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Abstract

Our aim in this paper is to give Sobolev’s inequality and Tngér exponential
integrability for Riesz potentials of functions in non-diing Morrey spaces.

1. Introduction

The space introduced by Morrey [13] in 1938 has become a usedllof the
study for the existence and regularity of solutions of pértiifferential equations. In
the present paper, we aim to establish Sobolev's inequfiditithe Riesz potentials of
functions in generalized Morrey spaces in the non-doublietjirg), as extensions of
Gogatishvili-Koskela [4], Orobitg-Pérez [14] and SaweBmbukawa-Tanaka [19].

Let X be a separable metric space with a nonnegative Radon measuter sim-
plicity, write |x — y| for the distance ofx andy. We assume that({x}) = 0 and
0 < u(B(x,r)) < oo for x e X andr > 0, whereB(x, r) denotes the open ball cen-
tered atx of radiusr > 0. In this paper,u may or may not be doubling.

Let G be an open set irX. We define the Riesz potential of orderfor a non-
negative measurable functioh on G by

X —yI*f(y)
U, f(x) = du(y).
9= |, uBtx, 4x— ypy )
Here we introduce the family.PVK(G) of all measurable functions on G such that

rV
11D, = SUp ——=— | (y)|Pdu(y) < oo,
Prok = SUP (B0 KD Jonspn | O 440D

where 1< p< oo, v >0, k> 1 anddg denotes the diameter @&. In caseX = R"
with a nonnegative Radon measyte we know that

L PYV;kl(G) =L D,v:kz(G)
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whenk; > k; > 1, but we have an example (see Remark 2.1) in which
LPH(G) # LP2(G);

see also Sawano-Tanaka [20]. The spafe?(G) is referred to as a generalized Mor-
rey space.

To obtain Sobolev type inequalities for Riesz potentialdwfctions belonging to
generalized Morrey spaces, we consider a generalized mhiumetion defined by

1
f = e — f d
Micf(x) = SUP 806 k1) Jonsgeny | O 4#0)

for k > 1 and a locally integrable functiori on G. In view of Sawano [18, Corol-
lary 2.1]), M3 is bounded inLP(X). Further it is useful to remark that in a certain
metric measure spac¥, M fails to be bounded irLP(X) if and only if k < 2 (see
Sawano [18, Proposition 1.1]).

By applying the fact thatM, is a bounded mapping frorhP"2(X) to LPV4(X)
(see Sawano-Tanaka [20, Theorem 2.3]), we first show Uhdt € LP""4(X) for f
LPv2(X), where ¥p* =1/p — /v > 0; in the borderline case = ap, we consider
the exponential integrability. For this, we also refer tleader to Sawano-Sobukawa-
Tanaka [19, Theorem 3.1].

Finally, in our Morrey space setting, we establish an exptakimtegrability for
functions satisfying a Poincaré inequality, as an extensib Gogatishvili-Koskela [4]
and Orobitg-Pérez [14].

For related results, see Adams [1], Chiarenza-Frasca [@pofEBm 2], Nakai [15,
Theorem 2.2] and the authors [11, 12] in the doubling case.

2. Sobolev’s inequality

Throughout this paper, l6€ denote various constants independent of the variables
in question.

For a nonnegative measurable functidnon G and k > 1, define the maximal
function

W00 = 2B k) Jonpgery T )
= sup | () du(y)

0<r <dg M(B(X, kr)) GNB(x,r)
for x € G, wheredg denotes the diameter @. Recall that

rU
fIb k= sup —s—— f(y)IPdu(y).
Hlonen ™ (2P B KD Jorsin O )
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When X = R" with a nonnegative Radon measuyig we see that ifG is an open set
of R" and 1< k < 2, then

|| f ||p,u,G;k =< C” f ||p,v,G;2

for all f e LPV2(G), whereC is a constant depending only dnand n; for this fact,
see e.g. [20, Proposition 1.1].

REMARK 2.1. We set

rv

0 T o, O <]
xeGO<P<dG w(B(x, kr)) GQB(Xr)| N1Pduly)

LPYK(G) = { f

When G c R", LP¥K(G) = LPV%(G) for all k > 1. We show by an example that
LPY4(G) # LP(G)
whenk > 1. For this, consider a measure given by
du(y) = e'dy
on R For 0< B <1, letting f(y) =y #/P for y > 0 and f(y) =0 for y < 0, we

note the following:
(i) if0O <x<r, then

rv rv 2r
——— | F(Y)IPdu(y) < —ex+' y dy
,u(B(X, 2I’)) B(x,r) ex(le ) 0
rv- B+l
C ;
=Y -1

(i) if x>r >0, then

r v u X+r

_ f Pd —feVd
2B, 2) Jory ) W) < gy ), YO
< r (X + r)l_ﬂ — (X — r)l_ﬂ et
S ¥&@ 21 1-8
rv—ﬁ+1
S Cé _ 1’

(iii) if x >0 andr > 0, then

rl)

- v -B
2B 1) Jaen [T(Y)IPdu(y) = r’(x+r)~".
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If 0 <p <1andp <v, then (i) and (ii) imply thatf e LP"2(R?), and if 0< g <1
and 8 < v, then (iii) implies that

v

r
lim sup ————— f(y)|Pd =
HOODM(B(XJ)) B(X’r)l WMIPdu(y)

for every fixedx > 0, so thatf ¢ LPV(RY).
In what follows, if f is a function onG, then we assume thdt = 0 outsideG.

First we present the boundedness of maximal functions iitreey spacd. P"2(G)
due to Sawano-Tanaka [20, Theorem 2.3].

Lemma 2.2. If v > 0, then
IM2fllpvca<Clfllpvc2
for all f € LPV2(G).

Proof. Let| flp.c2 <1, and fixx € G and O<r < dg. Write Ag = B(x, 2r)
and Aj = B(x, 21*lr) \ B(x, 2'r) for each positive integej. We set

fi = fxa,

where xg denotes the characteristic function Bf Note that

/ Mz f(2)Pdu < Zpl(/ M2 fo(2)Pdu +[ Mzgo(z)pd,u>
B(x,r) B(x,r) B(x,r)

=2P"1(11 + 1),

wheregg = Z‘j’il [f;]. We have by Sawano [18, Theorem 1.2 and Proposition 1.1]

|1S/szo(Z)deSCflfo(Z)lde

=C I f(2[Pdu < Cr " u(B(x, 4r)).
B(x,2r)

Next we see that foe € B(x, r)

1
Mz fj(z) <C sup — = o ()l du
: {t:(21 —1)r <t<(2i*1+1)r} n(B(z, 2t)) B(z.t)
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<C sup <—
(@ -1y <t=@i*1y) \M(B(Z, 2)) JB(z1)

< C(er)’”/p,

1/p
If(y)lpdu>

so that

M2go(2) < Z My fj(z) <C Z(zir)fv/p <Crv/p,

j=1 j=1

Hence it follows that
lo <Cr™" / du < Cr7"u(B(x, r)).
B(x,r)

Thus we obtain
rU

R M, f(2)Pdu < C,
(B0, 4)) Jogry 2T @k =

which proves the lemma. ]

Lemma 2.3. If f is a nonnegative measurable function on G such fHdfp .2 <
1, then

x— Y1) a
/I;(x,a) M(B(X, 4|x — y|)) d/’b(y) <Cs sz(X)

for x e G andé§ > 0.

Proof. We have

X = y|* f(y) = X = y|* f(y)
d = d
/B(x,a) w(B(X, 4]x —yl)) ne) g /Es(x,zi+15)\s(x,2is) w(B(X, 41X —yl)) ne)

(271*1s)~
f(y)d
Z w(B(X, 2_“'28)) Bx,2-i418) (y) duly)

< 8*M2 f(x) Z itk
j=1
= C8*Ma f (),

as required. O
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Lemma 2.4. Letv/p > «. Let f be a nonnegative measurable function on G
such that|| f || ,,.c:2 < 1. In casev/p > «,

IX =yl f(y) _
du(y) < Cs*~v/P
/G\B(x,a) w(B(x, 4]x —yl)) )

and in casev/p =« and G is bounded

Ix — yI* f(y) 1
d <Clog-
/G\B(x,s) w(B(x, 4/x —y|)) my) = 93

for x ¢ G and small§ > O.

Proof. Let jo be the smallest integer such thdt&2> dg, wheredg is the diam-
eter of G as before. By using Hdélder’'s inequality, we have

X —yI“f(y)
/G\B(x,s) w(B(X, 4x —y|)) d(y)

lo
IX —yl* f(y)
= d/,L
= /B(x,21+15)\5(x,21 5) (B(X, 4lx —yI)) )
jo 1
<> @) f(y) du(y)
j;) n(B(x, 21%28)) Jpx,2i*1s)
<Cs*) 2v (— f(y)"du(y)>
; w(B(X, 21*28)) Jgx,2i+15)
jo
< Cs” Z 20tj (2j+18)7v/p
j=0
jo
= C§*v/P Z a—v/p)]j ,
j=0
which proves the required inequality. ]

With the aid of Lemmas 2.2, 2.3 and 2.4, we can apply Hedbérigk (see [6]) to
obtain a Sobolev type inequality for Riesz potentials duédams [1, Theorem 3.1],
Chiarenza and Frasca [3, Theorem 2], Nakai [15, Theoremah@]Sawano-Tanaka [20,
Theorem 3.3].
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Theorem 2.5. Let1/pf =1/p— /v > 0. Then there exists a positive constant
¢ such that
rl)
w(B(z, 4r)) B(zr)

for all ze X and r> 0, whenever f is a nonnegative measurable function on X sat-
isfying || f [l p,v,x;2 < 1.

(Uo FO0P du(x) < ¢

Proof. We see from Lemmas 2.3 and 2.4 that

du(y) + du(y)

x5 M(B(X, 4x —yI)) x\B(x.5) H(B(X, 4]x —yI))
< C8*My f(x) +Cs* /P

U, F(x) :/B X — yI* f(y) Ix — yI* f(y)

for all § > 0. Here, letting
8= {Maf(x)}P",
we have
Uy f(X) < C{M, f (x)}XP/" = C{M, f (x)}”/¥",

which yields

/ (Ua ()P du(x) < C / (M2 f ()} Pd e (x)
B(zr)

B(zr)

for ze X andr > 0. Hence Lemma 2.2 gives

rU

- U, f(X)}Pd <C
w(B(z, 4r)) B(z,r){ COF dulx) <

for suchz andr, as required. O

REMARK 2.6. Theorem 2.5 implies that the mappifig— U, f is bounded from
LPY2(X) to LPV4(X).

REMARK 2.7. WhenX =R", consider the potential

B X —y|* f(y)
Ue k f(X) —/ w(B(x, kIx — y)) )

for k > 1. Then we can show that the mappifig— U, « f is bounded fromL P"2(R")
to LP"2(R"), when ¥p?=1/p—a/v > 0.
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REMARK 2.8. We show by an example that the mappihg> U, 1 f fails to be
bounded inLP"2(RM).
For this purpose, considelu(y) =e¥dy and

_[y™#* when y>0;
) = {0 when y <0.

In view of Remark 2.1, we see thdt e LP"?(R') when O0< 8 < v < 1. Further we
see that

> te(x +t) AP

+t =
: —ex(et—e—t)ex dt =00

Uot,l f (X) =

for all x > 0 wheno — 8/p+ 1> 0. This implies thatU, ;f does not belong to
LPV2(RY) when 0< B <v < 1.

3. Exponential integrability

Our aim in this section is to discuss the exponential inteitjta

Theorem 3.1. Let G be bounded and = «ap. Then there exists a positive con-
stant ¢ such that

rl}

u(B(z, 4)) ems(z,r){eXp(CU“ f()) = 1pdu(x) <1

for all ze G and0 < r < dg, whenever f is a nonnegative measurable function on
G satisfying|| f lp,u,c;2 < 1.

Proof. Let||fp,.,c2<1. We see from Lemmas 2.3 and 2.4 that

_ IX —y|* f(y) IX —y|* f(y)
Ua T(x) = /(.BOB(X,B) w(B(X, 4]x —yI)) du(y) + G\B(x,5) H(B(X, 4]x —yI)) du(y)

<C§*Myf(x)+C Iog%
for x € G and smalls > 0. Here, letting
8 = (M2 f ()} {log(M2 f (X))}
when M, f (x) is large enough, we have

expUa f(x)) < C+C{Mf(x)}",
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so that Lemma 2.2 yields

/ expU, f(x) du(x) < Cu(G N B(z, 1)) +C / (M2 (x)}Pdu(x)
GNB(zr)

GNB(zr)

<Cu(GN Bz )+ cw

for ze G andr > 0. Hence we findc > 0 such that
r\)
w(B(z, 4r)) GNB(zr)

for ze G and O<r < dg, whenever| f|,,c2 < 1. Thus the required result is ob-
tained. ]

{expU, f(x)) — 1} du(x) = 1

REMARK 3.2. In Theorem 3.1, we can not add an exporgest 1 such that

rv

W(B(z, ) Jonp P 10D 1 Al =1

For this, consider the potential
U(x) =/ Ix —yI* "yl~“dy,
B
whereB =B(0, 1)c R". If v=ap < n and f(y) = |yl *xs(y), then
r”*”/ [f(y)IPdy < r”*”/ x —y|™*Pdy
B(x,r) B(x,r)
<Cr'""*P=C
for all x e B andr > 0, so thatf € LP"1(B). On the other hand, we see that

UX) > / X — y[* " £ (y) dy
B\B(x,|x|/2)

z?“f Ix —yl "dy
B\B(x,[x|/2)

2
zCIogm

for x € B, and hence
/ expU(x)?) dx = oo
B

for c > 0 andq > 1.
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Consider the function
t2 t N-1

eN(t):et—l—t—E—"'—m.

Theorem 3.3. Letv =ap. For ¥ > v, take a positive integer N such that

vp
_ap

N >

:ﬁ.

<

Then there exists a positive constant ¢ such that

rv

B Jo, NV DO =1

for all ze X and r> 0, whenever f is a nonnegative measurable function on X sat-
iSfying || f ||p,u,X;2 + || f ||p,17,x;2 < 1.

Proof. We see from Lemmas 2.3 and 2.4 that

IX —y|* f(y) Ix —yl*f(y)
of = d d
Vet /B(X,a) 2805, 4x—y0) O | s 1B dx = yp) 24V

<C§*Maf(x)+C Iog;—L
for small § > 0. Here, letting
8 = {Ma f (x)}~*{log(M2 f (x))} "
when M, f (x) is large enough, we have
U, f(X) < Clog(2 + M3 f (x)).

We write G; = {X € X: Maf(X) > 2} and G, = {x € X: My f(x) < 2}. Then we find
¢1 > 0 such that

/ en(C1Uq () du(x) < / (M2 f (x)}Pdpa(x)
G1NB(zr) B(zr)
and
/ en(crU, f (X)) du(x) < / (U F00}Pdpu(x)
G2NB(zr) G2NB(zr)

< / (M2 f ()}Pdpa(x)
B(zr)
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for ze X andr > 0. Hence Lemma 2.2 gives

rv

(B &) s en(cUq f(X)) du(x) < 1

for suchz andr, whenever| f . x2+ [ fllpsx2 < 1. This gives the the required
result. ]

REMARK 3.4. Letv <ap and f be a nonnegative measurable function Xn
belonging to LPV2(X). Then U, f(x) is seen to be continuous ay € X where
w(@B(%g, r)) =0 forr > 0 and

[Xo — yI* f(y)
1) /umamam—ymdM”<“l

In fact, for § > 0, we write

[X —y[* f(y) IX —y|*f(y)
« F(X) = d d
Vet OO= [ s 2(B0G A% = y1) O [ sy m(BOK, 4 — ypy) )
= Uy(x) + U(x).

The proof of Lemma 2.3 implies that
Uy(x) < Cs*~/P

for x € B(Xp, 8), whena —v/p > 0. Note thatu(B(X, 41X —y|)) = w(B(Xo, 41X —VYI))
asXx — Xg for fixed y € X\ B(xo, 35) by the assumption that(dB(xe,r)) =0 forr > 0.
Since [x — y|”/u(B(x, 4x — YI)) < C|xo — yI*/u(B(Xo, 2Ix0 — YI)) for x € B(xo, §) and
y € X\ B(Xp, 35), we have by Lebesgue’s dominated convergence theorem

lim Uz(x) = Uz(Xo),
X—Xo
which shows thatJ, f (x) is continuous aixg.

4. Poincaré inequality

Let © be a nonnegative measure on an openGetFor a measurable functiom
on G, we define the integral mean over a measurableEsetG of positive measure by

Ug = ][E ux)du = ﬁ . u(x) du(x).

In this section, we assume that satisfies the lower Ahlfors-regularity condition

4.1) Cur® < u(B) < o0



266 Y. MizuTA, T. SHIMOMURA AND T. SOBUKAWA

for all balls B = B(x,r) c G, wheres > 0 andc, is a positive constant.
We say that a coupleu( g) satisfies a strong (I90) Poincaré inequality (irG) if

1 1/po
4.2) fB |u(x)—uB|du(x)scp(diamB)“S(m /B Ig(y)lp"du(y))

for each ballB = B(x, r) with 2B = B(x, 2r) € G, where 1< pp < p andcp is a
positive constant.
Set Yp*=1/p—1/v > 0.

Theorem 4.1. Let u be a nonnegative measure on G satisfy(dgl), and as-
sume that a coupldu, g) satisfies a strong(1, p) Poincaré inequality(4.2). If
9llp,v,c;2 < 1, then

rl}

M/B'“(X"“B'p du(x) < C

for every ball B= B(x, r) with 2B c G.
Orobitg-Pérez [14] gave a version of Sobolev’s inequditiethe LP space setting.
Proof of Theorem 4.1. LetR= B(x, 2r) C G. For x € B, set
Bi(x) = B(x, 27'r).
By the Lebesgue differentiation theorem we have
lim ug, g = u(x)
for u-a.e.x and hence we may assume that our fixed pairtias this property. Let

N = N(x) be a positive integer whose value will be determined latetting B; = B;(x)
fori =1,2,..., we have by (4.1)

[u(x) — ug|

IA

o0
|uBl - UB| + Z |uBi - uBi+1|
i=1

< 1 f|u ug|du + ! [u—ug,|d
< —= - Wt —e—— - [
n(BNBy) Jg ° n(BN By Jg, >

[e¢]

1
+ _ u—ugld
2B Jp 1 un I

i=1
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N
< Cr*S/ lu—ugldu+C Z(Z"r)’S/ lu—ug|du
B - B
i=1 !

+C Z(Zfir)*S/ lu—ug|du
By

i=N+1

=lg+ 11+ 1.

By using Hoélder’s inequality and a strong (fi;) Poincaré inequality, we find

1/po
loSC(diamB)<ﬁfBlglp"du>

_ 1 1/p
5C(duam8)(m /B Iglpdu)

< Criv/p

and

N . 1 1/po
| l — Po
1=C g r<u(25i) /Bi [] du)

N ) 1 1/p
S o[ p
=CL r(u(zsi) 9 d“)

Bi

N
<C> (@'ntvp

i=0
< C(2 Nr)-v/p,

According to the estimation of;, we obtain

° i 1 o 1/po
— 0
L<Cc Y 2 r(u(zsi)/a 9l du)

i=N+1

<C Y 2'r{Mago(x)}/™

i=N+1
< C27Nr {Mago(x)} P,

where go(y) = 19(Y)|P xs(y) with xg denoting the characteristic function &. Now,
consideringN to be the integer part of (2'r)="/P = {Mogo(x)}¥P, we establish

(4.3) lu(x) — ug| < C[r ="/ + [Mago(x)} /(PP
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Therefore, it follows from Lemma 2.2 that
1060 — ve™ dia) = © [ 17+ (Mago()” X101
<clru@+ [ owrau|
= c|rute)+ [ aoPaue)|
< Cr"u(2B),
as required. ]

Corollary 4.2. Let u be a nonnegative measure on G satisfy{dgl), and as-
sume that a coupléu, g) satisfies a strondl, pp) Poincaré inequality Then

1/p

1/p*
(f 100~ velauc) = o e e( £ lawraue)
B B
for every B= B(x, r) with 2B C G, wherel/p*=1/p—1/s > 0.

To show this, first supposé; [g(y)IPdu(y) < 1. Then the decay condition (4.1)
implies that||gllps,c;1 IS bounded. Now we see from the inequalities after (4.3) that

/B UG — sl dju(x) < Cru(B).

Hence we obtain

1/p

(/B lu(x) — uB|p*dM(X)>1/p* < C(r—Su(B)Y" (/B Ig(y)lpdu(y)>

for a generalg, which gives the required result.

REMARK 4.3. LetG be an open set ilR". We assume that a couple, Q)
satisfies a (1pg) Poincaré inequality irG, that is,

1/po
(4.4) f 1000 — el dutw < C’pu(B)l/S<]{3 |g(y)|p°du(y))

for all balls B C G, where 1< py < p andc; is a positive constant independent of
(u, g). We further assume that(aB) =0 and

1(B)"? ][B I9)IPduy) < 1
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for each ballB ¢ G, where 1< p <v. Then
sup u(B)""*f, 1u() ~ ual 8 < C.
BcG B

For this, we also refer to Hajtasz-Koskela [5].

For a proof of this fact, lex € G be a Lebesgue point af. As in the proof of
Theorem 1.1 by Gogatishvili-Koskela [4], we take a sequenicballs {B;} such that
X € Bj+1 C Bj € B and u(Bj) =271 u(B). Then, as in (4.3), we can prove

u(x) — ug|™ < C[u(B) ™%+ {M1go(x)}*™],
which gives the required inequality by the boundedness efntlaximal operatoM;.

Finally we discuss the exponential integrability in the samanner as in Theo-
rem 4.1.

Theorem 4.4. Let G be bounded and = p. Let u be a nonnegative measure on
G satisfying(4.1), and assume that a coupl@, g) satisfies a strond1, pp) Poincaré
inequality Then there exists a positive constant ¢ such that

ru
n(2B)

for every ball B= B(z, r), whenever2B C G and ||g|lp,v,c2 < 1.

fB (expEIu(x) — ugl) — 1) du(x) < 1

REMARK 4.5. Letu be a nonnegative measure &% satisfying (4.1), and as-
sume that a coupleu(g) satisfies a strong (Ip) Poincaré inequality. Ify € LP2(R")
and p > v, thenu can be corrected almost everywhere to be continuoufRgnfor
this, see [10].

In fact, the first part of the proof of Theorem 4.1 implies that
u(x) — ug| < CriP=/P
for almost everyx € B, which proves
u(x) — u(y)| < Clx — y|®/P
for almost everyx, y € B.
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