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Abstract  

Building stock energy modelling (BSEM) has gained a lot of attention recently with the 

development of a range of methodologies due to its multi-dimensional capabilities and the 

potential to incorporate various decarbonization strategies and climate mitigation scenarios. With 

the advancement of data-driven techniques, BSEMs involve a higher degree of complexity with 

varying model structure and output that requires comprehensive reporting guidelines to improve 

the interpretation and consistency of these models. In BSEM, several bottom-up methodologies 

have been developed to assess the energy demand and emission reduction potential of the stock 

but, often have transitional limitations either to shift from aggregated to disaggregated stock 

boundary conditions or involve a differentiated description of practices and policies across a range 

of scales and sectors. This thesis aims to advance the methodological capability of BSEM in terms 

of data coherence, scalability and coordination, which can provide transparency and capture value 

with the least cost and effort. Based on the above background, the key data acquisition techniques 

of BSEM are assessed to assist in the selection of the BSEM approach depending on the data 

availability and quality, and then, a novel bottom-up BSEM approach is developed to incorporate 

scalability and integration of multiple building-oriented elements within the model. Moreover, to 

exhibit the model applicability and integration of the developed model, a bottom-up BSEM 

approach is coupled with a physical approach of building integrated photovoltaics (BIPV) 

potential estimation to assess the carbon neutrality of commercial building stock at scale. The 

thesis is comprised of six chapters whose summary is explained as follows: 

Chapter 1 provides a comprehensive overview of transitional strategies and measures to 

decarbonize the commercial building stock. After this, a quadrant-based classification of BSEM 

is outlined and further review of methods related to carbon neutrality assessment and BIPV 

estimation are discussed. 

In Chapter 2, key data acquisition techniques of BSEM and their use cases are identified and then, 

illustrated the development process of three major BSEM approaches. The crossover framework 

was further developed to assess the accuracy and added value of quality and quantity of data on 

the model performance of commercial BSEM.  

In Chapter 3, an automated dynamic building simulation framework using a GIS-synthetic hybrid 

model is developed to integrate spatial and synthetic modelling approaches for facilitating the 

concurrent consideration of multiple building-oriented elements at multiple scales.  

In Chapter 4, a multi-model framework of the BSEM-BIPV coupled scheme is developed to 

illustrate the process of model coupling for the assessment of carbon-neutral building stock, which 

can involve a higher degree of coordination to adequately manage the modelling functionality and 

integration, resolution and data coherence.  
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Chapter 5 presents an integrated discussion to explain the contributions and practical perspective 

of the advancement of BSEM approaches. The chapter further highlights the importance of the 

role of data acquisition, multi-scale modelling and purpose-driven coupling for enhancing the 

model development process of BSEM. 

Chapter 6 provides a summary of contributions related to formulated research objectives. 

Overall, this thesis has contributed to the advancement of BSEM by providing comprehensive 

reporting guidelines in terms of accuracy, granularity and multi-dimensionality aspects. This has 

enhanced the capability of the BSEM to be further extended to any demographic landscape or 

spatial resolution and evolve into a long-term transitional workflow. Thus, enabling long-term 

spatial energy resource planning and decision-making in terms of sufficiency, efficiency and 

renewables for commercial building stock across various scales. 

Keywords: Building stock energy modelling; Hybrid building stock modelling; Bottom-up 

model; Data-driven approach; GIS modelling; Synthetic modelling; Multi-scale; Commercial 

buildings.  
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1 Introduction 

 Background 

Building stock is one of the main sources of global final energy consumption and offers an 

enormous emissions reduction potential due to reliance on fossil fuel-based end-use equipments 

and lack of adoption of energy efficiency measures. In the building sector, commercial buildings 

are an energy intensive sub-segment, accounting for 15% of global greenhouse gas emissions 

(GHG) (IEA, 2019). As they possess significant energy-saving potential, this presents a unique 

challenge for accelerating the decarbonization of commercial buildings with existing technologies 

and practices. This requires an adequate understanding of the complex interactions between 

factors influencing energy usage for implementing energy-saving measures (ESMs) (Yoshino et 

al. (2017); Nägeli et al. (2022)). Therefore, there is a need to formulate regulations and strategies 

to perform the accurate assessment of energy demand patterns and emission reduction potential 

of commercial buildings. 

At a stock level, the commercial building sub-sector is a source of enormous operational and 

embodied emissions due to diverse functionalities, non-renovated buildings and the use of carbon-

intensive material stock for large-scale constructions. To analyze these emission reduction targets 

in the commercial building stock, it is important to develop a robust and comprehensive building 

stock energy model (BSEM) that allow to: (1) estimate the trends of energy demand and CO2 

emissions at multiscale level (Nutkiewicz et al. (2018); Ali et al. (2019)); (2) accurately consider 

the complexity in terms of building heterogeneity, typology and occupancy, even with limited 

data availability (Wang et al. (2022)); and (3) explore the influence of uncertain and external 

socio-technical factors on CO2 emission reduction strategies and policies (Yu et al. (2021); 

Heidelberger et al. (2022)). To address these stock-level strategies, this chapter initially highlights 

a detailed description of the main drivers and processes for achieving carbon-neutral building 

stock and then, provides an overview of different modelling techniques for the development of 

BSEM and their use case. 

 Towards carbon-neutral building stock 

As per the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), 

Sufficiency, Efficiency, Renewable (SER) framework enables the identification of key drivers 

and determinants to consider for the decarbonization of building stock (Cabeza et al. (2022)). The 

implementation of the SER framework requires the deployment of a combination of technological 

and non-technological mitigation strategies, and renewable sources. The implementation of these 

transitional measures involves a combination of new technologies, enabling policies and 

regulations, resource planning, and socio-behaviour coherence as shown in Figure 1-1. In 

commercial building stock, realizing carbon neutral targets will be extremely challenging due to 
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diverse functionalities, large-scale buildings and longer lifetime of the buildings (Madhusanka et 

al. (2022)). Thus, the transitional pathway for commercial building stock requires adequately 

managing the degree of complexity by providing a coordinated effort with the implementation of 

non-technological mitigation strategies, improvement of efficiency measures, active and passive 

design strategies, and use of renewable distributed energy resources (DERs). 

 

                            Figure 1-1. Overview of SER framework. 

 Sufficiency 

The concept of sufficiency has recently gained focus due to the avoidance of cost and demand of 

energy by considering planetary boundaries. These are a set of non-technological options, such 

as land use management, use of buildings and appliances, and fiscal and consumer policies, that 

provide long-term non-energy use strategies to reduce the dependence of mitigation measures on 

technological aspects. The implementation of sufficiency measures in commercial building stock 

requires: (1) optimizing building usage to reduce land take and building waste; (2) lifestyle 

changes in terms of teleworking and conditioned set point temperature limits; (3) prioritizing 

multi-purpose commercial spaces; and (4) fiscal policies for the mandatory limit on building 

occupancy of commercial buildings. Gaspard et al. (2023) demonstrated that the volume and 

typology of buildings not only affect energy use but also reduce land take and building waste 

which has a significant impact on embodied emissions. Yang et al. (2022) considered lifestyle 

changes in the bottom-up simulation model to compare the decarbonization effect with other 

measures and found that green lifestyle strategies, teleworking and conditioned set point 

temperature limits, have similar carbon emission reduction potential to rooftop photovoltaics 

(PV). Ivanova and Büchs (2020) analyzed the impact of resource sharing by comparing the effect 

of shared and non-shared spaces on carbon footprints. Akenji et al. (2021) proposed a taxing and 

rationing concept to limit the per-capita floor area with legal and administrative procedures. 
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 Efficiency 

In the context of SER measures, efficiency is one of the conventional and widespread options to 

decarbonize building stock. These are set of mitigation options that provide a continuous short-

term technological improvement which mainly consists of various active, heating, ventilation, 

and air-conditioning (HVAC) systems, lighting, appliances, daylighting control, and heat delivery 

measures, and passive design factors, type of buildings, building layout, envelope and geometry, 

that influence building energy use. To evaluate the correlation between building efficiency 

measures and energy use, various studies focused on optimizing parameters such as building 

geometry (Chen et al. (2019); D'Agostino et al. (2021)), insulations (Zhu et al. (2020)), opening 

or glazing (Zhang et al. (2017)), shading or overhang projection (Zhang et al. (2017); Chen et al. 

(2019)), and ventilation and HVAC (Kim et al. (2020); Yu et al. (2021)). In the context of passive 

strategies, Zhang et al. (2017) used passive design parameters, insulations, glazing, and shading, 

to estimate the thermal and daylight performance of school buildings. Chen et al. (2019) combined 

passive elements, building orientation, window-wall ratio (WWR), insulations, and shading, with 

BIPV to explore energy saving potential of high-rise commercial buildings. Zhu et al. (2020) 

optimized the energy use and daylighting of rural hotel buildings by varying building shapes and 

WWR. D'Agostino et al. (2021) proposed an automatic workflow to consider the influence of 

passive design parameters, building layout, insulations, and WWR, on the energy use of school 

buildings. Moreover, in the context of active strategies, Kim et al. (2020) developed a national 

scale model to evaluate the effect of heterogeneity of HVAC systems on the energy use of office 

building stock. Yu et al. (2021) evaluated multiple carbon-neutral tactics under climate change 

scenarios for a single office building and found that a feasible strategy will be to improve building 

system efficiency and reduce the carbon emission intensity factor on the supply side. Jokinen et 

al. (2022) analysed the co-influence of building retrofits, envelope insulations, ventilation, heat 

pumps and boilers, on the carbon emission reduction potential of building stock at a national scale. 

Lausselt et al. (2022) considered district heating and heat pumps to assess the decarbonization 

potential of building stock at a city scale.  

 Renewables 

With the initiative to transition towards low carbon society, renewable technologies are gaining 

significance as an alternative pathway due to increasing prices of conventional fossil fuels and 

concerns related to climate change (Rasool et al. (2022)). The integration of these technological 

interventions in buildings has pushed the system boundaries towards distributed energy resources 

(DERs) that can further facilitate the large participation of prosumers. Recently, the ASHRAE 

Standard 90.1 (2022), a key benchmarking guideline for commercial building energy use, 
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incorporated a minimum requirement for the use of on-site renewables for commercial buildings 

to reduce the environmental impact of the use of energy. The implementation of on-site 

renewables in commercial buildings requires: (1) integration of solar technologies and storages; 

(2) phasing out of gas boilers, water and space heating systems; and (3) electrification of auxiliary 

and other building equipments. Kobashi et al. (2022) performed a techno-economic analysis of 

rooftop PV and electric vehicles (EV) to quantify the decarbonization potential of the commercial 

district of Kyoto, Japan. Borràs et al. (2023) assess energy-sharing strategies of rooftop PV and 

battery storage for buildings at a community level. Yamaguchi et al. (2022) developed a 

statistical-based commercial building stock model at a national level to consider multiple 

technological interventions and found that an increase in electricity demand can be avoided 

through electrification by improving the efficiency of building systems. 

 Overview of building stock energy modelling (BSEM) 

BSEM is an approach which provides the assessment of building energy use and predicts the 

evolution of building stock performance over a specific time domain (Kavgic et al. (2010); 

Reinhart (2016)). These stock-level analyses provide information related to the group of 

building types and heterogeneity among buildings, which can address the regulations and 

strategies for assessing the aggregated energy demand and emission reduction potential of the 

stock (Geraldi et al. (2020)). Building stock can be further classified into geo-building and type-

building stocks. Geo-building stock is the group of buildings which are disaggregated according 

to a geographically referenced description. Type-building stock is a group of buildings which are 

classified according to usage and characteristics in common. 

 

             Figure 1-2. Quadrant-based classification of BSEM. 
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To classify the BSEMs, IEA-EBC Annex 70 (Langevin et al. (2020)) proposed a quadrant-based 

flexible framework employing a cross-over classification approach to classify them into two 

design approaches, top-down and bottom-up, and four quadrants, top-down/black-box (Q1), top-

down/white-box (Q2), bottom-up/black-box (Q3), and bottom-up/white-box (Q4) as shown in 

Figure 1-2. The top-down models use technological-econometric indicators (Q1) or system 

dynamics (Q2) to determine the aggregated building energy use of building stock. With the 

availability of data at the disaggregated level, this recent advancement has allowed a greater focus 

on the bottom-up-based quadrant methodologies (Q3 and Q4) (Yang et al. (2020); Ali et al. 

(2020)). The bottom-up models use historical information or engineering estimates to determine 

the energy end-use of a representative building and aggregate that representative data to the entire 

stock level. Several existing bottom-up studies related to commercial buildings rely on the Q3 

models owing to the low availability and quality of data to characterize building stocks and 

incorporate the complexity of system structure influencing building energy demand (Ma et al. 

(2016); Robinson et al. (2017); Abbasabadi et al. (2019)), whereas the Q4 models represent such 

complexities by explicitly dealing with the physical and technical attributes used in the stock level 

analysis. However, the model development requires detailed input data and granular-level 

information related to these attributes (Moazzen et al. (2020); Ye et al. (2021)). 

 Bottom-up/white-box (Q4) model 

The bottom-up/white-box (Q4) models, also known as an engineering-based method, are based 

on the simulation of physics-based building dynamics to estimate the energy use of building stock 

(Reinhart et al. (2016)). These models commonly use representative buildings (or archetypes) 

to determine the energy end use (Österbring et al. 2016). Recently, with the availability of 

disaggregated data, a generalized data-driven approach has gained focus for the characterization 

of the archetypes in Q4 models that reduces inter-dependencies and further refine the quality of 

data. This approach has the potential to scale-up the flexibility and complexity of the model by 

incorporating technological interventions and long-term emission reduction strategies at the 

multiscale level. Moreover, these physics-based bottom-up stock models are further classified 

into urban building energy model (UBEM), synthetic-based and hybrid approaches (Ali et al. 

(2021); Dahlström et al. (2022)). 

1) UBEM model: This methodology uses geographical information systems (GIS) to incorporate 

geo-referenced dataset within the model, and the energy demand of building stock is quantified 

by summing up the simulated energy demand of individual buildings (Davila et al. (2016)). 

This approach is mainly applied to smaller levels, typically district- to city-level, and the use of 

GIS data enables the consideration of the physical attributes of buildings within BSEM. Nageler 
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et al. (2017) developed a GIS-based UBEM for an urban district consisting of 1945 buildings, to 

predict the heating and domestic hot water demand of commercial and residential buildings. Chen 

et al. (2017) utilized a geo-database for developing a district-scale UBEM model, consisting of 

940 buildings, for assessing the retrofit potential in commercial buildings. Zheng et al. (2019) 

integrated a GIS-based approach with the existing commercial building prototypes on a county 

scale to assess the impact of climate change on building energy use. Roth et al. (2020) proposed 

a GIS-based UBEM by combining physics-based simulation and machine learning methods to 

predict the hourly energy profiles of commercial and residential buildings at a city scale. Lausselet 

et al. (2022) constructed a dynamic GIS-based UBEM model at a city scale to assess the impact 

of various retrofit measures on the decarbonization potential of building stock. 

2) Synthetic-based approach: This approach uses sample data of buildings related to physical and 

technical attributes as model input to calculate the energy consumption of building stock (Nägeli 

et al. (2018; 2020)). This approach consists of two main categories: (1) sample-free; and (2) 

sample-based synthetic models. The first synthetic approach uses aggregated data, such as census, 

due to the non-availability of micro-dataset, while the latter approach uses sample micro-dataset 

to generate disaggregated building stock. Moreover, the most commonly used techniques are 

either iterative proportional fitting (IPF) (Hermes et al. (2012)) or Monte Carlo random sampling 

(Lenormand et al. (2013)) which result in generating sample-based and sample-free datasets 

respectively. 

3) Hybrid approach: This approach uses both deterministic and probabilistic characterization to 

integrate elements of one approach with other specific models that can bridge the gap within 

conventional bottom-up (Q4) models (Langevin et al. (2019); U.S. EIA, 2020). Fonseca and 

Schlueter (2015) developed a district-scale model by initially executing statistical Q3 and 

analytical Q4 models and then calculated the aggregated energy use by averaging both outputs. 

Nutkiewicz et al. (2018) adopted an inverse hybrid model for neighbourhood-scale by initially 

developing a baseline physics-based simulated bottom-up (Q4-based) model and then feeding its 

time series output into a machine learning (Q3-based) model to capture the influence of inter-

building energy dynamics and microclimate on commercial building energy use. Huo et al. 

(2021a; 2021b) constructed an integrated dynamic simulation model by coupling a bottom-up 

end-use (Q4-based) model with system dynamics (Q2-based) model to consider the impact of 

various long-term dynamics parameters on the possible emission peaks and peaking times of 

building stock. Perwez et al. (2022) integrated a GIS-based approach with the synthetic UBEM 

model to evaluate the impact of uncertainty of physical and technical elements at multiple scales. 
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 Methods to analyze carbon neutrality of building stock 

Several methods have been developed to assess the carbon neutrality of building stock that differs 

on the basis of data availability, accounting principle, and scope of application. These methods 

are mainly divided into four classifications: (1) decomposition method (Zhang et al. (2022)); (2) 

input-output method (Zhu et al. (2020)); (3) statistical method (Geraldi et al. (2022); Vaisi et 

al. (2023)); and (4) simulation method (Reinhart et al. (2016); Langevin et al. (2020); Nägeli 

et al. (2022)). In terms of methodological characterization, decomposition and simulation 

methods use consumption-based accounting principles that mainly calculate operational carbon 

emissions, while input-output and statistical methods use production-based accounting principles 

that mainly calculate both embodied and operational carbon emissions (Cai et al. (2014); Zhang 

et al. (2016)). With the availability of data at a disaggregated level, this recent advancement has 

allowed greater focus on bottom-up simulation methods (Dahlström et al. (2022); Morewood 

(2023)). These methods use historical information or engineering estimates to determine the 

energy end-use of a representative building (or archetype) and aggregate that representative data 

to the entire stock level. Several existing bottom-up simulation studies related to commercial 

buildings rely on black-box (or machine learning) models owing to the low availability and 

quality of data to characterize building stocks (Robinson et al. (2017); Li and Yao (2021); 

Amasyali et al. (2022)). These models lack in analytical capability to conduct long-term studies 

and cannot identify the spatial distribution of energy use of building stock. Moreover, with the 

availability of GIS data, some of the studies have recently focused on GIS models to develop 

UBEM that bridge a gap within conventional bottom-up models by adding spatial dimension. 

 Methods for assessment of BIPV potential 

The evaluation of BIPV potential has recently gained significance due to the focus towards low 

carbon cities and also for the integration of renewables in grids (Freitas et al. (2015)). However, 

the BIPV potential estimation at a large scale is highly challenging owing to computational and 

modelling complexities (Chatzipoulka et al. (2018)). Several estimation approaches are developed 

to assess the BIPV potential: (1) sampling approach (Groppi et al. (2018); Horan et al. (2020)); 

(2) geostatistical approach (Fathizad et al. (2017); Amjad and Shah (2020)); (3) machine learning 

approach (Yadav and Chandel (2015); Walch et al. (2020)); and (4) physical approach (Cheng et 

al. (2020); Liu et al. (2023)). The sampling approach uses key decision variables to extrapolate 

the potential estimation to the entire area, whereas the geostatistical approach uses spatial 

interpolation to determine the potential estimation of the entire area. Moreover, the machine 

learning approach uses data-driven predictive models to evaluate the potential estimation, 

whereas the physical approach uses a 3D model to consider the inter-building effect for the 

evaluation of BIPV potential. These approaches mainly use the GIS model to capture the urban 
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design factors and geographical constraints. Recently, the physical approach has gained a lot of 

focus because of its better accuracy, flexibility and granularity in comparison to other approaches 

(Gassar and Cha (2021)). 

 Literature review 

This section mainly consists of three sub-sections. Section 1.6.1 outlines the studies related to 

different bottom-up BSEM methodologies and then summarizes those in terms of data acquisition 

and applications. Section 1.6.2 examines the studies related to physics-based BSEMs and then 

compares the analytical capability of those models in terms of granularity and integration of 

model components. Section 1.6.3 summarizes the physics-based bottom-up BSEM studies related 

to the assessment of carbon neutrality of building stock and then evaluated those on the basis of 

the SER framework. 

 Cross-over analysis of bottom-up BSEMs 

In BSEM, several bottom-up methodologies have been developed to assess the energy demand 

and emission reduction potential of the stock. In this section, the most commonly used bottom-

up BSEMs are reviewed and then summarizes the previous studies in terms of data acquisition 

and applications.   

1) Sample-free synthetic method: This stock-level approach uses the known distribution of 

aggregated structure data to generate a synthetic population of buildings. A representative sample 

stock is constructed by iteratively performing Monte Carlo random sampling based on the known 

distribution of attributes, which represents the specified composition of an aggregated dataset 

(Lenormand et al. (2013)). Sample-free synthetic model is easy to develop even with limited 

availability of data but the major disadvantage is the randomness of input space due to the 

generation of de-correlated attributes within individual records. Nägeli et al. (2018) used a 

sample-free approach to transform aggregated building stock data into disaggregated one and then 

estimated the energy demand and carbon emissions of building stock at the national scale. 

Hietaharju et al. (2021) used Monte Carlo random sampling on building age classification to 

predict the renovation and demolition of each building within the stock at a district scale. 

Moreover, this approach is feasible to be used in those countries/regions or cities where the 

availability of micro-dataset is not possible. 

2) Sample-based synthetic method: This approach is an extension of either synthetic 

reconstruction (SR) or combinatorial optimization techniques, which uses marginal distribution 

obtained from a survey-based sample to generate the representative individuals considering the 

various dimensions or elements of stock (Hermes et al. (2012)). Typically, iterative proportional 

fitting (IPF), a bi-proportional approach to estimate a k-way marginal table while still preserving 
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the correlation matrix, is the most common technique used in this method to fit the obtained 

disaggregated distributions. The general concept of the method is to apply multinominal logistic 

regression, a semiparametric classification approach which uses a logistic function to predict the 

probabilities of dependent variables, on the survey dataset to obtain the distribution probabilities 

and then uses the IPF technique to fit the obtained disaggregated distributions. Roth et al. (2021) 

used annual building energy data to develop synthetic hourly building energy estimates at a city 

scale by combining physics-based simulation and machine learning methods. Yamaguchi et al. 

(2022) developed a sample-based stock model to predict the distribution probabilities of building 

systems and energy saving measures of commercial building stock at a national scale. Moreover, 

this method is more flexible to be used at a specific level (from national to district scale) but can 

be very time-consuming due to sample collection, attainment of marginal distributions and 

complexity associated with fitting higher dimensional data.  

3) Geo-referenced stock method: This approach utilizes geographical information systems (GIS) 

to retrieve a geo-referenced micro-dataset of building stock at a disaggregated level (Österbring 

et al. (2016)). The development of geo-referenced micro-dataset requires multiple acquisition 

techniques, such as drones, remote sensing, transformation of BIM data, and vectorizing existing 

drawings, to convert existing data into geo-database. Typically, a geo-database is characterized 

by five levels of details (LOD 0-4) which are differentiated based on a list of features, attributes, 

dimensionality, and complexity involved in the specified model (Biljecki et al. (2016)). This 

method facilitates data integration by coupling and merging multiple datasets to improve the 

quality of geo-building stock and provides better spatial dimensionality to consider urban 

environment settings and dynamic occupancy behaviour within the model (Dabirian et al. (2022)). 

Nageler et al. (2017) developed a GIS-based UBEM for an urban district consisting of 1945 

buildings, to predict the heating and domestic hot water demand of commercial and residential 

buildings. Zheng et al. (2019) integrated a GIS-based approach with the existing commercial 

building prototypes on a county scale to assess the impact of climate change on building energy 

use. Lausselet et al. (2022) constructed a dynamic GIS-based UBEM model at a city scale to 

assess the impact of various retrofit measures on the decarbonization potential of building stock. 

Moreover, this method has gained greater attention in the field of urban building energy modelling 

(UBEM) due to facilitation in the development of a time-geo framework which can provide a 

realistic description of building details at multi-level temporal and spatial resolution. 

In summary, the above review demonstrates several bottom-up BSEM methodologies for 

analysing commercial building stock. Table 1-1 compares the findings of existing bottom-up 

BSEMs in terms of approach and application. However, most of the previous studies focus on a 

specific approach depending on the availability of data, whereas there is a lack of comprehensive 

studies related to the comparison of different bottom-up BSEM methodologies for commercial 
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building stock. These comparative studies can provide the advantages and disadvantages of 

different bottom-up methodologies and can further assist in choosing the right approach 

depending on the availability and quality of data. 

       Table 1-1. Overview of studies related to bottom-up BSEM methodologies. 

Studies Approach Scale Application 

Nageler et al. (2017) Geo-referenced District Space heating 

Nägeli et al. (2018) Sample-free National Annual energy demand 

Zheng et al. (2019) Geo-referenced City Effect of climate change 

Hietaharju et al. (2021) Sample-free District Space heating 

Roth et al. (2021) Sample-based City Hourly load prediction 

Lausselet et al. (2022) Geo-referenced City Reduction potential 

 Development of multi-scale approach for bottom-up BSEM 

In this section, physics-based bottom-up BSEM studies are reviewed and then summarizes in 

terms of model components, data integration and granularity as shown in Table 1-2. In the bottom-

up/white-box (Q4) models, physics-based BSEM is the most established method to quantify the 

energy demand and the reduction potential of a building stock at the national and wider level. In 

the BSEM, the building stock is represented by reference building models (RBMs) having average 

features of a building stock segment (Buso et al. (2017); Pasichnyi et al. (2019); Perwez et al. 

(2020)). Many studies use the BSEMs to consider technological details (Kim et al. (2020); 

Yamaguchi et al. (2022)). Azar et al. (2014) proposed an operation-focused framework to quantify 

the energy-saving potential of non-technological drivers for commercial buildings. Mata et al. 

(2014) provided a guideline for developing RBM to signify the importance of diversity and 

heterogeneity within national building stocks. Hong et al. (2015) developed an energy retrofit tool 

for small- and medium-sized commercial buildings to provide a multi-step assessment of energy-

saving potential. Fernandez et al. (2018) implemented building system control measures to 

estimate the reduction potential within commercial buildings. Happle et al. (2020) presented an 

occupant behaviour model for urban buildings at a district scale to assess the impact of occupancy 

diversity on energy demand in commercial buildings. Hirvonen et al. (2021) modelled an 

optimization-based retrofit approach to determine a feasible set of configurations to evaluate the 

energy-saving potential of commercial buildings. The BSEM studies demonstrate that this 

approach can deal with technological attributes to quantify the effect of these changes on energy 

demand and carbon emissions.  
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However, most previous studies employed a sample-based (or synthetic) approach (Nägeli et al. 

(2018); Perwez et al. (2021)) with a limited focus on spatial attributes except metrological 

conditions. Therefore, physical factors are not considered adequately in the existing BSEMs. 

Moreover, in terms of the urban environment, these models either ignored or have limited 

capabilities to involve the context of neighbourhood adjacency. Several methods (Reinhart et al. 

(2013); Chen et al, (2017)) involve city-scale energy simulation, resulting in computational 

constraints when performing analysis at multiple scales. Therefore, a rapid and substitutional 

mechanism for incorporating the urban environment within the BSEM needs to be developed. 

Incorporating physical factors into the BSEMs can improve the capture value and accuracy of the 

models. However, the conventional approaches lack spatial information, hindering such 

incorporation within the model. Additionally, a review of GIS- and physics-based simulated 

bottom-up studies show that most of them related to commercial building stock either use a non-

scalable framework or are implemented at a small (city or district) scale. These data limitations 

and context-specific issues can be overcome by integrating both approaches to develop a hybrid 

model incorporating physical and technical factors. Despite this advantage of a hybrid (or 

crossover) model, few studies have focused on bridging the gap within conventional bottom-up 

models by integrating elements of one approach with other specific models (Langevin et al. (2019); 

U.S. EIA, 2020). Fonseca and Schlueter (2015) developed a district-scale model by initially 

executing statistical Q3 and analytical Q4 models and then calculated the aggregated energy use 

by averaging both outputs. Nutkiewicz et al. (2018) adopted an inverse hybrid model for 

neighbourhood-scale by initially developing a baseline physics-based simulated bottom-up (Q4-

based) model and then feeding its time series output into a machine learning (Q3-based) model 

to capture the influence of inter-building energy dynamics and microclimate on commercial 

building energy use. Huo et al. (2021a; 2021b) constructed an integrated dynamic simulation 

model by coupling a bottom-up end-use (Q4-based) model with system dynamics (Q2-based) 

model to consider the impact of various long-term dynamics parameters on the possible emission 

peaks and peaking times of building stock. The existing hybrid model studies have integrated 

various approaches without considering both physical and technical factors at the multi-scale level. 

This signifies the need to have a generalized geo-spatial hybrid (or crossover) model to predict 

the spatiotemporal patterns of the energy demand of commercial building stock across the scale. 
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Table 1-2. Overview of existing physics-based bottom-up BSEMs. 

Studies 

S
ca

le
 

A
p

p
ro

ac
h
 

Physical 

U
rb

an
 c

o
n

te
x

t 

Technical 

O
cc

u
p

an
cy

 

L
o

n
g

-t
er

m
 d

y
n

am
ic

s 

G
eo

m
et

ry
 

S
h

ap
e 

E
n

v
el

o
p

e 

S
y

st
em

s 

E
S

M
 

Fonseca et al. (2015) D G ✓  ✓  ✓    

Davila et al. (2016) C G ✓  ✓ ✓     

Nageler et al. (2017) D G ✓  ✓  ✓    

Nutkiewicz et al. (2018) NH G ✓   ✓     

Chen and Hong (2018) D G ✓ ✓ ✓ ✓     

Zheng et al. (2019) C G   ✓     ✓ 

Happle et al. (2020) D S ✓      ✓  

Hietaharju et al. (2021) D S ✓       ✓ 

Yamaguchi et al. (2022) N S   ✓  ✓ ✓ ✓ ✓ 

Prataviera et al. (2022) D G ✓  ✓    ✓  

Notation: Scale: NH: Neighborhood; D: District; C: City; N: National; Approach: G: GIS; S: Synthetic; G-S: GIS-Synthetic. 

 Carbon neutrality assessment using bottom-up BSEM and BIPV model  

In this section, the physics-based bottom-up BSEM studies related to the assessment of carbon 

neutrality of building stock are reviewed and then evaluated in terms of compliance with the SER 

framework. Table 1-3 compares the findings of existing bottom-up BSEM-BIPV coupled 

approaches in terms of modelling techniques, scale and temporal resolution.  

With the availability of data at a disaggregated level, this recent advancement has allowed greater 

focus on bottom-up simulation methods. Some of the studies have recently focused on GIS models 

to develop UBEM that bridge a gap within conventional bottom-up models by adding spatial 

dimension. Nageler et al. (2017) developed a GIS-based UBEM model for an urban district 

consisting of 1945 buildings, to predict the heating and domestic hot water demand of commercial 

and residential buildings. Chen et al. (2017) utilized a geo-database for developing a district-scale 

UBEM model, consisting of 940 buildings, to assess the retrofit potential in commercial buildings. 

Jokinen et al. (2022) analysed the co-influence of building retrofits, envelope insulations, 

ventilation, heat pumps and boilers, on the carbon emission reduction potential of building stock 

at a national scale. Lausselet et al. (2022) constructed a dynamic GIS-based UBEM model to 

assess the decarbonization potential of building stock at a city scale. Therefore, the best approach 

to assess the decarbonization of building stock is the combination of GIS and bottom-up archetype 
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simulation method, a consumption-based accounting model that can integrate multiple building 

elements and transitional measures to not only improve the calculation accuracy but also capture 

the spatiotemporal dynamics of building energy use and carbon emissions. 

The implementation of the SER framework requires the integration of a building energy model 

and BIPV potential estimation approach to consider a combination of efficiency measures, active 

and passive design strategies, and renewable distributed energy resources (DERs). To estimate 

BIPV potential, there are several approaches for the assessment of urban solar potential depending 

upon consideration of modelling comprehensiveness and level of temporal resolution (Gassar and 

Cha (2021)). However, the physical approach is considered to be a better approach in comparison 

to other approaches due to the incorporation of inter-building effects, varying meteorological 

conditions and urban morphological characteristics. Rodríguez et al. (2017) used a 3D-based 

physical approach to consider the uncertainties of the level of detail on the estimation of the PV 

rooftop potential at a regional scale. Cheng et al. (2020) developed a point-based sampling 

physical approach to estimate the PV rooftop and façade potential of multiple cities in China. 

Panagiotidou et al. (2021) utilized Rhinoceros 3D tool to examine the PV potential of building 

rooftops, façades and windows at a city scale, and further analysed the effect of urban morphology 

on BIPV potential. Liu et al. (2023) constructed an integrated physical approach to assess the city-

scale BIPV potential at hourly temporal resolution. However, there is no evidence of studies 

capable to couple these approaches at a large scale either due to the infeasible choice of 

implementation method or the non-availability of a comprehensive database (Saretta et al. (2019); 

Chang et al. (2023)). Most of the previous studies mainly focused either on the energy-related 

characterization of building stock (Fonseca and Schlueter (2015); Mohammadiziazi et al. (2021); 

Zhang et al. (2022)) or the estimation of solar potential (Ghaleb and Asif (2022); Thebault et al. 

(2022)). Therefore, an integrated approach needs to be developed for the utilization of the SER 

framework for estimating the overall decarbonization potential of the commercial building stock. 

In terms of granularity, the existing GIS-based bottom-up archetype simulation studies show that 

most of them related to commercial building stock either use a non-scalable framework 

(Nutkiewicz et al. (2018); Borràs et al. (2023)) or are carried out at an individual building (Liang 

et al. (2022); Hiyama and Srisamranrungruang (2023)) that lacks the differentiated perspective of 

transitional measures within the commercial building stock. Kim et al. (2020) developed a 

national scale model to evaluate the effect of various energy saving measures (ESMs) and 

different climate zones on the energy use of office building stock. It was found that the building 

system stock composition has a significant impact on energy reduction potential. Koutra et al. 

(2021) utilized a multi-criteria decision-making approach to realize the concept of net-zero energy 

districts. Yu et al. (2021) evaluated multiple carbon-neutral tactics under climate change scenarios 

for a single office building and found that a feasible strategy will be to improve building system 
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efficiency and reduce the carbon emission intensity factor on the supply side. Deng et al. (2023) 

constructed an automated UBEM model to analyse the co-influence of building retrofits, envelope 

insulations, lighting and cooling system, and rooftop photovoltaic (PV) on the carbon emission 

reduction potential of building stock at a city scale. Borràs et al. (2023) assess energy-sharing 

strategies of rooftop PV and battery storage for buildings at a community level. However, these 

models mainly lack the ability of spatiotemporal identification and assessment of carbon emission 

hot spots and decarbonization strategies, causing disparate coordination between local 

municipalities and regional-level stakeholders that further hinder the facilitation of carbon-neutral 

urban planning. Addressing this significant challenge, a geospatially explicit UBEM is needed to 

capture the dynamic changes and spatial constraints of these differentiated strategies to derive 

carbon emission inventories of commercial building stock at the multi-scale level. 

    Table 1-3. Overview of existing BSEM-BIPV coupled studies. 

Studies Scale Temporal 
Approach BIPV 

type BSEM BIPV 

Kim et al. (2020) National Hourly S   

Yu et al. (2021) Single building Annual  Sample R+F 

Mohammadiziazi et al. (2021) District Annual G   

Yamaguchi et al. (2022) National Hourly S   

Lausselet et al. (2022) City Annual G Sample R 

Borràs et al. (2023) Community Annual G Sample R 

Deng et al. (2023) City Annual G Sample R 

Notation: Approach: G: GIS; S: Synthetic; BIPV type: R: Rooftop; F: Façade. 

 Research gap 

Based on the literature review, BSEM has demonstrated the analytical capability to overcome the 

challenges associated with the stock-level analysis at a large scale, whereas there are still some 

limitations related to model functionalities and implementation. Moreover, most of the previous 

BSEM studies used a specific approach to quantitatively improve the robustness and accuracy of 

models but have not focused on identifying the impact of these approaches on the performance 

level of BSEMs. There is a lack of knowledge about the influence of data acquisition techniques 

on the model’s accuracy. This signifies the importance of selecting a model based on the 

availability and quality of data as well as the relevant system features required to develop a 

discrete representation of building stock that can provide the transitional shift between aggregated 

and disaggregated boundary conditions. Hence, there is a need to focus on exploring the 

comparative performance of these approaches to further assess the evaluation of accuracy in 

predicting the energy demand and carbon emissions of the commercial building stock. 



15 

 

In terms of granularity and integration of model components in BSEM, the conventional bottom-

up approaches cannot capture the spatial distribution of building stock and are also insufficient in 

concurrently mapping physical and technical factors at the building-by-building level. This can 

be attributed to the lack of information due to data availability and privacy issues related to 

commercial buildings, together with the need for detailed modelling of influential parameters. 

Moreover, most of the studies either established commercial BSEM at large (e.g., national level) 

or small (e.g., district level) spatial scales which shows that the proper method for modelling 

multi-scale framework still needs to be developed. As for uncertainty analysis, various parameters 

have been studied to investigate the effect on BSEM but most are explored at a specified scale 

instead of a multi-scale level. To overcome these research gaps, there is a need to address the 

limitations of existing commercial BSEMs, such as non-scalable framework and fragmented 

consideration of influencing factors (focusing on either physical or technological attributes), by 

establishing a multi-layer model across the scale. 

In the context of carbon neutrality, the literature review provides us with evidence and methods 

for the feasibility assessment of carbon neutrality of commercial building stock. However, there 

is no evidence of studies capable to couple UBEM and BIPV approaches at a large scale either 

due to the infeasible choice of implementation method or the non-availability of a comprehensive 

database. This can be attributed to the lack of data coherence to facilitate the homogenous use of 

a comprehensive GIS dataset to provide the necessary coordination of building stock 

interventions with renewable DERs at high spatiotemporal resolution. Most of the previous 

studies mainly focused either on the energy-related characterization of building stock or the 

estimation of solar potential. Moreover, there is a granularity inconsistency in the scope of the 

existing decarbonization studies that are either established at an individual building or a specific 

scale. Therefore, an integrated approach needs to be developed for the consideration of the SER 

(Sufficiency, Efficiency, Renewable) framework in estimating the overall decarbonization 

potential of the commercial building stock at multiple scales. 

 Aim and objectives 

The main aim of this thesis is to advance building stock analytics by understanding the impact of 

the quality of stock data on model functionality, accuracy and applicability, and to further improve 

the analytical capability of BSEM in terms of scalability and multiple building-oriented elements 

characterization that can assist in developing long-term energy efficiency monitoring strategies 

for commercial building stock. Additionally, this thesis also aims to develop a coupled scheme 

for the consideration of the SER framework that highlights the importance of coordination among 

different methodological characterizations to adequately manage the degree of complexity and 

modelling resolution for evaluating the feasibility of carbon neutrality of commercial building 
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stock at a multi-scale level. In order to address these aims, the following research objectives have 

been formulated: 

1) How can the data acquisition influence the performance level and applicability of bottom-up 

BSEM in predicting the energy demand and carbon emissions of the commercial building 

stock. 

2) How can bottom-up BSEM be modelled to incorporate scalability and integration of multiple 

building-oriented elements within the model. 

3) How does the SER framework be considered for the evaluation of carbon neutrality of 

commercial building stock. 

 Contributions 

This thesis resulted in three-fold contributions with the advancement of data acquisition and 

modelling techniques for commercial building stock. Firstly, to understand the transitional 

limitations of various BSEM approaches, a comparative study of three major bottom-up BSEMs 

was performed to evaluate the accuracy and added-value of these approaches for use in the 

bottom-up engineering model. This cross-over analysis will further provide a granular level 

framework to assist the city-level planners and policy makers in choosing the right BSEM 

approach for predicting the energy demand and carbon emissions of the commercial building 

stock.  

Secondly, a hybrid BSEM is developed to facilitate the concurrent consideration of physical and 

technical elements and further extend the model to different spatial resolutions. This provided a 

multi-tier framework using spatial intelligence building stock approach to develop long-term 

energy efficiency monitoring strategies for commercial building stock at multiple scales. From a 

practical implementation perspective, this will further help address the data limitations and 

context-specific issues by overcoming the disparate coordination between the local and national 

level stakeholders, which could identify priority areas for implementing target-based energy 

efficiency strategies. 

Thirdly, a UBEM-BIPV coupled approach is developed to consider the SER framework for the 

evaluation of carbon neutrality of commercial building stock. The coupled approach resulted in a 

purpose-driven perspective of the energy transition at multiple scales with reduced computational 

time. From a practical implementation process, it will further inform the stakeholders about the 

varying aspect of the adoption of BIPV technologies in the urban environment. Overall, this will 

provide a multi-level perspective to energy modelers and policymakers on how to achieve carbon 

neutrality in commercial building stock. 
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 Thesis outline 

This thesis mainly consists of an extensive literature review of the use and application of BSEM, 

a comparative analysis of modelling techniques, and a framework to perform BSEM and BIPV 

studies at multiple scales as shown in Figure 1-3. The thesis is comprised of six chapters whose 

summary is explained as follows: 

 

            Figure 1-3. Thesis outline. 

Chapter 1 initially identifies key drivers and determinants for achieving carbon-neutral building 

stock. This provides a comprehensive overview of transitional strategies and measures to 

decarbonize the commercial building stock. After this, a quadrant-based classification of BSEM 

is outlined and further review of methods related to carbon neutrality assessment and BIPV 

estimation are discussed. Finally, the literature review related to physics-based BSEMs is 

presented to illustrate various data acquisition techniques and their use cases. 

Chapter 2 performs a comparative analysis of three major bottom-up BSEMs to evaluate the 

accuracy and added value of these approaches for use in bottom-up engineering models. A 

comprehensive comparative overview of these models will further assess the role of data 

availability and quality on the performance level of BSEMs. 

Chapter 3 presents a novel GIS-synthetic hybrid model by integrating spatial and synthetic 

modelling approaches to facilitate the concurrent consideration of multiple building-oriented 

elements at multiple scales. In the study, building stock scenarios are developed to evaluate the 

analyticity of the proposed modelling method in assessing and examining the scale-bounded and 
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long-term dynamic uncertainties of BSEM simulations at the stock and element levels. 

Chapter 4 proposes a GIS-synthetic hybrid UBEM model coupled with a physical-based approach 

of BIPV potential estimation for the consideration of the SER framework in the carbon neutrality 

assessment of commercial building stock. The decarbonization scenarios and strategies are further 

designed to demonstrate the applicability of the proposed coupled approach in estimating the 

emission reduction potential of commercial buildings under different stock interventions and 

penetration of renewable DERs across different scales. 

Chapter 5 presents an integrated discussion to explain the contributions and practical perspective 

of the advancement of BSEM approaches. The chapter further highlights the importance of the 

role of data acquisition, multi-scale modelling and purpose-driven coupling for enhancing the 

model development process of BSEM. 

Chapter 6 provides a summary of contributions related to formulated research objectives. 
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2 Cross-over analysis of bottom-up BSEMs 

 Purpose 

In BSEM, several bottom-up methodologies have been developed to assess the energy demand 

and emission reduction potential of the stock but, often have transitional limitations to shift from 

aggregated to disaggregated stock boundary conditions. Therefore, there is a need to formulate 

regulations and strategies to perform an accurate assessment of energy demand patterns and 

emission reduction potential across the stock. However, these stock-level analyses can be 

challenging due to a lack of information corresponding to building characterization and 

quantification across various sectors. To provide a transitional framework between aggregated 

and disaggregated boundary conditions, it is important to select a model based on the availability 

and quality of data as well as the relevant system features required to develop a discrete 

representation of building stock. To further understand the limitations of various building-stock 

modelling approaches, this chapter presents a comparison of three major bottom-up building 

stock-level methodologies, GIS-based, sample-based and sample-free synthetic models, to 

evaluate the accuracy and added-value of these approaches for use in bottom-up engineering 

models. A comprehensive comparative overview of these models will further assess the role of 

data availability and quality on the performance level of BSEMs. Additionally, this study also 

points out the advantages and disadvantages of synthetic building stock approaches in comparison 

to a GIS-based building stock approach by using a detailed dynamic building simulation tool.  

Overall, this chapter aims to contribute to the literature development as follows: (1) 

quantification of the accuracy and added-value of these building stock modelling 

approaches for use in bottom-up engineering model; (2) development of a granular level 

framework in choosing the right building stock modelling approach by assessing the 

availability (or uncertainty) of data at either aggregated or disaggregated level; and (3) 

the use of these approaches in predicting the energy demand and carbon emissions of the 

commercial building stock. 

 Overview of bottom-up BSEMs 

In this study, the most commonly used bottom-up BSEMs, as shown in Figure 2-1, are considered 

to evaluate the impact and limitations of data availability and various datasets on the performance 

level of BSEM. In terms of data acquisition, the sample-free synthetic model uses aggregated 

dataset, building census or tabular data, whereas the sample-based synthetic model uses a semi-

disaggregated dataset, survey or reports, to generate the representative stock. The GIS-based 

model uses the disaggregated dataset to retrieve a geo-spatial representative stock. In terms of 

features, the sample-free synthetic model uses Montecarlo random sampling to obtain the 

multiple building features, whereas the sample-based synthetic model uses either statistical 
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techniques on the sample dataset to obtain distribution probabilities or deterministic values from 

reports or regulations. The GIS-based model uses a weighted average approach to obtain the 

building archetypes. In terms of applicability, the sample-free synthetic model is feasible to be 

used in those countries/regions or cities where the availability of micro-dataset is not possible, 

whereas the sample-based synthetic model is more flexible to be used at a specific level (from 

national to district scale) but can be very time-consuming due to sample collection, attainment of 

marginal distributions and complexity associated with the fitting of higher dimensional data. The 

GIS-based model provides a realistic description of building details at multi-level temporal 

and spatial resolution. 

 

         Figure 2-1. Overview of the transitional shift from aggregated to disaggregated boundary conditions. 

 Methodology 

The following section provides a detailed overview of the cross-over framework of building 

stock-level approaches to develop a bottom-up engineering model and its application to the 

commercial building stock of Tokyo, Japan. In order to compare stock-level approaches, the three 

major building stock approaches are implemented with transitional shifts from aggregated to 

disaggregated boundary conditions, for quantifying the accuracy and added-value of each 

approach. The building stock-level cross-over methodology consists of the following steps 

(Figure 2-2): 

1) The initial step is data collection. All the available information is gathered either through 

national (or city-level) census, sample surveys or GIS workflow to retrieve geo-referenced 

micro-dataset, depending on the preferred approach of building stock modelling. 

2) The second step involves building stock initialization to generate either synthetic or geo-

referenced stocks, which are further segmented on the basis of various criteria, such as 

building type, size, layout and age, according to the level of available information specified 

in each type of structural data. 

3) After building stock initialization, the building stock characterization is performed to define 

all the possible attributes associated with the stock-level by using various techniques. 

4) The fourth step involves building stock quantification and evaluation, during which the 

obtained proportion of basic block structure, such as building classification by size, total floor 
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area by building classification, floor composition and construction period, of buildings are 

compared with the existing structure of the stock. 

5) In the last step, a detailed dynamic building simulation is performed to assess the accuracy 

implications of stock-level approaches in predicting the energy demand and carbon emissions. 

 
                    Figure 2-2. Cross-over framework to assess building stock-level approaches. 

 Data collection 

As a case study for the application of these approaches, hotel buildings in Tokyo are selected to 

evaluate the accuracy and added-value of these building stock models. Moreover, the building 

stock of hotels is estimated to consist of 3320 buildings which nearly covers 13.61 million m2 of 

the total floor area in Tokyo. In order to investigate the effect of various input factors on stock 

level, various input data sources, such as census, sample surveys and geo-database, are used to 

develop these approaches. To construct the sample-free synthetic stock, the most basic level of 

building stock aggregated data that comes from Statistical Bureau of Japan (SBJ, 2017) is 

considered, which only contains structural data of building type, building classification by size, 

total floor area by building classification and construction period. In a sample-based synthetic 

method, multiple survey datasets are obtained from Japan Sustainable Building Consortium 

(JSBC, 2017), Society of Heating, Air-Conditioning and Sanitary Engineers of Japan (SHASE-J, 

2017) and Japanese Association of Building Mechanical and Electrical Engineering (JABMEE, 

2010), that contains disaggregated building sample data such as total floor area, number of floors, 

construction period, insulation level and building systems (heating, ventilation, and cooling 

systems). To carry out the geo-referenced stock method, a geo-database is collated from Tokyo 

Metropolitan Government (TMG) which comprises approximately 150,000 commercial buildings 

in Tokyo. The geo-referenced micro-dataset contains key determinants and variables such as 

building geometric, non-geometric, typology and building-level morphological data. 
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 Building stock initialization 

In this step, all the methods use the same basic features of building structural data, such as 

building type, building classification by size, total floor area by building classification, floor 

composition and construction period, to initialize the building stock. Based on simplified 

structural data from Statistical Bureau of Japan (SBJ, 2017), sample-free stock is generated to 

initialize synthetic building stock for the hotel segment of Tokyo. In this method, correlation 

concept within building features, such as the relation between total floor area and number of 

buildings in each classification, are used to obtain the average total floor area and number of 

floors for each classification. Subsequently, the average footprint area for each classification is 

obtained by dividing the average total floor area by the average number of floors. The stock is 

segmented into 5 types based on building classification by size, CL1 to CL5 buildings are 

classified as those with sizes less than 300 m2 for CL1, sizes between 300 and 2000 m2 for CL2, 

sizes between 2000 m2 and 10000 m2 for CL3, size between 10000 m2 and 30000 m2 for CL4 and 

size greater than 30000 m2 for CL5, as defined by Japan Sustainable Building Consortium (JSBC, 

2017). From that extended simplified structural data, a representative stock is initialized which 

creates individual records of buildings. 

In the sample-based synthetic approach, the data integration is performed to couple and merge 

multiple survey datasets, and then the distribution probabilities in terms of the number of floors 

and the construction period are obtained from an integrated dataset. After this step, iterative 

proportional fitting (IPF) is used to initialize synthetic building stock by constraining obtained 

distributions through marginal data table schemes. Moreover, in the geo-referenced stock method, 

the retrieval workflow of GIS is applied to extract the geo-referenced micro-dataset which 

contains the main attributes of buildings incorporated with spatial characteristics. Overall, this 

step results in the basic block structure of building stock that represents aggregated/disaggregated 

level data which can be further characterized in terms of other attributes. 

 Building stock characterization 

This step involves further characterization of attributes associated with initialized building stock. 

Table 2-1 provides a detailed description of techniques used to characterize building attributes for 

different approaches. In the sample-free synthetic approach, the initialized building stock is 

further characterized depending on the availability of specified data by using either a deterministic 

approach or Monte Carlo sampling from distribution. In case of the non-availability of empirical 

data related to any building attribute, the maximum and minimum range value of the distribution 

is used to run the Monte Carlo simulation. In this method, truncated log-normal distribution is 
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used to characterize continuous variables such as building height, window-wall ratio and aspect 

ratio, for incorporation of skewed distribution associated with these variables within stock. Those 

attributes, such as building orientation, that show equal chances of outcomes are characterized by 

uniform distribution. The proportion of HVAC (Heating, Ventilation and Air-Conditioning) 

systems are obtained from Society of Heating, Air-Conditioning and Sanitary Engineers of Japan 

(SHASE-J, 2017) data, which is considered within the stock by using a normal distribution. In 

terms of the building envelope, all methods use building age-band classification to define the 

thermal properties of windows and walls. 

By using multiple survey datasets in a sample-based synthetic method, the proportion of building 

attributes is obtained in terms of distribution probabilities and then characterization is performed 

by using iterative proportional fitting (IPF) to fit the specified distribution probabilities. In this 

method, the distribution probabilities of building attributes, such as building height and aspect 

ratio, are obtained from the sample dataset of Tokyo metropolitan government report and property 

tax data. To model the shading effect of neighbourhood, Ministry of Land, Infrastructure and 

Tourism (MILT) regulations are used to consider the typical conditions for each classification. 

Moreover, the HVAC stock model is structured and calibrated after the model of logistic 

regression to quantify HVAC probabilities by Yamaguchi et al. (2017), in which several 

predictors such as total floor area, demographic factors and building age are considered. 

 Table 2-1. Comparative overview of characterization techniques for different approaches. 

Attributes Sample-free Sample-based Geo-referenced 

Total floor area 

Census Multiple surveys 

TMG geo-database 

Number of floors 

Building age 

Building height Log-normal distribution TMG report 

Aspect ratio Log-normal distribution Property tax data 

Orientation Uniform distribution  

Neighborhood adjacency  MLIT land use ✓ 

HVAC systems Normal distribution Logistic regression Logistic regression 

Building shape Rectangular parallelepiped (R) L, U and R 

Building envelope Age-band classification 

The geo-referenced stock method involves an enriched dataset which contains key determinants 

and variables, such as building height, orientation, aspect ratio, shape coefficient and urban 
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morphological attributes, for individual buildings in the stock. Moreover, to further enrich the 

geo-referenced micro-dataset, logistic regression is used to incorporate heating and cooling 

systems within the stock, to achieve better comparability with other synthetic building stock 

approaches. In order to show the significance of the geo-referenced model, we also developed a 

neighbourhood adjacency model (NAM) to simplify the analysis of the shading effect made by 

adjacent buildings (Sun et al. (2021)). NAM consists of the following four steps: 1) Search for 

neighbourhood buildings adjacent to the target building; 2) Calculate solar altitude angle (δ) for 

a specific location; 3) Extract potential shading buildings (nDj < nSH; where nDj and nSH are the 

distance of neighbourhood from target building and the shading length of neighbourhood 

building); and 4) Shadow pre-processing to determine effective shading neighbourhood building 

((Min(nDj), Max(nHj)); where nHj is the height of neighbourhood building). Based on the 

analysis, we obtained the distance and height of the neighbourhood adjacent to each target 

building, which was considered to calculate the ranges of these key parameters for each archetype. 

 Building stock evaluation 

To further evaluate the accuracy of synthetic stock approaches, the relative absolute percentage 

difference (rAPD) measure is considered. rAPD is the performance measure to assess the 

initialization accuracy by determining the absolute percentage difference between estimated and 

generated stocks. rAPD is mathematically defined as follows: 

𝑟𝐴𝑃𝐷𝑖 =
𝑇𝑖𝑗 − 𝑇𝑖𝑗

𝑇𝑖𝑗
 2-1 

where, T and 𝑇 are the estimated and generated stock respectively. Thus, an APD value close to 

0 suggests a better generation accuracy of that approach. 

 Building stock energy simulations 

In order to perform the building energy simulations at the stock level, the segmentation process 

is performed based on various criteria, such as building classification by size, age and HVAC 

systems. In the initialization step, the stock is segmented into 5 types based on building 

classification by size and then to further improve the granular level details, building age and 

HVAC systems which consists of 6 age-bands and 44 systems respectively, are considered after 

the characterization step to segment the stock into heterogeneous archetypes. 

The baseline building energy models are developed for each archetype by using EnergyPlus 8.6 

interface and then simulated models to further assess the energy demand and carbon emissions of 

the hotel building stock. The simulated model also requires climate data, occupancy schedule, 

internal and external equipment loads and HVAC operational data, which are set based on 
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Japanese building regulations and some previous studies (Kim et al. (2020)). The simulated results 

are further validated by comparing them with national-level database estimates, which are 

obtained by calculating the weighted average values of each building classification by size and 

then aggregating those to get estimates in terms of primary energy demand and carbon emissions. 

 Results and discussion 

This section presents the results of the cross-over analysis of building stock-level approaches. 

First, the structure of building stocks obtained from different approaches is presented. After that, 

the evaluation process to quantify the structure quality of building stock is described. Finally, the 

results of dynamic building simulations to assess the accuracy of each approach are presented. 

Figure 2-3 shows the structure of building stock in terms of building classification, floors and 

total floor area using different approaches. The structure of modelled stock using a sample-free 

approach deviates majorly in all aspects in comparison to other approaches. This is because the 

building stock is randomly initialized, using only census data, on the basis of the number of 

buildings within each classification. In this study, the geo-referenced stock is assumed to be the 

reference case for the evaluation of the structure of building stock using synthetic approaches due 

to the better granular capability of this method to represent realistic descriptions of building 

details at multi-level temporal and spatial resolution. Table 2-2 shows the statistical overview of 

rAPD for different building stock approaches. As it is evident, the sample-free synthetic approach 

produces maximum rAPD values across all the aspects, while sample-based synthetic and GIS-

based stock approaches show a very good agreement in terms of rAPD. At a more disaggregated 

aspect level, it is observed that at a lower level (CL1 or 1 to 5 floors), the sample-free synthetic 

approach shows reasonable generation accuracy, while at a higher level (CL5 or 20+ floors), it 

results in overestimation in comparison to other approaches. Overall, the comparison shows that 

in order to achieve better generation accuracy from a sample-free synthetic approach, it is 

important to consider a minimum level of building classifications to minimize distortion within 

the share of stock. 
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                       Figure 2-3. Structure of building stock using different approaches. 

                 Table 2-2. rAPD Statistics of building stock approaches. 

Distribution Approach Min Max STD Mean 

Building 

classification 

Sample-free 0.06 0.71 0.37 0.27 

Sample-based 0.00 0.10 0.06 0.01 

Number of floors Sample-free 0.08 0.74 0.35 0.24 

Sample-based 0.00 0.13 0.06 0.05 

Total floor area Sample-free 0.11 0.74 0.32 0.17 

Sample-based 0.00 0.15 0.06 0.06 

Table 2-3 shows the composition of building archetypes for different approaches in terms of basic 

attributes. As a result of the segmentation process, 1320 archetypes are constructed for each 

method to represent the entire stock of hotels in Tokyo. To reduce the number of archetypes for 

each case, dynamic threshold criteria are used for each building classification by size to consider 

90% of the total floor area composition for each classification. The dynamic threshold criteria 

0 10 20 30 40 50

CL1

CL2

CL3

CL4

CL5

Share of Stock (%)

Building Classification

Synthetic (Free)

Synthetic (Sample)

GIS

0 20 40 60 80

1 to 5 floors

6 to 10 floors

11 to 15 floors

16 to 20  floors

20+ floors

Share of Stock (%)

Number of Floors

Synthetic (Free)

Synthetic (Sample)

GIS

0 20 40 60 80

CL1

CL2

CL3

CL4

CL5

Share of Stock (%)

Total Floor Area Composition

Synthetic (Free)

Synthetic (Sample)

GIS



27 

 

resulted in the reduction of archetypes to 600, 532 and 412 archetypes for geo-referenced, sample-

based and sample-free methods respectively. This implies that the sample-free method provides 

less heterogeneity in terms of the number of archetypes, with is majorly due to the simplistic 

approach adopted for HVAC stock modelling. 

                Table 2-3. Composition of archetypes for different building stock approaches. 

Classification Approach TFA (m2) GFA (m2) Floors 

CL1 Sample-free 68 34 2 

Sample-based 104 52 2 

Geo-referenced 103 51 2 

CL2 Sample-free 700 175 4 

Sample-based 830 138 6 

Geo-referenced 838 167 5 

CL3 Sample-free 3273 409 8 

Sample-based 4283 535 8 

Geo-referenced 4179 418 10 

CL4 Sample-free 10870 836 13 

Sample-based 16562 1380 12 

Geo-referenced 16579 1184 14 

CL5 Sample-free 46752 1979 22 

Sample-based 144638 6288 23 

Geo-referenced 117083 3902 30 

Figure 2-4 shows the share of HVAC (Heating, Ventilation and Air-Conditioning) stock using 

different stock-level approaches in terms of cooling and heating sources, and fuel types for 5 

building size classifications. In terms of cooling systems, the proportion of OHU-FCU (fan coil 

with outdoor handling unit) system is overestimated for small-size buildings in sample-free 

method, whereas VRF (variable refrigerant flow) system has a higher proportion of stock in 

logistic regression-based methods. Moreover, the sample-free method underestimated the 

proportion of decentralized heating systems (Ele-VRF), whereas the proportion of gas-driven 
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centralized systems (Gas-AbCH and Gas-AbCB) is larger in other methods. The composition of 

fuel type for HVAC systems shows that the sample-free method underestimated gas/oil-driven 

systems, whereas electricity-driven systems have a lower proportion of stock in other methods. 

The results show a major deviation between sample-free and sample-based approaches, which 

show the differences rising due to the usage of normal distribution of stratified samples and non-

consideration of various predictors to model the stock. In other methods, it is also observed that 

the application of logistic regression results in the better distinction of centralized and 

decentralized HVAC systems across small and large size buildings due to the consideration of 

various predictors, such as total floor area, population density (PD), heating degree days (HDD) 

and building age. This result implies that the consideration of building attributes and other 

demographic factors to model the HVAC stock provides better heterogeneity of the system across 

different building classifications by size. 

  

 

0%

20%

40%

60%

80%

100%

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

CL1 CL2 CL3 CL4 CL5

P
ro

p
o

rt
io

n
 o

f 
b

u
il

d
in

g
 s

to
ck

 

OHUFCU VAVFCU CAVFCU
VAV CAV FCU
VRF

a

0%

20%

40%

60%

80%

100%

S
y
n

th
et

ic
 (

F
re

e)
S

y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)
S

y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)
S

y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)
S

y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)
S

y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

CL1 CL2 CL3 CL4 CL5

P
ro

p
o

rt
io

n
 o

f 
b

u
il

d
in

g
 s

to
ck

 

Comb-EG Gas-AbCH Gas-AbCB

E-C&G-B AirS-HP Gas-VRF

Ele-VRF

b

0%

20%

40%

60%

80%

100%

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

S
y
n

th
et

ic
 (

F
re

e)

S
y
n

th
et

ic
 (

S
a

m
p

le
)

G
IS

CL1 CL2 CL3 CL4 CL5

P
ro

p
o

rt
io

n
 o

f 
b

u
il

d
in

g
 s

to
ck

 

Centralized-Gas/oil Decentralized-Gas/oil
Centralized-Storage Centralized-Mix
Centralized-Electricity Decentralized-Electricity

c



29 

 

Figure 2-4. Distribution of HVAC stock using different building stock approaches: (a) cooling systems; (b) heating 

systems; and (c) fuel type.   

Following the procedure described in the methods section, a detailed dynamic building simulation 

is performed to assess these modelled building stocks in terms of energy demand and carbon 

emissions. The aggregated results of three building stock approaches are shown in Figure 2-5 and 

further compared with national-level database estimates (JSBC, 2017). The results show that the 

total primary energy demand is underestimated by 8.3%, 18.4% and 20.6% for sample-based, 

geo-referenced and sample-free stock approaches respectively. This also demonstrates the added-

value of sample-based modelled stock to accurately reproduce the estimated energy demand of 

the stock. The main reason is the cross-sectional and longitudinal enrichment associated with the 

sample-based approach, which increases data dimensionality and non-linear interactions within 

the stock. 

 

Figure 2-5. Comparison of aggregated energy demand and carbon emissions across the stock for different bottom-up 

BSEMs. 

 Conclusion 

This study has focused to determine the accuracy and added value of the building stock modelling 

approaches, in terms of heterogeneity, data dimensionality, integration and non-linear 

interactions within the stock, for use in the bottom-up engineering model. The proposed analysis 

uses four main steps, such as building stock initialization (or geo-referenced dataset collection), 

building characterization, quantification and building energy simulations, to assess the data needs 

and performance gap of each approach. The building stock modelling methodologies are 

implemented on the commercial building stocks (hotel segments) of Tokyo, to evaluate the cross-

sectional and longitudinal enrichment of building attributes and heating, ventilation, and air-
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conditioning (HVAC) stock. The preliminary results show that the sample-based synthetic 

method can incorporate multiple input distributions using a survey micro-dataset, while the geo-

referenced method provides additional key determinants such as building typology (shape 

coefficient, aspect ratio and orientation) and morphological attributes. This implies that these are 

data-enriched methods which resulted in better performance in terms of building stock 

development and simulated building energy use that signifies the accuracy and added-value of 

these methods. However, the sample-based synthetic method provides a better compromise 

between data availability and simulation accuracy in comparison to other methods. This shows 

that the synthetic approach can be extended to commercial building stock, which mostly has a 

poorer data availability than residential building stock, which further allows to encompass 

modelling of a typical mixed-use urban environment. Moreover, this cross-over analysis will 

provide a granular level framework to assist the city-level planners and policy makers in choosing 

the right BSEM approach for predicting the energy demand and carbon emissions of the 

commercial building stock. 
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3 Development of multi-scale approach for bottom-up BSEM 

 Purpose 

The conventional bottom-up BSEMs mainly use a non-scalable stock-level framework due to 

modelling coherence and context-specific limitations. These scalability issues lead to granular 

level uncertainties depending upon the selection and description of scale, availability and quality 

of data, and use case. To address these uncertainties within conventional approaches, multi-scale 

modelling is one of the possible techniques that can incorporate granularity and multi-

dimensionality within BSEM. Such implementation needs intensive information at the granular 

level to identify the target areas where the energy policymakers can conduct target-based planning 

and decision-making (Yoshino et al. (2017); Nägeli et al. (2022)). However, the available data 

are limited and provide incomplete coverage, causing disparate coordination between local and 

national level stakeholders, further hindering the implementation of a target-based approach. A 

differentiated description of strategies is needed across the scale to integrate an appropriate level 

of detail for promoting the ESMs within the commercial building stock.  

Moreover, the existing BSEMs are insufficient in concurrently mapping physical and technical 

factors at the building-by-building level. These studies mainly focused on either physical (Nageler 

et al. (2017); Chen and Hong (2018)) or technical factors (Mata et al. (2014); Hirvonen et al. 

(2021)) due to a lack of modelling capabilities. The concurrent consideration of physical and 

technical factors within the BSEMs can improve the capture value and accuracy of the models. 

However, the conventional approaches lack spatial information, hindering such incorporation 

within the model. These data limitations and context-specific issues can be overcome by 

integrating both approaches to develop a hybrid model incorporating physical and technical 

factors. Despite this advantage of a hybrid (or crossover) model, few studies have focused on 

bridging the gap within conventional bottom-up models by integrating elements of one approach 

with other specific models (Nutkiewicz et al. (2018); Langevin et al. (2019)). The existing hybrid 

model studies have integrated various approaches without considering both physical and technical 

factors at the multi-scale level. Therefore, a generalized geo-spatial hybrid (or crossover) model 

is needed that predicts the energy performance of commercial building stock across the scale. 

To address these limitations, this chapter presents a novel hybrid model by integrating spatial and 

synthetic modelling approaches to facilitate the concurrent consideration of multiple building-

oriented elements at multiple scales. The main research objective is to illustrate a hybrid workflow 

that facilitated the concurrent consideration of multiple building-oriented elements at the multi-

scale level, leading to further improvement in the analytical performance of the BSEM. The 

proposed approach is developed to demonstrate the transferability and applicability of the model 

to three different scales. These scales are modelled based on geometry, system, adjacency context, 



32 

 

typology, and socio-behavior responses to examine and identify various drivers and determinants 

for a better understanding of mechanisms and conditions leading to different demand levels for 

commercial building stock across the scale. The building stock scenarios are further designed to 

evaluate the proposed modelling method: (1) to determine what happened if RBMs of non-

representative scale were applied to the other scales and (2) to concurrently quantify the influence 

of physical and technical factors on the model across different scales. 

 Methodology 

Figure 3-1 illustrates the conceptual scheme of our GIS-synthetic hybrid model consisting of four 

steps: (1) GIS building stock analysis, (2) synthetic building stock analysis, (3) building stock 

energy modelling and simulation, and (4) building stock scenarios. 

 

                     Figure 3-1. Schematic overview of GIS-synthetic hybrid approach. 

1) The GIS building stock analysis used a data-driven formulation process to characterize all 

the buildings in a target area by using physical factors associated with the stock. This process 

used a geo-referenced dataset consisting of physical factors, such as geometric, non-

geometric, and typology data of buildings, representing the building stock composition, 

thermo-physical properties, and shape features, respectively (see Section 3.2.1). 

2) The synthetic building stock analysis constructed the synthetic elements using a two-stage 

process to predict the probabilities of technical factors and stock turnover. This step involved 

those elements that were unavailable in the geo-referenced dataset. In the first stage, the 
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socio-spatial predictors were assigned to each building within the stock. Subsequently, the 

statistical (or machine learning) model was developed using sample data comprising 

technical factors. The most probable alternative was selected based on the best possible 

probability of each alternative for a specific building. In the second stage, the long-term stock 

dynamics were modelled by using key evolution factors obtained from the census. 

3) RBMs were developed by performing a characterization process using physical and 

technological building attributes. The RBMs were validated considering metered energy data 

by using a multivariate calibration technique, and then the annual energy use intensity (EUI) 

was calculated for each RBM. 

 Data 

The proposed method was applied to three different Japanese commercial building stocks, namely 

national, Tokyo, and Chuo, to provide a comprehensive understanding of the model’s overall 

extent and accuracy across various scales. Figure 3-2 illustrates the data types used in the model. 

For the city scale, Tokyo is considered, which consisted of wards and sub-urban areas; whereas, 

Chuo ward is one of the ward areas in Tokyo. Japanese commercial building stocks, involving 

office, hotel, hospital, and school segments, consisted of 440, 87, and 6 thousand buildings, which 

approximately covered 1005, 195, and 16 million m2 of total floor area (TFA) for national, Tokyo, 

and Chuo scales, respectively. Moreover, Appendix A lists the data sources and conversion 

process used in this study. 

 

              Figure 3-2. Simplified workflow of datasets used in GIS-Synthetic hybrid framework. 
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 Hybrid stock modelling 

1) GIS building stock analysis 

In GIS building stock analysis, the stock was initially classified by using clustering segmentation 

to obtain the optimum number of RBMs for each segment. Finally, the building shape allocation 

algorithm and neighborhood adjacency model were developed by performing an additional 

process on the geo-referenced micro-dataset. 

i) Clustering segmentation 

After dataset collection, data pre-processing was performed to remove anomalies and select 

features from the specified dataset by considering ± 3σ threshold. Additionally, various outlier 

detection techniques, namely Mahalanobis distance (MD), local outlier factor (LOF), isolation 

forest (IF), and extended isolation forest (EIF), were compared in terms of the performance metric 

of area under curve (AUC) based on receiver operating characteristics (ROC) to select the best 

suitable method for the specified integrated building dataset (Goldstein and Uchida (2016)). The 

final phase in data pre-processing was feature selection, which optimally extracts the most 

feasible and influential variables from the integrated dataset to improve the quality and 

dimensionality of model input. In this study, PCA was applied on the geo-referenced building 

stock dataset, consisting of key physical factors and urban morphological data related to building 

stock, as shown in Figure 3-2, to identify features that showed significant covariance within the 

model. The selected features were then used to perform the clustering segmentation of the 

building stock. 

Building stock clustering segmentation used a multi-variate k-means algorithm to provide a 

guideline for selecting the best possible similarity measure and a further improvement in the 

clustering partition by applying different similarity (or distance-metric) measures to each cluster 

validation index as compared to previous studies (Ali et al. (2019); Ledesma et al. (2021)). Then 

a unified clustering validity measure was proposed to evaluate the clustering scheme in terms of 

the best possible similarity measure and maximum interaction of validity indices. Three internal 

validation indices namely Silhouette (SI), Davies-Bouldin (DBI), and Dunn (DI) indices, which 

interact among themselves, were unified to produce the cohesion-dispersion index (CDI) to 

overcome the noticeable gaps in finding a single optimal cluster value (see internal validation 

indices explanation in Supplementary Appendix S1). For the distance-metric combination, we 

considered four different measures of distance and clustering metrics (Euclidean, Manhattan, 

Correlation, and Spearman). Therefore, this distance-metric cross-over analysis resulted in a 

comparison of 16 combinations (λ) for each internal validation index. The CDI for each cluster 
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was calculated using the probabilities (𝑝𝑆𝐼, 𝑝𝐷𝐵𝐼, and 𝑝𝐷𝐼) of the three internal validation indices 

and their respective weight contributions (𝑤𝑆𝐼, 𝑤𝐷𝐵𝐼, and 𝑤𝐷𝐼). 

𝐶𝐷𝐼 = 𝑤𝑆𝐼 × 𝑝𝑆𝐼 +𝑤𝐷𝐵𝐼 × 𝑝𝐷𝐵𝐼 +𝑤𝐷𝐼 × 𝑝𝐷𝐼 3-1 

𝑝𝑆𝐼(𝜆) =
𝑆𝐼(𝜆) − 𝑚𝑖𝑛(𝑆𝐼)

𝑚𝑎𝑥(𝑆𝐼) − 𝑚𝑖𝑛(𝑆𝐼)
 3-2 

p𝐷𝐵𝐼(𝜆) =
𝐷𝐵𝐼(𝜆) − max(𝐷𝐵𝐼)

min(𝐷𝐵𝐼) − max(𝐷𝐵𝐼)
 3-3 

p𝐷𝐼(𝜆) =
𝐷𝐼(𝜆) − min(𝐷𝐼)

max(𝐷𝐼) − min(𝐷𝐼)
 3-4 

To obtain the normalized index range of CDI, the values of internal validation indices 

were homogenized. Thus, a CDI value close to one suggested the maximum interaction 

of the three internal validation indices, implying optimum clustering in terms of cohesion 

and dispersion. To ensure homogeneity across the specific study, the same number of 

classifiers were used to perform segmentation, resulting in an equal number of clusters at 

different scales. 

ii) Building shape allocation algorithm 

This algorithm developed a characterization process that allocated a true unifying shape to RBMs 

across the stock. The building shape allocation algorithm consisted of three steps as follows: 

1) Shape indices calculation: The initial step involved the computation of shape indices of each 

building polygon. GIS-based shape indices are geometrically derived values representing a 

particular building polygon shape that varies between 0 and 1 (see Table 3-1) (Basaraner and 

Cetinkaya (2017)). 

2) Weighted average of shape indices: In this step, weighted average shape indices for each 

RBM were computed. 

3) Matching indices: The obtained average values of shape indices were utilized to match a 

specific shape with RBMs by using the geo-referenced dataset. 
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Table 3-1. Overview of shape indices. 

S. No Shape Index Equation Description 

1 Circularity (CI) CI =
APN
AEPC

=
4πAPN

PPN
2  Polygon’s degree of circular compactness. 

2 Convexity (CNV) CNV =
APN
ACH

 
Polygon’s degree of being curved inward or 

outward. 

3 Fractality (FR) FR = 1 −
log(APN)

2xlog(PPN)
 Edge roughness or smoothness of polygon. 

4 Rectangularity (REC) REC =
APN
AMABR

 Polygon’s degree of being rectangular. 

5 Squareness (SQN) SQN =
PEAS
PPN

=
4√APN
PPN

 Polygon’s degree of being square. 

Notation: APN= Polygon area; PPN= Polygon perimeter; ACH= Convex hull area; AMABR= Minimum area bounding 

rectangle; AEPC= Equal-perimeter circle area; and PEAS= Polygon equal area square 

iii) Neighborhood adjacency model 

The neighborhood adjacency model was proposed to develop a rapid and efficient mechanism to 

consider the neighborhood adjacency conditions. This model consisted of four steps: 

1) Geo-referenced building stock decomposition: The proposed method decomposed the 

building blocks into multiple individual target buildings and extracted their relevant adjacent 

environment in a pre-defined radius of 50 m to search for surrounding buildings adjacent to 

target buildings (see Appendix B.1). 

2) Neighborhood adjacency criteria: This step determined the necessary adjacency criteria 

required to remove irrelevant surrounding buildings by focusing on shading impact instead 

of other inter-building effects. 

3) Potential shading planes: To determine the effective shading direction and length, solar 

azimuth and altitude angles were utilized to filter out the surrounding buildings with no 

shading impact on the target building. 

4) Effective shading planes: The final step involved pre-processing of potential shading planes 

to filter out overlapping planes (see Appendix B.2). The effective shading planes were 

determined by comparing the shadow height of a nearby shading plane with that of a distant 

one. 
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2) Synthetic building stock analysis 

In synthetic building stock analysis, statistical techniques were applied to sample datasets to 

assign the synthetic elements to the building stock. 

i) Long-term stock dynamics 

This study modelled the long-term stock dynamics by considering the data interpolation (ex-post) 

and probabilistic function (ex-ante) techniques as explained in Sartori et al. (2016) and 

Hietaharju et al. (2021) (see detailed explanation in Supplementary Appendix S2). The long-term 

commercial building stock dynamics model was constructed for the study period from 2016 to 

2030 by using key evolution factors, as shown in Appendix C (SBJ, 2017; Tokyo Statistical 

Yearbook, 2019). Moreover, the weighted random probability was assumed based on age band 

classification to predict the long-term stock turnover at the building-by-building level. 

ii) System stock modelling 

In this study, the developed logit model by Yamaguchi et al. (2017) was further modified to 

extend its applicability at the building-by-building level. The model considered the socio-spatial 

predictors based on building characteristics (log10 TFA and building size), demographics 

(Population density (PD) and HDD), and age band classifications (6 bands from 1980 to 2030). 

The initial step involved the assignment of socio-spatial predictors to the sample dataset and then, 

the regression analysis was performed to obtain the coefficients of these predictors. The 

probability of each system classification for a specific building within the stock was quantified 

by multiplying the obtained regression coefficients with real predictors of buildings. For selecting 

the HVAC systems, the joint probability was calculated to select the pair of air-conditioning and 

heat sources for each building. The ESMs were selected depending on the most probable 

alternative for a specific building. Furthermore, this method was extended to different spatial 

boundaries, namely national, Tokyo, and Chuo, by initially obtaining the building stock data for 

the specific area type. Then the social-spatial predictors were allocated at the building-by-

building level to distinguish between area types. This resulted in the varying estimated probability 

of system alternatives between area types. 

 Building stock energy modelling and simulation 

After developing the hybrid stock model, the RBMs were further segmented based on multi-stage 

criteria using physical and technical attributes. As a result of the multi-stage segmentation 

process, the development of 0.21 million (clusters x 3 construction types x 6 vintages x 5 system 
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age-band x 16 ESMs x 44 HVAC systems) RBMs was possible which represented the entire 

commercial building stock at the specified scale. To reduce the number of RBMs for each scale, 

aggregated criteria combined buildings that exhibited the same classification in terms of the 

building size, construction type, age-band, ESMs, and HVAC systems. For example, the 

aggregated criteria reduced 440,846 actual buildings to 30,688 RBMs at the national scale. In the 

case of other scales, this specified criterion reduced models to 7,145 and 2,115 RBMs for Tokyo 

and Chuo, respectively.  

Subsequently, the characterization was performed by using a deterministic approach involving 

computation of the weighted average of characteristics associated with each RBM (see detailed 

geometric characterization results in Supplementary Table S2). Moreover, the RBMs were 

developed by using an automated dynamic building simulation platform, which executed 

modelling stages through Python and R scripts to generate input files for EnergyPlus. Those 

models were then simulated to estimate the energy demand of the commercial building stock. 

The simulation model also required the climate data, occupancy schedule, internal and external 

equipment loads, and HVAC operational data (see detailed explanation in Appendix D), which 

were either calibrated or set based on Japanese building regulations (ECKDIC, 2000; IEIJ, 

2006; METI, 2011; Kondo et al. (2011)) and some previous studies (Kim et al. (2020); 

Yamaguchi et al. (2022)). The description of stock-level parameter settings for different cases is 

illustrated in Table 3-2. 

Table 3-2. Description of stock level parameter settings. 

Parameter 2016 2030 Electric/Potential 

Building stock 

composition 
As per base year 

Projected as per long-term stock dynamics (see Section 

3.2.2(2)) 

Lighting 
Conventional lighting devices 

(fluorescent and incandescent lamps) 

All lighting devices are replaced with LED 

Plug load 
Calibrated as per metered data (see 

Section 3.2.3(1)) 

40% reduction from the 2016 level 

System stock 

composition 

Estimated as per socio-spatial predictors and age band 

classification (see Section 3.2.2(2)) 

All the systems are either 

replaced with those driven by 

electricity or installation of all 

possible ESMs.  
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1) Model Calibration and Validation 

In this study, a multivariate (or Bayesian) calibration technique was utilized to obtain the 

representative value of uncertain parameters for specific RBMs. Most of the uncertain parameters 

in this study are related to operational data and the input range of these parameters was 

determined from the literature (see Supplementary Table S3) (Sokol et al. (2017); Chong et al. 

(2017); Chong et al. (2018)). The calibrated parameters were selected based on their impact on 

model sensitivity (see Supplementary Figure S1). Based on the parameter screening, four high 

uncertainty parameters were chosen in this study: lighting density (LD), plug load (EE), occupant 

density (OD) and space infiltration (INF). This calibration process minimized the error between 

simulated output and metered data. At the aggregated level, the model was validated in terms of 

secondary energy consumption by comparing it with estimates from Energy Data and Modeling 

Center of Japan (EDMC, 2017). 

 Building stock scenarios 

Building stock scenarios were developed to evaluate the analyticity of the proposed modelling 

method in assessing and examining the process of model development. In this study, two 

scenarios, energy epidemiology analysis and unit block concept, were developed to understand 

better the model development process of the commercial building stock. 

The first scenario aimed to understand better the selection and description of appropriate scales 

for developing commercial BSEMs and estimate the error uncertainty when a non-representative 

scale was applied to other scales. For this purpose, we applied three different ranges of scales, 

namely national, Tokyo, and Chuo, on a reference (or Chuo) scale to assess the scale-bounded 

and long-term dynamic uncertainties across the stock. Furthermore, we proposed a concept of a 

unit block model to quantify the influence of building-oriented elements on the model across 

different scales. The unit block building model is a simplistic model consisting of typical building 

characteristic assumptions related to geometry, systems, retrofits, and operating conditions, as 

shown in Table 3-3. In this scenario, model elements were replaced by the typical ones to quantify 

the impact of these characteristics on the extent and accuracy of the model. This proposed concept 

also provided an initialization point for the development of BSEM to examine the trade-off 

between the model’s complexity and reliability. 
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   Table 3-3. Typical characteristics of the unit block building model. 

Parameter Assumption Description 

Aspect ratio 40 
Most of the studies use these assumptions for geometric 

characteristics in building stock model. 
Building orientation 00 

Building shape Rectangular 

Window-to-wall ratio - Neglected due to unit block concept. 

Neighborhood adjacency  - Neglected due to model simplification. 

Building age 1990 Selected based on average value. 

HVAC EHP-MUL Assumption of simplified heating and cooling system. 

Building system age Base year Considered based on the study period. 

ESM - Neglected due to simplified HVAC system. 

Occupancy strategy Typical Considered based on a simplified strategy. 

The performance assessment of these scenarios was performed by designing a one-at-time (OAT) 

and combined effect evaluations. The former assessed the model’s output corresponding to 

omitting a single building element, while the latter examined the non-linear interaction (or added 

one by one) of these elements on the model output. These analyses were evaluated by using two 

predictive performance indicators, impact factor (IF) and relative coefficient of variance of the 

root mean square error (CV RMSE), at building element and stock levels. The element-level 

predictive performance was assessed by using IF indicator (Kim et al. (2020)). 

𝐼𝐹 =
𝑦�̂� − 𝑦𝑟
𝑦𝑟

 3-5 

where �̂�𝑖 and 𝑦𝑟are the annual predicted and referenced (or validated) values, respectively. The 

relative index of CV RMSE evaluated the predictive performance across the stock. 

𝐶𝑉𝑅𝑀𝑆𝐸𝑟 =
√∑ (𝑦𝑟 −𝑦�̂�)

𝑛
𝑖=1

2
/(𝑛 − 1)

𝑦�̅�
 

3-6 

where 𝑦�̅� is the referenced (or validated) mean annual value of n observations. 

 Results 

This section presents the results of a multi-scale framework using a GIS-synthetic hybrid 

approach. First, the structure of building stocks obtained from a multi-stage segmentation 

process, using geo-referenced and sample datasets, is presented. After that, the results of building 

stock energy model validation and calibration using automated dynamic building simulations are 
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illustrated. Finally, the building scenarios are analyzed to explore the influence of various 

parameters on energy epidemiology across the scale and stock. 

 GIS building stock analysis 

This analysis presents the results related to the development of RBMs based on the geo-referenced 

dataset for multiple scales. After comparing outlier detection methods, the EIF detection 

technique was selected as it showed better robustness and accuracy in identifying the outliers, 

evident from the performance metric of AUC based on the ROC. Supplementary Table S4 shows 

the performance evaluation of different outlier detection techniques. The PCA method revealed 

that GFA, floors, height, and shape coefficient represent more than 80% of variability within the 

model; therefore, these four features were used as the input for building stock clustering. This 

also suggests that fewer input features would produce similar segmentation results since they 

represent the most influencing classifiers of the stock. 

Figure 3-3 shows the optimum number of clusters obtained by evaluating the CDI index (as 

discussed in Section 3.2.2). The clustering scheme showed the significance of this criteria in 

determining the maximal cohesion-dispersion of the clustering, as the resulting number of 

clusters varied with different distance-metric combinations. The unified validity index, CDI, 

identified 17 RBMs (five clusters each for office and hotel, four and three clusters for hospital 

and school, respectively) to represent the entire commercial building stock. For instance, the 

segment-wise analysis of clustering showed a significant amount of inter-cluster heterogeneity 

within school building stock due to similar inter-distances between them. Moreover, the school 

building stock segmentation showed that the Cosine-Manhattan distance-metric combination 

(Cosine vs Manhattan) provided the highest value of CDI for school buildings, if k equaled three. 

Therefore, schools needed to be segmented into three types of RBMs at the national scale to 

obtain the optimum number of clusters in terms of compactness and separation. To further 

illustrate the specified clustering segmentation scheme, the development of RBMs is explained 

in Supplementary Figure S2. Overall, the results show a two-fold reduction in the number of 

RBMs in comparison to one of the previous studies (Kim et al. (2020)) using an individual 

classifier, which implies a useful reduction strategy to increase the complexity (level of details) 

of building stock model and maintain a reduced computational time. 
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Figure 3-3. K-means optimum clustering using distance-metric measurement criteria. (Where x- and y-axis present K 

(or cluster) value and normalized index respectively; top and bottom figures show the variation of internal validation 

indices and unified validation index respectively, for four different measures of distance and clustering metrics 

(Euclidean, Manhattan, Correlation, and Spearman).) 

 
         Figure 3-4. Overview of building typologies of commercial building stock across different scales. 

1) Building shape allocation algorithm 

The proposed algorithm was applied to the commercial building stock to extract the true shape 

representation of RBMs. Figure 3-4 illustrates the overview of building shape allocation of 
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commercial building stock across different scales. As the building composition varied in size and 

geometric terms, the shape indices fluctuated to respond to the shape complexity and diversity 

associated with large-size building stock. Moreover, this provided heterogeneity within building 

shape by capturing rectangular, square, slab, U- (or C-), L-, and T-typologies for RBMs. For hotel 

building stock, a rectangular shape was allocated due to the predominance of 𝑅𝐸𝐶 index for the 

specified cluster within the national stock (see Appendix E), while the specified cluster associated 

with Tokyo stock was assigned a more complex shape (or U-shape) due to a lower value of 𝐶𝑁𝑉 

index. Overall, this analysis showed no significant proportion of 𝐶𝐼 within the stock, while a 

major proportion was skewed towards one for 𝑅𝐸𝐶 and 𝑆𝑄𝑁. 

2) Neighborhood adjacency model 

Figure 3-5 shows the segment-wise composition of the neighborhood context for different scales. 

We observed that built-up density varied significantly across the scales, and Chuo (or district 

scale) possessed high built-up density with the taller neighborhood than other scales. In terms of 

TB, Chuo and other scales were significantly different, with the average height being twice higher 

in the hotel segment case compared to other scales. 

 

Figure 3-5. Segment-wise composition of neighbourhood context for different scales (Notation: D is the adjacent 

average distance between target building and neighbourhood; H is the average neighbourhood height; and TB is the 

average height of target building). 

 Synthetic building stock analysis 

1) Long-term stock dynamics 

Figure 3-6 shows the long-term stock distribution of building vintage for commercial buildings 

across different scales. For building vintage, the composition of existing building stock showed 
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higher aging stock in Chuo compared to other scales, whereas the average age-band of existing 

stock was 1990. For long-term stock dynamics, the commercial building stock floor area 

increased from 2016 to 2030 by 24.3%, 23%, and 12.5% for national, Tokyo, and Chuo, 

respectively. This difference is attributable to the varying percentage of newly constructed 

buildings across the scale. The addition of new buildings and replacing aging buildings by 2030 

would result in a transition of the average age-band from 1990 to 2010. Moreover, the system 

stock dynamics showed higher stock turnover in Chuo compared to other scales, whereas the 

systems installed after 2010 nearly doubled by 2030. Overall, this implied the significance of 

considering both stock dynamics within the model due to their distinctive frequency distribution. 

 

Figure 3-6. Long-term stock distribution of building vintage for commercial buildings across different scales.        

2) System stock modelling 

Figure 3-7 shows the share of HVAC systems for different scales in terms of cooling and heating 

sources. For air-conditioning systems, the proportion of fan coil unit (FCU) and outdoor handling 

unit (OHU) systems was lower in Chuo, while constant and variable air volume (CAV and VAV) 

systems had higher proportions at larger scales (national and Tokyo). The long-term projection 

of air-conditioning systems showed an increased proportion of variable refrigerant flow (VRF) 

systems and a decreased proportion of FCU and OHU systems. For heat sources, the proportion 

of centralized-gas/oil source was larger in Tokyo, while the centralized-storage source had a 

lower proportion at national and district scales. The long-term projection of heat sources showed 

a decreased proportion of centralized-gas/oil source and an increased proportion of decentralized-

electricity source. 
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(a) Air-conditioning systems. 

 

(b) Heat sources. 

          Figure 3-7. Distribution of HVAC systems in the commercial building stock for different scales. 

Figure 3-8 shows the distribution of energy saving measures (ESMs) for different scales based 

on ventilation- and heat-delivery-related measures. For ventilation-related measures, the 

incorporation of outside-air-based (OA) measures was higher and the incorporation of heat-

exchanger-based measures in Tokyo and Chuo decreased. The long-term projection of 

ventilation-related measures showed an increased proportion of combined measures (All) and a 

decreased overall composition of ventilation-related measures in Tokyo and Chuo due to a faster 

transition towards VRF systems. For heat-delivery-related measures, the proportion of VAV and 

variable water volume (VWV) control measures was higher at other scales compared to the 

national scale. The long-term projection of heat-delivery-related measures showed an increased 

proportion of VWV control measures (except the school segment). However, for the socio-spatial 

predictors, these factors significantly influenced the adoption probability of system alternatives 

for a specified building. For example, HDD, which accounts for the variation of climatic effect, 

resulted in higher adoption of gas-driven HVAC systems in the colder region (as evident at the 
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national scale). Overall, the application of logistic regression resulted in a better distinction 

between the centralized and decentralized HVAC systems across small and large size buildings 

by considering various predictors, such as TFA, PD, HDD, and building age. 

 

(a) Ventilation-related measures. 

 

(b) Heat delivery-related measures. 

Figure 3-8. Distribution of ESMs in the commercial building stock for different scales. 

 Building stock energy modelling and simulation 

1) Model validation 

Figure 3-9(a) shows the validation results of the RBMs for different scales by comparing metered 

and simulated values in terms of the EUI, a primary energy metric. It is observed that the proposed 

model provided better EUI agreement for all the RBMs across different scales. For stock-wise 

analysis (Figure 3-9(b)), our model accurately followed a long-tail distribution but was 

underestimated at a low EUI level, which can be attributed to the differences in building operating 

conditions due to the assumption of typical floor usage within the model. 

To further evaluate the model, the aggregated-level validation was performed by comparing the 

specified model output with EDMC and TMG metered data, as shown in Figure 3-9(c). At the 

0%

20%

40%

60%

80%

100%

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

National Tokyo Chuo National Tokyo Chuo National Tokyo Chuo National Tokyo Chuo

Office Hotel Hospital School

P
r
o

p
o

r
ti

o
n

 o
f 

b
u

il
d

in
g

 s
to

c
k

 

ALL

OACO2

CO2

OA

HEXCO2

HEXOA

HEX

NoES

0%

20%

40%

60%

80%

100%

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

2
0

1
6

2
0

3
0

National Tokyo Chuo National Tokyo Chuo National Tokyo Chuo National Tokyo Chuo

Office Hotel Hospital School

P
r
o

p
o

r
ti

o
n

 o
f 

b
u

il
d

in
g

 s
to

c
k

 CAV-VWV

VAV-VWV

CAV-CWV

VAV-CWV

NoES

 a 



47 

 

national scale, the model underestimated the total secondary energy consumption by 10% due to 

the omission of educational institutes other than schools; whereas, the model estimate agreed well 

with a difference of 4% and less than 1% from metered data for Tokyo and Chuo scales, 

respectively.

 

    

 

b 

c 
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Figure 3-9. (a) Validation of RBMs for different scales: i) office; ii) hotel; iii) hospital and iv) school.; (b) Cumulative 

frequency distribution of EUI across the stock for different scales: i) national; ii) Tokyo; and iii) Chuo; (c) Aggregated-

level evaluation of the model for different scales: i) national; ii) Tokyo; and iii) Chuo. 

Table 3-4 shows the deviation of key error indicators, absolute percentage (%), coefficient of 

determination (R2), coefficient of variation of root mean square error (CV RMSE), and 

normalized mean bias error (NMBE), for commercial BSEM across different scales. The results 

show that all the error indicators are higher at larger scale in comparison to smaller scales. For 

instance, when looking at R2, the standard deviation (σ) goes from 0.09 at the district scale to 

0.24 at the national scale. 

    Table 3-4. Validation results for commercial BSEM across different scales. 

 

Scale (%) R2 CV RMSE NMBE 

Chuo 0.3  0.95 (σ=0.09) 5.6 (σ=2.56) 1.6 (σ=4.21) 

Tokyo 4.1 0.85 (σ=0.11) 10.2 (σ=3.16) -1.9 (σ=4.86) 

National 10.1 0.77 (σ=0.24) 13.2 (σ=3.29) -5.3 (σ=9.32) 

2) Multi-scale modelling results 

The analysis of the multi-scale model evaluated the annual energy consumption patterns across 

the scale for end-uses and fuel types, as illustrated in Figure 3-10. The energy consumption 

patterns of the RBMs across the stock showed higher usage for HVAC and others in hotel and 

hospital stocks, whereas office and school stocks were more electricity-centric compared to other 

segments. The multi-scale analysis of end-use energy consumption patterns showed higher plug 

load patterns in Chuo than large scales, attributable to its higher occupancy density as a major 

commercial district of Tokyo. For plug load patterns, lighting and equipment usage showed a 

correlation with the building classification size. For example, a large-size office building (or CL5) 

exhibited a higher plug load pattern than a small-size office building (or CL1). This was because 

of varying floor composition, as large-size buildings have more multi-purpose facilities than 

small-size buildings. However, large-scale stock exhibited a relatively higher proportion of 

HVAC usage (except hotels) than other end-uses, because of the degree of balance between 

heating and cooling demand due to metrological variations. For fuel type, the large scale seemed 

more electricity-centric, whereas higher gas usage was observed at other scales. These differences 

in the energy end-uses were due to the varying structural and stock composition (as explained in 

Sections 3.3.1 and 3.3.2) across different scales, which were mostly neglected by non-scalable 

models. 
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Figure 3-10. Annual EUI of RBMs for national (a), Tokyo (b), and Chuo (c) in terms of; i) end-use and ii) fuel type. 
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Figure 3-11. Long-term primary energy consumption across different scales; a) segment-wise and b) end-use (where 

2030E and 2030P represent electrification and potential scenarios for the 2030 year respectively). 

3) Long-term energy demand 

Figure 3-11 shows the long-term primary energy consumption across different scales up to 2030. 

The annual primary energy consumption of commercial building stock was projected to be 1372, 

307, and 29 PJ/year by 2030 for national, Tokyo and Chuo scales, respectively. In terms of energy 

end-uses, different equipment usage was noticed, which is attributable to varying building 

operation conditions from large to small scale. Whereas higher thermal load at a large (or 

national) scale is attributable to climatic variation. The adoption of ESMs as per the baseline 

scenario would result in the avoidance of 7, 3, and 5% of primary energy consumption by 2030 

at national, Tokyo, and Chuo scales, respectively. Incorporating electrification and retrofit 

measures, the maximum reduction potential was estimated to be 39, 26, and 23% of primary 

energy consumption by 2030 at the national, Tokyo, and Chuo scales, respectively. This 

difference in the reduction potential across different scales highlighted the significance of using 

target-based planning and decision-making to implement ESMs within building stock. 
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 Building stock scenarios 

1) Energy epidemiology 

Figure 3-12(a) shows the varying energy consumption by implementing different models 

(national and Tokyo) on a reference scale (Chuo). A significant difference in energy consumption 

patterns was observed when the models developed for national and Tokyo scales were applied to 

the Chuo scale. The adoption of the models resulted in the annual energy consumption being 

26.6, 28.8, and 31.8 PJ/year for national, Tokyo, and Chuo scales, respectively. This indicated 

that the annual energy consumption was underestimated by 10–17% when different models were 

applied to Chuo building stock. Moreover, the differences in carbon emissions varied from 479 

to 819 ktCO2, which would be neglected if an appropriate scale was not considered. For energy 

end-uses, an absolute difference existed in energy usage processes, such as lighting, equipment 

usage, and building systems. As discussed in Section 3.3.3(2), the major difference in energy 

consumption patterns occurred due to lighting and equipment usage related to higher occupancy 

density in Chuo. 

Figure 3-12. Variation of energy consumption by the implementation of different scales (national and Tokyo) on a 

reference scale (or Chuo): a) Annual primary energy consumption and carbon emissions; b) scale uncertainty relative 

to Chuo scale (where each dot represents a specific RBM cluster which is sorted from highest to lowest CVRMSE 

value). 

Figure 3-12(b) shows the stock-wise uncertainty induced by implementing different models 

(national and Tokyo) on a reference scale (Chuo). We observed that using national- and city-level 

representative RBMs resulted in 60 and 35% of the stock having CVRMSE of 10% or higher, 

respectively. This indicated that the larger the description of a scale, the higher the error 

uncertainty when applied to a smaller representative scale. The comparison of energy mapping, 

a 

b 
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as shown in Figure 3-13, exhibits the spatial deviation of the primary energy metric at the 

building-by-building level when a non-representative scale is applied to other scales. 

 

Figure 3-13. Illustrative building-by-building mapping of the spatial distribution of primary energy consumption by the 

implementation of different scales (national and Tokyo) on a reference scale (or Chuo). 

i) OAT analysis 

This analysis quantified energy epidemiology considering the structure and conditions of systems 

and practices by applying relative parameters of other scales on a reference (Chuo) scale, as 

shown in Figure 3-14 (see detailed results in Supplementary Figure S3). The OAT analysis 

showed a significant scale-bounded impact of building geometry and plug loads on primary 
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energy consumption, attributable to variations in stock structural (building size, aspect ratio, and 

typology) and end usage patterns across the scale. For other significant influencing parameters, 

the occupancy density exhibited a negative impact similar to plug loads, which showed a strong 

correlation between them. The structural composition of HVAC systems obtained by using other 

models resulted in a positive impact, depicting a higher thermal dynamic system stock than the 

reference scale, but the overall impact was not as significant as building geometry and plug loads. 

Additionally, this implied that the HVAC systems had a significant scale-bounded impact on 

large-size buildings, indicating a higher sensitivity of socio-spatial predictors, such as HDD and 

PD, with building size. However, the scale-bounded impact of the neighborhood urban context 

was very similar and negligible across the scale. This analysis examined and identified various 

drivers and determinants to understand better the mechanisms and conditions leading to demand 

levels when a non-representative scale was applied to other scales. 

 

 

b 

 

a 

 

i 

 

ii 
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Figure 3-14. OAT analysis for quantifying energy epidemiology (with Chuo as reference scale): a) cluster-wise primary 

energy difference due to various parameters by implementing national (i) and Tokyo (ii) office building stock (Notation: 

black as positive and red as negative); b) average impact factors of various parameters. 

ii) Long-term energy epidemiology effects 

Figure 3-15(a) shows the long-term variation of energy consumption by implementing different 

models (national and Tokyo) on a reference scale (Chuo). The results showed a significantly 

different reduction potential when different scales were applied to the Chuo scale (also see Figure 

3-13). The annual energy reduction potential in 2030 was 7.8, 4.9, and 2.2 PJ/year at the national, 

Tokyo, and Chuo scales, respectively. Moreover, the carbon emissions avoided in 2030 were 52, 

46, and 40% at the national, Tokyo, and Chuo scales, respectively. Thus, the difference in energy 

and emissions reduction potential varied by 2–3 times and 6–12%, respectively, when different 

scales were applied to the Chuo scale. The significant deviation between the reduction potential 

of energy consumption and carbon emissions was due to the assumption of a reduction in carbon 

emission intensity by 2030 (from 0.57 to 0.25 kg-CO2/kWh). This implied that in the long-term 

scenario, the scale-bounded uncertainty seemed higher in estimating energy consumption than 

carbon emissions. For energy end-uses, the lighting and HVAC systems accounted for a 

significant reduction potential that was overestimated by up to 10 and 5%, respectively, compared 

to the reference scale. This implied that the long-term stock structure changes were inaccurately 

captured when a non-representative scale was applied at other scales. Figure 3-15(b) shows the 

stock-wise uncertainty induced for long-term aspects by implementing different models (national 

and Tokyo) on a reference scale (Chuo). The long-term stock-wise analysis showed highly 

varying error terms, with 95% and 45% of the stock having CVRMSE of 10% or higher, 

compared to the base year analysis, which illustrated more necessity for an appropriate selection 

of scale for the long-term studies than the base year analysis. 

 

b 

a 
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Figure 3-15. Long-term energy epidemiology effects: a) annual primary energy consumption and carbon emissions; 

and b) scale uncertainty relative to Chuo scale (where each dot represents a specific cluster which is sorted from highest 

to lowest CVRMSE value). 

2) Unit block concept 

i) OAT analysis 

To determine the influence of physical and technical parameters, the OAT analysis assessed the 

accuracy and extent of the model across the scale and stock. Figure 3-16 shows the stock-wise 

uncertainty in model prediction across the stock for the different scales. The percentage of 

building stock within 10% CVRMSE represented 5, 50, and 55% of the stock TFA with varying 

technical parameters, which increased up to 20, 70, and 80% of the stock TFA with varying 

physical parameters for national, Tokyo, and Chuo scales, respectively. This demonstrated more 

skewness of error terms as we transitioned from larger to smaller scale, signifying the need for 

developing minimum viable guidelines classified depending upon the scale of that specific study. 

Moreover, considering the influence of parameters, the results showed a stagnant response of 

building orientation and neighborhood modelling on the accuracy and extent of the model at all 

scales. Thus, these parameters could be neglected if the objective is to perform the modelling 

with minimum viable concept criteria. The multi-scale analysis showed a need for a more 

integrated model at a large scale than other scales due to a modular and diversified distribution 

of building stock that levers out the variability within the model output. 

 

 

Figure 3-16. OAT effect on the stock-wise uncertainty for national (i), Tokyo (ii) and Chuo (iii) (where each dot 

represents a specific cluster which is sorted from highest to lowest CV RMSE value). 
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Figure 3-17 shows the impact of various parameters on model prediction across different scales. 

The sensitivity analysis results showed that building system age and the HVAC systems were the 

fundamental technical factors that needed consideration while performing building stock energy 

modelling at any scale. Thus, due to the high thermal dynamics associated with these parameters, 

considering stock dynamics and the heterogeneity of HVAC systems was significant within any 

specified BSEM. For physical factors, building shape and aspect ratio were more sensitive to the 

accuracy and extent of the model across the scale. However, the variability of model error due to 

geometric parameters was notably lower than that caused by technical factors. 

 

                Figure 3-17. OAT effect on the element-wise uncertainty across the scale. 

ii) Combined effect 

This analysis was performed by adding the building-oriented elements one by one within the unit 

block model to study the non-linear interaction of various influencing parameters in the BSEM. 

Figure 3-18(a) shows the stock-wise combined effect of various parameters on the EUI for 

different scales. The element-wise analysis of RBMs showed a non-linear increase (positive or 

negative) in the parameters’ response to the EUI as the size of the building increased. For 

segment-wise, hotel RBMs produced higher variability by omitting influencing parameters, 

attributable to the need for detailed modelling for capturing multiple end-use activities, such as 

equipment usage and the heterogeneity of building systems, within the segment (see details in 

Section 3.3.2 and 3.3.3(2)). The stock-wise results revealed that omitting the probabilistic 

occupancy model and ESMs resulted in the overestimation of primary energy consumption across 

the stock. Whereas, primary energy consumption was underestimated by omitting the HVAC 

systems and system age within the model 
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Figure 3-18. Combined effect on the model prediction: a) stock-wise uncertainty for national (i), Tokyo (ii) and Chuo 

(iii); and b) element-wise uncertainty across the scale. 

Figure 3-18(b) shows the element-wise combined effect of various parameters on the EUI for 

different scales. The results obtained by considering the combined effects of various parameters 

within the BSEM indicated a positive correlation of the building and system age, HVAC systems, 

geometric, and window-wall ratio (WWR) factors. In contrast, the occupancy and ESMs factors 

negatively correlated to primary energy consumption. Moreover, a higher order of variability was 

induced by considering the typical occupancy model, signifying the importance of considering a 

probabilistic occupancy model instead of a typical one to capture these non-linearities within the 

BSEM. 

 Discussion 

With the development of the proposed hybrid workflow, the model facilitates the concurrent 

consideration of physical and technical factors and extends the capability to different spatial 

resolutions. As shown in Section 3.3.3(2), the results indicate that the differences in the energy 

end usages and reduction potential exist due to varying structural and stock composition across 

b 

 

a 
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different scales. This implies that the hybrid models capture these variations, which a 

conventional non-scalable model could not distinguish. From a practical implementation 

perspective, this further helps address the data limitations and context-specific issues to overcome 

the disparate coordination between the local and national level stakeholders, which could identify 

priority areas for implementing target-based energy efficiency strategies. Moreover, this multi-

stage process also resulted in the enhancement of the analytical capability of the model by 

concurrently incorporating physical, technical, and socio-behavioral factors within a commercial 

BSEM across different scales. Additionally, the proposed scheme can be used as an assessment 

tool to identify various drivers and determinants to understand better the mechanisms and 

conditions leading to different demand levels for commercial building stock across the scale. 

From a practical implementation perspective, this paper provides insight to energy modelers 

about the sources of uncertainties within commercial BSEM. 

Considering evaluation capabilities, the hybrid approach improves the existing assessment 

framework of the BSEM by providing a better understanding of the model development process 

in terms of end-use energy processes (function and boundary of the systems), practices (socio-

behavioral interaction, such as occupancy patterns and resource usage), and context (structure 

and conditions of systems) across a range of scales and sectors. This assessment gap exists in the 

previous multi-scale studies that either established models for a different scope (like residential 

building stock) or focused on urban morphological and metrological conditions (Nutkiewicz et 

al. (2018); Ali et al. (2019)). According to the energy epidemiology analysis (Section 3.3.4(1)), 

the selection and description of the appropriate spatial boundary are critical for the base year and 

long-term studies related to building stock energy modelling. The long-term studies are more 

sensitive to an adequate spatial boundary than the base year studies and show significantly 

different energy consumption patterns, 10–17%, and reduction potential, 2–3 times, when a non-

representative scale is applied to other scales. This implies a need to develop multi-tier long-term 

building stock strategies to promote the adoption of ESMs and alternative technologies for 

achieving net-zero emissions in the building sector. Recently, most of the studies related to 

commercial buildings have relied upon black-box (or machine learning) models using advanced 

techniques to predict and identify the building energy consumption and critical building-oriented 

features (Li and Yao (2021); Yu et al. (2021)). However, they lack the analytical capability to 

conduct long-term studies for estimating the energy reduction potential. As discussed above, this 

approach also demonstrates the ability to regularly update based on new data streams and provide 

the capture value to evolve long-term changes within the commercial BSEM. In addition, the two 

most critical building-oriented elements are geometry and plug loads when the non-representative 

scale is applied to other scales. This suggests that these elements lead to higher scale-bounded 
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uncertainties, induced due to structural heterogeneity, typological complexities, and diverse 

functionalities associated with the stock composition of commercial buildings. 

Considering the modelling capabilities, Section 3.3.4(2) shows that the physical and technical 

factors result in a performance gap of up to 11 and 21%, respectively, with the cumulative gap 

varying from 11–32% for different scales. Moreover, previous studies revealed that disregarding 

the physical and technical factors results in energy use differences of 10–19% (Heidarinejad et 

al. (2017); Chen and Hong (2018)) and 15% (Kim et al. (2020)), respectively. This implies that 

the BSEM needs to be modelled with the concurrent consideration of building-oriented elements. 

Otherwise, a fragmented consideration of these factors may lead to a performance gap within the 

model. The quantitative analysis of building-oriented elements indicates that the building system 

age and HVAC system composition are the two most critical building-oriented elements because 

of their higher thermal dynamic effect on the model. Moreover, the physical factors cannot 

influence as much as the above factors. This implies that the unit block model identifies the 

critical building-oriented elements for providing in-depth details about the influence and the order 

of magnitude of these elements within the BSEM across the scale and stock. From a practical 

implementation perspective, the energy modelers need to pay more attention to system stock and 

turnover dynamics when developing BSEM for a specific scale, because omitting system 

heterogeneity might lead to the prediction of different energy consumption patterns.  

Additionally, a unit block concept also provides an initialization point for developing a stock-

level model at any demographic landscape or spatial resolution. Thus, the focus has recently been 

on developing minimum viable model guidelines depending on the application category of 

building energy models (Ang et al. (2020)). A minimum viable model requires a minimum level 

of detail to provide transparency and capture value with the least cost and effort. Analyzing the 

unit block model, the influence of building-oriented elements on the energy modelling gap 

reduces as we transition from larger to smaller scale, which is an opportunity for the energy 

modelers and planners to develop minimum viable guidelines to fasten the development cycle 

with minimum cost constraint as per the specific scale. 

Although the developed approach demonstrated improved adequacy at the multi-scale level and 

could be further applied to different regions, there are still some limitations that need to be 

addressed. To ensure homogeneity across the specific study, the same number of classifiers are 

used to perform the segmentation, resulting in an equal number of clusters at different scales. 

This scheme needs further improvement by implementing it at a specific granular level to obtain 

the optimum number of classifiers as per the specifications. Moreover, a multi-nominal statistical 

approach is applied to a large sample dataset to fill the energy modelling gap due to a lack of 
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information related to the technical factors. This requires further effort to conduct a multi-scale 

field survey for validating the probabilistic building systems stock model by comparing it with 

actual stock. Furthermore, an auto-calibration framework needs to be developed that can 

transform the existing multi-scale model into a scalable model, ensuring transparency at a 

granular level by providing a comprehensive insight into uncertainties at the spatial level. 

 Conclusions 

This paper presents a novel hybrid framework that integrates geo-referenced and sampled-based 

synthetic stock models to facilitate the concurrent consideration of multiple building-oriented 

elements within commercial BSEMs at a multi-scale level. The proposed framework enhances 

the capability of the bottom-up engineering models to be further extended to any demographic 

landscape or spatial resolution and evolve into a long-term transitional workflow. Thus, enabling 

long-term spatial energy resource planning and decision-making for commercial building stock 

across various scales. Moreover, when implemented on the commercial building stock of Japan, 

the developed model provides a comprehensive understanding of selecting and describing the 

minimum viable requirements for a specific scale by considering the effect of various influencing 

parameters on scale-bounded uncertainties. Additionally, multi-level validation is performed to 

ensure transparency and capture value that exhibits an acceptable level of adequacy and accuracy 

of the model at multiple scales. The main findings of this hybrid framework at multiple scales 

are: 

1. The proposed multi-scale model identifies various drivers and determinants of energy end-

uses and resource usages to provide a better understanding of mechanisms and conditions 

that lead to different levels of demand for commercial building stock across the scale. This 

addresses the underlying complexity associated with the BSEMs by examining influencing 

factors that cause different levels of outcomes at different scales. 

2. The scale-bounded comparative approach indicates that the larger the description of the scale, 

the higher the error uncertainty when applied to a smaller representative scale. This scale 

variability seems significant due to relatively higher thermal dynamics induced by the 

building typology and functional composition of the commercial building stock. 

3. The long-term perspective of scale-bounded uncertainties shows an overestimation of 

reduction potential by 2–3 times when a non-representative scale is applied to a smaller 

representative scale. Therefore, an accurate description of scale is necessary in BSEM for 

long-term studies. 

4. As per the quantitative analysis, disregarding the physical and technical factors drops 

cumulative performance by up to 32%. This signifies the need for a concurrent consideration 

of these factors within BSEM. 
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5. For model complexity, a more integrated model is needed at a large scale than other scales 

because of the modular and diversified distribution of large-scale building stock, which 

leverages variability within the model output. The results imply that the performance gap 

increases significantly up to 21% when the description of a scale shifts from a smaller to a 

larger one.  

6. The unit block model concept provides a simplified value proposition by using a bottom-up 

engineering model for developing minimum viable model guidelines. This establishes the 

correlation effect of various parameters to gauge the non-linearities within the model that 

highlight the trade-off between the model’s complexity and reliability. 

Overall, this model provides a granular-level framework using the spatial intelligence building 

stock approach to assist city-level planners and policymakers in developing long-term energy 

efficiency monitoring strategies at multiple scales. This also provides a new dimensional aspect 

by considering alternative technologies and measures within the GIS-based building stock 

modelling. Future work will be extending this model to develop multi-scalable reduced-order 

models for commercial building stocks, which could speed up the development cycle by 

minimizing computational resources. 

 Appendix 

 Appendix A 

The geo-databases of Tokyo and Chuo were provided by Tokyo Urban Development Bureau 

(TUDB, 2017), whereas ArcGIS Geo Suite (Esri Japan, 2015) was used to develop a national-

scale model. In synthetic stock modelling, sample datasets collected from Society of Heating, 

Air-Conditioning, Sanitary Engineers of Japan (SHASE-J, 2017), and Japanese Association of 

Building Mechanical and Electrical Engineering (JABMEE, 2010), were used to estimate the 

composition of building system stock and ESMs at different scales. Supplementary Table S1 lists 

the types of Heating, Ventilation, and Air-Conditioning (HVAC) systems and ESMs considered 

in the study. Furthermore, the long-term stock dynamics were modelled by using key evolution 

factors obtained from Building Construction Survey Data (BCSD) (SBJ, 2017) and Tokyo 

Statistical Yearbook (TSY, 2019) to consider building vintages and system stock dynamics within 

the model. To validate and calibrate the developed models, we used metered data obtained from 

Tokyo Metropolitan Government (TMG) and Database of Energy Consumption for Commercial 

Buildings (DECC) (JSBC, 2017; TMG, 2020). 
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 Table A.1. Description of building stock data. 

Category Data Source Conversion 

Physical 

Geometric 

GIS dataset (Esri Japan, 

2015; TUDB, 2017) 

Derived 

Non-geometric 

Typology Multiple operations in ArcGIS 

Others (WWR) Survey  

Technical 

Building systems Sample dataset 

(JABMEE, 2010; 

SHASE-J, 2017)  

Logistic regression 

ESMs 

Urban context Urban morphological 
GIS dataset (Esri Japan, 

2015) 
Merged using ArcGIS 

Climate 

Weather AMEDAS (JMA, 2014) 

Morphed 

Climate change 
CMIP6 (Karl-Hermann et 

al. (2019)) 

Long-term 

dynamics 
Key evolution factors 

Census dataset (SBJ, 

2017; TSY, 2019) 
Statistical techniques 

 Appendix B 

B.1 Determine the spatial effect of neighborhood-level urban form 

In this study, spatial regression analysis was performed to assess the spatial effect of 

neighborhood-level urban form on building energy use. The main purpose of this analysis was to 

determine a buffer (or radius) limit, which showed the correlation between the building energy 

use and neighborhood adjacency environment. To investigate this correlation, five neighborhood-

level urban form measures, namely lot coverage ratio, floor area ratio, green area, average shape 

factor, aspect ratio, and standard deviation (STD) of the building heights were considered up to 

a radius of 200 m with a step of 50 m. Moreover, the building energy data was obtained from 

TMG (2020), and then the samples (n=580) belonging to the Chuo ward were geocoded within 

the GIS dataset. The model results revealed that four of the seven urban form measures (the 

average building coverage ratio, average building height, STD of building height, and average 

shape coefficient) were significantly associated with the EUI of the commercial building for the 
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neighborhood of the 50 m buffer. Based on these results, a pre-defined radius of 50 m was used 

to search for the surrounding buildings adjacent to the target buildings. 

Table B.1. Results of spatial regression analysis       

Variable 

Model 1 (50-m buffer) Model 2 (100-m buffer) Model 3 (150-m buffer) Model 4 (200-m buffer) 

Coefficient z-statistics Coefficient z-statistics Coefficient z-statistics Coefficient z-statistics 

Average green area  -0.004 -1.150 -0.001 -0.485 -0.001 -1.316 -0.001 -1.121 

Average floor area ratio  0.199 1.005 0.102 0.505 0.211 0.978 0.284 1.241 

Average building coverage ratio  15.213* 2.490 3.730 0.627 6.166 1.025 6.088 0.917 

Average building height  5.688* 2.118 4.094 0.991 -0.032 -0.005 -2.299 -0.383 

STD of building height  2.321* 2.486 -4.775* -2.146 -3.732 -1.478 -3.595 -1.336 

Average shape coefficient  366.383* 2.475 -67.916 -0.304 -208.892 -0.710 -179.092 -0.556 

Average aspect ratio 181.954 1.286 -235.739 -1.105 -501.201 -1.736 -661.760 -1.872 

R-squared 0.462  0.449  0.454  0.455  

Log likelihood -2327.4  -2330.6  -2329.2  -2328.9  

n = 580 

** p < 0.01 

* p < 0.05 

B.2 Selection of effective shading planes 

  

Figure B.1. Selection of effective shading planes using solar angles (where black dots are the effective neighbourhood 

buildings out of all the adjacent buildings). 
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f (i, sBUi, sAi, sOi) 

      Table B.2. Pre-processing of potential shading planes. 

 

 

 

 

 

Algorithm: Construction and analysis of effective shading neighbourhood buildings. 

1. Search for neighbourhood buildings adjacent to target archetypes (i); s and n represent 

the size of the data set for target and neighbourhood buildings, respectively. 

Loop: 

For i: = 1 to s do 

For j: = 1 to n do 

nA-area 

nBU-building usage 

nD-distance 

nF-floors 

nG-angle 

nH-height 

nO-orientation 

done 

2. Calculate solar altitude angle (δ) for specific location 

 δ          f (declination angle, latitude, hour angle) 

3. Extracted potential shading buildings 

Loop: 

For j: = 1 to n do 

nSH-shadow length                f (j, δ, nHj) 

Pn              extract (nDj < nSH) 

done 

4. Shadow pre-processing to determine effective shading neighbourhood building 

Loop: 

For i: = 1 to s do 

For j: = 1 to n do 

Mn              extract {Pn (Min(nDj), Max(nHj))} 

    Done 
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 Appendix C 

    Table C.1. Overview of key evolution factors for different scales (SBJ, 2017; TSY, 2019). 

Factors National Tokyo Chuo 

Mean lifetime (years) 30 26.7 29.5 

Shape parameter (k) 1.1-1.6 1.1-1.65 1.1-1.5 

Newly constructed buildings (%) 1.57 1.49 0.85 

Renovation time cycle (τREN) 30 years 

 Appendix D. Settings for building stock energy simulation 

D.1. Stochastic occupant behavior model 

In this study, a stochastic occupant behavior model was used based on a person-based occupancy 

approach (Yamaguchi et al. (2022)). This occupancy approach consisted of three main features: 

1) determination of nominal building area capacities for each RBM; 2) implementation of 

different occupancy modes for building system operations, such as unoccupied building, stand-

by zone, and occupied zone; and 3) consideration of main occurrences. This method initially 

determined the number of building users and nominal building area capacities (or typical per 

capita area) for each RBM. Subsequently, the occurrence of events, arrival time, duration of stay, 

and out-of-building activities was determined stochastically by assigning a uniform random 

number to cumulative probability distributions.  

D.2. Climate change 

Climate models provide a better understanding of how climate change will happen in the near 

future. These models are constantly updated and expanded based on future emissions scenarios 

and different sets of assumptions. This study used the sixth Coupled Model Intercomparison 

Project (CMIP6) to generate future weather files for building stock energy simulations (Karl-

Hermann et al. (2019)). To obtain these future weather datasets, a statistical downscaling method, 

and morphing were used to stretch and derive different climate variables, such as dry-bulb and 

dew-point temperatures, relative humidity, atmospheric pressure, wind speed, and solar radiation. 

This process consisted of the following steps: 1) selection of scenarios and other output settings; 

2) mapping of CMIP6 output file and output settings; and 3) creation of future weather file from 

the morphed variables. 
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 Appendix E 

 

Figure E.1. Classification of building typologies for hotel stock across different scales: a) shape indices and (b) shape 

extraction of cluster 4 (Each dot represents the specified value of shape indices for each building, while different colors 

represent the representative cluster of stock). 

 Supplementary data 

Supplementary data to this chapter can be found online at:  

https://doi.org/10.1016/j.apenergy.2022.119536 
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4 Carbon neutrality assessment using bottom-up BSEM and BIPV model 

 Purpose 

As per the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), 

Sufficiency, Efficiency, Renewable (SER) framework enables the identification of key drivers 

and determinants to consider for the decarbonization of building stock (Cabeza et al. (2022)). The 

implementation of the SER framework requires the integration of a building energy model and 

BIPV potential estimation approach to consider a combination of efficiency measures, active and 

passive design strategies, and renewable distributed energy resources (DERs). Moreover, with the 

availability of geographic information system (GIS) data, some of the studies have recently 

focused on GIS models to develop UBEM that bridge a gap within conventional bottom-up 

models by adding spatial dimension (Ali et al. (2021); Dahlström et al. (2022)). This approach 

can integrate multiple building elements and transitional measures to not only improve the 

calculation accuracy but also capture the spatiotemporal dynamics of building energy use and 

carbon emissions. In terms of BIPV potential estimation, the solar potential assessment at high 

spatiotemporal resolution is highly challenging owing to computational and modelling 

complexities (Gassar and Cha (2021)). However, there is no evidence of studies capable to couple 

these approaches at a large scale either due to the infeasible choice of implementation method or 

the non-availability of a comprehensive database (Saretta et al. (2019); Chang et al. (2023)). Most 

of the previous studies mainly focused either on the energy-related characterization of building 

stock (Fonseca and Schlueter (2015); Mohammadiziazi et al. (2021); Zhang et al. (2022)) or the 

estimation of solar potential (Ghaleb and Asif (2022); Thebault et al. (2022)). Therefore, an 

integrated approach needs to be developed for the consideration of the SER framework for 

estimating the overall decarbonization potential of the commercial building stock. 

To address these limitations, this chapter proposes a GIS-synthetic hybrid bottom-up simulation 

model coupled with a physical-based approach of BIPV potential estimation to consider the 

demand-supply synergy of commercial building stock at multiple scales. The main aim is to 

illustrate a coupled workflow that facilitated the homogenous use of a comprehensive GIS dataset 

to provide the necessary coordination of building stock interventions with renewable DERs at the 

multi-scale level, leading to further improvement in the methodological characterization to 

evaluate the carbon neutrality of commercial building stock. The decarbonization scenarios and 

strategies are further designed to demonstrate the applicability of the proposed coupled approach: 

(1) to determine the emission reduction potential of commercial buildings under different stock 

interventions and penetration of renewable DERs; and (2) to quantify the spatiotemporal 

evolution of energy demand and decarbonization potential across different scales.  



68 

 

 Methodology 

This study proposed a GIS-synthetic hybrid UBEM model (Perwez et al. (2022)) coupled with a 

physical-based approach of BIPV potential estimation (Cheng et al. (2020); Shono et al. (2023)) 

to incorporate a building-level energy model at a large scale that could evaluate the feasibility of 

carbon neutrality of commercial building stock at a multi-scale level. The proposed scheme is 

applied to the commercial building stock of the Tokyo region that involves 1593 postcode 

districts and 54 cities with a total floor area (TFA) of 195 million m2. As illustrated in Figure 4-

1, the framework utilized multiple steps to model the energy demand and supply of commercial 

building stock.  

1. The UBEM model used a data-driven formulation to integrate geo-referenced and synthetic 

stock models.  The building stock was initially segmented by using a GIS dataset that mainly 

consists of physical elements (geometric and non-geometric data). Thereafter, statistical 

technique (or machine learning) was applied to the sample dataset to assign technical 

elements, building systems and ESMs, to the building stock. After the development of a 

hybrid stock model, reference building models (RBMs) were developed and then dynamic 

building simulations were performed to obtain the energy demand patterns at the building-

by-building level. 

2. The BIPV potential estimation approach used a physical-based technique to develop a roof-

façade framework that utilized an identical GIS dataset for calculating the point-based 

irradiance while considering the shading and sky view factor and then converted those 

irradiances to estimate solar energy potential at the building-by-building level. 

3. After the development of the UBEM-BIPV coupled approach, decarbonization scenarios and 

strategies were constructed to consider active, HVAC systems, lighting and equipment 

retrofits, and passive, building envelopes and storages, design measures, and renewables. 

4. The carbon neutrality assessment of demand-supply scenarios and strategies was performed 

at the spatiotemporal level by considering specified performance metrics. 
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                       Figure 4-1. Schematic overview of UBEM-BIPV coupled approach. 

 UBEM model 

A model for the estimation of building energy demand was developed based on the GIS-synthetic 

hybrid approach as explained in detail in Perwez et al. (2022). In the initial stage, a geo-referenced 

dataset consisting of physical elements was obtained and then, outlier detection and feature 

selection techniques were applied to the dataset to remove anomalies and obtain the most feasible 
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variables. After this, clustering segmentation was performed by using a multi-variate K-means 

algorithm. This process was further improved by applying different similarity (or distance-metric) 

measures to each cluster validation index and then, a unified clustering validity measure, 

cohesion-dispersion index (CDI), was proposed to find out the optimum number of clusters. 

Subsequently, the characterization of physical elements was performed by using a deterministic 

approach involving the computation of the weighted average of characteristics associated with 

each RBM. 

Synthetic element modelling was performed to consider technical elements in the UBEM model. 

Initially, the socio-spatial predictors, building characteristics, demographics, heating degree days 

(HDD), and age-band classifications, are assigned to the sample dataset and then, the logit model 

is applied to obtain the coefficients of these predictors. The probability of each system 

classification (or ESMs) for a specific building within the stock was quantified by multiplying the 

obtained regression coefficients with real predictors of buildings. After obtaining the 

probabilities, the system alternatives were selected depending on the most probable alternative 

for a specific building. This resulted in the concurrent consideration of physical and technical 

elements for the development of RBMs. Moreover, the RBMs were developed by using an 

automated dynamic building simulation platform, which executed modelling stages through 

Python and R scripts to generate input files for EnergyPlus. The RBMs were validated considering 

metered energy data by using multivariate (or Bayesian) calibration technique and then further 

simulated to estimate the energy demand patterns of the commercial building stock. 

 BIPV potential estimation approach 

A physical-based BIPV roof-façade framework is developed by extending a point-based sampling 

approach (Cheng et al. (2020)) to a higher spatiotemporal level and further validated with a 

simulation engine (Shono et al. (2023)), which consists of five steps that involve: (1) Data 

collection and transformation, (2) sensor point generation, (3) elevation angle calculation, (4) 

solar irradiance estimation, and (5) PV potential estimation. 

1) Data collection and transformation: The data retrieval workflow included a collection of 

datasets related to 2D building footprints (TUDB, 2017), horizontal solar irradiance, and 

meteorological conditions (JMA, 2022). In data transformation, the 2D polygons obtained 

from the Tokyo City Planning Geographic Information System (2017) were extruded into 3D 

models by using Tokyo survey sample data (Ashie and Kagiya (2010)) that contains average 

floor height as per building type and usage. 
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2) Sensor point generation: The building rooftop and façade were discretized into point arrays 

by using a pre-defined sampling distance of 3 meters. Voronoi division was performed to 

obtain the representative area (3m x 3m) of the sensor point. 

3) Elevation angle calculation: The surrounding region of each sensor point was divided into 

72 directions by setting an angular interval of 5° and then, the maximum elevation angle was 

calculated for each angular interval. Moreover, to consider the effects of shadow, the 

maximum shaded angle 𝜃𝑚𝑎𝑥was determined by obtaining the elevation of senor point zp, 

distance and height of surrounding buildings. 

4) Solar irradiance estimation: Solar irradiation, which mainly consists of direct and diffuse 

irradiance, was calculated while considering the effect of shading and sky view factor (see 

Appendix A). The solar constants and angles were calculated based on Mghouchi et al. 

(2016). For direct irradiance, the direct normal radiation obtained from the weather data and 

incidence angle were used to calculate the irradiance for each sensor point. For diffuse 

irradiance, the anisotropic diffuse model proposed by Perez et al. (1986, 1987) was used to 

calculate three diffuse components: (i) circumsolar, (ii) sky dome, and (iii) horizontal diffuse 

irradiances.  

5) PV potential estimation: The equivalent power capacity was calculated by considering the 

conversion efficiency and nominal operating cell temperature (NOCT) model (Duffie and 

Beckman (2013)) to estimate the solar potential. 

 Decarbonization scenarios and strategies 

The scenario analysis was performed to demonstrate the applicability of the proposed coupled 

approach to quantify the spatiotemporal evolution of energy demand and decarbonization 

potential across different scales. The scenarios considered the effect of building energy 

efficiency measures, penetration of renewable DERs, and carbon emission intensity (CEI) 

factors. To investigate the demand-supply synergy of commercial building stock at a multi-scale 

level, this study constructed three demand-side, base, potential, and electric scenarios that 

involve several decarbonization strategies, and multiple supply-side scenarios were selected 

based on key design and planning parameters of BIPV as shown in Table 4-1 and Table 4-2 

respectively. In terms of demand-side scenarios, the base scenario was assumed to follow the 

current policy pattern with the non-adoption of new reduction measures. All the available 

decarbonization strategies, active and passive design measures, except electrification were 

adopted to estimate the maximum reduction potential in the potential scenario, whereas the 

electric scenario assumed electrification of heating and cooling source systems. On the supply-

side, sensitivity analysis was performed based on the BIPV generation threshold, cell efficiency, 

and utilization factor to select the most feasible scenario in terms of the level of the penetration 
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rate of BIPV. The generation threshold is a criterion to determine the suitability of the BIPV 

installation area on the basis of annual incident solar radiation. The utilization factor is the ratio 

of the available rooftop area for PV installation to the total rooftop area of the building. For 

sensitivity analysis, nominal values of key design and planning parameters of BIPV were 

considered to estimate the variance in terms of yearly BIPV potential output on the basis of an 

individual parameter. This study employed a mono-crystalline PERC cell type with an efficiency 

of 20.43% whose specifications are listed in Table 4-3 (Jinko Solar, 2021). The range of cell 

efficiency is considered between 20% to 30% in order to consider the futuristic improvement of 

PV technology. Moreover, the different levels of CEI factors were used as per Tokyo Electric 

Power Company (TEPCO, 2016) and Tokyo Gas (TG, 2021) to quantify the carbon emissions 

of commercial building stock across different demand-supply scenarios as shown in Table 4-4. 

Table 4-1. Description of decarbonization strategies at the demand-side. 

Parameter Base Potential/Electric 

Envelope (Supplementary 

Table S1.1) 

Current envelope standards 

remain unchanged 
Additionally insulated to improve building performance standards 

Lighting (Supplementary 

Table S1.2) 

Conventional lighting 

devices (fluorescent and 

incandescent lamps) 

1. All lighting devices are replaced with LED. 

2. Daylighting control is considered with indoor illuminance and limiting 

glare of 500 lux and 22 index respectively. 

Appliance 

(Supplementary Table 

S1.2) 

Calibrated as per metered 

data 
40% reduction from the base level 

System stock composition 

(Appendix Table B1 and 

B2) 

Current system types 

remain unchanged 

In Potential scenario, Absorption 

chillers are replaced with Solar 

heating and cooling. 

In Electric scenario, all the systems are 

electrified by considering Elect-VRF and 

AHP for decentralized and centralized 

systems. 

System efficiency 

improvement (Appendix 

Table B3) 

Same as base level Improvement in COP standards 

Ventilation and heat 

delivery measures 

(Appendix Table B4) 

Same as base level All possible combinations of these measures are considered 

Thermal Storages  

For passive thermal storage, Phase change material (PCM) is considered, whereas 

in terms of active thermal storage, thermal ice storage is coupled either with an air-

source heat pump (AirS-HP) or Comb-EG. 
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      Table 4-2. Sensitivity analysis of key design and planning parameters of BIPV. 

Parameter Units Roof Façade 

Cell efficiency (%) 0-1 20, 25, 30 

Generation threshold 

(kWh/(m2ꞏyear)) 
1-0 No, 400, 600, 800, 1000 

Utilization factor 0-1 0.1, 0.3, 0.5, 0.75, 1 1 

Note: Bold values indicate nominal values. 

              Table 4-3. Specifications of BIPV module. 

Parameter Description 

Cell type Mono-crystalline PERC  

Dimensions (mm) 1855 x 1029 x 30 

Maximum power (W) 390 

Cell efficiency (%) 20.43 

Temperature coefficient of maximum power (%/°C) -0.35 

NOCT (°C) 45 ± 2 

                 Table 4-4. Overview of carbon emission intensities (CEI) for different fuels. 

Fuel Baseline 2030 

Electricity (kgCO2/kWh) 
0.47 (TEPCO, 

2016) 

0.25 (MOE, 

2016) 

Gas (kgCO2/Nm3) 2.21 (TG, 2021) 

 Carbon neutrality assessment 

In this study, the performance assessment of these scenarios was performed at the static and 

dynamic temporal level by using two metrics: self-sufficiency (SS) and import/export index 

(II/EI) (Sartori et al. (2012); Ala-Juusela et al. (2016)). These metrics were selected that fit the 

scope to be utilized with the further consideration of more physical energy infrastructures, electric 

vehicles and storages, which lead to load shifting and flexibility. The SS is formulated to estimate 

the percentage of energy demand met by renewable energy at annual temporal resolution. SS 

varies between 0 and 1, with a value equal to 0 and 1 depicting all annual energy demand needs 
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to be imported and all annual energy demand is met by local renewable energy supply 

respectively. The II/EI index is developed to assess how well the energy demand and supply are 

balanced at an hourly temporal resolution that provides quantification of excess or deficit local 

renewable supply relative to energy demand. II/EI index equal to 0 indicates that energy demand 

is met by local renewable energy at a particular hour, whereas a positive (or export index (EI) 

value of the index (greater than 0) indicates the amount of hourly surplus of local renewable 

supply to the energy demand at that particular hour and a negative value (or import index (II)) of 

the index (varies between -1 and 0) indicates the amount of hourly deficit of energy demand to 

the local renewable supply at that particular hour. The SS and II/EI indices were expressed as: 

𝑆𝑆 =
𝐸𝑠,𝑎
𝐸𝑑,𝑎

 4-1 

𝐼𝐼/𝐸𝐼 =
𝐸𝑠,ℎ𝑟 − 𝐸𝑑,ℎ𝑟

𝐸𝑑,ℎ𝑟
 4-2 

where Es,a and Es,hr are the BIPV supply at annual and hourly temporal resolution respectively, 

and Ed,a and Ed,hr is the total energy demand of the building stock at annual and hourly temporal 

resolution respectively (whereas the annual aggregated units are specified in terms of MJ (or TJ 

or PJ) and the hourly units are specified in terms of MW). Hence, larger SS and EI are both 

desired. 

 Results 

 Building stock analysis 

This analysis presents the results related to the development of RBMs based on the geo-referenced 

and sample datasets. The data-driven approach involving data pre-processing and segmentation 

was performed on the geo-referenced dataset resulting in 17 RBMs on the basis of physical 

elements (see Appendix C). Furthermore, the logistic regression technique was applied to the 

sample dataset to assign technical elements to each building within the stock. As a result of the 

hybrid approach, the development of 17.2 million (17 clusters × 3 construction types × 6 vintages 

× 5 system age-band × 256 ESMs combination × 44 HVAC systems) RBMs was possible. To 

reduce the number of RBMs, aggregated criteria combined buildings that exhibited the same 

classification in terms of the building size, construction type, age band, ESMs, and HVAC 

systems. For example, the aggregated criteria reduced 91,299 actual buildings in the Tokyo region 

to 7,145 RBMs for the base scenario. In the case of other scenarios, this specified criterion 

reduced models to 1,280 and 440 RBMs for potential and electric cases, respectively. 
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Figure 4-2 shows the composition of commercial building stock for different scenarios. In terms 

of building usage and vintage, it is observed that the office segment constitutes a major proportion 

of floor area with higher built-up density, whereas the average age-band of existing stock is 1990 

that estimated to transition to 100% highest insulation level (or 2010 level) for potential and 

electric scenarios. The composition of the heat source of HVAC systems showed that the 

proportion of AHP increased from 6% in the base case to 31% in the electric scenario, whereas 

the potential scenario constitutes 10% of solar heating and cooling systems with the replacement 

of absorption chillers. The adoption of ventilation measures showed the aggressive deployment 

of ESMs in potential and electric scenarios as compared to the base case. 

 

 

Figure 4-2. Composition of commercial building stock for different scenarios: (a) building usage (Appendix C); (b) 

envelope; (c) HVAC system heat source (Appendix Table B1); and (d) ventilation measures (Appendix Table B4). 

 Aggregated evaluation 

1) Energy demand 

To validate the UBEM model, the archetype and aggregated-level validations were performed, as 

explained in detail in Perwez et al. (2022), that showed the model estimate agreed well with a 

difference of 10.2% and -1.9% in terms of the coefficients of variation for the root mean square 
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error (CV(RMSE)) and normalized mean bias error (NMBE) respectively. Figure 4-3(a) shows 

the cumulative frequency distribution of energy use intensity (EUI) across the commercial 

building stock. The EUI range varied from 126 to 6321 MJ/(m²·year) with a mean value of 1558 

MJ/(m²·year). In terms of segment-wise, the EUI pattern shows left-side skewness due to school 

buildings, whereas long-tail distribution representing higher EUI levels was mainly due to the 

hotel and hospital buildings. Figure 4-3(b) shows the average hourly energy demand of 

commercial building stock at the regional level and to compare load profiles, the daily load factor 

is calculated as the ratio between the average daily demand and daily peak demand. As observed, 

the peak demand occurred in the summer month for electricity1, whereas gas peak demand 

happened in the winter month. In terms of peak demand analysis, it is observed that a higher load 

factor is observed in spring which depicts a better utilization rate, whereas a lower load factor is 

observed in winter due to higher maximum peak demand for heating. 

 
Figure 4-3. (a) Cumulative frequency distribution of EUI across the commercial building stock; (b) Average hourly 

regional electricity demand of commercial building stock. 

2) Reduction potential 

At a regional level, the primary energy consumption of commercial building stock is estimated 

to be 316 PJ/year in the base case. The incorporation of multiple measures resulted in a reduction 

potential of 49% with a significant decrease in gas consumption by 68% to 78% as shown in 

Figure 4-4. In terms of end-use, space heating and cooling demand were reduced by 68% which 

implied the potential impact of active design strategies on the demand side. Figure 4-5 shows the 

average hourly regional electricity and gas demand considering seasonal changes and the impact 

of various measures on commercial building stock. The incorporation of multiple measures also 

resulted in a peak average ratio to decrease by 18% and 65% for electricity and gas respectively. 

 

1 An unnatural peak observed in the winter month due to stochastic synchronization of occurrence 

of occupancy events with the HVAC system operation schedule (Yamaguchi et al. (2022)). 
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The scale of the change of gas demand in the electric scenario was not significant in comparison 

to the potential scenario due to a large portion of heat sources using gas boilers being shifted to 

solar HVAC in the potential scenario. Consequently, the dissemination of electrification of 

exterior equipment (or for cooking purposes) was not considered in the electric scenario. 

Moreover, the monthly values during winter months were significantly reduced when system 

efficiency improvement and highly insulated envelopes were implemented, whereas the 

upgradation of lighting and appliances resulted in the reduction of energy demand during summer 

months. 

 

Figure 4-4. (a) Annual primary energy consumption of commercial building stock across different pathways (Note: 

negative values indicate the reduction induced by each measure between the transition of pathway).  
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Figure 4-5. Average hourly regional electricity and gas demand considering seasonal changes and the impact of various 

measures on commercial building stock (Note: negative values indicate the reduction induced by each measure between 

the transition of pathway). 

3) BIPV potential estimation 

To consider different levels of the penetration rate of BIPV on the supply-side, key design and 

planning parameters, PV generation threshold, cell efficiency, and utilization factor, were 

considered to perform the sensitivity analysis for selecting the most feasible supply scenarios. 

Figure 4-6 shows the sensitivity analysis of key design and planning parameters of BIPV on 

yearly supply potential. The cell efficiency shows a strong correlation with PV potential in 

comparison to other parameters. Moreover, the PV rooftop has a dominant role in the energy 

generation potential of BIPV. The roof-façade pairwise analysis shows that the utilization factor 

is more critical in the deployment of PV rooftop, whereas the deployment of PV façade is more 

sensitive to generation threshold criteria. Overall, it is found that generation threshold criteria of 

1000-400 kWh/(m2ꞏyear) for roof-façade and 30% utilization of rooftop are selected in terms of 

deployment suitability and yearly potential output. Hence, two BIPV supply strategies are 

considered to further perform demand-supply assessment: (1) 1000 kWh/(m2ꞏyear) as PV roof 

threshold and 400 kWh/(m2ꞏyear) as PV façade threshold, 20% cell efficiency and 30% utilization 

factor (S1), and (2) No roof-façade threshold, 30% cell efficiency and No utilization factor (S2). 

  

    Figure 4-6. Sensitivity analysis of key design and planning parameters of BIPV on a yearly supply potential. 

Figure 4-7 shows the composition and annual generation of BIPV for different supply strategies. 

The installed capacity of BIPV increased from 78 to 243 million m2 area in S1 and S2 strategies 

respectively, which showed a four-fold increase in the overall potential of yield area. The area of 

the roof accounted for 23% to 26% of the total installed capacity, while the PV generation 

accounted for 42% and 60% in S1 and S2 strategies respectively. This indicated the high yield of 

PV rooftop that signify the importance of utilization of roof area in a high-density urban 

environment. Moreover, the duration curve shows a considerable difference in supply peak with 

a steep gradient observed in the overall potential estimation (or S2) strategy. 
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Figure 4-7. (a) Composition of BIPV module area for different supply strategies; (b) BIPV annual generation for 

different supply strategies at the regional level; and (c) load duration curve of different supply strategies. 

4) Carbon neutrality assessment 

The annual energy balance and emission reduction potential of commercial building stock across 

different demand and supply-side strategies are shown in Figure 4-8. At a regional level, SS 

improved from 0.16 to 0.63 with 2.5 times improvement among both scenarios that show higher 

utilization of BIPV yield higher SS. In terms of emission reduction potential under different 

intensities (CEI), it is found that the annual CO2 emissions decreased by 84% with the adoption 

of ambitious demand-supply strategies illustrating that carbon neutrality of the commercial 

building stock requires further concrete measures. Moreover, the demand-side efficiency 

measures resulted in the largest emission reduction potential, ranging from 10.3 to 15.4 

MtCO2/year reduction, whereas the share of BIPV ranges from 2.2 to 10.1 MtCO2/year reduction. 
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Figure 4-8. Annual energy balance (a) and emission reduction potential (b) of commercial building stock across 

different demand and supply-side strategies at the regional level. 

As per dynamic energy balance analysis, as shown in Figure 4-9a, it is observed that the peak 

value of grid import reduces by 21% and 59% with the adoption of ambitious demand-supply 

strategies in the summer and winter seasons respectively, whereas the time-duration of grid 

import occurred at both day-time and night-time. The peak value of grid export increased 

manifold with maximum resource utilization of BIPV, whereas the time-duration of grid export 

mostly occurred during the daytime. Moreover, the difference in onsite consumption is mainly 

due to the difference in PV generation and demand levels. In terms of performance assessment 

(Figure 4-9b), the highest total number of hours of grid export is observed during the spring 

season, whereas EI improved up to 2.43 at noon time with the adoption of ambitious demand-

supply strategies. Moreover, Fig. 8c shows the load duration curve of commercial building stock 

across different demand and supply-side strategies at the regional level. The negative net load 

duration increased from 0.8% (Base-S1) to 23% (Potential-S2) with the total number of hours 

with grid export increasing from 78 hrs to 2020 hrs in the year respectively. 
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Figure 4-9. (a) Average monthly dynamic energy balance; (b) performance assessment; and (c) load duration curve of 

commercial building stock across different demand and supply-side strategies at the regional level. 

 Multi-scale evaluation 

1) Energy demand 

Figure 4-10 shows the scale-level distribution of EUI and the average daily load factor. In terms 

of variation in energy demand, it is observed that the larger the description of a scale, the lower 

the EUI. This was because of varying building stock compositions that exhibit energy hot spots 

in a few districts of each city. In terms of peak demand analysis, it showed a significant deviation 
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of load factor that varied between the range of 0.22 to 0.82. This also demonstrated higher 

variability of load factor with the transition from larger to smaller scale, whereas peak damping 

is observed at a larger scale. Moreover, the load factor seems to be more sensitive to seasonal 

changes resulting in more deviation and lower load factor in the winter season that demonstrates 

the pronounced effect of heating demand on peak load. 

 

Figure 4-10. (a) Distribution of EUI; and (b) Comparison of average daily load factor across different scales. 

2) Reduction potential 

Figure 4-11 shows the spatial distribution of primary energy consumption at the city scale for 

different pathways. The primary energy consumption has a strong spatial dependence with higher 

variance in dense urban areas, whereas the spatial distribution for electric and potential scenarios 

as expected are nearly identical due to the maximization of building efficiency. The distribution 

of primary energy consumption of the districts and cities indicated more skewness and stacking 

with the incorporation of demand-side efficiency measures (see Supplementary Fig. S1). The 

percentage of districts ranged lower than 50 TJ/year increased from 59% in the base case to 71.6% 

and 73.6%, whereas in the case of cities, the primary energy consumption lower than 2000 

TJ/year increased from 53% in the base case to 73% and 75% for electric and potential scenarios 

respectively. 
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Figure 4-11. Illustrative city scale map of the spatial distribution of primary energy consumption for various pathways. 

The measure-by-measure comparison, as shown in Figure 4-12, showed that the most impactful 

decarbonization measures are system efficiency improvement, and the upgradation of lighting 

and appliances that varies across the scales. In contrast, PCM and daylighting control caused 

negligible impact due to internal heat gain and loss effects. The active-passive measures pairwise 

comparison shows that only 10% reduction potential was attributed to passive design measures, 

whereas 90% reduction potential is due to active design measures. This demonstrates that simply 

focusing on passive design measures, envelope insulation, and natural ventilation, is not enough 

to decarbonize commercial building stock. 

 

Figure 4-12. Reduction potential of demand-side measures across different scales: a) Active; and b) passive measures. 
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3) BIPV potential estimation 

Comparing different BIPV supply strategies at various scales, it is found that the total PV 

potential of districts ranged greater than 50 TJ/year increased from 8.9% to 34.7%, whereas in 

the case of cities, the total PV potential greater than 1000 TJ/year increased from 20.4% to 51.8% 

for S1 and S2 supply scenarios respectively (see Supplementary Fig. S2). Figure 4-13 shows the 

temporal variation of BIPV generation across different scales. The maximum absolute deviation 

(MAD) is also shown on both sides of the generation pattern to indicate the diurnal variability 

across the number of districts and cities. The total BIPV potential changes in the order of 

magnitude of 29 to 54 with the variation of scale that presents a favourable transitional 

decarbonization supply choice to incorporate BIPV at a large scale. The highest electricity yield 

is observed in spring with generation variability across the whole year due to changes in climate 

conditions. In terms of roof-façade pairwise hourly analysis, it is observed that the PV façade 

gives an added value by providing a similar and steady supply during the period of low potential 

output (early morning or late afternoon) in comparison to the rooftop. The high potential supply 

period increases with the relaxation of threshold and utilization factor constraints. Overall, this 

demonstrates the dominant role of maximum resource utilization of building roof and façade on 

total BIPV potential. 
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Figure 4-13. Average hourly BIPV generation across different scales: i) District; ii) city; and iii) regional level (showing 

the amount of added potential with the change in integration level). 

4) Carbon neutrality assessment 

As per the scale-bounded emission reduction potential analysis, as shown in Figure 4-14, it is 

observed that the annual carbon peak reduced by 59.4% and 61.5% with the adoption of demand-

side efficiency improvement and integration of BIPV at district and city scales respectively. The 

improvement of CEI resulted in a further reduction of the annual carbon peak from the range of 

0.72-1.74 MtCO2/year to 0.40-0.97 MtCO2/year at the district scale, whereas the annual carbon 

peak reduced from the range of 2.24-5.55 MtCO2/year to 1.24-3.09 MtCO2/year at city scale. In 

the Base-S1 scenario, the annual carbon emissions of most districts and cities that presented 40% 

of the stock TFA were below 0.12 and 1.67 MtCO2/year, whereas in the Electric-S2 scenario, the 

annual carbon emissions of most districts and cities that presented 40% of the stock TFA were 
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below 0.04 and 0.5 MtCO2/year respectively. This highlights the significant spatial variation of 

annual emission reduction potential that depicted the analytical capability of the UBEM model. 

 

  

Figure 4-14. Annual emission reduction potential under different intensities, (a) CEI=0.47 and (b) CEI=0.25, for 

different scales: i) District; ii) city; and iii) regional level. 

Figure 4-15 illustrates the spatial distribution of SS at the city scale for various demand-supply 

pathways. In the Base-S1 scenario, the SS of most cities were below 0.4, and in some cities, the 

SS were above 0.6, whereas in the Electric-S2 scenario, the SS of most cities were above 1, and 

in some cities, the SS were below 0.4. This highlights the significant spatial variation of SS with 

the adoption of demand-side efficiency improvement and integration of BIPV. 

 

 

 

 

0

0.5

1

1.5

2

0 20 40 60 80 100

C
O

2
 e

m
is

si
o

n
s 

(M
tC

O
2
/y

ea
r)

Stock TFA (%)

Base-S1
Potential-S1
Electric-S1
Base-S2
Potential-S2
Electric-S2

a

i
0

1

2

3

4

5

6

0 20 40 60 80 100

Stock TFA (%)

ii
0

10

20

30

40

S1 S2

Base

Potential

Electric

iii

0

0.5

1

1.5

2

0 20 40 60 80 100

C
O

2
 e

m
is

si
o

n
s 

(M
tC

O
2
/y

ea
r)

Stock TFA (%)

b

i
0

1

2

3

4

5

6

0 20 40 60 80 100

Stock TFA (%)

ii
0

10

20

30

40

S1 S2

iii



87 

 

 

  

    Figure 4-15. Illustrative city scale map of the spatial distribution of SS for various demand-supply pathways. 

The scale-bounded comparison, as shown in Figure 4-16(a), shows that the ambitious demand-

supply strategies, Potential-S2 or Electric-S2 scenarios, resulted in sharp skewness of SS 

percentage at the building-by-building level. Among the different demand-supply strategies, SS 

greater than 1 increased from 14.4% in the Base-S1 scenario to 70.1% in the Potential-S2 scenario 

at the building-by-building level. At other scales, 28% of districts transition into net positive 

energy districts, whereas, at the city scale, 22% of cities become net positive energy cities with 

the implementation of ambitious demand-supply strategies. In terms of average performance 

assessment (Figure 4-16b), the grid indexes showed similar temporal patterns with the variation 

of the magnitude across the scale. In the S1 scenarios, BIPV generation is mostly self-consumed 

at the regional level with maximum time-duration of grid import happening even in daytime, 

whereas most of the districts and cities showed much higher grid export in the daytime with the 

peak EI at 1.12 and 0.82 respectively. Meanwhile, the implementation of the ambitious demand-

supply strategies, S2 scenarios, resulted in maximum time-duration of grid export in the daytime 

with the peak EI reaching up to 4.42, 3.92 and 2.43 for districts, cities and regional levels. 

 

 

 

 

 

 



88 

 

 

 

 

Figure 4-16. (a) Self-sufficiency analysis of commercial building stock across different scales: i) Building-by-building; 

ii) district; and iii) city level; (b) average dynamic performance assessment of different demand and supply-side 

strategies across different scales: i) District; ii) city; and iii) regional level. 

 Discussion 

 Development of UBEM-BIPV coupled approach 

With the development of the proposed hybrid UBEM workflow, the model builds upon the 

building-level data obtained from GIS to facilitate consideration of a series of geometric and non-

geometric parameters, and further utilized synthetic element modelling to assign technical 

elements to the commercial building stock. As shown in Section 4.3.1, this multi-stage process 

enhanced the analytical capability of the model by concurrently incorporating physical, technical, 

and socio-behavioral factors within a commercial building stock. Moreover, the integration of the 

physical-based approach of BIPV potential estimation resulted in the calculation of the point-

based solar irradiance at a range of spatial scales with reduced computational time. From a 

practical implementation process, this further informs the stakeholders about the varying aspect 

of the adoption of BIPV technologies in the urban environment. Overall, this UBEM-BIPV 

coupled scheme enables the coordination among different methodological characterizations to 
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adequately manage the degree of complexity and modelling resolution for the energy transition 

of the commercial building stock. 

 Relationship between decarbonization strategies 

In terms of reduction potential, the incorporation of multiple active and passive design measures 

resulted in a reduction potential of 49% with a significant decrease in gas consumption by 68% 

to 78%. The comparison of the reduction potential of these design measures in commercial 

building stock shows that only 10% reduction potential was attributed to passive design measures, 

whereas 90% reduction potential is due to active design measures. This demonstrates that simply 

focusing on passive design measures, envelope insulation, and natural ventilation, is not enough 

to achieve carbon neutrality in commercial buildings. Thus, the concurrent consideration of active 

and passive design measures needs to be investigated when performing a carbon neutrality 

assessment of commercial building stock. Moreover, it is worth noting that when all the 

decarbonization strategies are simultaneously deployed, it is found that the annual CO2 emissions 

decreased by 84% with the simultaneous implementation of all the measures illustrating that 

carbon neutrality of the commercial building stock requires further concrete measures. 

 Scalability 

Considering the evaluation capabilities, Section 4.3.3 shows that the differences in the demand 

reduction and BIPV potential exist across different scales due to varying structural and system 

stock composition, and urban morphological characteristics. However, the research gap of 

coupling the UBEM-BIPV scheme exists in the previous multi-scale studies that either only 

established UBEM models for a different scope (like residential building stock) (Nutkiewicz et 

al. (2018); Yang et al. (2022)) or focused only on estimating BIPV potential in an urban 

environment (Cheng et al. (2020); Liu et al. (2023)). This implies that the proposed coupled 

scheme identifies various drivers and determinants to better understand the mechanisms and 

conditions leading to different demand and supply levels across the scale. Additionally, the 

carbon neutrality assessment of commercial building stock (Section 4.3.3(4)) indicates that the 

maximum co-benefit of demand-side efficiency improvement and integration of BIPV is 

observed at building-by-building level with 70% of buildings has SS greater than 1 while at other 

scales, 28% and 22% of districts and cities transition into net positive energy districts and cities 

respectively. This spatial imbalance is mainly due to typological utilization constraints and 

diverse functionalities of commercial buildings. Therefore, those studies focusing on the 

optimization of a single building model result in insignificant or redundant findings at a larger 

scale. 
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 Future work and limitations 

Although the developed coupled scheme demonstrated improved adequacy at the multi-scale 

level and could be further applied to different regions, there are still some limitations that need 

to be addressed. An auto-calibration framework needs to be developed that can transform the 

existing multi-scale UBEM model into a scalable model, ensuring transparency at a granular level 

by providing a comprehensive insight into uncertainties at the spatial level. In a physical-based 

BIPV potential estimation approach, an anisotropic hourly diffuse radiation model is used without 

considering the ground-reflected irradiance that needed to be involved. Moreover, future work 

will be extending this GIS model to perform techno-economic analysis of physical energy 

infrastructure, electric vehicles, storages, and synthetic gas generation, for assessment of 

emerging technologies, and in terms of modelling capabilities, lifestyle changes (teleworking and 

relaxation of room set point temperature) and effect of socioeconomic factors on the 

implementation of decarbonization strategies need to be considered. 

 Conclusion 

This study presents a GIS-synthetic hybrid UBEM model coupled with a physical-based approach 

of BIPV potential estimation to incorporate a building-level energy model at a large scale that 

could further evaluate the feasibility of carbon neutrality of commercial building stock at a multi-

scale level. As a case study, the proposed coupled scheme is applied to the commercial building 

stock of Tokyo to evaluate the cofound influence of active and passive design measures, and 

BIPV on the overall decarbonization potential. Results show that the annual CO2 emissions can 

be reduced by 84% with the simultaneous implementation of all the measures. The measure-by-

measure comparison showed that the most impactful demand-side efficiency measures are system 

efficiency improvement, and the upgradation of lighting and appliances while passive design 

measures only contribute a 10% reduction potential which is not enough to achieve carbon 

neutrality in commercial buildings. BIPV has a dominant role that satisfies 8% to 16% and 34% 

to 63% of electricity demand if threshold constraints and full exploitation of building surfaces are 

considered respectively. However, BIPV contributes 16% to 40% of the decarbonization potential 

which is less than demand-side efficiency measures. The scale-bounded comparative analysis 

shows that total PV potential changes in the order of magnitude of 29 to 54 with the variation of 

scale (with reference to district scale) and higher self-sufficiency are observed at the building-by-

building level in comparison to district and city scales. This demonstrates that this coupled 

approach can provide a purpose-driven perspective of the energy transition at multiple scales with 

reduced computational time. Overall, this analysis provides a multi-level perspective to energy 
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modelers and policymakers on how to achieve the carbon-neutral goal in commercial building 

stock. 

 Appendix 

 Appendix A. Development of a physical-based BIPV potential estimation 

This approach is developed by initially using a 3D GIS database and then sensor points were 

generated at a specified distance to calculate the point-wise irradiation (Shono et al. (2023)). For 

solar irradiance estimation, the direct solar irradiance (B) was calculated as follows: 

B = Bo cos i A-1 

where B0 is the direct normal radiation and i is the incidence angle. To consider the effects of 

shadow, the maximum shaded angle was determined by: 

𝜃𝑚𝑎𝑥 = tan−1
𝑧𝑚𝑎𝑥 − 𝑧𝑝

𝑑𝑖𝑠(𝑃, 𝑄𝑚𝑎𝑥)
 A-2 

where zmax is the elevation of the highest surrounding building point Qmax for each sensor point 

and dis(P, Qi) is the horizontal distance between the two points. The diffuse solar irradiance was 

estimated by using the anisotropic diffuse model as proposed by Perez et al. (1986 & 1987). The 

sky view factor (Fsky) was calculated as follows: 

𝐹𝑠𝑘𝑦 =
1

𝜋
∫ ∫ sin(𝜃𝑧)

𝜋/2

𝑣(𝜆)

2𝜋

0

𝑐𝑜𝑠(𝜃𝑧) 𝑑𝜃𝑧 𝑑𝜆 A-3 

where 𝜃𝑧 is the zenith angle, λ is the azimuth angle, and 𝑣(𝜆) is the maximum shading angle 

𝜃𝑚𝑎𝑥 in direction λ. For PV potential estimation, the equivalent power capacity was calculated 

as follows: 

𝑃 = 𝐺x𝜂𝑡 x𝜂𝑐 x (
𝐴

𝑐𝑜𝑠𝛽
) A-4 

where G is the global irradiance (Wh/m2), A is the representative area (m2) of each sensor point, 

𝜂𝑐 is the conversion efficiency of the PV module, 𝜂𝑡 is the temperature coefficient of the PV 

module, and β is the slope angle of the PV module. 
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 Appendix B. Types of HVAC systems and other measures. 

   Table B.1. Types of heat source in HVAC system. 

Type Heat source for cooling 
Heat source for 

heating 

Thermal 

storage 

Decentralized 

system 

Elec-VRF Electricity-driven VRF Same as cooling  

Gas-VRF Gas-driven VRF Same as cooling  

Mix-VRF Both Elec-VRF and Gas-VRF Same as cooling  

Centralized 

system 

AirS-HP Air-source heat pump Same as cooling  

AirS-HPS Air-source heat pump Same as cooling Yes 

E-C&G-B Electricity-driven chiller Gas boiler  

Gas-AbCB Absorption chiller Gas boiler  

Gas-AbCH Absorption chiller-heater Same as cooling  

Comb-EG 
Electricity-driven chiller and 

absorption chiller-heater 

Absorption 

chiller-heater 
 

WaterS-CS 
Electricity-driven chiller and 

absorption chiller-heater 

Absorption 

chiller-heater 
Yes 

    Table B.2. Types of air-conditioning system. 

Type Heating and cooling Ventilation 

Decentralized 

system 

VRF Variable refrigerant flow (VRF) 

system is used 

The ventilation system is 

independently installed 

Centralized 

system 

FCU Fan coil unit (FCU) is used Same as VRF 

 

CAV Air handling unit (AHU) with 

constant air volume (CAV) 

control is used 

Air-intake is mixed in AHU 

 
VAV AHU with variable air volume 

(VAV) control 

Same as CAV 

 
CAV+FCU Same as in CAV but perimeter 

zone is controlled by FCU 

Same as CAV 

 
VAV+FCU Same as CAV+FCU but VAV is 

used in AHU. 

Same as CAV 

 
OHU+FCU FCU is used in both interior and 

perimeter zones. 

Outdoor air handling unit 

(OHU) is used 
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Table B.3. System efficiency of various sources. 

Sources 

Base Potential/Electric 

Rated 

COP 

(W/W) 

Efficiency 

(%) 

Rated 

COP 

(W/W) 

Efficiency 

(%) 

Electricity-driven chillers  5.5  7.0  

Absorption chillers  1.1  1.6  

Air source heat pump Cooling 3.1  4.0  

 Heating 3.2  4.1  

Gas-driven VRF Cooling 1.0  1.5  

 Heating 1.2  1.6  

Electricity-driven VRF Cooling 3.0  3.8  

 Heating 3.4  4.2  

Heat pump water (HPWH)  4.3  4.3  

Electric water heater   90  90 

Gas/oil boilers   86  93 

Fan efficiency   36-63  46-75 

Heat exchanger for air-intake   60  65 

  Table B.4. List of ventilation and heat delivery measures. 

Type Measure Combination 

Ventilation 

related 

measures 

Heat exchanger as air-intake 

(HEX) 

All combinations of the three 

measures 

Natural ventilation using an 

economizer (OA) 

Air-intake quantity control based 

on CO2 concentration (CO2) 

Centralized 

system 

Variable water volume control 

(VWV) 
The adoption of VWV control 
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 Appendix C. Description of commercial RBMs for UBEM model 

Table C.1. Description of commercial RBMs of Tokyo. 

Segment 

Cluster GFA 

(m2) 

Floors 

(Nos) 

Height 

(m) 

Shape Coefficient 

(S/V) 

Aspect 

ratio 

Orientation 

(0) 

Office 

CL1 118 4 13.6 0.36 0.55 -2 

CL2 213 8 24.5 0.27 0.53 -2.1 

CL3 373 8 28 0.18 0.47 -2.6 

CL4 1056 9 29.6 0.12 0.46 -2 

CL5 2761 23 94.6 0.07 0.42 -3.2 

Hotel 

CL1 130 4 13.6 0.34 0.53 0.3 

CL2 363 8 27.2 0.20 0.44 -6.2 

CL3 465 11 37 0.18 0.41 -4.4 

CL4 1654 14 49.4 0.10 0.34 -6.7 

CL5 4298 30 110.2 0.06 0.31 -0.8 

Hospital 

CL1 171 2 7 0.32 0.50 -0.2 

CL2 868 5 18.5 0.13 0.40 -6.1 

CL3 1149 6 19 0.12 0.28 -1.4 

CL4 4160 11 42 0.06 0.27 -2.7 

School 

CL1 1731 4 11.4 0.11 0.44 0.2 

CL2 2221 6 15.2 0.1 0.36 3.1 

CL3 2837 7 19 0.09 0.23 -0.1 

Note: Positive orientation is considered as clockwise. 

 Supplementary data 

Supplementary data to this chapter can be found online at:  

https://doi.org/10.1016/j.enbuild.2023.113086 

https://doi.org/10.1016/j.enbuild.2023.113086
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5 Integrated discussion 

In the following chapter, an integrated discussion is presented to illustrate the critical overview 

of the research questions in terms of data acquisition, modelling capability and purpose-driven 

perspective. Initially, the chapter outlines the novel contributions to the field of BSEM and then, 

analyses the limitations and uncertainties of developed models.    

The thesis aim is to assist the regional (or city) level energy planners and policy makers in 

understanding the role of data acquisition on the energy performance of BSEM, the analytical 

capability of multi-scale modelling using BSEM and further support them in evaluating the carbon 

neutrality of commercial building stock at multiple scales. This thesis resulted in three-fold 

contributions with the advancement of data acquisition and modelling techniques for commercial 

building stock. Firstly, to understand the transitional limitations of various BSEM approaches, a 

comparative study of three major bottom-up BSEMs was performed to evaluate the accuracy and 

added-value of these approaches for use in the bottom-up engineering model. Secondly, a hybrid 

BSEM is developed to facilitate the concurrent consideration of physical and technical elements 

and further extend the model to different spatial resolutions. This provided a multi-tier framework 

using spatial intelligence building stock approach to develop long-term energy efficiency 

monitoring strategies for commercial building stock at multiple scales. Thirdly, a UBEM-BIPV 

coupled approach is developed to consider the SER framework for the evaluation of carbon 

neutrality of commercial building stock. The coupled approach resulted in a purpose-driven 

perspective of the energy transition at multiple scales with reduced computational time. 

Moreover, a detailed description of the main contributions and limitations related to developed 

models is discussed below:   

 Role of data acquisition 

The accuracy and reliability of BSEM mainly depend on the quality and quantity of data due to 

the interlinkage between the availability of input data and the use of computational methods. 

Thus, data acquisition is one of the main processes in the development of BSEM due to challenges 

associated with the retrieval of geometric, non-geometric, socio-behaviour, meteorological and 

measured energy data at a scale. In terms of best practices and use cases, it is important to select 

a model based on the availability and quality of data as well as the relevant system features 

required to develop a discrete representation of building stock. Moreover, most of the previous 

BSEM studies used a specific approach to quantitatively improve the robustness and accuracy of 

models but have not focused on identifying the impact of these approaches on the performance 

level of BSEMs. There is a lack of knowledge about the influence of data acquisition techniques 

on the model’s accuracy. Hence, there is a need to focus on exploring the comparative 
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performance of these approaches to further assess the evaluation of accuracy in predicting the 

energy demand and carbon emissions of the commercial building stock. 

To assess the comparative performance of BSEM approaches, Chapter 2 provided a detailed 

overview of the cross-over framework of the three major building stock approaches, sample-free 

synthetic, sample-based synthetic and geo-referenced, to quantify the accuracy and added-value 

of each approach in terms of heterogeneity, data dimensionality, integration and non-linear 

interactions within the stock. As discussed in Section 2.4, the sample-based synthetic method 

can incorporate multiple input distributions using a survey micro-dataset, while the geo-

referenced method provides additional key determinants such as building typology (shape 

coefficient, aspect ratio and orientation) and morphological attributes. This implies that these are 

data-enriched methods which resulted in better performance in terms of building stock 

development and simulated building energy use that signifies the accuracy and added-value of 

these methods. However, a sample-based synthetic method provides a better compromise between 

data availability and simulation accuracy in comparison to other methods. This shows that the 

synthetic approach can be extended to commercial building stock, which mostly has a poorer data 

availability than residential building stock, which further allows to encompass modelling of a 

typical mixed-use urban environment. Moreover, this cross-over analysis will provide a granular 

level framework to assist the city-level planners and policy makers in choosing the right building 

stock modelling approach for predicting the energy demand and carbon emissions of the 

commercial building stock. 

 Multi-scale modelling 

Urban energy planners and policymakers mostly experience scalability issues due to a lack of 

coordination in terms of availability and incomplete coverage of stock data. This hinders 

the implementation of target-based urban planning that requires intensive information at 

the granular level to identify the target areas where the energy policymakers can conduct 

target-based planning and decision-making. The selection and description of spatial resolution 

of the model mainly depend on the use case, availability of measured energy data and quality of 

data. To address these challenges, multi-scale modelling is one of the possible techniques that 

can improve the analytical capability of conventional BSEM by involving end-use energy 

processes (function and boundary of the systems), practices (socio-behavioural interaction, such 

as occupancy patterns and resource usage), and context (structure and conditions of systems) 

across a range of scales and sectors. However, for energy modelling of the commercial building 

stock, several methodologies were developed focusing on technology alternatives and retrofits for 

climate change mitigation, but they often have limitations to involve a differentiated description 

of practices and policies across a range of scales and sectors. Hence, there is a need to address the 
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limitations of existing commercial BSEMs, such as non-scalable framework and fragmented 

consideration of influencing factors (focusing on either physical or technological attributes), by 

establishing a multi-layer model across the scale. 

To incorporate granularity and multi-dimensionality within BSEM, chapter 3 presented a novel 

GIS-synthetic hybrid model by integrating spatial and synthetic modelling approaches to 

facilitate the concurrent consideration of multiple building-oriented elements at multiple scales. 

As discussed in Section 3.3, the differences in the energy end usages and reduction potential exist 

due to varying structural and stock composition across different scales. This implies that the 

hybrid models capture these variations, which a conventional non-scalable model could not 

distinguish. From a practical implementation perspective, this further helps address the data 

limitations and context-specific issues to overcome the disparate coordination between the local 

and national level stakeholders, which could identify priority areas for implementing target-based 

energy efficiency strategies. Moreover, the selection and description of the appropriate spatial 

boundary are critical for the base year and long-term studies related to building stock energy 

modelling. The long-term studies are more sensitive to an adequate spatial boundary than the 

base year studies and show significantly different energy consumption patterns, 10–17%, and 

reduction potential, 2–3 times, when a non-representative scale is applied to other scales. This 

implies a need to develop multi-tier long-term building stock strategies to promote the adoption 

of ESMs and alternative technologies for achieving net-zero emissions in the building sector. 

Additionally, the two most critical building-oriented elements are geometry and plug loads when 

the non-representative scale is applied at other scales. This suggests that these elements lead to 

higher scale-bounded uncertainties, induced due to structural heterogeneity, typological 

complexities, and diverse functionalities associated with the stock composition of commercial 

buildings. This granular-level framework uses a spatial intelligence approach that can assist urban 

energy planners and policymakers in developing long-term energy efficiency monitoring 

strategies at multiple scales. The framework could further open new avenues in building stock 

methodologies by integrating conventional approaches with emerging information technologies. 

Such strategies are crucial to achieving valuable advances by incorporating emerging modelling 

techniques, and treatment of additional modelling dimensions within commercial BSEM. 

 Purpose-driven coupling 

In order to mitigate the effect of climate change and meet carbon emission targets, there is a 

paradigm shift towards the shared global goal of achieving carbon neutrality. Recently, more 

aggressive national mitigation commitments have been adopted to meet the target of net-zero 

carbon emissions by 2050 (UNFCC COP 26, 2021). The transitional pathway to carbon-neutral 
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building stock includes an interplay of planetary and non-planetary boundaries, technological and 

non-technological options, and dispatchable and non-dispatchable energy resources. These 

interlinkages can not be captured by a singular or focal model with limited external coordination. 

Therefore, there is a need to develop a multi-model framework to illustrate the process of model 

coupling for the assessment of carbon-neutral building stock, which can involve a higher degree 

of coordination to adequately manage the modelling functionality and integration, resolution and 

data coherence. 

To demonstrate purpose-driven model coupling, chapter 4 presented a coupled workflow that 

facilitated the homogenous use of a comprehensive GIS dataset to provide the necessary 

coordination of a hybrid UBEM model with a physical-based BIPV estimation approach at the 

multi-scale level, leading to further improvement in the methodological characterization to 

evaluate the carbon neutrality of commercial building stock. As discussed in Section 4.3, the 

differences in the demand reduction and BIPV potential exist across different scales due to 

varying structural and system stock composition, and urban morphological characteristics. This 

implies that the proposed coupled scheme identifies various drivers and determinants to better 

understand the mechanisms and conditions leading to different demand and supply levels across 

the scale. Additionally, in terms of modelling resolution, the maximum co-benefit of demand-side 

efficiency improvement and integration of BIPV is observed at the building-by-building level 

with 70% of buildings having Self-sufficiency (SS) greater than 1 while at other scales, 28% and 

22% of districts and cities transition into net positive energy districts and cities respectively. This 

spatial imbalance is mainly due to typological utilization constraints and diverse functionalities 

of commercial buildings. Therefore, those studies focusing on the optimization of a single 

building model result in insignificant or redundant findings at a larger scale. This demonstrated 

that this coupled approach can provide a purpose-driven perspective of the energy transition at 

multiple scales with reduced computational time. Overall, this UBEM-BIPV coupled scheme will 

provide a multi-level perspective to energy modelers and policymakers on how to achieve the 

carbon-neutral goal in the commercial building stock.  

 Future work and limitations 

Although the developed BSEMs demonstrated the comparative analysis of interlinkage 

between the availability of input data and use of the computational method, improved adequacy 

at the multi-scale level and could be further applied to different regions, and also provided 

purpose-driven coupling perspective of BSEM, there are still some limitations that need 

to be addressed. A summary of those limitations is provided as follows: 

1. The segmentation process of data-driven modelling needs to be improved by overcoming the 

issue of homogeneity across the scale. The same number of classifiers are used to perform 
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the segmentation, resulting in an equal number of clusters at different scales. This scheme 

needs further improvement by implementing it at a specific granular level to obtain the 

optimum number of classifiers as per the specifications. 

2. In synthetic modelling, a multi-nominal statistical approach is applied to a large sample 

dataset to fill the energy modelling gap due to a lack of information related to the technical 

factors. This requires further effort to conduct a multi-scale field survey for validating the 

probabilistic building systems stock model by comparing it with actual stock. 

3. An auto-calibration framework needs to be developed that can transform the existing multi-

scale UBEM model into a scalable model, ensuring transparency at a granular level by 

providing a comprehensive insight into uncertainties at the spatial level. 

4. In a physical-based BIPV potential estimation approach, an anisotropic hourly diffuse 

radiation model is used without considering the ground-reflected irradiance that needed to be 

involved. 

5. The developed BSEMs model mainly focused on physical and technical factors while the 

effect of lifestyle changes and socioeconomic factors are not considered within the model.  

This thesis provided significant improvement in the analytical capability of BSEM in terms of 

building stock characterization and evolution, and further extended the scope and use case of 

BSEM. However, further future work can be performed to extend these research contributions as 

follow: 

1. The development of multi-scalable reduced-order models for commercial building stock, 

which could speed up the development cycle by minimizing computational resources. 

2. The dynamics of building stock transition also involve non-technological options that need 

to be assessed for the effective implementation of decarbonization measures. Urban energy 

planners and policymakers have to consider energy vulnerability and poverty issues for 

target-based urban planning to streamline the uptake of decarbonization measures. Further 

research can focus on the incorporation of lifestyle changes (teleworking and relaxation of 

room set point temperature) and the effect of socioeconomic factors on the implementation 

of decarbonization strategies. 

3. The UBEM-BIPV coupled scheme can be further extended to perform techno-economic 

analysis of physical energy infrastructure, electric vehicles, storages, and synthetic gas 

generation, for assessment of emerging technologies on demand-supply synergy. 
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6 Conclusion  

BSEM has gained a lot of attention recently with the development of a range of methodologies 

for various use cases by evaluating the trends of energy demand and carbon emissions, 

implementation of building efficiency retrofits, energy system integration and the effect of climate 

change. With the advancement of data-driven techniques, BSEMs involve a higher degree of 

complexity with the varying model structure and output that requires comprehensive reporting 

guidelines to improve the transparency and consistency of BSEM. In BSEM, several bottom-up 

methodologies have been developed to assess the energy demand and emission reduction potential 

of the stock but, often have transitional limitations either to shift from aggregated to disaggregated 

stock boundary conditions or involve a differentiated description of practices and policies across 

a range of scales and sectors. This thesis developed multiple BSEM methodologies to identify the 

best practices for minimum viable model guidelines that can provide transparency and capture 

value with the least cost and effort. To this extent, the comparative analysis of BSEM approaches 

was performed to assess the accuracy and added-value of quality and quantity of data on the model 

performance. Additionally, to improve the analytical capability of conventional BSEM, a GIS-

synthetic hybrid model is developed to involve a differentiated description of practices and 

policies across a range of scales and sectors. This provided a multi-tier framework using spatial 

intelligence building stock approach to develop long-term energy efficiency monitoring strategies 

for commercial building stock at multiple scales. Moreover, to demonstrate a process of purpose-

driven coupling, a multi-model framework of UBEM-BIPV coupled scheme is developed to 

illustrate the process of model coupling for the assessment of carbon-neutral building stock, which 

can involve a higher degree of coordination to adequately manage the modelling functionality and 

integration, resolution and data coherence. The coupled workflow facilitated the homogenous use 

of a comprehensive GIS dataset to provide the necessary coordination of building stock 

interventions with renewable DERs at the multi-scale level. The summary of findings related to 

formulated research objectives is given below: 

1) How can the data acquisition influence the performance level and applicability of bottom-up 

BSEM in predicting the energy demand and carbon emissions of the commercial building 

stock. 

A comparative analysis of BSEM approaches showed that the sample-based synthetic method 

provides a better compromise between data availability and simulation accuracy in comparison 

to other methods. The sample-based synthetic method can incorporate multiple input distributions 

using a survey micro-dataset, while the geo-referenced method provides additional key 

determinants such as building typology (shape coefficient, aspect ratio and orientation) and 

morphological attributes. This implies that these are data-enriched methods which resulted in 

better performance in terms of building stock characterization and estimation of building energy 
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use that signifies the accuracy and added-value of these methods. Moreover, it is observed that 

the combination of sample-based synthetic and geo-referenced approaches can provide cross-

sectional and longitudinal enrichment within the model. 

2) How can bottom-up BSEM be modelled to incorporate scalability and multiple building-

oriented elements characterization within the model. 

The proposed multi-scale model identifies various drivers and determinants of energy end-uses 

and resource usages to provide a better understanding of mechanisms and conditions that lead to 

different levels of demand for commercial building stock across the scale. This addresses the 

underlying complexity associated with the BSEMs by examining influencing factors that cause 

different levels of outcomes at different scales. As per the quantitative analysis, disregarding the 

physical and technical factors drops cumulative performance by up to 32%. This signifies the 

need for a concurrent consideration of these factors within BSEM. Moreover, the scale-bounded 

comparative approach indicates that the larger the description of the scale, the higher the error 

uncertainty when applied to a smaller representative scale. This scale variability seems significant 

due to relatively higher thermal dynamics induced by the building typology and functional 

composition of the commercial building stock. In terms of model complexity, a more integrated 

model is needed at a large scale than other scales because of the modular and diversified 

distribution of large-scale building stock, which leverages variability within the model output. 

The results imply that the performance gap increases significantly up to 21% when the description 

of a scale shifts from a smaller to a larger one. Overall, the developed model provides a 

comprehensive understanding of selecting and describing the minimum viable requirements for 

a specific scale by considering the effect of various influencing parameters on scale-bounded 

uncertainties. 

3) How does the SER framework be considered for the evaluation of carbon neutrality of 

commercial building stock. 

A GIS-synthetic hybrid UBEM model is coupled with a physical-based approach of BIPV 

potential estimation for the consideration of the SER framework in estimating the overall 

decarbonization potential of the commercial building stock. Results show that the annual CO2 

emissions can be reduced by 84% with the simultaneous implementation of all the measures. The 

measure-by-measure comparison showed that the most impactful demand-side efficiency 

measures are system efficiency improvement, and the upgradation of lighting and appliances 

while passive design measures only contribute a 10% reduction potential which is not enough to 

achieve carbon neutrality in commercial buildings. BIPV has a dominant role that satisfies 8% to 

16% and 34% to 63% of electricity demand if threshold constraints and full exploitation of 
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building surfaces are considered respectively. However, BIPV contributes 16% to 40% of the 

decarbonization potential which is less than demand-side efficiency measures. The scale-bounded 

comparative analysis shows that total PV potential changes in the order of magnitude of 29 to 54 

with the variation of scale (with reference to district scale) and higher self-sufficiency are 

observed at the building-by-building level in comparison to district and city scales. This 

demonstrates that this coupled approach can provide a purpose-driven perspective of the energy 

transition at multiple scales with reduced computational time. 

Overall, this thesis has contributed to the advancement of BSEM by providing comprehensive 

reporting guidelines in terms of accuracy, granularity and multi-dimensionality aspects. This has 

enhanced the capability of the BSEM to be further extended to any demographic landscape or 

spatial resolution and evolve into a long-term transitional workflow. Thus, enabling long-term 

spatial energy resource planning and decision-making for commercial building stock across 

various scales. From a practical perspective, this thesis develops a multi-level framework using 

spatial intelligence to assist the urban energy planners and policymakers in: (1) the selection of 

the BSEM approach on the basis of availability and quality of data; (2) the development of long-

term energy efficiency monitoring strategies at multiple scales; and (3) how to achieve the carbon-

neutral goal in the commercial building stock. 
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