furthermore, Zhu et al. [31] investigated the conditions required for

convex clustering to recover clusters correctly.

From the computational perspective, studies are focused on fast computational
methods for convex clustering. Lindsten et al. [22] proposed to use the off-the-
shelf solver CVX to generate the solution path. Hocking et al. [21] introduced
three algorithms for three different penalty norms (L;, Lo, and L,). They used
the FLSA algorithm for ; penalties. Chi and Lange [24] proposed to use the
ADMM and the AMA for the convex clustering problem. However, the conver-
gence rate is not fast enough during the iterative process when the sample size n
and the dimension of data p are large. Yuan et al. [32] proposed a semi-smooth
Newton-based algorithm to solve the convex clustering problem. Weylandt et al.

[25] proposed an ADMM-based approximation method to obtain a complete so-
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lution path. Radchenko and Mukherjee [26] proposed efficient methods that suc-
cessively merge or split the clusters, but these methods are unable to find the exact
solution of the estimated centroids A, thus is impossible for the visualization of

the clusterpath.

Despite its many competitive features, convex clustering remains computationally

challenging due to its high computational burden.

3.3 Preliminaries

In this chapter, we use small bold letters to denote vectors, such as x, and use

ordinary letters to denote scalars, such as z.

At first, we discuss the decomposition of the L; convex clustering loss function
into sub-problems by each dimension. Next, we introduce some essential prop-
erties about the loss function of each sub-problem, which will be useful for our

problem reformulation in Section 3.4.

Each sample point has p features @; = (z;1,...,7;,)" and its corresponding pa-
rameter vectors a; = (a1, . .. ,aip)T. Consider the following convex clustering

problem with L, fusion penalty and identical weights:

—lewz aill; + A llai — aylh

1<J

= Z (T — ag) —l-)\z Z |ai, — ajl

=1 j=i+1

(3.4)

It is easy to notice that solving the minimization problem in (3.1) is equivalent
to solving p separate sub-problems, one for each dimension. In the following

discussion, we focus on the sub-problem (3.2).
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Now, we introduce the following theorem and lemma that prepare us for the re-
formulation in the next section. [21] first shows that in the L; clusterpath, no split
happens in the identical weights setting 3.3.1. In other words, for a small Ay, if
two parameters become the same value @;(A;) = a;(\1), they will become the
same value i.e. a;(A\2) = a;(\2) for any bigger A\ > A;. Next, we have lemma

3.3.2 that the order of the original input is preserved in estimated centroids.

Theorem 3.3.1 (Hocking et al. [21]) Taking w;; = 1 for all © and j is sufficient

to ensure that the (1 clusterpath contains no splits.

Lemma 3.3.2 (Chiquet et al. [33]) The absence of splits is equivalent to the preser-
vation of the order along the path for problem (3.2).

3.4 Proposed method

In this section, we demonstrate how to reformulate the problem (3.2) by substi-
tuting the penalty term in Section 3.4.1. Subsequently, we describe how to apply
the DP method to solve the reformulated objective function, providing the specific
modifications in Section 3.4.2. While Algorithm 1 presents a high-level overview
of the DP algorithm, we provide additional details in Algorithm 2. Next, we pro-
pose the C-PAINT algorithm, which is based on the DP algorithm and is outlined
in Algorithm 3 in Section 3.4.3. Finally, we analyze the time complexity of the

proposed procedure in Section 3.4.4.

3.4.1 Idea

Our idea is simple: to reformulate each original sub-problem into an equivalent
form. On the theoretical side, a direct consequence of Theorem 3.3.1 and Lemma

3.3.2 is that for problem (3.2), the order of the elements in @ is preserved in a. In
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other words, the estimated centroids preserve the original order of the input data.

where the z(;),7 = 1,...,n are the x that sorted in a non-decreasing order. Thus
the order of the centroids to be estimated can be obtained directly from the input

data. Let us take a look at the penalty term in problem (3.2):

n—1 n
D> lai—ayl.
i=1 j=i+1
Suppose the order of (ai,...,a,) is known, then the absolute value can be re-
moved. For example, let n = 4, then for aq) < ap) < a@z) < a), the absolute
value of |ag) — a(s)| = a3y — apy = a) — a@) + aw) — a1y, which can be written
as |ag) — a)| + laq) — a(z)|. By decomposing each penalty term, we can rewrite

it into the absolute values of the differences between neighbor items.

(0)——{a)

a(0))———{a@)———{a@)—(aw)
S

Figure 3.2: Replacement of the penalty graph. The edges are the absolute values
of the differences between nodes. The total sums of the edges’ lengths are identi-
cal for the two graphs, which inspires us to reformulate the penalty term.

Figure 3.2 shows a graphical representation of the transformation from a complete
graph to a weighted chain graph. The complete graph is shown in the above figure,
where each vertex represents a centroid parameter, and all pairs of vertices are

connected by edges. The weighted chain graph is shown below, where each vertex
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still represents a centroid parameter, but the vertices are connected in a linear
chain. The edges between the vertices in the weighted chain graph represent the
absolute differences between neighboring items, as discussed. And the number of
edges becomes the weights. Inspired by this important observation, we have the

following lemma 3.4.1.

Lemma 3.4.1 Given the sequence (a1, ... ,a,), we can sort it in a non-decreasing

order a1y < -+ - < agy,), then

n—1 n n—1
Z Z la; — a;| = Zz(n —1)|ag — a@s)- (3.5)
i=1 j=it+1 i=1

Lemma 3.4.1 suggests the possibility to replace the penalty term in (3.2) with the
right side one in (3.5). By the replacement, the original fused lasso problem is

turned into a weighted chain-structured fused Lasso as follows:

n n—1

1 . .
mins Z(I‘z - ai>2 + A Z i(n — Z)|a(i) - a(i+1)\ (3.6)

acR® 2 - -
i=1 =1

Next, we show how to apply the dynamic programming method [9] to solve the
problem (3.6). In addition, we know a(;y < a(;4+1) always hold for 4, thus we only
need to consider the cases a;) = a1y and a¢y < a(i41), which refines the DP
algorithm to be more efficient. In the following subsection 3.4.2, we introduce the

modified DP algorithm in further detail.

3.4.2 DP algorithm

Given a sequence of sorted data points 1 < x5 < --- < z,,. Suppose the corre-

sponding centroids are aq, ..., a,. By Lemma 3.3.2, the order are preserved for
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the centroids a; < ay < --- < a,, we consider the following problem:
1 n n—1
A ~ . 2
(a1, an) = arg;nln ) E (wi —a;)” + ;_1 Ailai — i

i=1

where \; = \i(n—1). Before showing the details about the dynamic programming

algorithm, we prepare some notation here. Let
1 2
hl(b) = 5(%1 — b)

fork=2,3,...,n,

* ¢y(b) := arg min hy (D) + \i|b — D).
b

* hi(b) := §(zx — b)? + hy—1(dr—1(b)) + Me—1]¢r—1(b) — bl

Theorem 3.4.2 (Johnson [9]) The function hy(b) is convex, differentiable, and

piecewise quadratic.

The b and b in the definition of ¢y, correspond to the former centroid parameter ay
and the latter centroid aj; respectively. Once a1 1s known, by definition, ay,

can be expressed as a functional form of aj1:
ax = Pr(Qrt1)-

From the above theorem 3.4.2, we know hy(b) is differentiable, hence we define

some intermediate notation:

h (b
_O0) e min ha(b) — Ab.

gk(b) : ab ) b

It is not straightforward to see, but once we know the a1, the ay = ¢ (axi1)
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Algorithm 1: DP algorithm
Input: sorted input 1 < --- < x,, A
Output: (ay,...,a,)
Initialize \; <— i(n — i)\, fori =1,...,n — 1.
fork+ 1ton —1do

Find the U,
end
Solve a,, such that h,(a,) = 0.
fork+ n—1to1ldo

dk = min(&kH, Uk)
end

can be written in a closed form. Because the former centroid ay is always equal
or smaller than a1, in other words b < b, thus the |l~) — b| in ¢y, takes either b — b

or 0. In the case of b < b, which corresponds to the case that a; < agi1,

ax = arg min Ay (b) + Mg (b — D)
b

= argbmin hk(g) — \sb = Up.
Otherwise b — b = 0, which corresponds to the case that a; = axy;. By the
assumption we already know the a1, we can simply assign the known a1 to
ay. In short, we take the minimum between a1 and U, and assign it to ag. It is
easy to see that once we find a,, and Uy, . . ., U,_;, we can obtain all the centroids
by tracking back fromn — 1, ..., 1. Algorithm 1 provides a high-level overview

of the detailed DP algorithm.

Next, we show how to find Uy for k = 1,...,n — 1. The details are explained in

algorithm 2. By KKT conditions, U}, satisfies

gk(Uk) — )\k = 0.
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When k = 1,g1<U1)—)\1 = Ul—l'l—Al andU1 :l'1+)\1. For k = 27...,71—1,

by the definition of A (b), we have the derivative of h(b) is:

gk(b) = gkfl(b)l[b < Uk—l] + /\kflI[b > Uk—l] + (b — xk),

where 1 is the indicator function. It is easy to see the function g is a piecewise
linear function connected by a knot point Uy_;. Specifically, when b > Ujy_1, gx
is a line with the slope 1 and the intercept A\;_; — x;. On the other hand, when
b < Uj_1, again, it becomes piecewise linear with a new knot point Uj_», and so
on. This iterative process continues until the last knot point U;. We notice that
gr—1(b) includes the term (b — xj_1), so the slope becomes steeper when the first
condition b < Uj_; is satisfied. Because g is a piecewise linear function, the key
to finding the Uy, that satisfies g (Ux) = Ay is to decide which part of the line is
Ui on. To do that, we start to search from the right to the left. If the Uy is not
on the current line, move left and update the intercept and slope until we find the
line where (Uy, \y) is. As for a,, it is the same as finding the U, that satisfying

In addition, we need to be careful when searching for each Uy, to ensure that it has
a worst-case performance of O(n), which is achieved through the erase step in
line 11 of Algorithm 2. In Algorithm 2, the U*, S*, and I* can be viewed as three
different stacks, each time we enter the inner loop in line 9, we pop the last items
of U*, S* and I* out, and after finding the Uy, in line 20 we push the new Uy, Si

and [ into each stack respectively.

The technical details here may be challenging to understand. In order not to inter-
rupt the flow of the chapter, we include an example of n = 3 in the supplementary

materials, which we believe is helpful in understanding the algorithm.
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Algorithm 2: Finding U

Input: z; < -+ <z, (A, ..., A1)
Output: (Uy,...,U, 1)
/I Initialization;
Ul — 1+ )\1.
U« U;, S*«1, I* <+ —x.
for k< 2ton —1do
Sk — 1, I+ —uxp.
B — ()\k — )\k—l — Ik:)/Sk
/] search from the right side.
/l .end denotes the last item of a sequence.
while U*.end > [ do
update Sy < Sy + S*.end, I < I+ [*.end
erase the last item of U™, S*, I*.
/I suppose the index of U*.end is U,,,
/I then update the (3 as follows:
if U* is empty then
break
end
end
update Uy, < .

update U* < (U*,Uy), S* + (5%, Sy), I* « (I*,I).

end

3.4.3 C-PAINT algorithm

The dynamic programming algorithm is intended for a single tuning parameter

A. However, it is of our interest to visualize the complete clusterpath. Using the

proposition’s result, we can first find the maximum value of A, that yields a

non-trivial solution. In other words, any tuning parameter larger than A, results

in just one cluster. Next, we propose the C-PAINT algorithm.
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Proposition 3.4.3 (Radchenko and Mukherjee [26])
Givendatax = (x1,...,x,) € R". Inthe problem 3.2, the tuning parameter A,

that yields non-trivial solution is:

- _ 1 n
where the x = ~ > " | Ty.

Similarly, for a given matrix X = (x1,...,x,) € R"*?, we can obtain the Ay
by taking the maximum value of all dimensions:

Amax(X) = 'rr%ax >\max<wi)-
1=1,..., p

This is useful because it simplifies the computational burden by reducing the num-
ber of tuning parameters that need to be considered. Instead of considering all
possible values of A, we only need to consider a sequence of A up to Ap... This
reduces the computational complexity and makes the algorithm more efficient. In
Algorithm 3, an arithmetic sequence is used to select the values of A\. However, it
is also possible to use a geometric sequence. The choice of the sequence depends

on the specific problem.

3.4.4 Time complexity

To analyze the time complexity of the C-PAINT algorithm, we need to consider

the number of operations involved in each step.

In Algorithm 2, U; can be founded in O(1). In finding Us, ..., U,_1, lines 2-3,
lines 5-6, and line 19-20 can be calculated in O(1), and inside the while loop, line

10-16 also takes O(1), so the key problem is how many times we need to enter
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Algorithm 3: C-PAINT algorithm
Input: Data matrix X € R"*P, X sequence length K.
Output: (A,,..., Ag),and A, = (aF,... a")T e R,
/1 find the Apax(X).
Initialize Ay < Apax - K/ K, k=1,... K.
fori:=1topdo
Sort x; € R" in a descending order as x(;) and save the order of the x;.
for k. =1to K do
/I for each dimension i, use the DP algorithm.
dlé) < DP(m(i), )\k)
end
rematch the a* [order] &Z).
end

the inner loop. Every time we enter the inner loop, the last item of the sequence
U~ is deleted and never used, and from line 19, we know every U, will be added
once and deleted at most once. Thus we can enter the inner loop at most n — 2

times, and each time it takes O(1), so in total, Algorithm 2 is O(n).

To summarize, in order to reformulate the second penalty term in the problem,
first, we need to sort (z1,...,x,) in ascending order. The time complexity de-
pends on the choice of the sorting algorithm; we adapt the quick sort algorithm,
which on average takes O(nlogn). Next, for each tuning parameter A, the DP
algorithm takes only O(n). For the C-PANT algorithm, for each dimension,
we only need to sort it once to obtain the order to construct the clusterpath, we
solve each sub-problem K times with different A using the DP algorithm, which
takes O(pn k). In total, the time complexity of C-PAINT becomes O(pn logn) +
O(pnK).
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3.5 Experimental evaluation

In this section, we will first compare the runtimes of different methods for L; con-
vex clustering. The C-PAINT is compared with several representative methods:
FLSA [3], ADMM, AMA [24], CARP [25], and the FUSION algorithm [26]. The
results demonstrate the effectiveness and efficiency of our proposed method in
finding clusterpaths. As the proposed method is a novel optimization method that
yields the exact solution, we focus on showing the visualizations of the obtained
clusterpaths, which clearly illustrate how the clusters evolve along the path. In
the synthetic data example, we generated five clusters with varying shapes, and
the obtained clusterpath shows the merging of the clusters along the path. In the
real data examples, we applied C-PAINT and other methods to relatively small
datasets and presented the runtimes. We also demonstrated the applicability of

C-PAINT to larger datasets, which were not possible for existing methods.

3.5.1 Implementation details

Our proposed DP algorithm and C-PAINT are implemented in Rcpp, which are
implemented in the dpcc R package. We compare with the CARP function,
which is implemented in C++ in the c1lustRviz R package, and the tuning pa-
rameters are set as recommended values. The FLSA function is in the f1sa R
package, which is implemented in C++. To make a fair comparison, we run the
FLSA function without checking the splits based on theorem 3.3.1. The ADMM
and AMA are implemented in the cvxclustr R package using R and C. For
ADMM and AMA, we set the step size to be 1/n, and the convergence tolerance
to be 10~°. The FUSION algorithm is implemented in R in the fusionclust
R package. To make a fair comparison, we implemented the code in Rcpp by our-

selves and made some modifications to accelerate the algorithm. Because Rad-
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chenko and Mukherjee [26] proposed two similar methods, we only consider the
one that successively merges in a bottom-up fashion. As for the modifications,
specifically, instead of storing most of the fusion events, we stored the clustering
results for only K times, which is equivalent to the length of the A\ sequence used
in C-PAINT, ADMM, and AMA. This modification makes the algorithm much
more efficient. Even that, FUSION is still slower than the C-PAINT for large
sample size cases. Our experiments are performed on a MacBook Air with M1
CPU with 8 GB memory. The elapsed times (wall clock times) are taken as the

runtimes.

3.5.2 Time comparison

The simulated data in this experiment consists of points sampled from a Gaussian
mixture model with three components in R?. We generate datasets with sizes
ranging from 100 to 50, 000 points. For each dataset, we construct a A sequence
consisting of K = 10 values, evenly spaced between 0 and \,.x. The reported
runtimes are the means of 30 replications. Due to computational limitations, we
only allowed the CARP algorithm to run on data sets with up to 500 points and
restricted the FLSA, ADMM, and AMA algorithms to data sets with up to 1000
points. In contrast, we ran the FUSION algorithm and the proposed method on
larger data sets of 5000, 10000, and 50000 points. While it is possible to solve
each sub-problem in parallel for the L, case in C-PAINT, FLSA, and FUSION,

we did not pursue it in our experiments.

Figure 3.3 displays the time comparison results. The x-axis corresponds to the
sample size n, while the y-axis represents the runtimes in seconds on a logarithmic

scale.

We notice for the identical weights and L, penalty setting, CARP is slower than
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Figure 3.3: Comparison of the runtimes in computing clustering solution path in
logarithmic scale. Each line represents the runtimes of different methods.

other methods when the length K is small. FLSA, ADMM, and AMA show quite
close performance and is generally slower than C-PAINT and FUSION algorithm.
FUSION algorithm is highly efficient but is unable to create a clusterpath visual-
ization because it does not estimate the exact value of centroids with a given tun-
ing parameter A. In terms of visualizing the clusterpath and performing clustering,
C-PAINT is the most efficient method. In particular, C-PAINT can find the full so-
lution path of 107 samples in R? within two minutes. Additionally, the simulation
results demonstrate that the runtimes of C-PAINT increase linearly, confirming
the time complexity analysis presented in Section 3.4. When the sample size n
becomes large, C-PAINT is generally faster than FUSION. The possible explana-

tion for this is that FUSION has to go through every fusion event, which results

33



in decreased efficiency as the sample size increases. On the other hand, the pro-
posed method independently performs the DP algorithm with each single tuning
parameter A\. To summarize, in terms of finding the clusterpath, C-PAINT out-
performs CARP, FLSA, ADMM, and AMA, and can handle large-scale problems

effectively. Please refer to the Appendix for detailed results.

Figure 3.4: Visualization of the clusterpath generated with a A\ sequence with
length K = 10. The colors show the clustering results with the biggest tuning
parameter of the lambda sequence. The threshold + are set to be 107°.

3.5.3 Synthetic dataset

We generate the synthetic data into five clusters with different shapes, each includ-
ing 200 data points. For better interpretability of the clustering results, we set a
small threshold v = 107 that for all the estimated centroids within the Euclidean

distance of ~, we put them into the same cluster.
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In Figure 3.4, both the clustering results and clusterpath are presented in the same
plot. The colors represent the clusters obtained by the DP algorithm with a certain
parameter \. Instead of drawing the full clusterpath, we stop it halfway before all
the points collapse into one final cluster. By distinguishing the merged centers,

convex clustering successfully separates different clusters.

3.5.4 Small real dataset

We use two small real datasets to investigate the performance of our proposed

algorithm and other methods.

* Lymphoma [34] dataset includes 62 samples categorized into three differ-

ent lymphoma types.

* Gene expression [35] dataset includes the gene expression features of 801

samples with four different types of tumor as labels.

To enhance the visualization of high-dimensional datasets, we first utilize the
UMAP [36] to reduce the dimensions to two. The dimensionality reduction is
carried out using the umap function in the uwot R package. Subsequently, we
apply C-PAINT to the projected coordinates and use the original labels to denote

the clusters in different colors.

Both the full clusterpaths and runtimes are reported in the table 3.1. Here, we
only report the ADMM since the ADMM, AMA, FLSA have similar runtimes, as
shown in Figure 3.3. From the result, we can see C-PAINT is much faster than

other methods.
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Lymphoma

Gene expression

Sample size : n = 62

runtime (second)
CARP: 6.6 x 1072 223
ADMM: 1.1 x 1072 8.6
C-PAINT: 4.7 x 1074 0.012

Table 3.1: Visualization of the clusterpath generated with a A sequence with length
K = 10. The colors show the original labels of the samples. runtimes are the

means over 30 replications.

3.5.5 Large real dataset

Next, we use relatively large datasets to investigate the performance of the pro-

posed algorithm. In particular, we use:

* Frey faces dataset includes 1965 images of Brendan Frey’s face, taken from

sequential frames of a small video. This is included in the snedata R

package.

* RNA sequence [37] multi-datasets include 5683 cells consisting of 11 cell

types and differentially expressed genes as their features.

* Anuran (frog) calls [38] dataset includes the extracted features from 7195

frog calls records, and each frog has family, genus and species labels, among

which we choose the family.
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Sample size: n=7195 n = 70000
runtime (s) : 8.4 x 1073 2.6 x 1072

Fashion-MNIST

*yj 2,
v &

Anuran (frog) calls

Samplemsize T n=1965

n = 5683

runtime (S) :

5.6 x 1072

15.8

Table 3.2: Visualization of the clusterpaths of real datasets. The clusterpaths are
drawn by C-PAINT using the coordinates obtained by UMAP. The length of the A
sequence is set to be K = 5. The runtimes of each real dataset are the means over

10 replications.
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» Fashion-MNIST [39] dataset consists of 70000 grayscale images of items
such as T-shirt, Trouser and Bag. Fashion-MNIST includes 10 labels and

each label has the same number of items.

* Kuzushiji-MNIST [40] dataset consists of 70000 grayscale images of hi-
ragana characters in Japanese. Fashion-MNIST includes 10 labels and each

label has the same number of characters.

Here we focus on showing the clusterpaths on large datasets. Table 3.2 shows the
results of the first four datasets. Both the sample sizes and the runtimes of the

C-PAINT are presented. We choose the Kuzushiji-MNIST dataset [40] to explain

in further detail.

Kuzushiji-MNIST is a drop-in replacement for the MNIST dataset, consisting of
ten rows of Japanese Hiraganas. Different from the ordinary Hiragana used in
Japanese nowadays, the kuzushiji came from ancient Chinese characters variants.
Thus, each has several variants. For example, we can see in Figure 3.5 that except
for the Hiragana Ha, others have two or more variants that look quite unlike. To
be more specific, on the right side of the clusterpath, we can see that Ha and Tsu

merge early on as they share a high degree of similarity in their image projections.

3.6 Summary

We have developed a new algorithm for L; convex clustering. To the best of our
knowledge, it is the first time that dynamic programming has been applied to the
convex clustering problem. By formulating the sub-problems for each dimension
as weighted one-dimensional fused lasso problems, we can apply a dynamic pro-

gramming algorithm to solve them efficiently.

In order to visualize the clusterpath, we proposed the C-PAINT based on the dy-
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namic programming algorithm. The time complexity of C-PAINT is O(pn logn)+
O(pnK). However, in practical applications, the run time of our algorithm grows
linearly as the sample size n and dimensionality p increase. The proposed algo-
rithm is highly efficient and outperforms existing algorithms in terms of scalabil-
ity. For the important special case of L; convex clustering with identical weights,
the simulation results show our proposed method overcomes the computational
bottleneck, making it possible to recover the full clusterpath for large datasets.
Our methods are implemented in the R package dpcc, which is also available at

https://github.com/bingyuan-zhang/dpcc.

A possible direction for future work is to explore a more general structure of
weights. Currently, C-PAINT algorithm is an efficient method, but it is limited
to the identical weight setting. On the other hand, it is pointed out that general
weights result in advanced performance [41] e.g. weights that have a k-Nearest

Neighbor graph structure and assigned the values using Gaussian kernel.
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'Ha Ma Ou Su Wo Ki Na Re Tsu Ya |

2-0-0-0- 0~
‘Ki.Na.Re.Tsu.Ya

Figure 3.5: Some representative variants of kuzushiji and the legend are shown on
the top. The middle figure show the visualization of the clusterpath of kuzushiji-
MNIST. The length of the A sequence is set to be X = 5. The mean runtime is
11.578 seconds over ten replications.

Kuzushiji
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4| Conditional independence test

4.1 Introduction

Conditional Independence (CI) test is a statistical hypothesis test used to deter-
mine if variables X and Y are conditionally independent, given another variable
Z fixed. If variable X and Y are conditional independent given Z, we denote it as
X LY | Z. The CI test is an important tool to analyze the relationship between

variables and is applied in causal discovery [42, 43, 13].

The CI test is easy to perform with a large sample size n and discrete variable Z.
At that case, we can test the independence of X and Y for each possible value of
Z. On the other hand, if X, Y, and Z have a joint Gaussian distribution, then CI of
X,Y given Z is equivalent to the zero partial correlation between X and Y given
Z [14], which can be easily tested as well. In this chapter, we aim to examine
the conditional independence of X, Y, and Z without making any assumptions
about their joint distribution, regardless of whether they are continuous or discrete
variables. However, the challenge arises when the dimension d; grows, which
results in the curse of dimensionality [44]. When Z is a set of d variables or any

dz-dimensional random vector, the problem becomes more complex.

One of the major challenges in CI tests is the requirement to obtain a sample from
the null distribution Hy : X 1 Y | Z. In statistical hypothesis testing, it is
generally necessary to determine the distribution of the test statistic under the null
hypothesis Hy. However, in the case of CI tests where we only have access to the
observations, it is impossible to know the exact distribution of any test statistic
under the null hypothesis Hy : X L Y | Z. To address the problem, there are two

popular approaches for obtaining an approximate null distribution:
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e Asymptotic method
One approach utilizes the asymptotic distributions of the test statistics [45,
18, 46]. For some test statistics, their asymptotic distributions are derived.
And for such cases, the asymptotic distribution can be used to approximate
the null distribution. Though these asymptotic distributions can be gener-
ated efficiently, they may become less accurate when the sample size n is

small or with a high-dimensional Z [47, 48].

e Permutation method
The other approach is by permuting the observed samples. Suppose samples
{z;},{v:},{z:},i =1,... nareavailable for X,Y, Z. In independence test
where Hy : X L Y, though X and Y in each pair (z1, 1), ..., (T, y,) are
not independent, we may regard X and Y of shifted pairs of (z1,y2),. ..,
(Zn—1,Yn), (Tn,y1) to be independent. Thus we can compute the test statis-
tic values on the shifted pairs, which mimic Hy and obtain a histogram as an
approximated null distribution. However, in CI test, as the conditioning set
7 exists, we cannot shift {z;}, {y;}, {z;} in order to make them conditional

independent [49, 47].

In this chapter, we propose a new CI test including a novel test statistic and com-
bined with a local bootstrap method to sample fromthe Hy : X 1L Y | Z. In CI
tests, many test statistics are calculated based on a direct evaluation of the condi-
tioning set Z. This can be challenging, particularly when Z is high-dimensional
or has a complex density. Our proposed test statistic does not directly rely on
the conditioning set Z, which mitigates the issue of the curse of dimensionality.
The test is expected to be more robust in situations where the conditioning set is
high-dimensional. The experimental results show that our proposed test has com-
parable performance when the conditioning set Z is low-dimensional and notably

outperforms other methods when Z is high-dimensional. Moreover, our proposed
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method can be computed efficiently as the sample size n and the dimension of Z

grow. We summarize our main contributions in detail:

e We proposed a novel test statistic that is calculated in the following way:
first, we divide the variable Z into multiple local clusters. Next, we mea-
sure the unconditional independence within each cluster, and finally, we
aggregate these unconditional independence measures to obtain a single
statistic to measure conditional independence. In particular, we apply the
k-means algorithm to perform clustering on Z, and for each cluster, we use
the Hilbert-Schmidt Independence Criterion (HSIC) [17] as the measure of
unconditional independence. This approach allows us to avoid direct access
to Z and thus alleviate the curse of dimensionality, making the proposed

method more robust for high-dimensional conditioning sets.

e We apply a local bootstrap method to mimic sample from Hy : X L Y | Z.
We extended the local bootstrap strategy in [SO]. When combined with the
proposed test statistic, the local bootstrap method shows good performance
and provides higher power on both linear and non-linear cases. The local
bootstrap method can be applied not only to the proposed test statistic but

also to other CI tests.

This chapter is organized as follows. In Section 4.2, we discuss some related
work on the CI testing. In Section 4.3, we introduce the notations and provide
an overview of the HSIC, a kernel-based measure of unconditional independence.
In Section 4.4, we present the test procedure and explain the test statistic and the
local bootstrap method in detail. In Section 4.5, we compare our proposed method
with other representative CI tests using synthetic data. Finally, we summarize our

results in Section 4.6.
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4.2 Related work

Recently, numerous nonparametric methods have been proposed for CI testing.
Many test statistics are constructed by embedding distributions in reproducing
kernel Hilbert spaces (RKHS). Fukumizu et al. [49] proposed a measure of CI
based on cross-covariance operators. However, its asymptotic distribution under
the null hypothesis is unknown, and the bin-based permutation degrades as the
dimension of conditioning variable Z grows. Later, KCIT was proposed Zhang
et al. [18] based on the partial association of functions in RKHS. KCIT has the
advantage that its asymptotic distribution is known, which can be efficiently ap-
proximated. To improve KCIT for testing on large-scale datasets, Strobl et al.
[46] proposed RCIT and RCoT to use random Fourier features to approximate
KCIT efficiently. Huang et al. [51] proposed a Kernel Partial Correlation (KPC),
a generalization of partial correlation to measure conditional dependence. Beyond
kernel-based methods, Runge [48] used a Conditional Mutual Information (CMI)
estimator as the test statistic and proposed a k-nearest neighbor-based permutation
to generate samples from the null distribution. Shah and Peters [52] proposed a
generalized covariance measure (GCM) as the test statistic based on the regres-
sion method. On the other hand, CI can be turned into other problems. Doran
et al. [47] turned the CI test into a two-sample test by finding a permutation ma-
trix and measuring the Maximum Mean Discrepancy (MMD [19]) between the
two distributions. Sen et al. [53] proposed a method called CCIT which turned
the CI test into a classification problem. In [47, 53], they both have an additional
sampling step involving data-splitting, which potentially reduces the power when
the dataset is small. Some other model-powered methods also make use of deep

learning: GAN [54, 55] and Double GAN [56].

While a nonparametric CI test makes no assumption about the joint distribution
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of X,Y, Z, imposing additional assumptions can help simplify the problem. One
of the mild assumptions is that X and Y are functions of the variable Z, plus an

additive independent noise term with a zero mean:
X=[f(2)+e, Y=yg(Z)+e,

If the estimated noise terms are independent €, I ¢, we conclude that X 1 Y ]
Z [57, 58,59, 60, 61]. The methods in this category find a regression function and

then test for the unconditional independence of the residuals.

For some current different characterizations of CI, see for example, [20]. From
a theoretical perspective, Shah and Peters [52] proved there exists no universally
valid CI testing for all CI cases. In other words, no CI test can control Type-I error
for all the CI cases while having a higher power against any alternative. However,
a desirable CI test is supposed to be computationally efficient and widely applica-

ble for different linear and non-linear cases.

4.3 Background on kernel methods

For random variables X,Y,Z, weuse x € X,y € ),z € Z to denote their
observed samples, and use X', ), Z to denote the associated domains. We consider
a positive-definite kernel £ : X x X — R. The £ has a corresponding a Hilbert

space H and a feature map ¥ : X — H such that

k(z1,22) = (V(21), ¥(22)) 2t

for x1,x9 € X. (-, )% is the inner product of a reproducing kernel Hilbert space

H.
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Let ky and ky be kernels on X and ), and H;.,, and Hy,, be the corresponding
RKHSs. Gretton et al. [17] defined the Hilbert-Schmidt independence criterion
(HSIC) which can be viewed as the squared MMD between a measure Pyy of
X, Y and the product Px Py of measures Px, P-. HSIC has been well studied as

a test statistic in independence test [17, 18, 19]. For a characteristic kernel, the

HSIC(X,Y) is zero if and only if Pxy = Px Py, which indicates X 1 Y.

The HSIC is defined as follows.

HSIC(X,Y) = ||mu — my,mu, ||3,

= |[Exy [kx(X, )hy(Y, )] = Ex[ka (X, )| Ey [y (Y, ][5,

where the H is the corresponding RKHS of the kernel £ := kxky defined by

E((z,y), («,9)) = kx (2, 2))ky(y, y)

for (z,y), (¢/,y') € X x V.

HSIC(X,Y) is known to have an alternative expression:
HSIC(X,Y) = Exyxv/[C(X,Y, X", Y")] 4.1)
where C(X,Y, X' Y') is
[k (X X) = B [k (6, X)) | [y (V. Y) = By [y (VY] |, 4)

and (X', Y”) are independent copies of (X,Y).

Given data points (1, 1), . . ., (n, Yn), we consider the following estimator [17]:

_— 1
HSIC(X,Y) = (K xHKyH) (4.3)
n
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where (K x);; = k(z;,2;), (Ky)ij = k(yi,y;), H=1— 1117, and L isan
vector of ones. For HSIC, the asymptotic distribution under the null hypothesis
Hp : X L Y is derived [17, 18]. When we use it in the unconditional indepen-
dence test, we can approximate the null distribution by using either permutation

or its asymptotic distribution. Intuitively, we expect an estimator of HSIC to be a

small value when X 1L Y.

4.4 Proposed method

This section shows our proposed procedure for performing the CI test. First, we
present a novel test statistic. The proposed test statistic is a kernel-based measure
using characteristic kernels as a default choice, i.e., Gaussian kernel. Next, we
explain the local bootstrap algorithm to generate samples from Hy : X 1L Y | Z.
The local bootstrap algorithm sample x, y independently from discrete distribu-
tions, which mimic the distribution of Hy. We repeatedly find the test statistics
on the samples to obtain a histogram to calculate the p-value. We summarize the
proposed test in Algorithm 4. Finally, we discuss the effect of parameters and

provide a time complexity analysis of the overall procedure.

By definition, the conditional independence of X and Y given Z means variables
X,Y are independent for any fixed value of Z, denoted as X L Y | Z. Here,
we use the notation HSIC(X,Y | Z = 2) := Exyxyv/[C(X,Y, X', Y')|Z = z] to
represent the HSIC on (X, Y') with fixed Z value, where the (X', Y”) are copies
of (X,Y).

XLY|Z < X1Y|Z=2Vz€Z.

— HSIC(X,Y | Z=2)=0,Vz € Z.

As a direct result, we have the following proposition.
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Proposition 4.4.1 (Characterization of CI)
X1Y|Z /HSIC(X,Y | Z)du(Z) = 0 (4.4)
where (1(Z) is a probability measure on Z.

Proof sketch: By the definition of HSIC, HSIC(X,Y | Z = z) = 0 always takes
non-negative values. Thus, for a characteristic kernel, the integral becomes zero

if and only if HSIC(X,Y | Z = 2z) = 0, Vz € Z, which indicates X 1 Y | Z.

Thus, we consider measuring conditional dependence using the marginal uncon-
ditional dependence measures. However, it is unrealistic to assume that for all
observations z, we have enough (x,y) pairs that share the same z values. As
an alternative, we combine the clustering technique to divide Z into subgroups.
Thus, observations of Z are grouped into different clusters with similar z values.

As a result, we consider the following procedure to find our test statistic:
1. Perform clustering algorithm to subdivide Z into M clusters.

2. Measure the unconditional dependence of the (X, Y") pairs in the m-th clus-

ter using estimators H/SI\Cm(X Y.

3. Find the sum of values as a single number

M
T = HSIC,(X,Y). (4.5)

m=1

We use the sum of the local unconditional dependence measure as the conditional
dependence measure, which is similar in spirit to [62]. Margaritis [62] considers
dividing a univariate Z € R! into local bins and using the product of the local

measures. Our method applies to a high-dimensional Z and takes the sum of
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kernel-based measures.

Given data {(x;,y;,2;)},i = 1,...,n, we divide them into M clusters based on
the value of Z using k-means. Let the index set of m-th cluster be C,,, and
CpCc{l,....,n},UM_C,={1,...,n},CiNnC; = @,Vi,j € {1,...,M}. The
estimator H/SI\Cm in (4.5) is

— 1
HSIC,,(X,Y) = Wtr(Kg’g”HK§;")H)

where |C,,| is the size of C,,, and K g?l) and K (Ym) are the corresponding kernel
matrices for samples (x;,v;), ¢ € C,,. The conditioning set 7 is only used in
deciding the local clusters in the first step of the procedure. By doing that, we

avoid a direct evaluation of the high-dimensional conditioning set Z.

4.4.1 Local bootstrap

In this subsection, we show a local bootstrap method to sample from Hy : X I
Y | Z. We calculate the test statistic on generated samples multiple times and
obtain a histogram to approximate the distribution of the test statistic under Hy,
which completes the CI test. The key in sampling is to break the dependence
between X and Y while keeping the dependence between (X, Z) and (Y, Z). An

example of an ideal CI permutation is explained in Figure 4.1.

In the above Figure 4.1, we first divide different bins (green, red, and blue), and
each bin 7 includes samples that have the same z. From that we fix y and 2
and shuffle x within each bin with some permutations (7, 72, 73) to generate new
data (Z,y, z). An ideal permutation successfully generates samples that keep the
dependence between (X, Z) and (Y, Z) while satisfying X L Y. However, it is

impossible to perform the ideal permutation in practice because we do not have

49



T T Yy oz

| ——2221
] ::Z:ZQ
Bl ::Z:Z?,
B Pg;mute x ~ Fix Y, 2

Figure 4.1: An ideal permutation in CI.

enough samples that have the same z values.

As an alternative approach, we use a local bootstrap. First, given with different

z*, we generate (x*, y*) independently from the following discrete distribution:

~ rr T2 ..., Tp
"~ G;t\z* : )
wy w2 ..., Wy
(4.6)
A o Y2 -5 Yn
* .
y ~ C7Yy|z* . s
wy W2 ..., Wy
K(zj—2"/7)

where w; = ST K Ge ) is the probability to sample the index j.
j=1 J

This local bootstrap strategy is an extension of [50], originally designed to sample
(x,y) according to a regression model. We extend it using a Nadaraya-Waston
kernel estimator [63] to assign the weights for indexes to be sampled. If z; is close
to z*, the w; is large, and the index j is more likely to be sampled. Moreover, the
x* and y* are sampled independently. Thus, it is less likely for z; and y; to be
sampled simultaneously, which breaks the dependence between X and Y. Shi

[50] suggested that the bandwidth v should be varied for different z*. Here, we
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Algorithm 4: Local Bootstrap

Input: Data (x;,y;,2;),i=1,...,n.

Output: New samples: (z},y}, 2f),i=1,...

fori < 1tondo

Let 27 = z;

Sample 7 ~ Gy, Y7 ~ Gz
end

Algorithm 5: Test

Input: Data (x;,y;,2;),i = 1,...,n.
Cluster number M.
Times to repeat K.
Output: p-value.
Find M Clusters.
Estimate the 7.
for k£ < 1to K do
Generate samples with Algorithm 4
Estimate 7; on the generated samples.
end
Compute the p value:

b= % Zszl {Tk > T}-

narrow the candidates from 1,...,n to 10-nearest neighbors of each z*, and let

the local bandwidth v of z* be the squared Euclidean distance between z* and its

10-th nearest neighbor.

The local bootstrap is summarized in Algorithm 4. We generate samples multiple

times and calculate the test statistic values 7. We repeat it for K times on the

generated samples and calculate the p-value based on the obtained histogram. We

reject Hy if the p value is smaller than a predefined significance level. Otherwise,

we accept Hy. We summarize the procedure in Algorithm 5.
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4.4.2 Effect of M

The choice of the cluster number M can have an impact on the performance of
the test. It is essential to choose M properly to ensure that the pairs (z, y) in each
local cluster have similar z values while also ensuring enough pairs in each local
cluster to obtain an accurate estimate of the local HSIC. The choice of the number
of clusters M also impacts the computational complexity. A smaller M would
result in larger clusters on average, requiring more time to calculate the local
HSICs. In practice, we use k-means to decide the clusters and fix the average
cluster size. We let M be [n/C7, where [x] takes the least integer that is not

smaller than 2 and C is the predefined average cluster size.

4.4.3 Complexity analysis

We provide an analysis of the time complexity of the test procedure. Initially, our
method finds M clusters of Z using k-means. At the same time, the local bootstrap
method requires the weights to be calculated once for each observation of Z. Both
of these steps are calculated once and take little time. The major computational
cost is in finding the histogram, where the test statistic 7" is calculated repeatedly
for K times. Estimating a single T takes O(M|C|?) operations, where M is the
number of clusters, and |C| is the maximum set size among all clusters and is
smaller than n. This is repeated K times over generated samples to obtain the
histogram of the null distribution. Overall, the proposed test takes O(Mn?K).
The bootstrap part can be easily parallelized to promote the speed further, but it is

beyond the scope of the paper.
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4.5 Experiments

In this section, we compare the proposed methods with other nonparametric CI
tests. Our proposed method is denoted as BHSIC (Bundle of HSICs). We evaluate
the Type-I error rate, Type-II error rate, and runtime of the methods. A good
CI test should have a lower Type-II error rate and be computationally efficient.
We compare with some representative methods: KCIT [18], RCIT, RCoT [46],
CCIT [53], and CMIknn [48]. Details about these methods can be found in
Section 4.2. All methods have source codes available online. We compare how
these methods scale with sample size and the dimension of Z instead of a direct

comparison of runtimes.

We aim to evaluate the performance of the methods under different scenarios. For
our simulations, we consider two models: a simple linear regression model and a
post-nonlinear noise model. The post-nonlinear noise model is a commonly used
setting in evaluating CI tests [18, 46, 48], and the functional forms of X and Y on

Z are as follows:

dz dz
Model 1 : X:ZaiZi—i—c&tb—l—gl, Y:Z@»Zi+ceb+€2,
i=1 1=1
dZ dZ
Model 2 : X:gl(ZZi—l—csb—I—gl), Y:gg(ZZi+C€b+€2),

i=1 =1

where the Z = (Z4,...,Z4,), €1, €2 and ¢, are independent standard Gaussian.
The coefficients «;, 8; ~ U(—0.5/d,,0.5/d,) follows a uniform distribution and
g1(+) and g5 (+) are uniformly chosen from {(-), (-)2, (-)3, tanh(-), exp(—|| - ||2)}.
We consider (a) Hy : X L Y | Zwithc=0and(b)H; : X L Y | Z withc = 1.

In the following simulations, we study the test performance on different sample
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sizes and dimensions of Z. The sample sizes n varies from {100, 200, 400, 600, 800}
with fixed dimensions of d; = 1 and d; = 10. The dimensions d; varies from
{1,2,5,10,20} with a fixed sample size of n = 400. We also study the effect of
the cluster number M in our proposed method. The significance levels are set to
be a = 0.05 in all simulations. Evaluations of Type-I error rate, Type-II error rate,
and mean runtimes are reported over 100 replications. Type-I error rate is the false
rejection percentage when the underlying truthis Hy : X L Y | Z with ¢ = 0,
and Type-1I error rate is the false acceptance percentage when the underlying truth

isH; : X L Y | Z with ¢ = 1. Runtime is the average time to perform one test.

4.5.1 Hyperparameters setting

The choice of hyperparameters affects the results. For KCIT, RCIT and RCoT,
the bandwidths in Gaussian kernels are set to be the squared median Euclidean
distance between (X,Y") using all the pairs (or the first 500 pairs if n > 500)
double the conditioning set size, which is recommended in [46]. CMIknn has
two hyperparameters: the neighbor size kcyy = 0.1n in finding the estimator of
the CMI, and the ky.,,,, = 5 in the permutation, respectively. The permutation in

CMlIknn is repeated for 1000 times as default [48].

In our proposed methods, the bandwidths are set to be the squared median Eu-
clidean distance between (X, Y") in each local cluster. The number of clusters M
is set to be [n/50] when n <= 200 and [n/80] when n > 200, where [x| takes
the least integer that is bigger than or equal to x. On average, each cluster has
50 samples when n <= 200 and 80 samples otherwise. The local bootstrap is

repeated for 1000 times.
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4.5.2 When Z is low-dimensional

We first examine the performance when Z is generated independently from a stan-

dard Gaussian distribution. The sample size n changes from 100 to 800. Simula-

tion results on linear model 1 and non-linear model 2 are reported in Figure 4.2

and Figure 4.3, respectively. Both Type-I and Type-II error rate are reported. We

only report runtime in Figure 4.3 because it is not affected the models.
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Figure 4.2: Simulation results on linear model 1 (dz = 1). The significant level is

a = 0.05. Type-I error rates, Type-II error rates are reported.
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Figure 4.3: Simulation results on non-linear model 2 (dy = 1). The significant
level is a« = 0.05. Type-I error rates, Type-II error rates and mean runtimes are
reported.

The linear model 1 setting with a single conditioning variable Z is a simple case.

All methods have controlled Type-I error rates around o = 0.05 and almost zero
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Type-II error rates, except for CCIT. In our experiments, the performance of CCIT
is constantly among the worst. The data split procedure in CCIT seems to reduce
the power of the test when the sample size is small. In the non-linear model 2
setting, all methods have controlled Type-I error rates around o = 0.05. However,
it shows that the proposed method and CMIknn have better powers against others
when the sample size n is smaller. It matches the result in [48] that CMIknn
performs well with low-dimensional conditioning set Z. When the sample size n
is larger than 400, most methods have relatively low Type-II error rates. As for
the runtime, the proposed method is less efficient compared to KCIT, RCIT and
RCoT, which are asymptotic distribution-based methods. Though BHSIC and

CMlIknn are slower, the sampling procedure can readily be parallelized.

4.5.3 When Z is high-dimensional

We next examine the performance when Z is a set of 10 variables, and each vari-
able in conditioning set Z is generated independently from a standard Gaussian
distribution. The sample size n changes from 100 to 800. Simulation results on

linear model 1 and non-linear model 2 are reported in Figure 4.4 and Figure 4.5,

respectively.
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Figure 4.4: Simulation results on linear model 1 (d; = 10). The significant level
a = 0.05. Type-I error rates, Type-II error rates are reported.
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Figure 4.5: Simulation results on non-linear model 2 (dz = 10). The significant
level a = 0.05. Type-I error rates, Type-II error rates and mean runtimes are
reported.

In both linear and non-linear settings, RCIT and RCoT fail and have high Type-I
error rates. RCIT and RCoT approximate KCIT by using random Fourier fea-
tures and are designed for large-scale datasets. Though they are more scalable
than KCIT, their performances are poor when the sample size is relatively small.
KCIT, CMlIknn, and BHSIC perform well in the linear model setting. In the non-
linear model setting, KCIT shows greater Type I error rates and Type II error rates
because high-dimensional Z leads to a less accurate estimation of asymptotic dis-
tribution. We notice that BHSIC shows a higher power compared with other meth-
ods. As we expected, it is beneficial to avoid evaluating the high-dimensional Z

directly, which makes the method more robust.

4.5.4 When dz; changes

Now we evaluate the performance of the methods when the dimension of Z varies.
We keep the sample size n fixed at 400 and change the dimension of Z from 1 to
20 for non-linear model 2. The results are presented in Figure 4.6. Our proposed
method, BHSIC, shows good performance even with the increase in the dimension

of Z, and exhibits higher power compared to other methods. It is worth noting
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that the dimension of Z does not impact the runtimes since Z is only used once

in the k-means algorithm, which is consistent with our computational complexity

analysis.
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Figure 4.6: Simulation results on different dimensions of Z (dz = 1, 5, 10, 15, 20).
The sample size n = 400 is fixed. The significant level = 0.05. Type-I error
rates, Type-II error rates and mean runtimes are reported.

4.5.5 Effect on cluster number M

Now We study the effect on the cluster number M. We fix the sample size n =
400 on non-linear model 2 and change M from 2 to 20. We examine both low
dimensional (dz = 1) and high dimensional (d; = 10) cases. The results are

shown in Figure 4.7.

We observe that the Type I error rates are well controlled when d; = 1 and
dz = 10. However, as the number of clusters M increases beyond 10, the Type-II
error rate increases while the runtimes decrease. This is because when the sample
points are divided into more clusters, each cluster has fewer points, leading to less
accurate estimation of each local HSIC value. On the other hand, as the number
of clusters increases, the computational cost of the proposed test decreases since

each cluster has fewer samples and the test statistic becomes easy to calculated.

The choice of clustering algorithm also affects the number of samples in each
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Figure 4.7: Simulation results on a different cluster number M. The sample size
n = 400 is fixed. Results on different dimensionality of Z are reported (dy = 1,
red line; d; = 10, blue line). The significant level a = 0.05. Type-I error rates,
Type-II error rates and mean runtimes are reported.

cluster. In this experiment, we used naive k-means.

4.6 Summary

In this chapter, a novel CI test is proposed. The CI test includes a new test statistic
and a local bootstrap method to generate samples from the null hypothesis. In the
proposed test procedure, we perform clustering method to avoid directly evaluat-
ing the high-dimensional conditioning set Z. In particular, we use the clustering
result and combine several local dependence measures as a measure of conditional
dependence. Consequently, the problems caused by a high-dimensional Z can be
suppressed. The experimental results show that our method is robust and performs

well against the growth of the dimension of the conditioning set Z.
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5| Conclusions and future work

In this chapter, we provide a summary of conclusions and a discussion about pos-

sible directions for the follow-up research.

5.1 Conclusions

Our work in Chapter 3 focuses on convex clustering, we have proposed a novel
Ly convex clustering method C-PAINT, which is highly efficient and makes it
possible to visualize clusterpaths of large-scale datasets. Our proposed proce-
dure is based on a key observation that the penalty term in L, convex clustering
with identical weights can be reformulated into a chain-structured weighted fused
Lasso. Then, we applied a refined dynamic programming optimization procedure
to solve the reformulated problem. Eventually, we proposed C-PAINT algorithm
to visualize the whole clusterpath. In the experiments, we demonstrate that C-
PAINT outperforms existing methods including ADMM, AMA, FLSA, CARP
and FUSION method in terms of efficiency while obtaining the exact solution.
Our proposed method overcomes the computational challenges posed by this spe-
cial case of identical weights. The runtime of C-PAINT grows almost linearly
with respect to sample size n, dimension of data point p, and length of lambda

sequence K, which largely expanded the application scope of convex clustering.

Our work in Chapter 4 focuses on conditional independence test, we have pro-
posed a robust CI test that can handle high-dimensional conditioning sets Z. Our
proposed CI test has two main components: a novel test statistic and a local boot-
strap to sample from Hy. For the test statistic, first, we perform k-means clustering
on Z to avoid directly evaluating high-dimensional Z. Next, we measure the un-

conditional dependence measure HSIC for all pairs of (X, Y') in each cluster and
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combine them into a single test statistic. In order to calculate the p-value, we intro-
duce a local bootstrap sampling method to approximate the distribution under the
null hypothesis. In the simulation study, we have compared our proposed method
to several representative CI testing methods, including KCIT, CMIknn, RCIT,
RCoT and CCIT. We have considered both a linear model and a non-linear model,
with both low-dimensional and high-dimensional conditioning set Z. By combin-
ing the test statistic and local bootstrap, our proposed CI test, BHSIC, not only
showed competitive performance in the low-dimensional setting but also demon-

strated higher power and robust performance in cases with high-dimensional Z.

5.2 Discussion

Finally, we point out the limitations of the current works and discuss the possible

directions for further improvement.

On convex clustering, though C-PAINT is highly efficient, it has two main restric-
tions. The first limitation is that the structure of weight in C-PAINT method is
restricted to the identical weight case. However, a proper weight has a crucial
effect on the performance of convex clustering, and in some scenarios, identical
weights may be an infeasible choice [41]. On the other hand, though C-PAINT
grows linearly as the number of \ increases when we want to obtain a more pre-
cise clusterpath or a complete dendrogram, we have to repeatedly optimize with a

large number of parameters A\, which is computationally expensive.

On (I test, the proposed method is an exploration that combines clustering tech-
niques in CI test. However, clustering results in different sizes of clusters. Thus,
it is meaningful to improve the current test statistic, which is a simple mean of
cluster-wise dependence measurements. Moreover, we may replace HSIC with

other dependence measures or conditional dependence measures.
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6| Appendix

6.1 Anexample N=3

Consider the case n = 3, given 1 < x5 < x3, we want to minimize the following

problem to obtain a1 < as < as.

o .1
(a1, a9, a3) = arg mm{— [(z1 — a1)” + (22 — a2)” + (33 — a3)?]

(a1,a2,a3)

+ )\1|6L1 — CL2| + /\2|a2 — a3|
Suppose as is known, by definition a, is equal to:

1
a; = arg min §(x1 —b)%+ \i|b — ag
b

= arg min hq(b) + A\ |b — ag|
b

Since the b here represents a; and is always smaller than a,. We only need to
consider two cases:

* (1) b < ao. At that case, by KKT condition it is easy to find a; = U;.

¢ (2) b = Gy. In other words, a; = as.

From that we get

dl = arg min hl(b) + )\1|b — d2| = min(dg, Ul)
b
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Similarly for a,, we suppose as is known:

2 = arg min ({1 = 01 0) + (52 = B+ Miln(6) — V] + dalb —

= arg min hy(b) + \o|b — a3| = min(as, Us)
b

Next we need to find Uy, U; and as, with whom a; and a, can be obtained imme-

diately. We solve it in the following order:

U1 — U2 — &3 — &2 — dl.

For Uy, it is straightforward that U; = z; + A\;. Then for U,, the U, satisfies
g2(Us) = Ao, and go(b) is a continuous piecewise linear function shown in the

figure 6.1.

g2(b) = g1 (D) I[b < Uy + M I[b > Uyl + (b— z9)
= (b— J]l)I[b < Ul] + )\11[1) > Ul] + (b— {L‘Q)

Because ¢, is composed of two lines, the key is to locate which line is (Us, A2)
on. According to the algorithm 2, we first search from the right by assuming the
(Us, \2) is on the right line, and get 5 = Ay — A\; + 25 which makes (5, \) the
intersection point of y = A, with the right line. Next we compare the 5 with U
in figure 6.1. If § >= Uy, (Us, A2) is indeed on the right part of the line, then we
have U, = f3; otherwise we update the slope and intercept to be those of the left

line and let Uy = Shew = A2 + (21 + 22)/2.

This search process is efficient enough but is still not linear. In order to make the

search more efficient, some care needs to be taken.
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Figure 6.1: An image of g,(b): the solid line is an example of ¢5(b) with a branch
point U;. The search starts to find the § first and if § does not qualify g > U,
then we go to find the Spey.

Here we illustrate the erase step in line 11 of Algorithm 2. We consider the case
when U, < U;. We want to find a3 and search from the right part of the g3
function. The only difference between searching U, and a3 is we let [ satisfy
g3(B) = 0. We first compare the 3 with Us, and if § < U,, the comparison
between (3 and U is no longer necessary because we already know Uy < Uj.
Thus we can delete the U; after obtaining a U, that is smaller than U;. In the end,
all the U; can be deleted at most once: once a Uj;, j > i is found such that U; < U,
the former U; can be deleted immediately and never used again. By doing this,

the DP algorithm becomes much more efficient and finally takes linear time.

6.2 Simulation details

Both standard errors and means over 30 replications are reported in the following
table. From the table, we observed that C-PAINT is more efficient than FUSION

as the sample size n grows.
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Sample size n 100 500 1000 5001 10000 50000
CARPI1 0.32(2.7¢-3) | 232.5(69) * * *
FLSA 0.04(5.2e-4) | 3.4(4.8¢-2) 35.6(0.4) * * *
ADMM 0.07(9.3e-4) | 4.9(4.8¢-2) 50.8(20) * * *
AMA 0.07(1.1e-3) | 3.3(2.7¢-2) 42.7(15) * *
FUSION 5.0e-4(9.2¢-5) | 4.0e-3(1.1e-4) | 1.2e-2(2.0e-4) | 3.3e-1(3.1e-3) | 1.1(7.4e-3) | 27.7(2.8¢-2)
C-PAINT 9.7¢-4(2.6e-4) | 3.8¢-3(1.2¢-4) | 8.9¢-3(1.5¢-4) | 1.5¢-1(7.5¢-3) | 0.41(1.1e-2) | 5.6(4.2¢-2)

Table 6.1: Run times Comparison. The means and standard errors of each method
over 30 replications are reported. Here * means we cannot obtain the solutions
within a reasonable time.
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