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Abstract

Building stock energy modelling (BSEM) has gained a lot of attention recently with the
development of a range of methodologies due to its multi-dimensional capabilities and the
potential to incorporate various decarbonization strategies and climate mitigation scenarios. With
the advancement of data-driven techniques, BSEMs involve a higher degree of complexity with
varying model structure and output that requires comprehensive reporting guidelines to improve
the interpretation and consistency of these models. In BSEM, several bottom-up methodologies
have been developed to assess the energy demand and emission reduction potential of the stock
but, often have transitional limitations either to shift from aggregated to disaggregated stock
boundary conditions or involve a differentiated description of practices and policies across a range
of scales and sectors. This thesis aims to advance the methodological capability of BSEM in terms
of data coherence, scalability and coordination, which can provide transparency and capture value
with the least cost and effort. Based on the above background, the key data acquisition technigques
of BSEM are assessed to assist in the selection of the BSEM approach depending on the data
availability and quality, and then, a novel bottom-up BSEM approach is developed to incorporate
scalability and integration of multiple building-oriented elements within the model. Moreover, to
exhibit the model applicability and integration of the developed model, a bottom-up BSEM
approach is coupled with a physical approach of building integrated photovoltaics (BIPV)
potential estimation to assess the carbon neutrality of commercial building stock at scale. The
thesis is comprised of six chapters whose summary is explained as follows:

Chapter 1 provides a comprehensive overview of transitional strategies and measures to
decarbonize the commercial building stock. After this, a quadrant-based classification of BSEM
is outlined and further review of methods related to carbon neutrality assessment and BIPV
estimation are discussed.

In Chapter 2, key data acquisition techniques of BSEM and their use cases are identified and then,
illustrated the development process of three major BSEM approaches. The crossover framework
was further developed to assess the accuracy and added value of quality and quantity of data on
the model performance of commercial BSEM.

In Chapter 3, an automated dynamic building simulation framework using a G1S-synthetic hybrid
model is developed to integrate spatial and synthetic modelling approaches for facilitating the
concurrent consideration of multiple building-oriented elements at multiple scales.

In Chapter 4, a multi-model framework of the BSEM-BIPV coupled scheme is developed to
illustrate the process of model coupling for the assessment of carbon-neutral building stock, which
can involve a higher degree of coordination to adequately manage the modelling functionality and
integration, resolution and data coherence.



Chapter 5 presents an integrated discussion to explain the contributions and practical perspective
of the advancement of BSEM approaches. The chapter further highlights the importance of the
role of data acquisition, multi-scale modelling and purpose-driven coupling for enhancing the
model development process of BSEM.

Chapter 6 provides a summary of contributions related to formulated research objectives.

Overall, this thesis has contributed to the advancement of BSEM by providing comprehensive
reporting guidelines in terms of accuracy, granularity and multi-dimensionality aspects. This has
enhanced the capability of the BSEM to be further extended to any demographic landscape or
spatial resolution and evolve into a long-term transitional workflow. Thus, enabling long-term
spatial energy resource planning and decision-making in terms of sufficiency, efficiency and
renewables for commercial building stock across various scales.

Keywords: Building stock energy modelling; Hybrid building stock modelling; Bottom-up
model; Data-driven approach; GIS modelling; Synthetic modelling; Multi-scale; Commercial
buildings.
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1 Introduction
1.1 Background

Building stock is one of the main sources of global final energy consumption and offers an
enormous emissions reduction potential due to reliance on fossil fuel-based end-use equipments
and lack of adoption of energy efficiency measures. In the building sector, commercial buildings
are an energy intensive sub-segment, accounting for 15% of global greenhouse gas emissions
(GHG) (IEA, 2019). As they possess significant energy-saving potential, this presents a unique
challenge for accelerating the decarbonization of commercial buildings with existing technologies
and practices. This requires an adequate understanding of the complex interactions between
factors influencing energy usage for implementing energy-saving measures (ESMs) (Yoshino et
al. (2017); Négeli et al. (2022)). Therefore, there is a need to formulate regulations and strategies
to perform the accurate assessment of energy demand patterns and emission reduction potential
of commercial buildings.

At a stock level, the commercial building sub-sector is a source of enormous operational and
embodied emissions due to diverse functionalities, non-renovated buildings and the use of carbon-
intensive material stock for large-scale constructions. To analyze these emission reduction targets
in the commercial building stock, it is important to develop a robust and comprehensive building
stock energy model (BSEM) that allow to: (1) estimate the trends of energy demand and CO,
emissions at multiscale level (Nutkiewicz et al. (2018); Ali et al. (2019)); (2) accurately consider
the complexity in terms of building heterogeneity, typology and occupancy, even with limited
data availability (Wang et al. (2022)); and (3) explore the influence of uncertain and external
socio-technical factors on CO, emission reduction strategies and policies (Yu et al. (2021);
Heidelberger et al. (2022)). To address these stock-level strategies, this chapter initially highlights
a detailed description of the main drivers and processes for achieving carbon-neutral building
stock and then, provides an overview of different modelling techniques for the development of
BSEM and their use case.

1.2 Towards carbon-neutral building stock

As per the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (ARG6),
Sufficiency, Efficiency, Renewable (SER) framework enables the identification of key drivers
and determinants to consider for the decarbonization of building stock (Cabeza et al. (2022)). The
implementation of the SER framework requires the deployment of a combination of technological
and non-technological mitigation strategies, and renewable sources. The implementation of these
transitional measures involves a combination of new technologies, enabling policies and
regulations, resource planning, and socio-behaviour coherence as shown in Figure 1-1. In
commercial building stock, realizing carbon neutral targets will be extremely challenging due to



diverse functionalities, large-scale buildings and longer lifetime of the buildings (Madhusanka et
al. (2022)). Thus, the transitional pathway for commercial building stock requires adequately
managing the degree of complexity by providing a coordinated effort with the implementation of
non-technological mitigation strategies, improvement of efficiency measures, active and passive
design strategies, and use of renewable distributed energy resources (DERS).
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Figure 1-1. Overview of SER framework.
1.2.1 Sufficiency

The concept of sufficiency has recently gained focus due to the avoidance of cost and demand of
energy by considering planetary boundaries. These are a set of non-technological options, such
as land use management, use of buildings and appliances, and fiscal and consumer policies, that
provide long-term non-energy use strategies to reduce the dependence of mitigation measures on
technological aspects. The implementation of sufficiency measures in commercial building stock
requires: (1) optimizing building usage to reduce land take and building waste; (2) lifestyle
changes in terms of teleworking and conditioned set point temperature limits; (3) prioritizing
multi-purpose commercial spaces; and (4) fiscal policies for the mandatory limit on building
occupancy of commercial buildings. Gaspard et al. (2023) demonstrated that the volume and
typology of buildings not only affect energy use but also reduce land take and building waste
which has a significant impact on embodied emissions. Yang et al. (2022) considered lifestyle
changes in the bottom-up simulation model to compare the decarbonization effect with other
measures and found that green lifestyle strategies, teleworking and conditioned set point
temperature limits, have similar carbon emission reduction potential to rooftop photovoltaics
(PV). lvanova and Biichs (2020) analyzed the impact of resource sharing by comparing the effect
of shared and non-shared spaces on carbon footprints. Akenji et al. (2021) proposed a taxing and
rationing concept to limit the per-capita floor area with legal and administrative procedures.



1.2.2 Efficiency

In the context of SER measures, efficiency is one of the conventional and widespread options to
decarbonize building stock. These are set of mitigation options that provide a continuous short-
term technological improvement which mainly consists of various active, heating, ventilation,
and air-conditioning (HVAC) systems, lighting, appliances, daylighting control, and heat delivery
measures, and passive design factors, type of buildings, building layout, envelope and geometry,
that influence building energy use. To evaluate the correlation between building efficiency
measures and energy use, various studies focused on optimizing parameters such as building
geometry (Chen et al. (2019); D'Agostino et al. (2021)), insulations (Zhu et al. (2020)), opening
or glazing (Zhang et al. (2017)), shading or overhang projection (Zhang et al. (2017); Chen et al.
(2019)), and ventilation and HVAC (Kim et al. (2020); Yu et al. (2021)). In the context of passive
strategies, Zhang et al. (2017) used passive design parameters, insulations, glazing, and shading,
to estimate the thermal and daylight performance of school buildings. Chen et al. (2019) combined
passive elements, building orientation, window-wall ratio (WWR), insulations, and shading, with
BIPV to explore energy saving potential of high-rise commercial buildings. Zhu et al. (2020)
optimized the energy use and daylighting of rural hotel buildings by varying building shapes and
WWR. D'Agostino et al. (2021) proposed an automatic workflow to consider the influence of
passive design parameters, building layout, insulations, and WWR, on the energy use of school
buildings. Moreover, in the context of active strategies, Kim et al. (2020) developed a national
scale model to evaluate the effect of heterogeneity of HVAC systems on the energy use of office
building stock. Yu et al. (2021) evaluated multiple carbon-neutral tactics under climate change
scenarios for a single office building and found that a feasible strategy will be to improve building
system efficiency and reduce the carbon emission intensity factor on the supply side. Jokinen et
al. (2022) analysed the co-influence of building retrofits, envelope insulations, ventilation, heat
pumps and boilers, on the carbon emission reduction potential of building stock at a national scale.
Lausselt et al. (2022) considered district heating and heat pumps to assess the decarbonization
potential of building stock at a city scale.

1.2.3 Renewables

With the initiative to transition towards low carbon society, renewable technologies are gaining
significance as an alternative pathway due to increasing prices of conventional fossil fuels and
concerns related to climate change (Rasool et al. (2022)). The integration of these technological
interventions in buildings has pushed the system boundaries towards distributed energy resources
(DERS) that can further facilitate the large participation of prosumers. Recently, the ASHRAE
Standard 90.1 (2022), a key benchmarking guideline for commercial building energy use,



incorporated a minimum requirement for the use of on-site renewables for commercial buildings
to reduce the environmental impact of the use of energy. The implementation of on-site
renewables in commercial buildings requires: (1) integration of solar technologies and storages;
(2) phasing out of gas boilers, water and space heating systems; and (3) electrification of auxiliary
and other building equipments. Kobashi et al. (2022) performed a techno-economic analysis of
rooftop PV and electric vehicles (EV) to quantify the decarbonization potential of the commercial
district of Kyoto, Japan. Borras et al. (2023) assess energy-sharing strategies of rooftop PV and
battery storage for buildings at a community level. Yamaguchi et al. (2022) developed a
statistical-based commercial building stock model at a national level to consider multiple
technological interventions and found that an increase in electricity demand can be avoided
through electrification by improving the efficiency of building systems.

1.3 Overview of building stock energy modelling (BSEM)

BSEM is an approach which provides the assessment of building energy use and predicts the
evolution of building stock performance over a specific time domain (Kavgic et al. (2010);
Reinhart (2016)). These stock-level analyses provide information related to the group of
building types and heterogeneity among buildings, which can address the regulations and
strategies for assessing the aggregated energy demand and emission reduction potential of the
stock (Geraldi et al. (2020)). Building stock can be further classified into geo-building and type-
building stocks. Geo-building stock is the group of buildings which are disaggregated according
to a geographically referenced description. Type-building stock is a group of buildings which are
classified according to usage and characteristics in common.
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Figure 1-2. Quadrant-based classification of BSEM.



To classify the BSEMs, IEA-EBC Annex 70 (Langevin et al. (2020)) proposed a quadrant-based
flexible framework employing a cross-over classification approach to classify them into two
design approaches, top-down and bottom-up, and four quadrants, top-down/black-box (Q1), top-
down/white-box (Q2), bottom-up/black-box (Q3), and bottom-up/white-box (Q4) as shown in
Figure 1-2. The top-down models use technological-econometric indicators (Q1) or system
dynamics (Q2) to determine the aggregated building energy use of building stock. With the
availability of data at the disaggregated level, this recent advancement has allowed a greater focus
on the bottom-up-based quadrant methodologies (Q3 and Q4) (Yang et al. (2020); Ali et al.
(2020)). The bottom-up models use historical information or engineering estimates to determine
the energy end-use of a representative building and aggregate that representative data to the entire
stock level. Several existing bottom-up studies related to commercial buildings rely on the Q3
models owing to the low availability and quality of data to characterize building stocks and
incorporate the complexity of system structure influencing building energy demand (Ma et al.
(2016); Robinson et al. (2017); Abbasabadi et al. (2019)), whereas the Q4 models represent such
complexities by explicitly dealing with the physical and technical attributes used in the stock level
analysis. However, the model development requires detailed input data and granular-level
information related to these attributes (Moazzen et al. (2020); Ye et al. (2021)).

1.3.1 Bottom-up/white-box (Q4) model

The bottom-up/white-box (Q4) models, also known as an engineering-based method, are based
on the simulation of physics-based building dynamics to estimate the energy use of building stock
(Reinhart et al. (2016)). These models commonly use representative buildings (or archetypes)
to determine the energy end use (Osterbring et al. 2016). Recently, with the availability of
disaggregated data, a generalized data-driven approach has gained focus for the characterization
of the archetypes in Q4 models that reduces inter-dependencies and further refine the quality of
data. This approach has the potential to scale-up the flexibility and complexity of the model by
incorporating technological interventions and long-term emission reduction strategies at the
multiscale level. Moreover, these physics-based bottom-up stock models are further classified
into urban building energy model (UBEM), synthetic-based and hybrid approaches (Ali et al.
(2021); Dahlstrom et al. (2022)).

1) UBEM model: This methodology uses geographical information systems (GIS) to incorporate
geo-referenced dataset within the model, and the energy demand of building stock is quantified
by summing up the simulated energy demand of individual buildings (Davila et al. (2016)).
This approach is mainly applied to smaller levels, typically district- to city-level, and the use of
GIS data enables the consideration of the physical attributes of buildings within BSEM. Nageler



et al. (2017) developed a GI1S-based UBEM for an urban district consisting of 1945 buildings, to
predict the heating and domestic hot water demand of commercial and residential buildings. Chen
et al. (2017) utilized a geo-database for developing a district-scale UBEM model, consisting of
940 buildings, for assessing the retrofit potential in commercial buildings. Zheng et al. (2019)
integrated a GIS-based approach with the existing commercial building prototypes on a county
scale to assess the impact of climate change on building energy use. Roth et al. (2020) proposed
a GIS-based UBEM by combining physics-based simulation and machine learning methods to
predict the hourly energy profiles of commercial and residential buildings at a city scale. Lausselet
et al. (2022) constructed a dynamic GIS-based UBEM model at a city scale to assess the impact
of various retrofit measures on the decarbonization potential of building stock.

2) Synthetic-based approach: This approach uses sample data of buildings related to physical and
technical attributes as model input to calculate the energy consumption of building stock (Négeli
et al. (2018; 2020)). This approach consists of two main categories: (1) sample-free; and (2)
sample-based synthetic models. The first synthetic approach uses aggregated data, such as census,
due to the non-availability of micro-dataset, while the latter approach uses sample micro-dataset
to generate disaggregated building stock. Moreover, the most commonly used techniques are
either iterative proportional fitting (IPF) (Hermes et al. (2012)) or Monte Carlo random sampling
(Lenormand et al. (2013)) which result in generating sample-based and sample-free datasets
respectively.

3) Hybrid approach: This approach uses both deterministic and probabilistic characterization to
integrate elements of one approach with other specific models that can bridge the gap within
conventional bottom-up (Q4) models (Langevin et al. (2019); U.S. EIA, 2020). Fonseca and
Schlueter (2015) developed a district-scale model by initially executing statistical Q3 and
analytical Q4 models and then calculated the aggregated energy use by averaging both outputs.
Nutkiewicz et al. (2018) adopted an inverse hybrid model for neighbourhood-scale by initially
developing a baseline physics-based simulated bottom-up (Q4-based) model and then feeding its
time series output into a machine learning (Q3-based) model to capture the influence of inter-
building energy dynamics and microclimate on commercial building energy use. Huo et al.
(2021a; 2021b) constructed an integrated dynamic simulation model by coupling a bottom-up
end-use (Q4-based) model with system dynamics (Q2-based) model to consider the impact of
various long-term dynamics parameters on the possible emission peaks and peaking times of
building stock. Perwez et al. (2022) integrated a G1S-based approach with the synthetic UBEM
model to evaluate the impact of uncertainty of physical and technical elements at multiple scales.



1.4 Methods to analyze carbon neutrality of building stock

Several methods have been developed to assess the carbon neutrality of building stock that differs
on the basis of data availability, accounting principle, and scope of application. These methods
are mainly divided into four classifications: (1) decomposition method (Zhang et al. (2022)); (2)
input-output method (Zhu et al. (2020)); (3) statistical method (Geraldi et al. (2022); Vaisi et
al. (2023)); and (4) simulation method (Reinhart et al. (2016); Langevin et al. (2020); Nageli
et al. (2022)). In terms of methodological characterization, decomposition and simulation
methods use consumption-based accounting principles that mainly calculate operational carbon
emissions, while input-output and statistical methods use production-based accounting principles
that mainly calculate both embodied and operational carbon emissions (Cai et al. (2014); Zhang
et al. (2016)). With the availability of data at a disaggregated level, this recent advancement has
allowed greater focus on bottom-up simulation methods (Dahlstrém et al. (2022); Morewood
(2023)). These methods use historical information or engineering estimates to determine the
energy end-use of a representative building (or archetype) and aggregate that representative data
to the entire stock level. Several existing bottom-up simulation studies related to commercial
buildings rely on black-box (or machine learning) models owing to the low availability and
quality of data to characterize building stocks (Robinson et al. (2017); Li and Yao (2021);
Amasyali et al. (2022)). These models lack in analytical capability to conduct long-term studies
and cannot identify the spatial distribution of energy use of building stock. Moreover, with the
availability of GIS data, some of the studies have recently focused on GIS models to develop
UBEM that bridge a gap within conventional bottom-up models by adding spatial dimension.

1.5 Methods for assessment of BIPV potential

The evaluation of BIPV potential has recently gained significance due to the focus towards low
carbon cities and also for the integration of renewables in grids (Freitas et al. (2015)). However,
the BIPV potential estimation at a large scale is highly challenging owing to computational and
modelling complexities (Chatzipoulka et al. (2018)). Several estimation approaches are developed
to assess the BIPV potential: (1) sampling approach (Groppi et al. (2018); Horan et al. (2020));
(2) geostatistical approach (Fathizad et al. (2017); Amjad and Shah (2020)); (3) machine learning
approach (Yadav and Chandel (2015); Walch et al. (2020)); and (4) physical approach (Cheng et
al. (2020); Liu et al. (2023)). The sampling approach uses key decision variables to extrapolate
the potential estimation to the entire area, whereas the geostatistical approach uses spatial
interpolation to determine the potential estimation of the entire area. Moreover, the machine
learning approach uses data-driven predictive models to evaluate the potential estimation,
whereas the physical approach uses a 3D model to consider the inter-building effect for the
evaluation of BIPV potential. These approaches mainly use the GIS model to capture the urban



design factors and geographical constraints. Recently, the physical approach has gained a lot of
focus because of its better accuracy, flexibility and granularity in comparison to other approaches
(Gassar and Cha (2021)).

1.6 Literature review

This section mainly consists of three sub-sections. Section 1.6.1 outlines the studies related to
different bottom-up BSEM methodologies and then summarizes those in terms of data acquisition
and applications. Section 1.6.2 examines the studies related to physics-based BSEMs and then
compares the analytical capability of those models in terms of granularity and integration of
model components. Section 1.6.3 summarizes the physics-based bottom-up BSEM studies related
to the assessment of carbon neutrality of building stock and then evaluated those on the basis of
the SER framework.

1.6.1 Cross-over analysis of bottom-up BSEMs

In BSEM, several bottom-up methodologies have been developed to assess the energy demand
and emission reduction potential of the stock. In this section, the most commonly used bottom-
up BSEMs are reviewed and then summarizes the previous studies in terms of data acquisition
and applications.

1) Sample-free synthetic method: This stock-level approach uses the known distribution of
aggregated structure data to generate a synthetic population of buildings. A representative sample
stock is constructed by iteratively performing Monte Carlo random sampling based on the known
distribution of attributes, which represents the specified composition of an aggregated dataset
(Lenormand et al. (2013)). Sample-free synthetic model is easy to develop even with limited
availability of data but the major disadvantage is the randomness of input space due to the
generation of de-correlated attributes within individual records. Néageli et al. (2018) used a
sample-free approach to transform aggregated building stock data into disaggregated one and then
estimated the energy demand and carbon emissions of building stock at the national scale.
Hietaharju et al. (2021) used Monte Carlo random sampling on building age classification to
predict the renovation and demolition of each building within the stock at a district scale.
Moreover, this approach is feasible to be used in those countries/regions or cities where the
availability of micro-dataset is not possible.

2) Sample-based synthetic method: This approach is an extension of either synthetic
reconstruction (SR) or combinatorial optimization techniques, which uses marginal distribution
obtained from a survey-based sample to generate the representative individuals considering the
various dimensions or elements of stock (Hermes et al. (2012)). Typically, iterative proportional
fitting (IPF), a bi-proportional approach to estimate a k-way marginal table while still preserving



the correlation matrix, is the most common technique used in this method to fit the obtained
disaggregated distributions. The general concept of the method is to apply multinominal logistic
regression, a semiparametric classification approach which uses a logistic function to predict the
probabilities of dependent variables, on the survey dataset to obtain the distribution probabilities
and then uses the IPF technique to fit the obtained disaggregated distributions. Roth et al. (2021)
used annual building energy data to develop synthetic hourly building energy estimates at a city
scale by combining physics-based simulation and machine learning methods. Yamaguchi et al.
(2022) developed a sample-based stock model to predict the distribution probabilities of building
systems and energy saving measures of commercial building stock at a national scale. Moreover,
this method is more flexible to be used at a specific level (from national to district scale) but can
be very time-consuming due to sample collection, attainment of marginal distributions and
complexity associated with fitting higher dimensional data.

3) Geo-referenced stock method: This approach utilizes geographical information systems (GIS)
to retrieve a geo-referenced micro-dataset of building stock at a disaggregated level (Osterbring
et al. (2016)). The development of geo-referenced micro-dataset requires multiple acquisition
techniques, such as drones, remote sensing, transformation of BIM data, and vectorizing existing
drawings, to convert existing data into geo-database. Typically, a geo-database is characterized
by five levels of details (LOD 0-4) which are differentiated based on a list of features, attributes,
dimensionality, and complexity involved in the specified model (Biljecki et al. (2016)). This
method facilitates data integration by coupling and merging multiple datasets to improve the
quality of geo-building stock and provides better spatial dimensionality to consider urban
environment settings and dynamic occupancy behaviour within the model (Dabirian et al. (2022)).
Nageler et al. (2017) developed a GIS-based UBEM for an urban district consisting of 1945
buildings, to predict the heating and domestic hot water demand of commercial and residential
buildings. Zheng et al. (2019) integrated a GIS-based approach with the existing commercial
building prototypes on a county scale to assess the impact of climate change on building energy
use. Lausselet et al. (2022) constructed a dynamic GIS-based UBEM model at a city scale to
assess the impact of various retrofit measures on the decarbonization potential of building stock.
Moreover, this method has gained greater attention in the field of urban building energy modelling
(UBEM) due to facilitation in the development of a time-geo framework which can provide a
realistic description of building details at multi-level temporal and spatial resolution.

In summary, the above review demonstrates several bottom-up BSEM methodologies for
analysing commercial building stock. Table 1-1 compares the findings of existing bottom-up
BSEMs in terms of approach and application. However, most of the previous studies focus on a
specific approach depending on the availability of data, whereas there is a lack of comprehensive
studies related to the comparison of different bottom-up BSEM methodologies for commercial
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building stock. These comparative studies can provide the advantages and disadvantages of
different bottom-up methodologies and can further assist in choosing the right approach
depending on the availability and quality of data.

Table 1-1. Overview of studies related to bottom-up BSEM methodologies.

Studies Approach Scale Application

Nageler et al. (2017) Geo-referenced District Space heating

Négeli et al. (2018) Sample-free National Annual energy demand
Zheng et al. (2019) Geo-referenced City Effect of climate change
Hietaharju et al. (2021) Sample-free District Space heating

Roth et al. (2021) Sample-based City Hourly load prediction
Lausselet et al. (2022) Geo-referenced City Reduction potential

1.6.2 Development of multi-scale approach for bottom-up BSEM

In this section, physics-based bottom-up BSEM studies are reviewed and then summarizes in
terms of model components, data integration and granularity as shown in Table 1-2. In the bottom-
up/white-box (Q4) models, physics-based BSEM is the most established method to quantify the
energy demand and the reduction potential of a building stock at the national and wider level. In
the BSEM, the building stock is represented by reference building models (RBMs) having average
features of a building stock segment (Buso et al. (2017); Pasichnyi et al. (2019); Perwez et al.
(2020)). Many studies use the BSEMs to consider technological details (Kim et al. (2020);
Yamaguchi et al. (2022)). Azar et al. (2014) proposed an operation-focused framework to quantify
the energy-saving potential of non-technological drivers for commercial buildings. Mata et al.
(2014) provided a guideline for developing RBM to signify the importance of diversity and
heterogeneity within national building stocks. Hong et al. (2015) developed an energy retrofit tool
for small- and medium-sized commercial buildings to provide a multi-step assessment of energy-
saving potential. Fernandez et al. (2018) implemented building system control measures to
estimate the reduction potential within commercial buildings. Happle et al. (2020) presented an
occupant behaviour model for urban buildings at a district scale to assess the impact of occupancy
diversity on energy demand in commercial buildings. Hirvonen et al. (2021) modelled an
optimization-based retrofit approach to determine a feasible set of configurations to evaluate the
energy-saving potential of commercial buildings. The BSEM studies demonstrate that this
approach can deal with technological attributes to quantify the effect of these changes on energy
demand and carbon emissions.
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However, most previous studies employed a sample-based (or synthetic) approach (Nageli et al.
(2018); Perwez et al. (2021)) with a limited focus on spatial attributes except metrological
conditions. Therefore, physical factors are not considered adequately in the existing BSEMs.
Moreover, in terms of the urban environment, these models either ignored or have limited
capabilities to involve the context of neighbourhood adjacency. Several methods (Reinhart et al.
(2013); Chen et al, (2017)) involve city-scale energy simulation, resulting in computational
constraints when performing analysis at multiple scales. Therefore, a rapid and substitutional
mechanism for incorporating the urban environment within the BSEM needs to be developed.

Incorporating physical factors into the BSEMs can improve the capture value and accuracy of the
models. However, the conventional approaches lack spatial information, hindering such
incorporation within the model. Additionally, a review of GIS- and physics-based simulated
bottom-up studies show that most of them related to commercial building stock either use a non-
scalable framework or are implemented at a small (city or district) scale. These data limitations
and context-specific issues can be overcome by integrating both approaches to develop a hybrid
model incorporating physical and technical factors. Despite this advantage of a hybrid (or
crossover) model, few studies have focused on bridging the gap within conventional bottom-up
models by integrating elements of one approach with other specific models (Langevin et al. (2019);
U.S. EIA, 2020). Fonseca and Schlueter (2015) developed a district-scale model by initially
executing statistical Q3 and analytical Q4 models and then calculated the aggregated energy use
by averaging both outputs. Nutkiewicz et al. (2018) adopted an inverse hybrid model for
neighbourhood-scale by initially developing a baseline physics-based simulated bottom-up (Q4-
based) model and then feeding its time series output into a machine learning (Q3-based) model
to capture the influence of inter-building energy dynamics and microclimate on commercial
building energy use. Huo et al. (2021a; 2021b) constructed an integrated dynamic simulation
model by coupling a bottom-up end-use (Q4-based) model with system dynamics (Q2-based)
model to consider the impact of various long-term dynamics parameters on the possible emission
peaks and peaking times of building stock. The existing hybrid model studies have integrated
various approaches without considering both physical and technical factors at the multi-scale level.
This signifies the need to have a generalized geo-spatial hybrid (or crossover) model to predict
the spatiotemporal patterns of the energy demand of commercial building stock across the scale.
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Table 1-2. Overview of existing physics-based bottom-up BSEMs.

Physical Technical 8
% IS
Studies § ? é‘ % % % é % g g
§ ° & S5 & v ° =
-
Fonseca et al. (2015) D G v 4 v
Davila et al. (2016) C G v 4
Nageler et al. (2017) D G v v
Nutkiewicz et al. (2018) NH G v
Chen and Hong (2018) D G v v v
Zheng et al. (2019) C G v
Happle et al. (2020) D S v 4
Hietaharju et al. (2021) D S v
Yamaguchi et al. (2022) N S 4 v 4
Prataviera et al. (2022) D G v 4

Notation: Scale: NH: Neighborhood; D: District; C: City; N: National; Approach: G: GIS; S: Synthetic; G-S: GIS-Synthetic.

1.6.3 Carbon neutrality assessment using bottom-up BSEM and BIPV model

In this section, the physics-based bottom-up BSEM studies related to the assessment of carbon
neutrality of building stock are reviewed and then evaluated in terms of compliance with the SER
framework. Table 1-3 compares the findings of existing bottom-up BSEM-BIPV coupled
approaches in terms of modelling techniques, scale and temporal resolution.

With the availability of data at a disaggregated level, this recent advancement has allowed greater
focus on bottom-up simulation methods. Some of the studies have recently focused on GIS models
to develop UBEM that bridge a gap within conventional bottom-up models by adding spatial
dimension. Nageler et al. (2017) developed a GIS-based UBEM model for an urban district
consisting of 1945 buildings, to predict the heating and domestic hot water demand of commercial
and residential buildings. Chen et al. (2017) utilized a geo-database for developing a district-scale
UBEM model, consisting of 940 buildings, to assess the retrofit potential in commercial buildings.
Jokinen et al. (2022) analysed the co-influence of building retrofits, envelope insulations,
ventilation, heat pumps and boilers, on the carbon emission reduction potential of building stock
at a national scale. Lausselet et al. (2022) constructed a dynamic GIS-based UBEM model to
assess the decarbonization potential of building stock at a city scale. Therefore, the best approach
to assess the decarbonization of building stock is the combination of GIS and bottom-up archetype
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simulation method, a consumption-based accounting model that can integrate multiple building
elements and transitional measures to not only improve the calculation accuracy but also capture
the spatiotemporal dynamics of building energy use and carbon emissions.

The implementation of the SER framework requires the integration of a building energy model
and BIPV potential estimation approach to consider a combination of efficiency measures, active
and passive design strategies, and renewable distributed energy resources (DERS). To estimate
BIPV potential, there are several approaches for the assessment of urban solar potential depending
upon consideration of modelling comprehensiveness and level of temporal resolution (Gassar and
Cha (2021)). However, the physical approach is considered to be a better approach in comparison
to other approaches due to the incorporation of inter-building effects, varying meteorological
conditions and urban morphological characteristics. Rodriguez et al. (2017) used a 3D-based
physical approach to consider the uncertainties of the level of detail on the estimation of the PV
rooftop potential at a regional scale. Cheng et al. (2020) developed a point-based sampling
physical approach to estimate the PV rooftop and facade potential of multiple cities in China.
Panagiotidou et al. (2021) utilized Rhinoceros 3D tool to examine the PV potential of building
rooftops, fagcades and windows at a city scale, and further analysed the effect of urban morphology
on BIPV potential. Liu et al. (2023) constructed an integrated physical approach to assess the city-
scale BIPV potential at hourly temporal resolution. However, there is no evidence of studies
capable to couple these approaches at a large scale either due to the infeasible choice of
implementation method or the non-availability of a comprehensive database (Saretta et al. (2019);
Chang et al. (2023)). Most of the previous studies mainly focused either on the energy-related
characterization of building stock (Fonseca and Schlueter (2015); Mohammadiziazi et al. (2021);
Zhang et al. (2022)) or the estimation of solar potential (Ghaleb and Asif (2022); Thebault et al.
(2022)). Therefore, an integrated approach needs to be developed for the utilization of the SER
framework for estimating the overall decarbonization potential of the commercial building stock.

In terms of granularity, the existing G1S-based bottom-up archetype simulation studies show that
most of them related to commercial building stock either use a non-scalable framework
(Nutkiewicz et al. (2018); Borras et al. (2023)) or are carried out at an individual building (Liang
et al. (2022); Hiyama and Srisamranrungruang (2023)) that lacks the differentiated perspective of
transitional measures within the commercial building stock. Kim et al. (2020) developed a
national scale model to evaluate the effect of various energy saving measures (ESMs) and
different climate zones on the energy use of office building stock. It was found that the building
system stock composition has a significant impact on energy reduction potential. Koutra et al.
(2021) utilized a multi-criteria decision-making approach to realize the concept of net-zero energy
districts. Yu et al. (2021) evaluated multiple carbon-neutral tactics under climate change scenarios
for a single office building and found that a feasible strategy will be to improve building system
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efficiency and reduce the carbon emission intensity factor on the supply side. Deng et al. (2023)
constructed an automated UBEM model to analyse the co-influence of building retrofits, envelope
insulations, lighting and cooling system, and rooftop photovoltaic (PV) on the carbon emission
reduction potential of building stock at a city scale. Borras et al. (2023) assess energy-sharing
strategies of rooftop PV and battery storage for buildings at a community level. However, these
models mainly lack the ability of spatiotemporal identification and assessment of carbon emission
hot spots and decarbonization strategies, causing disparate coordination between local
municipalities and regional-level stakeholders that further hinder the facilitation of carbon-neutral
urban planning. Addressing this significant challenge, a geospatially explicit UBEM is needed to
capture the dynamic changes and spatial constraints of these differentiated strategies to derive
carbon emission inventories of commercial building stock at the multi-scale level.

Table 1-3. Overview of existing BSEM-BIPV coupled studies.

Approach BIPV

Studies Scale Temporal

BSEM BIPV type
Kim et al. (2020) National Hourly S
Yu et al. (2021) Single building  Annual Sample R+F
Mohammadiziazi et al. (2021) District Annual G
Yamaguchi et al. (2022) National Hourly S
Lausselet et al. (2022) City Annual G Sample R
Borras et al. (2023) Community Annual G Sample R
Deng et al. (2023) City Annual G Sample R

Notation: Approach: G: GIS; S: Synthetic; BIPV type: R: Rooftop; F: Facade.

1.7 Research gap

Based on the literature review, BSEM has demonstrated the analytical capability to overcome the
challenges associated with the stock-level analysis at a large scale, whereas there are still some
limitations related to model functionalities and implementation. Moreover, most of the previous
BSEM studies used a specific approach to quantitatively improve the robustness and accuracy of
models but have not focused on identifying the impact of these approaches on the performance
level of BSEMs. There is a lack of knowledge about the influence of data acquisition techniques
on the model’s accuracy. This signifies the importance of selecting a model based on the
availability and quality of data as well as the relevant system features required to develop a
discrete representation of building stock that can provide the transitional shift between aggregated
and disaggregated boundary conditions. Hence, there is a need to focus on exploring the
comparative performance of these approaches to further assess the evaluation of accuracy in
predicting the energy demand and carbon emissions of the commercial building stock.
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In terms of granularity and integration of model components in BSEM, the conventional bottom-
up approaches cannot capture the spatial distribution of building stock and are also insufficient in
concurrently mapping physical and technical factors at the building-by-building level. This can
be attributed to the lack of information due to data availability and privacy issues related to
commercial buildings, together with the need for detailed modelling of influential parameters.
Moreover, most of the studies either established commercial BSEM at large (e.g., national level)
or small (e.g., district level) spatial scales which shows that the proper method for modelling
multi-scale framework still needs to be developed. As for uncertainty analysis, various parameters
have been studied to investigate the effect on BSEM but most are explored at a specified scale
instead of a multi-scale level. To overcome these research gaps, there is a need to address the
limitations of existing commercial BSEMSs, such as non-scalable framework and fragmented
consideration of influencing factors (focusing on either physical or technological attributes), by
establishing a multi-layer model across the scale.

In the context of carbon neutrality, the literature review provides us with evidence and methods
for the feasibility assessment of carbon neutrality of commercial building stock. However, there
is no evidence of studies capable to couple UBEM and BIPV approaches at a large scale either
due to the infeasible choice of implementation method or the non-availability of a comprehensive
database. This can be attributed to the lack of data coherence to facilitate the homogenous use of
a comprehensive GIS dataset to provide the necessary coordination of building stock
interventions with renewable DERs at high spatiotemporal resolution. Most of the previous
studies mainly focused either on the energy-related characterization of building stock or the
estimation of solar potential. Moreover, there is a granularity inconsistency in the scope of the
existing decarbonization studies that are either established at an individual building or a specific
scale. Therefore, an integrated approach needs to be developed for the consideration of the SER
(Sufficiency, Efficiency, Renewable) framework in estimating the overall decarbonization
potential of the commercial building stock at multiple scales.

1.8 Aim and objectives

The main aim of this thesis is to advance building stock analytics by understanding the impact of
the quality of stock data on model functionality, accuracy and applicability, and to further improve
the analytical capability of BSEM in terms of scalability and multiple building-oriented elements
characterization that can assist in developing long-term energy efficiency monitoring strategies
for commercial building stock. Additionally, this thesis also aims to develop a coupled scheme
for the consideration of the SER framework that highlights the importance of coordination among
different methodological characterizations to adequately manage the degree of complexity and
modelling resolution for evaluating the feasibility of carbon neutrality of commercial building
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stock at a multi-scale level. In order to address these aims, the following research objectives have
been formulated:

1) How can the data acquisition influence the performance level and applicability of bottom-up
BSEM in predicting the energy demand and carbon emissions of the commercial building
stock.

2) How can bottom-up BSEM be modelled to incorporate scalability and integration of multiple
building-oriented elements within the model.

3) How does the SER framework be considered for the evaluation of carbon neutrality of
commercial building stock.

1.9 Contributions

This thesis resulted in three-fold contributions with the advancement of data acquisition and
modelling techniques for commercial building stock. Firstly, to understand the transitional
limitations of various BSEM approaches, a comparative study of three major bottom-up BSEMs
was performed to evaluate the accuracy and added-value of these approaches for use in the
bottom-up engineering model. This cross-over analysis will further provide a granular level
framework to assist the city-level planners and policy makers in choosing the right BSEM
approach for predicting the energy demand and carbon emissions of the commercial building
stock.

Secondly, a hybrid BSEM is developed to facilitate the concurrent consideration of physical and
technical elements and further extend the model to different spatial resolutions. This provided a
multi-tier framework using spatial intelligence building stock approach to develop long-term
energy efficiency monitoring strategies for commercial building stock at multiple scales. From a
practical implementation perspective, this will further help address the data limitations and
context-specific issues by overcoming the disparate coordination between the local and national
level stakeholders, which could identify priority areas for implementing target-based energy
efficiency strategies.

Thirdly, a UBEM-BIPV coupled approach is developed to consider the SER framework for the
evaluation of carbon neutrality of commercial building stock. The coupled approach resulted in a
purpose-driven perspective of the energy transition at multiple scales with reduced computational
time. From a practical implementation process, it will further inform the stakeholders about the
varying aspect of the adoption of BIPV technologies in the urban environment. Overall, this will
provide a multi-level perspective to energy modelers and policymakers on how to achieve carbon
neutrality in commercial building stock.
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1.10 Thesis outline

This thesis mainly consists of an extensive literature review of the use and application of BSEM,
a comparative analysis of modelling techniques, and a framework to perform BSEM and BIPV
studies at multiple scales as shown in Figure 1-3. The thesis is comprised of six chapters whose
summary is explained as follows:

Chapter 1
Introduction
-— T
Chapter 2 Chapter 3 Chapter 4

Carbon neutrality

Development of )
assessment using

Cross-over analysis of

multi-scale approach
bottom-up BSEMs for bottom-up BSEM bottom-up BSEM and
BIPV model
Chapter S

Integrated Discussion

}

Chapter 6

Conclusion

Figure 1-3. Thesis outline.
Chapter 1 initially identifies key drivers and determinants for achieving carbon-neutral building
stock. This provides a comprehensive overview of transitional strategies and measures to
decarbonize the commercial building stock. After this, a quadrant-based classification of BSEM
is outlined and further review of methods related to carbon neutrality assessment and BIPV
estimation are discussed. Finally, the literature review related to physics-based BSEMs is
presented to illustrate various data acquisition techniques and their use cases.

Chapter 2 performs a comparative analysis of three major bottom-up BSEMs to evaluate the
accuracy and added value of these approaches for use in bottom-up engineering models. A
comprehensive comparative overview of these models will further assess the role of data
availability and quality on the performance level of BSEMs.

Chapter 3 presents a novel GIS-synthetic hybrid model by integrating spatial and synthetic
modelling approaches to facilitate the concurrent consideration of multiple building-oriented
elements at multiple scales. In the study, building stock scenarios are developed to evaluate the
analyticity of the proposed modelling method in assessing and examining the scale-bounded and
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long-term dynamic uncertainties of BSEM simulations at the stock and element levels.

Chapter 4 proposes a GIS-synthetic hybrid UBEM model coupled with a physical-based approach
of BIPV potential estimation for the consideration of the SER framework in the carbon neutrality
assessment of commercial building stock. The decarbonization scenarios and strategies are further
designed to demonstrate the applicability of the proposed coupled approach in estimating the
emission reduction potential of commercial buildings under different stock interventions and
penetration of renewable DERs across different scales.

Chapter 5 presents an integrated discussion to explain the contributions and practical perspective
of the advancement of BSEM approaches. The chapter further highlights the importance of the
role of data acquisition, multi-scale modelling and purpose-driven coupling for enhancing the
model development process of BSEM.

Chapter 6 provides a summary of contributions related to formulated research objectives.
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2 Cross-over analysis of bottom-up BSEMs
2.1 Purpose

In BSEM, several bottom-up methodologies have been developed to assess the energy demand
and emission reduction potential of the stock but, often have transitional limitations to shift from
aggregated to disaggregated stock boundary conditions. Therefore, there is a need to formulate
regulations and strategies to perform an accurate assessment of energy demand patterns and
emission reduction potential across the stock. However, these stock-level analyses can be
challenging due to a lack of information corresponding to building characterization and
guantification across various sectors. To provide a transitional framework between aggregated
and disaggregated boundary conditions, it is important to select a model based on the availability
and quality of data as well as the relevant system features required to develop a discrete
representation of building stock. To further understand the limitations of various building-stock
modelling approaches, this chapter presents a comparison of three major bottom-up building
stock-level methodologies, GIS-based, sample-based and sample-free synthetic models, to
evaluate the accuracy and added-value of these approaches for use in bottom-up engineering
models. A comprehensive comparative overview of these models will further assess the role of
data availability and quality on the performance level of BSEMs. Additionally, this study also
points out the advantages and disadvantages of synthetic building stock approaches in comparison
to a GIS-based building stock approach by using a detailed dynamic building simulation tool.
Overall, this chapter aims to contribute to the literature development as follows: (1)
quantification of the accuracy and added-value of these building stock modelling
approaches for use in bottom-up engineering model; (2) development of a granular level
framework in choosing the right building stock modelling approach by assessing the
availability (or uncertainty) of data at either aggregated or disaggregated level; and (3)
the use of these approaches in predicting the energy demand and carbon emissions of the
commercial building stock.

2.2 Overview of bottom-up BSEMs

In this study, the most commonly used bottom-up BSEMs, as shown in Figure 2-1, are considered
to evaluate the impact and limitations of data availability and various datasets on the performance
level of BSEM. In terms of data acquisition, the sample-free synthetic model uses aggregated
dataset, building census or tabular data, whereas the sample-based synthetic model uses a semi-
disaggregated dataset, survey or reports, to generate the representative stock. The GIS-based
model uses the disaggregated dataset to retrieve a geo-spatial representative stock. In terms of
features, the sample-free synthetic model uses Montecarlo random sampling to obtain the
multiple building features, whereas the sample-based synthetic model uses either statistical
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techniques on the sample dataset to obtain distribution probabilities or deterministic values from
reports or regulations. The GIS-based model uses a weighted average approach to obtain the
building archetypes. In terms of applicability, the sample-free synthetic model is feasible to be
used in those countries/regions or cities where the availability of micro-dataset is not possible,
whereas the sample-based synthetic model is more flexible to be used at a specific level (from
national to district scale) but can be very time-consuming due to sample collection, attainment of
marginal distributions and complexity associated with the fitting of higher dimensional data. The
GIS-based model provides a realistic description of building details at multi-level temporal
and spatial resolution.

Sample-free Synthetic Approach

|
I ,
. e-Stat (| -
| A
. IIRAS
| Ninsty of Lnd,nfastrucur, Transpotand Tourism
|l o Bt )| S s
[ Aggregated level (Census) ] ( Semi-disaggregated level (survey)] [ Disaggregated level (GIS)]

Figure 2-1. Overview of the transitional shift from aggregated to disaggregated boundary conditions.
2.3 Methodology

The following section provides a detailed overview of the cross-over framework of building
stock-level approaches to develop a bottom-up engineering model and its application to the
commercial building stock of Tokyo, Japan. In order to compare stock-level approaches, the three
major building stock approaches are implemented with transitional shifts from aggregated to
disaggregated boundary conditions, for quantifying the accuracy and added-value of each
approach. The building stock-level cross-over methodology consists of the following steps

(Figure 2-2):

1) The initial step is data collection. All the available information is gathered either through
national (or city-level) census, sample surveys or GIS workflow to retrieve geo-referenced
micro-dataset, depending on the preferred approach of building stock modelling.

2) The second step involves building stock initialization to generate either synthetic or geo-
referenced stocks, which are further segmented on the basis of various criteria, such as
building type, size, layout and age, according to the level of available information specified
in each type of structural data.

3) After building stock initialization, the building stock characterization is performed to define
all the possible attributes associated with the stock-level by using various techniques.

4) The fourth step involves building stock quantification and evaluation, during which the
obtained proportion of basic block structure, such as building classification by size, total floor
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area by building classification, floor composition and construction period, of buildings are
compared with the existing structure of the stock.

5) In the last step, a detailed dynamic building simulation is performed to assess the accuracy
implications of stock-level approaches in predicting the energy demand and carbon emissions.

Data Collection

I

Building Stock
Initialization

]

Building Stock
Characterization

l

Building Stock
Evaluation

l

Building physics
simulation

Figure 2-2. Cross-over framework to assess building stock-level approaches.
2.3.1 Data collection

As a case study for the application of these approaches, hotel buildings in Tokyo are selected to
evaluate the accuracy and added-value of these building stock models. Moreover, the building
stock of hotels is estimated to consist of 3320 buildings which nearly covers 13.61 million m? of
the total floor area in Tokyo. In order to investigate the effect of various input factors on stock
level, various input data sources, such as census, sample surveys and geo-database, are used to
develop these approaches. To construct the sample-free synthetic stock, the most basic level of
building stock aggregated data that comes from Statistical Bureau of Japan (SBJ, 2017) is
considered, which only contains structural data of building type, building classification by size,
total floor area by building classification and construction period. In a sample-based synthetic
method, multiple survey datasets are obtained from Japan Sustainable Building Consortium
(JSBC, 2017), Society of Heating, Air-Conditioning and Sanitary Engineers of Japan (SHASE-J,
2017) and Japanese Association of Building Mechanical and Electrical Engineering (JABMEE,
2010), that contains disaggregated building sample data such as total floor area, number of floors,
construction period, insulation level and building systems (heating, ventilation, and cooling
systems). To carry out the geo-referenced stock method, a geo-database is collated from Tokyo
Metropolitan Government (TMG) which comprises approximately 150,000 commercial buildings
in Tokyo. The geo-referenced micro-dataset contains key determinants and variables such as
building geometric, non-geometric, typology and building-level morphological data.
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2.3.2 Building stock initialization

In this step, all the methods use the same basic features of building structural data, such as
building type, building classification by size, total floor area by building classification, floor
composition and construction period, to initialize the building stock. Based on simplified
structural data from Statistical Bureau of Japan (SBJ, 2017), sample-free stock is generated to
initialize synthetic building stock for the hotel segment of Tokyo. In this method, correlation
concept within building features, such as the relation between total floor area and number of
buildings in each classification, are used to obtain the average total floor area and number of
floors for each classification. Subsequently, the average footprint area for each classification is
obtained by dividing the average total floor area by the average number of floors. The stock is
segmented into 5 types based on building classification by size, CL1 to CL5 buildings are
classified as those with sizes less than 300 m? for CL1, sizes between 300 and 2000 m? for CL2,
sizes between 2000 m? and 10000 m? for CL3, size between 10000 m? and 30000 m? for CL4 and
size greater than 30000 m? for CL5, as defined by Japan Sustainable Building Consortium (JSBC,
2017). From that extended simplified structural data, a representative stock is initialized which

creates individual records of buildings.

In the sample-based synthetic approach, the data integration is performed to couple and merge
multiple survey datasets, and then the distribution probabilities in terms of the number of floors
and the construction period are obtained from an integrated dataset. After this step, iterative
proportional fitting (IPF) is used to initialize synthetic building stock by constraining obtained
distributions through marginal data table schemes. Moreover, in the geo-referenced stock method,
the retrieval workflow of GIS is applied to extract the geo-referenced micro-dataset which
contains the main attributes of buildings incorporated with spatial characteristics. Overall, this
step results in the basic block structure of building stock that represents aggregated/disaggregated

level data which can be further characterized in terms of other attributes.

233 Building stock characterization

This step involves further characterization of attributes associated with initialized building stock.
Table 2-1 provides a detailed description of techniques used to characterize building attributes for
different approaches. In the sample-free synthetic approach, the initialized building stock is
further characterized depending on the availability of specified data by using either a deterministic
approach or Monte Carlo sampling from distribution. In case of the non-availability of empirical
data related to any building attribute, the maximum and minimum range value of the distribution
is used to run the Monte Carlo simulation. In this method, truncated log-normal distribution is
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used to characterize continuous variables such as building height, window-wall ratio and aspect
ratio, for incorporation of skewed distribution associated with these variables within stock. Those
attributes, such as building orientation, that show equal chances of outcomes are characterized by
uniform distribution. The proportion of HVAC (Heating, Ventilation and Air-Conditioning)
systems are obtained from Society of Heating, Air-Conditioning and Sanitary Engineers of Japan
(SHASE-J, 2017) data, which is considered within the stock by using a normal distribution. In
terms of the building envelope, all methods use building age-band classification to define the
thermal properties of windows and walls.

By using multiple survey datasets in a sample-based synthetic method, the proportion of building
attributes is obtained in terms of distribution probabilities and then characterization is performed
by using iterative proportional fitting (IPF) to fit the specified distribution probabilities. In this
method, the distribution probabilities of building attributes, such as building height and aspect
ratio, are obtained from the sample dataset of Tokyo metropolitan government report and property
tax data. To model the shading effect of neighbourhood, Ministry of Land, Infrastructure and
Tourism (MILT) regulations are used to consider the typical conditions for each classification.
Moreover, the HVAC stock model is structured and calibrated after the model of logistic
regression to quantify HVAC probabilities by Yamaguchi et al. (2017), in which several
predictors such as total floor area, demographic factors and building age are considered.

Table 2-1. Comparative overview of characterization techniques for different approaches.

Attributes Sample-free Sample-based Geo-referenced

Total floor area

Number of floors Census Multiple surveys
Building age

TMG geo-database
Building height Log-normal distribution TMG report
Aspect ratio Log-normal distribution Property tax data
Orientation Uniform distribution x
Neighborhood adjacency x MLIT land use v
HVAC systems Normal distribution Logistic regression Logistic regression
Building shape Rectangular parallelepiped (R) L,UandR
Building envelope Age-band classification

The geo-referenced stock method involves an enriched dataset which contains key determinants
and variables, such as building height, orientation, aspect ratio, shape coefficient and urban
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morphological attributes, for individual buildings in the stock. Moreover, to further enrich the
geo-referenced micro-dataset, logistic regression is used to incorporate heating and cooling
systems within the stock, to achieve better comparability with other synthetic building stock
approaches. In order to show the significance of the geo-referenced model, we also developed a
neighbourhood adjacency model (NAM) to simplify the analysis of the shading effect made by
adjacent buildings (Sun et al. (2021)). NAM consists of the following four steps: 1) Search for
neighbourhood buildings adjacent to the target building; 2) Calculate solar altitude angle (3) for
a specific location; 3) Extract potential shading buildings (npj < nsw; where npjand nsy are the
distance of neighbourhood from target building and the shading length of neighbourhood
building); and 4) Shadow pre-processing to determine effective shading neighbourhood building
((Min(nDj), Max(nHj)); where nHj is the height of neighbourhood building). Based on the
analysis, we obtained the distance and height of the neighbourhood adjacent to each target
building, which was considered to calculate the ranges of these key parameters for each archetype.

2.34 Building stock evaluation

To further evaluate the accuracy of synthetic stock approaches, the relative absolute percentage
difference (rAPD) measure is considered. rAPD is the performance measure to assess the
initialization accuracy by determining the absolute percentage difference between estimated and
generated stocks. rAPD is mathematically defined as follows:

T;i — Ty
rAPD; = 24— 2.1
where, Tand T are the estimated and generated stock respectively. Thus, an APD value close to
0 suggests a better generation accuracy of that approach.

2.3.5 Building stock energy simulations

In order to perform the building energy simulations at the stock level, the segmentation process
is performed based on various criteria, such as building classification by size, age and HVAC
systems. In the initialization step, the stock is segmented into 5 types based on building
classification by size and then to further improve the granular level details, building age and
HVAC systems which consists of 6 age-bands and 44 systems respectively, are considered after
the characterization step to segment the stock into heterogeneous archetypes.

The baseline building energy models are developed for each archetype by using EnergyPlus 8.6
interface and then simulated models to further assess the energy demand and carbon emissions of
the hotel building stock. The simulated model also requires climate data, occupancy schedule,
internal and external equipment loads and HVAC operational data, which are set based on
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Japanese building regulations and some previous studies (Kim et al. (2020)). The simulated results
are further validated by comparing them with national-level database estimates, which are
obtained by calculating the weighted average values of each building classification by size and
then aggregating those to get estimates in terms of primary energy demand and carbon emissions.

2.4 Results and discussion

This section presents the results of the cross-over analysis of building stock-level approaches.
First, the structure of building stocks obtained from different approaches is presented. After that,
the evaluation process to quantify the structure quality of building stock is described. Finally, the
results of dynamic building simulations to assess the accuracy of each approach are presented.

Figure 2-3 shows the structure of building stock in terms of building classification, floors and
total floor area using different approaches. The structure of modelled stock using a sample-free
approach deviates majorly in all aspects in comparison to other approaches. This is because the
building stock is randomly initialized, using only census data, on the basis of the number of
buildings within each classification. In this study, the geo-referenced stock is assumed to be the
reference case for the evaluation of the structure of building stock using synthetic approaches due
to the better granular capability of this method to represent realistic descriptions of building
details at multi-level temporal and spatial resolution. Table 2-2 shows the statistical overview of
rAPD for different building stock approaches. As it is evident, the sample-free synthetic approach
produces maximum rAPD values across all the aspects, while sample-based synthetic and GIS-
based stock approaches show a very good agreement in terms of rAPD. At a more disaggregated
aspect level, it is observed that at a lower level (CL1 or 1 to 5 floors), the sample-free synthetic
approach shows reasonable generation accuracy, while at a higher level (CL5 or 20+ floors), it
results in overestimation in comparison to other approaches. Overall, the comparison shows that
in order to achieve better generation accuracy from a sample-free synthetic approach, it is
important to consider a minimum level of building classifications to minimize distortion within
the share of stock.
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Figure 2-3. Structure of building stock using different approaches.

Table 2-2. rAPD Statistics of building stock approaches.

Distribution Approach Min Max STD Mean

Building Sample-free 0.06 0.71 037 0.27

classification -
Sample-based 0.00 0.10 0.06 0.01

Number of floors Sample-free 0.08 074 035 0.24

Sample-based 0.00 0.13 0.06 0.05

Total floor area Sample-free 0.11 074 032 017

Sample-based 0.00 0.15 0.06 0.06

Table 2-3 shows the composition of building archetypes for different approaches in terms of basic
attributes. As a result of the segmentation process, 1320 archetypes are constructed for each
method to represent the entire stock of hotels in Tokyo. To reduce the number of archetypes for
each case, dynamic threshold criteria are used for each building classification by size to consider
90% of the total floor area composition for each classification. The dynamic threshold criteria
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resulted in the reduction of archetypes to 600, 532 and 412 archetypes for geo-referenced, sample-
based and sample-free methods respectively. This implies that the sample-free method provides
less heterogeneity in terms of the number of archetypes, with is majorly due to the simplistic
approach adopted for HVAC stock modelling.

Table 2-3. Composition of archetypes for different building stock approaches.

Classification ~ Approach TFA(m?)  GFA (m?  Floors
CL1 Sample-free 68 34 2
Sample-based 104 52 2
Geo-referenced 103 51 2
CL2 Sample-free 700 175 4
Sample-based 830 138 6
Geo-referenced 838 167 5
CL3 Sample-free 3273 409 8
Sample-based 4283 535 8
Geo-referenced 4179 418 10
CL4 Sample-free 10870 836 13
Sample-based 16562 1380 12
Geo-referenced 16579 1184 14
CL5 Sample-free 46752 1979 22
Sample-based 144638 6288 23
Geo-referenced 117083 3902 30

Figure 2-4 shows the share of HVAC (Heating, Ventilation and Air-Conditioning) stock using
different stock-level approaches in terms of cooling and heating sources, and fuel types for 5
building size classifications. In terms of cooling systems, the proportion of OHU-FCU (fan coil
with outdoor handling unit) system is overestimated for small-size buildings in sample-free
method, whereas VRF (variable refrigerant flow) system has a higher proportion of stock in
logistic regression-based methods. Moreover, the sample-free method underestimated the
proportion of decentralized heating systems (Ele-VRF), whereas the proportion of gas-driven
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centralized systems (Gas-AbCH and Gas-AbCB) is larger in other methods. The composition of
fuel type for HVAC systems shows that the sample-free method underestimated gas/oil-driven
systems, whereas electricity-driven systems have a lower proportion of stock in other methods.
The results show a major deviation between sample-free and sample-based approaches, which
show the differences rising due to the usage of normal distribution of stratified samples and non-
consideration of various predictors to model the stock. In other methods, it is also observed that
the application of logistic regression results in the better distinction of centralized and
decentralized HVAC systems across small and large size buildings due to the consideration of
various predictors, such as total floor area, population density (PD), heating degree days (HDD)
and building age. This result implies that the consideration of building attributes and other
demographic factors to model the HVAC stock provides better heterogeneity of the system across

different building classifications by size.
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Figure 2-4. Distribution of HVAC stock using different building stock approaches: (a) cooling systems; (b) heating
systems; and (c) fuel type.

Following the procedure described in the methods section, a detailed dynamic building simulation
is performed to assess these modelled building stocks in terms of energy demand and carbon
emissions. The aggregated results of three building stock approaches are shown in Figure 2-5 and
further compared with national-level database estimates (JSBC, 2017). The results show that the
total primary energy demand is underestimated by 8.3%, 18.4% and 20.6% for sample-based,
geo-referenced and sample-free stock approaches respectively. This also demonstrates the added-
value of sample-based modelled stock to accurately reproduce the estimated energy demand of
the stock. The main reason is the cross-sectional and longitudinal enrichment associated with the
sample-based approach, which increases data dimensionality and non-linear interactions within
the stock.
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Figure 2-5. Comparison of aggregated energy demand and carbon emissions across the stock for different bottom-up

BSEMs.
2.5 Conclusion

This study has focused to determine the accuracy and added value of the building stock modelling
approaches, in terms of heterogeneity, data dimensionality, integration and non-linear
interactions within the stock, for use in the bottom-up engineering model. The proposed analysis
uses four main steps, such as building stock initialization (or geo-referenced dataset collection),
building characterization, quantification and building energy simulations, to assess the data needs
and performance gap of each approach. The building stock modelling methodologies are
implemented on the commercial building stocks (hotel segments) of Tokyo, to evaluate the cross-
sectional and longitudinal enrichment of building attributes and heating, ventilation, and air-
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conditioning (HVAC) stock. The preliminary results show that the sample-based synthetic
method can incorporate multiple input distributions using a survey micro-dataset, while the geo-
referenced method provides additional key determinants such as building typology (shape
coefficient, aspect ratio and orientation) and morphological attributes. This implies that these are
data-enriched methods which resulted in better performance in terms of building stock
development and simulated building energy use that signifies the accuracy and added-value of
these methods. However, the sample-based synthetic method provides a better compromise
between data availability and simulation accuracy in comparison to other methods. This shows
that the synthetic approach can be extended to commercial building stock, which mostly has a
poorer data availability than residential building stock, which further allows to encompass
modelling of a typical mixed-use urban environment. Moreover, this cross-over analysis will
provide a granular level framework to assist the city-level planners and policy makers in choosing
the right BSEM approach for predicting the energy demand and carbon emissions of the
commercial building stock.
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3 Development of multi-scale approach for bottom-up BSEM
3.1 Purpose

The conventional bottom-up BSEMs mainly use a non-scalable stock-level framework due to
modelling coherence and context-specific limitations. These scalability issues lead to granular
level uncertainties depending upon the selection and description of scale, availability and quality
of data, and use case. To address these uncertainties within conventional approaches, multi-scale
modelling is one of the possible techniques that can incorporate granularity and multi-
dimensionality within BSEM. Such implementation needs intensive information at the granular
level to identify the target areas where the energy policymakers can conduct target-based planning
and decision-making (Yoshino et al. (2017); Néageli et al. (2022)). However, the available data
are limited and provide incomplete coverage, causing disparate coordination between local and
national level stakeholders, further hindering the implementation of a target-based approach. A
differentiated description of strategies is needed across the scale to integrate an appropriate level
of detail for promoting the ESMs within the commercial building stock.

Moreover, the existing BSEMs are insufficient in concurrently mapping physical and technical
factors at the building-by-building level. These studies mainly focused on either physical (Nageler
et al. (2017); Chen and Hong (2018)) or technical factors (Mata et al. (2014); Hirvonen et al.
(2021)) due to a lack of modelling capabilities. The concurrent consideration of physical and
technical factors within the BSEMSs can improve the capture value and accuracy of the models.
However, the conventional approaches lack spatial information, hindering such incorporation
within the model. These data limitations and context-specific issues can be overcome by
integrating both approaches to develop a hybrid model incorporating physical and technical
factors. Despite this advantage of a hybrid (or crossover) model, few studies have focused on
bridging the gap within conventional bottom-up models by integrating elements of one approach
with other specific models (Nutkiewicz et al. (2018); Langevin et al. (2019)). The existing hybrid
model studies have integrated various approaches without considering both physical and technical
factors at the multi-scale level. Therefore, a generalized geo-spatial hybrid (or crossover) model
is needed that predicts the energy performance of commercial building stock across the scale.

To address these limitations, this chapter presents a novel hybrid model by integrating spatial and
synthetic modelling approaches to facilitate the concurrent consideration of multiple building-
oriented elements at multiple scales. The main research objective is to illustrate a hybrid workflow
that facilitated the concurrent consideration of multiple building-oriented elements at the multi-
scale level, leading to further improvement in the analytical performance of the BSEM. The
proposed approach is developed to demonstrate the transferability and applicability of the model
to three different scales. These scales are modelled based on geometry, system, adjacency context,
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typology, and socio-behavior responses to examine and identify various drivers and determinants
for a better understanding of mechanisms and conditions leading to different demand levels for
commercial building stock across the scale. The building stock scenarios are further designed to
evaluate the proposed modelling method: (1) to determine what happened if RBMs of non-
representative scale were applied to the other scales and (2) to concurrently quantify the influence
of physical and technical factors on the model across different scales.

3.2 Methodology

Figure 3-1 illustrates the conceptual scheme of our GIS-synthetic hybrid model consisting of four
steps: (1) GIS building stock analysis, (2) synthetic building stock analysis, (3) building stock
energy modelling and simulation, and (4) building stock scenarios.
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Figure 3-1. Schematic overview of GIS-synthetic hybrid approach.

1) The GIS building stock analysis used a data-driven formulation process to characterize all
the buildings in a target area by using physical factors associated with the stock. This process
used a geo-referenced dataset consisting of physical factors, such as geometric, non-
geometric, and typology data of buildings, representing the building stock composition,
thermo-physical properties, and shape features, respectively (see Section 3.2.1).

2) The synthetic building stock analysis constructed the synthetic elements using a two-stage
process to predict the probabilities of technical factors and stock turnover. This step involved

those elements that were unavailable in the geo-referenced dataset. In the first stage, the
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socio-spatial predictors were assigned to each building within the stock. Subsequently, the
statistical (or machine learning) model was developed using sample data comprising
technical factors. The most probable alternative was selected based on the best possible
probability of each alternative for a specific building. In the second stage, the long-term stock
dynamics were modelled by using key evolution factors obtained from the census.

3) RBMs were developed by performing a characterization process using physical and
technological building attributes. The RBMs were validated considering metered energy data
by using a multivariate calibration technique, and then the annual energy use intensity (EUI)

was calculated for each RBM.
3.2.1 Data

The proposed method was applied to three different Japanese commercial building stocks, namely
national, Tokyo, and Chuo, to provide a comprehensive understanding of the model’s overall
extent and accuracy across various scales. Figure 3-2 illustrates the data types used in the model.
For the city scale, Tokyo is considered, which consisted of wards and sub-urban areas; whereas,
Chuo ward is one of the ward areas in Tokyo. Japanese commercial building stocks, involving
office, hotel, hospital, and school segments, consisted of 440, 87, and 6 thousand buildings, which
approximately covered 1005, 195, and 16 million m? of total floor area (TFA) for national, Tokyo,
and Chuo scales, respectively. Moreover, Appendix A lists the data sources and conversion
process used in this study.
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Figure 3-2. Simplified workflow of datasets used in GIS-Synthetic hybrid framework.
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3.2.2 Hybrid stock modelling

1) GIS building stock analysis

In GIS building stock analysis, the stock was initially classified by using clustering segmentation
to obtain the optimum number of RBMs for each segment. Finally, the building shape allocation
algorithm and neighborhood adjacency model were developed by performing an additional
process on the geo-referenced micro-dataset.

i) Clustering segmentation

After dataset collection, data pre-processing was performed to remove anomalies and select
features from the specified dataset by considering = 3o threshold. Additionally, various outlier
detection techniques, namely Mahalanobis distance (MD), local outlier factor (LOF), isolation
forest (IF), and extended isolation forest (EIF), were compared in terms of the performance metric
of area under curve (AUC) based on receiver operating characteristics (ROC) to select the best
suitable method for the specified integrated building dataset (Goldstein and Uchida (2016)). The
final phase in data pre-processing was feature selection, which optimally extracts the most
feasible and influential variables from the integrated dataset to improve the quality and
dimensionality of model input. In this study, PCA was applied on the geo-referenced building
stock dataset, consisting of key physical factors and urban morphological data related to building
stock, as shown in Figure 3-2, to identify features that showed significant covariance within the
model. The selected features were then used to perform the clustering segmentation of the
building stock.

Building stock clustering segmentation used a multi-variate k-means algorithm to provide a
guideline for selecting the best possible similarity measure and a further improvement in the
clustering partition by applying different similarity (or distance-metric) measures to each cluster
validation index as compared to previous studies (Ali et al. (2019); Ledesma et al. (2021)). Then
a unified clustering validity measure was proposed to evaluate the clustering scheme in terms of
the best possible similarity measure and maximum interaction of validity indices. Three internal
validation indices namely Silhouette (SI), Davies-Bouldin (DBI), and Dunn (DI) indices, which
interact among themselves, were unified to produce the cohesion-dispersion index (CDI) to
overcome the noticeable gaps in finding a single optimal cluster value (see internal validation
indices explanation in Supplementary Appendix S1). For the distance-metric combination, we
considered four different measures of distance and clustering metrics (Euclidean, Manhattan,
Correlation, and Spearman). Therefore, this distance-metric cross-over analysis resulted in a
comparison of 16 combinations (A) for each internal validation index. The CDI for each cluster
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was calculated using the probabilities (ps;, ppgr, and pp;) of the three internal validation indices
and their respective weight contributions (wg;, wpg;, and wp;).

CDI = wg; X ps; + Wppr X Pppr + Wpy X Pp; 3-1

SI(A) — min (SI)

Psi(4) = max(SI) — min(SI) 32

DBI(2) — max (DBI)

2) = _
Posi(D) = T DBl — max(DBI) 33

DI(A) — min (DI)
max(DI) — min(DI) 34

ppi(d) =

To obtain the normalized index range of CDI, the values of internal validation indices
were homogenized. Thus, a CDI value close to one suggested the maximum interaction
of the three internal validation indices, implying optimum clustering in terms of cohesion
and dispersion. To ensure homogeneity across the specific study, the same number of
classifiers were used to perform segmentation, resulting in an equal number of clusters at
different scales.

ii) Building shape allocation algorithm

This algorithm developed a characterization process that allocated a true unifying shape to RBMs

across the stock. The building shape allocation algorithm consisted of three steps as follows:

1) Shape indices calculation: The initial step involved the computation of shape indices of each
building polygon. GIS-based shape indices are geometrically derived values representing a
particular building polygon shape that varies between 0 and 1 (see Table 3-1) (Basaraner and
Cetinkaya (2017)).

2) Weighted average of shape indices: In this step, weighted average shape indices for each
RBM were computed.

3) Matching indices: The obtained average values of shape indices were utilized to match a

specific shape with RBMs by using the geo-referenced dataset.
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Table 3-1. Overview of shape indices.

S. No Shape Index Equation Description
. . Apn _ 4mApy .
1 Circularity (CI) Cl = =— Polygon’s degree of circular compactness.
Agpc Pon
Apy Polygon’s degree of being curved inward or
2 Convexity (CNV) CNV = —
Ach outward.
3 Fractality (FR) FR=1- 108 (Aen) Edge roughness or smoothness of polygon.
2 xlog(Ppn)
. _ Apn s .
4 Rectangularity (REC) REC = —— Polygon’s degree of being rectangular.
MABR
_ Peas  4/Apy ) -
5 Squareness (SQN) SQN = TR Polygon’s degree of being square.
PN PN

Notation: Apy= Polygon area; Ppy= Polygon perimeter; Acy= Convex hull area; Ayagr= Minimum area bounding

rectangle; Agpc= Equal-perimeter circle area; and Pgas= Polygon equal area square

iii) Neighborhood adjacency model

The neighborhood adjacency model was proposed to develop a rapid and efficient mechanism to

consider the neighborhood adjacency conditions. This model consisted of four steps:

1)

2)

3)

4)

Geo-referenced building stock decomposition: The proposed method decomposed the
building blocks into multiple individual target buildings and extracted their relevant adjacent
environment in a pre-defined radius of 50 m to search for surrounding buildings adjacent to
target buildings (see Appendix B.1).

Neighborhood adjacency criteria: This step determined the necessary adjacency criteria
required to remove irrelevant surrounding buildings by focusing on shading impact instead
of other inter-building effects.

Potential shading planes: To determine the effective shading direction and length, solar
azimuth and altitude angles were utilized to filter out the surrounding buildings with no
shading impact on the target building.

Effective shading planes: The final step involved pre-processing of potential shading planes
to filter out overlapping planes (see Appendix B.2). The effective shading planes were
determined by comparing the shadow height of a nearby shading plane with that of a distant

one.
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2) Synthetic building stock analysis

In synthetic building stock analysis, statistical techniques were applied to sample datasets to
assign the synthetic elements to the building stock.

i) Long-term stock dynamics

This study modelled the long-term stock dynamics by considering the data interpolation (ex-post)
and probabilistic function (ex-ante) techniques as explained in Sartori et al. (2016) and
Hietaharju et al. (2021) (see detailed explanation in Supplementary Appendix S2). The long-term
commercial building stock dynamics model was constructed for the study period from 2016 to
2030 by using key evolution factors, as shown in Appendix C (SBJ, 2017; Tokyo Statistical
Yearbook, 2019). Moreover, the weighted random probability was assumed based on age band
classification to predict the long-term stock turnover at the building-by-building level.

ii) System stock modelling

In this study, the developed logit model by Yamaguchi et al. (2017) was further modified to
extend its applicability at the building-by-building level. The model considered the socio-spatial
predictors based on building characteristics (logic TFA and building size), demographics
(Population density (PD) and HDD), and age band classifications (6 bands from 1980 to 2030).
The initial step involved the assignment of socio-spatial predictors to the sample dataset and then,
the regression analysis was performed to obtain the coefficients of these predictors. The
probability of each system classification for a specific building within the stock was quantified
by multiplying the obtained regression coefficients with real predictors of buildings. For selecting
the HVAC systems, the joint probability was calculated to select the pair of air-conditioning and
heat sources for each building. The ESMs were selected depending on the most probable
alternative for a specific building. Furthermore, this method was extended to different spatial
boundaries, namely national, Tokyo, and Chuo, by initially obtaining the building stock data for
the specific area type. Then the social-spatial predictors were allocated at the building-by-
building level to distinguish between area types. This resulted in the varying estimated probability

of system alternatives between area types.
3.2.3 Building stock energy modelling and simulation

After developing the hybrid stock model, the RBMs were further segmented based on multi-stage
criteria using physical and technical attributes. As a result of the multi-stage segmentation
process, the development of 0.21 million (clusters x 3 construction types X 6 vintages x 5 system
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age-band x 16 ESMs x 44 HVAC systems) RBMs was possible which represented the entire
commercial building stock at the specified scale. To reduce the number of RBMs for each scale,
aggregated criteria combined buildings that exhibited the same classification in terms of the
building size, construction type, age-band, ESMs, and HVAC systems. For example, the
aggregated criteria reduced 440,846 actual buildings to 30,688 RBMs at the national scale. In the
case of other scales, this specified criterion reduced models to 7,145 and 2,115 RBMs for Tokyo
and Chuo, respectively.

Subsequently, the characterization was performed by using a deterministic approach involving
computation of the weighted average of characteristics associated with each RBM (see detailed
geometric characterization results in Supplementary Table S2). Moreover, the RBMs were
developed by using an automated dynamic building simulation platform, which executed
modelling stages through Python and R scripts to generate input files for EnergyPlus. Those
models were then simulated to estimate the energy demand of the commercial building stock.
The simulation model also required the climate data, occupancy schedule, internal and external
equipment loads, and HVAC operational data (see detailed explanation in Appendix D), which
were either calibrated or set based on Japanese building regulations (ECKDIC, 2000; IEIJ,
2006; METI, 2011; Kondo et al. (2011)) and some previous studies (Kim et al. (2020);
Yamaguchi et al. (2022)). The description of stock-level parameter settings for different cases is
illustrated in Table 3-2.

Table 3-2. Description of stock level parameter settings.

Parameter 2016 2030 Electric/Potential
Building stock Projected as per long-term stock dynamics (see Section
As per base year
composition 3.2.2(2))
Conventional lighting devices All lighting devices are replaced with LED
Lighting
(fluorescent and incandescent lamps)
Calibrated as per metered data (see 40% reduction from the 2016 level
Plug load
Section 3.2.3(1))
All the systems are either
System  stock Estimated as per socio-spatial predictors and age band replaced with those driven by
composition classification (see Section 3.2.2(2)) electricity or installation of all

possible ESMs.
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1) Model Calibration and Validation

In this study, a multivariate (or Bayesian) calibration technique was utilized to obtain the
representative value of uncertain parameters for specific RBMs. Most of the uncertain parameters
in this study are related to operational data and the input range of these parameters was
determined from the literature (see Supplementary Table S3) (Sokol et al. (2017); Chong et al.
(2017); Chong et al. (2018)). The calibrated parameters were selected based on their impact on
model sensitivity (see Supplementary Figure S1). Based on the parameter screening, four high
uncertainty parameters were chosen in this study: lighting density (LD), plug load (EE), occupant
density (OD) and space infiltration (INF). This calibration process minimized the error between
simulated output and metered data. At the aggregated level, the model was validated in terms of
secondary energy consumption by comparing it with estimates from Energy Data and Modeling
Center of Japan (EDMC, 2017).

3.24 Building stock scenarios

Building stock scenarios were developed to evaluate the analyticity of the proposed modelling
method in assessing and examining the process of model development. In this study, two
scenarios, energy epidemiology analysis and unit block concept, were developed to understand
better the model development process of the commercial building stock.

The first scenario aimed to understand better the selection and description of appropriate scales
for developing commercial BSEMs and estimate the error uncertainty when a non-representative
scale was applied to other scales. For this purpose, we applied three different ranges of scales,
namely national, Tokyo, and Chuo, on a reference (or Chuo) scale to assess the scale-bounded
and long-term dynamic uncertainties across the stock. Furthermore, we proposed a concept of a
unit block model to quantify the influence of building-oriented elements on the model across
different scales. The unit block building model is a simplistic model consisting of typical building
characteristic assumptions related to geometry, systems, retrofits, and operating conditions, as
shown in Table 3-3. In this scenario, model elements were replaced by the typical ones to quantify
the impact of these characteristics on the extent and accuracy of the model. This proposed concept
also provided an initialization point for the development of BSEM to examine the trade-off

between the model’s complexity and reliability.
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Table 3-3. Typical characteristics of the unit block building model.

Parameter Assumption Description
Aspect ratio 40
Most of the studies use these assumptions for geometric
Building orientation 0°
characteristics in building stock model.
Building shape Rectangular
Window-to-wall ratio - Neglected due to unit block concept.
Neighborhood adjacency - Neglected due to model simplification.
Building age 1990 Selected based on average value.
HVAC EHP-MUL Assumption of simplified heating and cooling system.
Building system age Base year Considered based on the study period.
ESM - Neglected due to simplified HVAC system.
Occupancy strategy Typical Considered based on a simplified strategy.

The performance assessment of these scenarios was performed by designing a one-at-time (OAT)
and combined effect evaluations. The former assessed the model’s output corresponding to
omitting a single building element, while the latter examined the non-linear interaction (or added
one by one) of these elements on the model output. These analyses were evaluated by using two
predictive performance indicators, impact factor (IF) and relative coefficient of variance of the
root mean square error (CV RMSE), at building element and stock levels. The element-level
predictive performance was assessed by using IF indicator (Kim et al. (2020)).
p= 35
Yr

where 9; and 1y, are the annual predicted and referenced (or validated) values, respectively. The
relative index of CV RMSE evaluated the predictive performance across the stock.

(B0r — 2 /0= 1) e

CV RMSE, = 5
T

where 7y, is the referenced (or validated) mean annual value of n observations.
3.3 Results

This section presents the results of a multi-scale framework using a GIS-synthetic hybrid
approach. First, the structure of building stocks obtained from a multi-stage segmentation
process, using geo-referenced and sample datasets, is presented. After that, the results of building
stock energy model validation and calibration using automated dynamic building simulations are
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illustrated. Finally, the building scenarios are analyzed to explore the influence of various

parameters on energy epidemiology across the scale and stock.
3.3.1 GIS building stock analysis

This analysis presents the results related to the development of RBMs based on the geo-referenced
dataset for multiple scales. After comparing outlier detection methods, the EIF detection
technique was selected as it showed better robustness and accuracy in identifying the outliers,
evident from the performance metric of AUC based on the ROC. Supplementary Table S4 shows
the performance evaluation of different outlier detection techniques. The PCA method revealed
that GFA, floors, height, and shape coefficient represent more than 80% of variability within the
model; therefore, these four features were used as the input for building stock clustering. This
also suggests that fewer input features would produce similar segmentation results since they
represent the most influencing classifiers of the stock.

Figure 3-3 shows the optimum number of clusters obtained by evaluating the CDI index (as
discussed in Section 3.2.2). The clustering scheme showed the significance of this criteria in
determining the maximal cohesion-dispersion of the clustering, as the resulting number of
clusters varied with different distance-metric combinations. The unified validity index, CDI,
identified 17 RBMs (five clusters each for office and hotel, four and three clusters for hospital
and school, respectively) to represent the entire commercial building stock. For instance, the
segment-wise analysis of clustering showed a significant amount of inter-cluster heterogeneity
within school building stock due to similar inter-distances between them. Moreover, the school
building stock segmentation showed that the Cosine-Manhattan distance-metric combination
(Cosine vs Manhattan) provided the highest value of CDI for school buildings, if k equaled three.
Therefore, schools needed to be segmented into three types of RBMs at the national scale to
obtain the optimum number of clusters in terms of compactness and separation. To further
illustrate the specified clustering segmentation scheme, the development of RBMs is explained
in Supplementary Figure S2. Overall, the results show a two-fold reduction in the number of
RBMs in comparison to one of the previous studies (Kim et al. (2020)) using an individual
classifier, which implies a useful reduction strategy to increase the complexity (level of details)
of building stock model and maintain a reduced computational time.
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Figure 3-4. Overview of building typologies of commercial building stock across different scales.

1) Building shape allocation algorithm

The proposed algorithm was applied to the commercial building stock to extract the true shape
representation of RBMs. Figure 3-4 illustrates the overview of building shape allocation of
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commercial building stock across different scales. As the building composition varied in size and
geometric terms, the shape indices fluctuated to respond to the shape complexity and diversity
associated with large-size building stock. Moreover, this provided heterogeneity within building
shape by capturing rectangular, square, slab, U- (or C-), L-, and T-typologies for RBMs. For hotel
building stock, a rectangular shape was allocated due to the predominance of REC index for the
specified cluster within the national stock (see Appendix E), while the specified cluster associated
with Tokyo stock was assigned a more complex shape (or U-shape) due to a lower value of CNV
index. Overall, this analysis showed no significant proportion of CI within the stock, while a
major proportion was skewed towards one for REC and SQN.

2) Neighborhood adjacency model

Figure 3-5 shows the segment-wise composition of the neighborhood context for different scales.
We observed that built-up density varied significantly across the scales, and Chuo (or district
scale) possessed high built-up density with the taller neighborhood than other scales. In terms of
TB, Chuo and other scales were significantly different, with the average height being twice higher
in the hotel segment case compared to other scales.
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Figure 3-5. Segment-wise composition of neighbourhood context for different scales (Notation: D is the adjacent
average distance between target building and neighbourhood; H is the average neighbourhood height; and TB is the

average height of target building).

3.3.2 Synthetic building stock analysis
1) Long-term stock dynamics

Figure 3-6 shows the long-term stock distribution of building vintage for commercial buildings

across different scales. For building vintage, the composition of existing building stock showed
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higher aging stock in Chuo compared to other scales, whereas the average age-band of existing
stock was 1990. For long-term stock dynamics, the commercial building stock floor area
increased from 2016 to 2030 by 24.3%, 23%, and 12.5% for national, Tokyo, and Chuo,
respectively. This difference is attributable to the varying percentage of newly constructed
buildings across the scale. The addition of new buildings and replacing aging buildings by 2030
would result in a transition of the average age-band from 1990 to 2010. Moreover, the system
stock dynamics showed higher stock turnover in Chuo compared to other scales, whereas the
systems installed after 2010 nearly doubled by 2030. Overall, this implied the significance of
considering both stock dynamics within the model due to their distinctive frequency distribution.
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Figure 3-6. Long-term stock distribution of building vintage for commercial buildings across different scales.
2) System stock modelling

Figure 3-7 shows the share of HVAC systems for different scales in terms of cooling and heating
sources. For air-conditioning systems, the proportion of fan coil unit (FCU) and outdoor handling
unit (OHU) systems was lower in Chuo, while constant and variable air volume (CAV and VAV)
systems had higher proportions at larger scales (national and Tokyo). The long-term projection
of air-conditioning systems showed an increased proportion of variable refrigerant flow (VRF)
systems and a decreased proportion of FCU and OHU systems. For heat sources, the proportion
of centralized-gas/oil source was larger in Tokyo, while the centralized-storage source had a
lower proportion at national and district scales. The long-term projection of heat sources showed
a decreased proportion of centralized-gas/oil source and an increased proportion of decentralized-
electricity source.
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Figure 3-7. Distribution of HVAC systems in the commercial building stock for different scales.
Figure 3-8 shows the distribution of energy saving measures (ESMs) for different scales based
on ventilation- and heat-delivery-related measures. For ventilation-related measures, the
incorporation of outside-air-based (OA) measures was higher and the incorporation of heat-
exchanger-based measures in Tokyo and Chuo decreased. The long-term projection of
ventilation-related measures showed an increased proportion of combined measures (All) and a
decreased overall composition of ventilation-related measures in Tokyo and Chuo due to a faster
transition towards VRF systems. For heat-delivery-related measures, the proportion of VAV and
variable water volume (VWYV) control measures was higher at other scales compared to the
national scale. The long-term projection of heat-delivery-related measures showed an increased
proportion of VWYV control measures (except the school segment). However, for the socio-spatial
predictors, these factors significantly influenced the adoption probability of system alternatives
for a specified building. For example, HDD, which accounts for the variation of climatic effect,
resulted in higher adoption of gas-driven HVAC systems in the colder region (as evident at the
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national scale). Overall, the application of logistic regression resulted in a better distinction
between the centralized and decentralized HVAC systems across small and large size buildings

by considering various predictors, such as TFA, PD, HDD, and building age.
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Figure 3-8. Distribution of ESMs in the commercial building stock for different scales.
333 Building stock energy modelling and simulation

1) Model validation

Figure 3-9(a) shows the validation results of the RBMs for different scales by comparing metered
and simulated values in terms of the EUI, a primary energy metric. It is observed that the proposed
model provided better EUI agreement for all the RBMs across different scales. For stock-wise
analysis (Figure 3-9(b)), our model accurately followed a long-tail distribution but was
underestimated at a low EUI level, which can be attributed to the differences in building operating
conditions due to the assumption of typical floor usage within the model.

To further evaluate the model, the aggregated-level validation was performed by comparing the
specified model output with EDMC and TMG metered data, as shown in Figure 3-9(c). At the
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national scale, the model underestimated the total secondary energy consumption by 10% due to
the omission of educational institutes other than schools; whereas, the model estimate agreed well
with a difference of 4% and less than 1% from metered data for Tokyo and Chuo scales,

respectively.
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Figure 3-9. (a) Validation of RBMs for different scales: i) office; ii) hotel; iii) hospital and iv) school.; (b) Cumulative
frequency distribution of EUI across the stock for different scales: i) national; ii) Tokyo; and iii) Chuo; (c) Aggregated-

level evaluation of the model for different scales: i) national; ii) Tokyo; and iii) Chuo.

Table 3-4 shows the deviation of key error indicators, absolute percentage (%), coefficient of
determination (R?), coefficient of variation of root mean square error (CV RMSE), and
normalized mean bias error (NMBE), for commercial BSEM across different scales. The results
show that all the error indicators are higher at larger scale in comparison to smaller scales. For
instance, when looking at R?, the standard deviation (o) goes from 0.09 at the district scale to
0.24 at the national scale.

Table 3-4. Validation results for commercial BSEM across different scales.

Scale (%) R? CV RMSE NMBE

Chuo 03 0.95 (6=0.09) 5.6 (6=2.56) 1.6 (c=4.21)
Tokyo 4.1 0.85 (6=0.11) 10.2 (6=3.16) -1.9 (c=4.86)
National 10.1 0.77 (6=0.24) 13.2 (6=3.29) -5.3 (6=9.32)

2) Multi-scale modelling results

The analysis of the multi-scale model evaluated the annual energy consumption patterns across
the scale for end-uses and fuel types, as illustrated in Figure 3-10. The energy consumption
patterns of the RBMs across the stock showed higher usage for HVAC and others in hotel and
hospital stocks, whereas office and school stocks were more electricity-centric compared to other
segments. The multi-scale analysis of end-use energy consumption patterns showed higher plug
load patterns in Chuo than large scales, attributable to its higher occupancy density as a major
commercial district of Tokyo. For plug load patterns, lighting and equipment usage showed a
correlation with the building classification size. For example, a large-size office building (or CL5)
exhibited a higher plug load pattern than a small-size office building (or CL1). This was because
of varying floor composition, as large-size buildings have more multi-purpose facilities than
small-size buildings. However, large-scale stock exhibited a relatively higher proportion of
HVAC usage (except hotels) than other end-uses, because of the degree of balance between
heating and cooling demand due to metrological variations. For fuel type, the large scale seemed
more electricity-centric, whereas higher gas usage was observed at other scales. These differences
in the energy end-uses were due to the varying structural and stock composition (as explained in
Sections 3.3.1 and 3.3.2) across different scales, which were mostly neglected by non-scalable
models.
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Figure 3-10. Annual EUI of RBMs for national (a), Tokyo (b), and Chuo (c) in terms of; i) end-use and ii) fuel type.
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Figure 3-11. Long-term primary energy consumption across different scales; a) segment-wise and b) end-use (where

2030E and 2030P represent electrification and potential scenarios for the 2030 year respectively).

3) Long-term energy demand

Figure 3-11 shows the long-term primary energy consumption across different scales up to 2030.
The annual primary energy consumption of commercial building stock was projected to be 1372,
307, and 29 PJ/year by 2030 for national, Tokyo and Chuo scales, respectively. In terms of energy
end-uses, different equipment usage was noticed, which is attributable to varying building
operation conditions from large to small scale. Whereas higher thermal load at a large (or
national) scale is attributable to climatic variation. The adoption of ESMs as per the baseline
scenario would result in the avoidance of 7, 3, and 5% of primary energy consumption by 2030
at national, Tokyo, and Chuo scales, respectively. Incorporating electrification and retrofit
measures, the maximum reduction potential was estimated to be 39, 26, and 23% of primary
energy consumption by 2030 at the national, Tokyo, and Chuo scales, respectively. This
difference in the reduction potential across different scales highlighted the significance of using
target-based planning and decision-making to implement ESMs within building stock.
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334 Building stock scenarios

1) Energy epidemiology

Figure 3-12(a) shows the varying energy consumption by implementing different models
(national and Tokyo) on a reference scale (Chuo). A significant difference in energy consumption
patterns was observed when the models developed for national and Tokyo scales were applied to
the Chuo scale. The adoption of the models resulted in the annual energy consumption being
26.6, 28.8, and 31.8 PJ/year for national, Tokyo, and Chuo scales, respectively. This indicated
that the annual energy consumption was underestimated by 10-17% when different models were
applied to Chuo building stock. Moreover, the differences in carbon emissions varied from 479
to 819 ktCO,, which would be neglected if an appropriate scale was not considered. For energy
end-uses, an absolute difference existed in energy usage processes, such as lighting, equipment
usage, and building systems. As discussed in Section 3.3.3(2), the major difference in energy
consumption patterns occurred due to lighting and equipment usage related to higher occupancy
density in Chuo.
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Figure 3-12. Variation of energy consumption by the implementation of different scales (national and Tokyo) on a
reference scale (or Chuo): a) Annual primary energy consumption and carbon emissions; b) scale uncertainty relative
to Chuo scale (where each dot represents a specific RBM cluster which is sorted from highest to lowest CVRMSE

value).

Figure 3-12(b) shows the stock-wise uncertainty induced by implementing different models
(national and Tokyo) on a reference scale (Chuo). We observed that using national- and city-level
representative RBMs resulted in 60 and 35% of the stock having CVRMSE of 10% or higher,
respectively. This indicated that the larger the description of a scale, the higher the error

uncertainty when applied to a smaller representative scale. The comparison of energy mapping,
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as shown in Figure 3-13, exhibits the spatial deviation of the primary energy metric at the

I 5400

building-by-building level when a non-representative scale is applied to other scales.
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Figure 3-13. Illustrative building-by-building mapping of the spatial distribution of primary energy consumption by the

implementation of different scales (national and Tokyo) on a reference scale (or Chuo).
i) OAT analysis

This analysis quantified energy epidemiology considering the structure and conditions of systems
and practices by applying relative parameters of other scales on a reference (Chuo) scale, as
shown in Figure 3-14 (see detailed results in Supplementary Figure S3). The OAT analysis
showed a significant scale-bounded impact of building geometry and plug loads on primary
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energy consumption, attributable to variations in stock structural (building size, aspect ratio, and
typology) and end usage patterns across the scale. For other significant influencing parameters,
the occupancy density exhibited a negative impact similar to plug loads, which showed a strong
correlation between them. The structural composition of HYAC systems obtained by using other
models resulted in a positive impact, depicting a higher thermal dynamic system stock than the
reference scale, but the overall impact was not as significant as building geometry and plug loads.
Additionally, this implied that the HVAC systems had a significant scale-bounded impact on
large-size buildings, indicating a higher sensitivity of socio-spatial predictors, such as HDD and
PD, with building size. However, the scale-bounded impact of the neighborhood urban context
was very similar and negligible across the scale. This analysis examined and identified various
drivers and determinants to understand better the mechanisms and conditions leading to demand

levels when a non-representative scale was applied to other scales.
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Figure 3-14. OAT analysis for quantifying energy epidemiology (with Chuo as reference scale): a) cluster-wise primary
energy difference due to various parameters by implementing national (i) and Tokyo (ii) office building stock (Notation:

black as positive and red as negative); b) average impact factors of various parameters.
ii) Long-term energy epidemiology effects

Figure 3-15(a) shows the long-term variation of energy consumption by implementing different
models (national and Tokyo) on a reference scale (Chuo). The results showed a significantly
different reduction potential when different scales were applied to the Chuo scale (also see Figure
3-13). The annual energy reduction potential in 2030 was 7.8, 4.9, and 2.2 PJ/year at the national,
Tokyo, and Chuo scales, respectively. Moreover, the carbon emissions avoided in 2030 were 52,
46, and 40% at the national, Tokyo, and Chuo scales, respectively. Thus, the difference in energy
and emissions reduction potential varied by 2—-3 times and 6-12%, respectively, when different
scales were applied to the Chuo scale. The significant deviation between the reduction potential
of energy consumption and carbon emissions was due to the assumption of a reduction in carbon
emission intensity by 2030 (from 0.57 to 0.25 kg-CO2/kWh). This implied that in the long-term
scenario, the scale-bounded uncertainty seemed higher in estimating energy consumption than
carbon emissions. For energy end-uses, the lighting and HVAC systems accounted for a
significant reduction potential that was overestimated by up to 10 and 5%, respectively, compared
to the reference scale. This implied that the long-term stock structure changes were inaccurately
captured when a non-representative scale was applied at other scales. Figure 3-15(b) shows the
stock-wise uncertainty induced for long-term aspects by implementing different models (national
and Tokyo) on a reference scale (Chuo). The long-term stock-wise analysis showed highly
varying error terms, with 95% and 45% of the stock having CVRMSE of 10% or higher,
compared to the base year analysis, which illustrated more necessity for an appropriate selection
of scale for the long-term studies than the base year analysis.
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Figure 3-15. Long-term energy epidemiology effects: a) annual primary energy consumption and carbon emissions;
and b) scale uncertainty relative to Chuo scale (where each dot represents a specific cluster which is sorted from highest

to lowest CVRMSE value).
2) Unit block concept
i) OAT analysis

To determine the influence of physical and technical parameters, the OAT analysis assessed the
accuracy and extent of the model across the scale and stock. Figure 3-16 shows the stock-wise
uncertainty in model prediction across the stock for the different scales. The percentage of
building stock within 10% CVRMSE represented 5, 50, and 55% of the stock TFA with varying
technical parameters, which increased up to 20, 70, and 80% of the stock TFA with varying
physical parameters for national, Tokyo, and Chuo scales, respectively. This demonstrated more
skewness of error terms as we transitioned from larger to smaller scale, signifying the need for
developing minimum viable guidelines classified depending upon the scale of that specific study.
Moreover, considering the influence of parameters, the results showed a stagnant response of
building orientation and neighborhood modelling on the accuracy and extent of the model at all
scales. Thus, these parameters could be neglected if the objective is to perform the modelling
with minimum viable concept criteria. The multi-scale analysis showed a need for a more
integrated model at a large scale than other scales due to a modular and diversified distribution
of building stock that levers out the variability within the model output.
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Figure 3-16. OAT effect on the stock-wise uncertainty for national (i), Tokyo (ii) and Chuo (iii) (where each dot

represents a specific cluster which is sorted from highest to lowest CV RMSE value).



Figure 3-17 shows the impact of various parameters on model prediction across different scales.
The sensitivity analysis results showed that building system age and the HVAC systems were the
fundamental technical factors that needed consideration while performing building stock energy
modelling at any scale. Thus, due to the high thermal dynamics associated with these parameters,
considering stock dynamics and the heterogeneity of HVAC systems was significant within any
specified BSEM. For physical factors, building shape and aspect ratio were more sensitive to the
accuracy and extent of the model across the scale. However, the variability of model error due to
geometric parameters was notably lower than that caused by technical factors.
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Figure 3-17. OAT effect on the element-wise uncertainty across the scale.
ii) Combined effect

This analysis was performed by adding the building-oriented elements one by one within the unit
block model to study the non-linear interaction of various influencing parameters in the BSEM.
Figure 3-18(a) shows the stock-wise combined effect of various parameters on the EUI for
different scales. The element-wise analysis of RBMs showed a non-linear increase (positive or
negative) in the parameters’ response to the EUI as the size of the building increased. For
segment-wise, hotel RBMs produced higher variability by omitting influencing parameters,
attributable to the need for detailed modelling for capturing multiple end-use activities, such as
equipment usage and the heterogeneity of building systems, within the segment (see details in
Section 3.3.2 and 3.3.3(2)). The stock-wise results revealed that omitting the probabilistic
occupancy model and ESMs resulted in the overestimation of primary energy consumption across
the stock. Whereas, primary energy consumption was underestimated by omitting the HVAC

systems and system age within the model
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Figure 3-18. Combined effect on the model prediction: a) stock-wise uncertainty for national (i), Tokyo (ii) and Chuo

(iii); and b) element-wise uncertainty across the scale.

Figure 3-18(b) shows the element-wise combined effect of various parameters on the EUI for
different scales. The results obtained by considering the combined effects of various parameters
within the BSEM indicated a positive correlation of the building and system age, HVAC systems,
geometric, and window-wall ratio (WWR) factors. In contrast, the occupancy and ESMs factors
negatively correlated to primary energy consumption. Moreover, a higher order of variability was
induced by considering the typical occupancy model, signifying the importance of considering a
probabilistic occupancy model instead of a typical one to capture these non-linearities within the
BSEM.

3.4 Discussion

With the development of the proposed hybrid workflow, the model facilitates the concurrent
consideration of physical and technical factors and extends the capability to different spatial
resolutions. As shown in Section 3.3.3(2), the results indicate that the differences in the energy

end usages and reduction potential exist due to varying structural and stock composition across
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different scales. This implies that the hybrid models capture these variations, which a
conventional non-scalable model could not distinguish. From a practical implementation
perspective, this further helps address the data limitations and context-specific issues to overcome
the disparate coordination between the local and national level stakeholders, which could identify
priority areas for implementing target-based energy efficiency strategies. Moreover, this multi-
stage process also resulted in the enhancement of the analytical capability of the model by
concurrently incorporating physical, technical, and socio-behavioral factors within a commercial
BSEM across different scales. Additionally, the proposed scheme can be used as an assessment
tool to identify various drivers and determinants to understand better the mechanisms and
conditions leading to different demand levels for commercial building stock across the scale.
From a practical implementation perspective, this paper provides insight to energy modelers
about the sources of uncertainties within commercial BSEM.

Considering evaluation capabilities, the hybrid approach improves the existing assessment
framework of the BSEM by providing a better understanding of the model development process
in terms of end-use energy processes (function and boundary of the systems), practices (socio-
behavioral interaction, such as occupancy patterns and resource usage), and context (structure
and conditions of systems) across a range of scales and sectors. This assessment gap exists in the
previous multi-scale studies that either established models for a different scope (like residential
building stock) or focused on urban morphological and metrological conditions (Nutkiewicz et
al. (2018); Ali et al. (2019)). According to the energy epidemiology analysis (Section 3.3.4(1)),
the selection and description of the appropriate spatial boundary are critical for the base year and
long-term studies related to building stock energy modelling. The long-term studies are more
sensitive to an adequate spatial boundary than the base year studies and show significantly
different energy consumption patterns, 10-17%, and reduction potential, 2-3 times, when a non-
representative scale is applied to other scales. This implies a need to develop multi-tier long-term
building stock strategies to promote the adoption of ESMs and alternative technologies for
achieving net-zero emissions in the building sector. Recently, most of the studies related to
commercial buildings have relied upon black-box (or machine learning) models using advanced
techniques to predict and identify the building energy consumption and critical building-oriented
features (Li and Yao (2021); Yu et al. (2021)). However, they lack the analytical capability to
conduct long-term studies for estimating the energy reduction potential. As discussed above, this
approach also demonstrates the ability to regularly update based on new data streams and provide
the capture value to evolve long-term changes within the commercial BSEM. In addition, the two
most critical building-oriented elements are geometry and plug loads when the non-representative
scale is applied to other scales. This suggests that these elements lead to higher scale-bounded
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uncertainties, induced due to structural heterogeneity, typological complexities, and diverse
functionalities associated with the stock composition of commercial buildings.

Considering the modelling capabilities, Section 3.3.4(2) shows that the physical and technical
factors result in a performance gap of up to 11 and 21%, respectively, with the cumulative gap
varying from 11-32% for different scales. Moreover, previous studies revealed that disregarding
the physical and technical factors results in energy use differences of 10-19% (Heidarinejad et
al. (2017); Chen and Hong (2018)) and 15% (Kim et al. (2020)), respectively. This implies that
the BSEM needs to be modelled with the concurrent consideration of building-oriented elements.
Otherwise, a fragmented consideration of these factors may lead to a performance gap within the
model. The quantitative analysis of building-oriented elements indicates that the building system
age and HVAC system composition are the two most critical building-oriented elements because
of their higher thermal dynamic effect on the model. Moreover, the physical factors cannot
influence as much as the above factors. This implies that the unit block model identifies the
critical building-oriented elements for providing in-depth details about the influence and the order
of magnitude of these elements within the BSEM across the scale and stock. From a practical
implementation perspective, the energy modelers need to pay more attention to system stock and
turnover dynamics when developing BSEM for a specific scale, because omitting system
heterogeneity might lead to the prediction of different energy consumption patterns.

Additionally, a unit block concept also provides an initialization point for developing a stock-
level model at any demographic landscape or spatial resolution. Thus, the focus has recently been
on developing minimum viable model guidelines depending on the application category of
building energy models (Ang et al. (2020)). A minimum viable model requires a minimum level
of detail to provide transparency and capture value with the least cost and effort. Analyzing the
unit block model, the influence of building-oriented elements on the energy modelling gap
reduces as we transition from larger to smaller scale, which is an opportunity for the energy
modelers and planners to develop minimum viable guidelines to fasten the development cycle

with minimum cost constraint as per the specific scale.

Although the developed approach demonstrated improved adequacy at the multi-scale level and
could be further applied to different regions, there are still some limitations that need to be
addressed. To ensure homogeneity across the specific study, the same number of classifiers are
used to perform the segmentation, resulting in an equal number of clusters at different scales.
This scheme needs further improvement by implementing it at a specific granular level to obtain
the optimum number of classifiers as per the specifications. Moreover, a multi-nominal statistical
approach is applied to a large sample dataset to fill the energy modelling gap due to a lack of
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information related to the technical factors. This requires further effort to conduct a multi-scale
field survey for validating the probabilistic building systems stock model by comparing it with
actual stock. Furthermore, an auto-calibration framework needs to be developed that can
transform the existing multi-scale model into a scalable model, ensuring transparency at a
granular level by providing a comprehensive insight into uncertainties at the spatial level.

3.5 Conclusions

This paper presents a novel hybrid framework that integrates geo-referenced and sampled-based
synthetic stock models to facilitate the concurrent consideration of multiple building-oriented
elements within commercial BSEMs at a multi-scale level. The proposed framework enhances
the capability of the bottom-up engineering models to be further extended to any demographic
landscape or spatial resolution and evolve into a long-term transitional workflow. Thus, enabling
long-term spatial energy resource planning and decision-making for commercial building stock
across various scales. Moreover, when implemented on the commercial building stock of Japan,
the developed model provides a comprehensive understanding of selecting and describing the
minimum viable requirements for a specific scale by considering the effect of various influencing
parameters on scale-bounded uncertainties. Additionally, multi-level validation is performed to
ensure transparency and capture value that exhibits an acceptable level of adequacy and accuracy
of the model at multiple scales. The main findings of this hybrid framework at multiple scales
are:

1. The proposed multi-scale model identifies various drivers and determinants of energy end-
uses and resource usages to provide a better understanding of mechanisms and conditions
that lead to different levels of demand for commercial building stock across the scale. This
addresses the underlying complexity associated with the BSEMs by examining influencing
factors that cause different levels of outcomes at different scales.

2. The scale-bounded comparative approach indicates that the larger the description of the scale,
the higher the error uncertainty when applied to a smaller representative scale. This scale
variability seems significant due to relatively higher thermal dynamics induced by the
building typology and functional composition of the commercial building stock.

3. The long-term perspective of scale-bounded uncertainties shows an overestimation of
reduction potential by 2-3 times when a non-representative scale is applied to a smaller
representative scale. Therefore, an accurate description of scale is necessary in BSEM for
long-term studies.

4. As per the quantitative analysis, disregarding the physical and technical factors drops
cumulative performance by up to 32%. This signifies the need for a concurrent consideration
of these factors within BSEM.
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5. For model complexity, a more integrated model is needed at a large scale than other scales
because of the modular and diversified distribution of large-scale building stock, which
leverages variability within the model output. The results imply that the performance gap
increases significantly up to 21% when the description of a scale shifts from a smaller to a
larger one.

6. The unit block model concept provides a simplified value proposition by using a bottom-up
engineering model for developing minimum viable model guidelines. This establishes the
correlation effect of various parameters to gauge the non-linearities within the model that

highlight the trade-off between the model’s complexity and reliability.

Overall, this model provides a granular-level framework using the spatial intelligence building
stock approach to assist city-level planners and policymakers in developing long-term energy
efficiency monitoring strategies at multiple scales. This also provides a new dimensional aspect
by considering alternative technologies and measures within the GIS-based building stock
modelling. Future work will be extending this model to develop multi-scalable reduced-order
models for commercial building stocks, which could speed up the development cycle by
minimizing computational resources.

3.6 Appendix
3.60.1 Appendix A

The geo-databases of Tokyo and Chuo were provided by Tokyo Urban Development Bureau
(TUDB, 2017), whereas ArcGIS Geo Suite (Esri Japan, 2015) was used to develop a national-
scale model. In synthetic stock modelling, sample datasets collected from Society of Heating,
Air-Conditioning, Sanitary Engineers of Japan (SHASE-J, 2017), and Japanese Association of
Building Mechanical and Electrical Engineering (JABMEE, 2010), were used to estimate the
composition of building system stock and ESMs at different scales. Supplementary Table S1 lists
the types of Heating, Ventilation, and Air-Conditioning (HVAC) systems and ESMs considered
in the study. Furthermore, the long-term stock dynamics were modelled by using key evolution
factors obtained from Building Construction Survey Data (BCSD) (SBJ, 2017) and Tokyo
Statistical Yearbook (TSY, 2019) to consider building vintages and system stock dynamics within
the model. To validate and calibrate the developed models, we used metered data obtained from
Tokyo Metropolitan Government (TMG) and Database of Energy Consumption for Commercial
Buildings (DECC) (JSBC, 2017; TMG, 2020).
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Table A.1. Description of building stock data.

Category Data Source Conversion

Geometric

GIS dataset (Esri Japan, Derived
Non-geometric
2015; TUDB, 2017)

Physical
Typology Multiple operations in ArcGIS
Others (WWR) Survey
Building systems Sample dataset
Technical (JABMEE, 2010; Logistic regression
ESMs SHASE-J, 2017)
GIS dataset (Esri Japan,
Urban context Urban morphological Merged using ArcGIS
2015)
Weather AMEDAS (JMA, 2014)
Climate CMIP6 (Karl-Hermann et Morphed
Climate change
al. (2019))
Long-term Census dataset (SBJ,
Key evolution factors Statistical techniques
dynamics 2017; TSY, 2019)

3.6.2 Appendix B

B.1 Determine the spatial effect of neighborhood-level urban form

In this study, spatial regression analysis was performed to assess the spatial effect of
neighborhood-level urban form on building energy use. The main purpose of this analysis was to
determine a buffer (or radius) limit, which showed the correlation between the building energy
use and neighborhood adjacency environment. To investigate this correlation, five neighborhood-
level urban form measures, namely lot coverage ratio, floor area ratio, green area, average shape
factor, aspect ratio, and standard deviation (STD) of the building heights were considered up to
a radius of 200 m with a step of 50 m. Moreover, the building energy data was obtained from
TMG (2020), and then the samples (n=580) belonging to the Chuo ward were geocoded within
the GIS dataset. The model results revealed that four of the seven urban form measures (the
average building coverage ratio, average building height, STD of building height, and average
shape coefficient) were significantly associated with the EUI of the commercial building for the
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neighborhood of the 50 m buffer. Based on these results, a pre-defined radius of 50 m was used

to search for the surrounding buildings adjacent to the target buildings.

Table B.1. Results of spatial regression analysis

Model 1 (50-m buffer)

Model 2 (100-m buffer)

Model 3 (150-m buffer)

Model 4 (200-m buffer)

Variable
Coefficient  z-statistics ~ Coefficient  z-statistics ~ Coefficient ~ z-statistics ~ Coefficient  z-statistics
Average green area -0.004 -1.150 -0.001 -0.485 -0.001 -1.316 -0.001 -1.121
Average floor area ratio 0.199 1.005 0.102 0.505 0.211 0.978 0.284 1.241
Average building coverage ratio 15.213* 2.490 3.730 0.627 6.166 1.025 6.088 0.917
Average building height 5.688* 2.118 4.094 0.991 -0.032 -0.005 -2.299 -0.383
STD of building height 2.321* 2.486 -4.775* -2.146 -3.732 -1.478 -3.595 -1.336
Average shape coefficient 366.383* 2.475 -67.916 -0.304 -208.892 -0.710 -179.092 -0.556
Average aspect ratio 181.954 1.286 -235.739 -1.105 -501.201 -1.736 -661.760 -1.872
R-squared 0.462 0.449 0.454 0.455
Log likelihood -2327.4 -2330.6 -2329.2 -2328.9
n =580
**p<0.01
*p<0.05
B.2 Selection of effective shading planes
&
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Figure B.1. Selection of effective shading planes using solar angles (where black dots are the effective neighbourhood

buildings out of all the adjacent buildings).
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Table B.2. Pre-processing of potential shading planes.

Algorithm: Construction and analysis of effective shading neighbourhood buildings.

1. Search for neighbourhood buildings adjacent to target archetypes (i); s and n represent
the size of the data set for target and neighbourhood buildings, respectively.
Loop:
Fori:=1tosdo

Forj:=1tondo
NA-area 7
NBU-building usage
ND-distance

f (i, Ssui, Sair Soi
NE-fioors ( e I)

—

NG-angle

NH-height

No-orientation
done
2. Calculate solar altitude angle (8) for specific location
I f (declination angle, latitude, hour angle)
3. Extracted potential shading buildings
Loop:
Forj:=1tondo

NSH-shadow length - 1G9, nH,-)
Pn extract (Npj < Nst)
done

4. Shadow pre-processing to determine effective shading neighbourhood building
Loop:
Fori:=1tosdo
Forj:=1tondo
Mn -~ extract {Pn (Min(np;), Max(nw;))}

Done
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3.6.3 Appendix C

Table C.1. Overview of key evolution factors for different scales (SBJ, 2017; TSY, 2019).

Factors National Tokyo Chuo
Mean lifetime (years) 30 26.7 295
Shape parameter (k) 1.1-16 1.1-1.65 1.1-15
Newly constructed buildings (%) 1.57 1.49 0.85
Renovation time cycle (Tren) 30 years

3.04 Appendix D. Settings for building stock energy simulation

D.1. Stochastic occupant behavior model

In this study, a stochastic occupant behavior model was used based on a person-based occupancy
approach (Yamaguchi et al. (2022)). This occupancy approach consisted of three main features:
1) determination of nominal building area capacities for each RBM; 2) implementation of
different occupancy modes for building system operations, such as unoccupied building, stand-
by zone, and occupied zone; and 3) consideration of main occurrences. This method initially
determined the number of building users and nominal building area capacities (or typical per
capita area) for each RBM. Subsequently, the occurrence of events, arrival time, duration of stay,
and out-of-building activities was determined stochastically by assigning a uniform random
number to cumulative probability distributions.

D.2. Climate change

Climate models provide a better understanding of how climate change will happen in the near
future. These models are constantly updated and expanded based on future emissions scenarios
and different sets of assumptions. This study used the sixth Coupled Model Intercomparison
Project (CMIP6) to generate future weather files for building stock energy simulations (Karl-
Hermann et al. (2019)). To obtain these future weather datasets, a statistical downscaling method,
and morphing were used to stretch and derive different climate variables, such as dry-bulb and
dew-point temperatures, relative humidity, atmospheric pressure, wind speed, and solar radiation.
This process consisted of the following steps: 1) selection of scenarios and other output settings;
2) mapping of CMIP6 output file and output settings; and 3) creation of future weather file from

the morphed variables.
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3.6.5 Appendix E
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Figure E.1. Classification of building typologies for hotel stock across different scales: a) shape indices and (b) shape
extraction of cluster 4 (Each dot represents the specified value of shape indices for each building, while different colors

represent the representative cluster of stock).
3.7 Supplementary data

Supplementary data to this chapter can be found online at:
https://doi.org/10.1016/j.apenergy.2022.119536
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4 Carbon neutrality assessment using bottom-up BSEM and BIPV model
4.1 Purpose

As per the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (ARG6),
Sufficiency, Efficiency, Renewable (SER) framework enables the identification of key drivers
and determinants to consider for the decarbonization of building stock (Cabeza et al. (2022)). The
implementation of the SER framework requires the integration of a building energy model and
BIPV potential estimation approach to consider a combination of efficiency measures, active and
passive design strategies, and renewable distributed energy resources (DERS). Moreover, with the
availability of geographic information system (GIS) data, some of the studies have recently
focused on GIS models to develop UBEM that bridge a gap within conventional bottom-up
models by adding spatial dimension (Ali et al. (2021); Dahlstrom et al. (2022)). This approach
can integrate multiple building elements and transitional measures to not only improve the
calculation accuracy but also capture the spatiotemporal dynamics of building energy use and
carbon emissions. In terms of BIPV potential estimation, the solar potential assessment at high
spatiotemporal resolution is highly challenging owing to computational and modelling
complexities (Gassar and Cha (2021)). However, there is no evidence of studies capable to couple
these approaches at a large scale either due to the infeasible choice of implementation method or
the non-availability of a comprehensive database (Saretta et al. (2019); Chang et al. (2023)). Most
of the previous studies mainly focused either on the energy-related characterization of building
stock (Fonseca and Schlueter (2015); Mohammadiziazi et al. (2021); Zhang et al. (2022)) or the
estimation of solar potential (Ghaleb and Asif (2022); Thebault et al. (2022)). Therefore, an
integrated approach needs to be developed for the consideration of the SER framework for
estimating the overall decarbonization potential of the commercial building stock.

To address these limitations, this chapter proposes a GI1S-synthetic hybrid bottom-up simulation
model coupled with a physical-based approach of BIPV potential estimation to consider the
demand-supply synergy of commercial building stock at multiple scales. The main aim is to
illustrate a coupled workflow that facilitated the homogenous use of a comprehensive GIS dataset
to provide the necessary coordination of building stock interventions with renewable DERs at the
multi-scale level, leading to further improvement in the methodological characterization to
evaluate the carbon neutrality of commercial building stock. The decarbonization scenarios and
strategies are further designed to demonstrate the applicability of the proposed coupled approach:
(1) to determine the emission reduction potential of commercial buildings under different stock
interventions and penetration of renewable DERs; and (2) to quantify the spatiotemporal
evolution of energy demand and decarbonization potential across different scales.
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4.2 Methodology

This study proposed a GIS-synthetic hybrid UBEM model (Perwez et al. (2022)) coupled with a
physical-based approach of BIPV potential estimation (Cheng et al. (2020); Shono et al. (2023))
to incorporate a building-level energy model at a large scale that could evaluate the feasibility of

carbon neutrality of commercial building stock at a multi-scale level. The proposed scheme is

applied to the commercial building stock of the Tokyo region that involves 1593 postcode

districts and 54 cities with a total floor area (TFA) of 195 million m2. As illustrated in Figure 4-

1, the framework utilized multiple steps to model the energy demand and supply of commercial

building stock.

1.

The UBEM model used a data-driven formulation to integrate geo-referenced and synthetic
stock models. The building stock was initially segmented by using a GIS dataset that mainly
consists of physical elements (geometric and non-geometric data). Thereafter, statistical
technique (or machine learning) was applied to the sample dataset to assign technical
elements, building systems and ESMs, to the building stock. After the development of a
hybrid stock model, reference building models (RBMs) were developed and then dynamic
building simulations were performed to obtain the energy demand patterns at the building-
by-building level.

The BIPV potential estimation approach used a physical-based technique to develop a roof-
facade framework that utilized an identical GIS dataset for calculating the point-based
irradiance while considering the shading and sky view factor and then converted those
irradiances to estimate solar energy potential at the building-by-building level.

After the development of the UBEM-BIPV coupled approach, decarbonization scenarios and
strategies were constructed to consider active, HVAC systems, lighting and equipment
retrofits, and passive, building envelopes and storages, design measures, and renewables.
The carbon neutrality assessment of demand-supply scenarios and strategies was performed

at the spatiotemporal level by considering specified performance metrics.
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Figure 4-1. Schematic overview of UBEM-BIPV coupled approach.

UBEM model

4.2.1

A model for the estimation of building energy demand was developed based on the GIS-synthetic

hybrid approach as explained in detail in Perwez et al. (2022). In the initial stage, a geo-referenced

dataset consisting of physical elements was obtained and then, outlier detection and feature

selection techniques were applied to the dataset to remove anomalies and obtain the most feasible
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variables. After this, clustering segmentation was performed by using a multi-variate K-means
algorithm. This process was further improved by applying different similarity (or distance-metric)
measures to each cluster validation index and then, a unified clustering validity measure,
cohesion-dispersion index (CDI), was proposed to find out the optimum number of clusters.
Subsequently, the characterization of physical elements was performed by using a deterministic
approach involving the computation of the weighted average of characteristics associated with
each RBM.

Synthetic element modelling was performed to consider technical elements in the UBEM model.
Initially, the socio-spatial predictors, building characteristics, demographics, heating degree days
(HDD), and age-band classifications, are assigned to the sample dataset and then, the logit model
is applied to obtain the coefficients of these predictors. The probability of each system
classification (or ESMs) for a specific building within the stock was quantified by multiplying the
obtained regression coefficients with real predictors of buildings. After obtaining the
probabilities, the system alternatives were selected depending on the most probable alternative
for a specific building. This resulted in the concurrent consideration of physical and technical
elements for the development of RBMs. Moreover, the RBMs were developed by using an
automated dynamic building simulation platform, which executed modelling stages through
Python and R scripts to generate input files for EnergyPlus. The RBMs were validated considering
metered energy data by using multivariate (or Bayesian) calibration technique and then further
simulated to estimate the energy demand patterns of the commercial building stock.

4.2.2 BIPYV potential estimation approach

A physical-based BIPV roof-facade framework is developed by extending a point-based sampling
approach (Cheng et al. (2020)) to a higher spatiotemporal level and further validated with a
simulation engine (Shono et al. (2023)), which consists of five steps that involve: (1) Data
collection and transformation, (2) sensor point generation, (3) elevation angle calculation, (4)
solar irradiance estimation, and (5) PV potential estimation.

1) Data collection and transformation: The data retrieval workflow included a collection of
datasets related to 2D building footprints (TUDB, 2017), horizontal solar irradiance, and
meteorological conditions (JMA, 2022). In data transformation, the 2D polygons obtained
from the Tokyo City Planning Geographic Information System (2017) were extruded into 3D
models by using Tokyo survey sample data (Ashie and Kagiya (2010)) that contains average
floor height as per building type and usage.
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2) Sensor point generation: The building rooftop and fagade were discretized into point arrays
by using a pre-defined sampling distance of 3 meters. Voronoi division was performed to
obtain the representative area (3m x 3m) of the sensor point.

3) Elevation angle calculation: The surrounding region of each sensor point was divided into
72 directions by setting an angular interval of 5° and then, the maximum elevation angle was
calculated for each angular interval. Moreover, to consider the effects of shadow, the
maximum shaded angle 6,,,, was determined by obtaining the elevation of senor point z,,
distance and height of surrounding buildings.

4) Solar irradiance estimation: Solar irradiation, which mainly consists of direct and diffuse
irradiance, was calculated while considering the effect of shading and sky view factor (see
Appendix A). The solar constants and angles were calculated based on Mghouchi et al.
(2016). For direct irradiance, the direct normal radiation obtained from the weather data and
incidence angle were used to calculate the irradiance for each sensor point. For diffuse
irradiance, the anisotropic diffuse model proposed by Perez et al. (1986, 1987) was used to
calculate three diffuse components: (i) circumsolar, (ii) sky dome, and (iii) horizontal diffuse
irradiances.

5) PV potential estimation: The equivalent power capacity was calculated by considering the
conversion efficiency and nominal operating cell temperature (NOCT) model (Duffie and

Beckman (2013)) to estimate the solar potential.
4.2.3 Decarbonization scenarios and strategies

The scenario analysis was performed to demonstrate the applicability of the proposed coupled
approach to quantify the spatiotemporal evolution of energy demand and decarbonization
potential across different scales. The scenarios considered the effect of building energy
efficiency measures, penetration of renewable DERs, and carbon emission intensity (CEI)
factors. To investigate the demand-supply synergy of commercial building stock at a multi-scale
level, this study constructed three demand-side, base, potential, and electric scenarios that
involve several decarbonization strategies, and multiple supply-side scenarios were selected
based on key design and planning parameters of BIPV as shown in Table 4-1 and Table 4-2
respectively. In terms of demand-side scenarios, the base scenario was assumed to follow the
current policy pattern with the non-adoption of new reduction measures. All the available
decarbonization strategies, active and passive design measures, except electrification were
adopted to estimate the maximum reduction potential in the potential scenario, whereas the
electric scenario assumed electrification of heating and cooling source systems. On the supply-
side, sensitivity analysis was performed based on the BIPV generation threshold, cell efficiency,
and utilization factor to select the most feasible scenario in terms of the level of the penetration
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rate of BIPV. The generation threshold is a criterion to determine the suitability of the BIPV

installation area on the basis of annual incident solar radiation. The utilization factor is the ratio

of the available rooftop area for PV installation to the total rooftop area of the building. For

sensitivity analysis, nominal values of key design and planning parameters of BIPV were

considered to estimate the variance in terms of yearly BIPV potential output on the basis of an

individual parameter. This study employed a mono-crystalline PERC cell type with an efficiency

of 20.43% whose specifications are listed in Table 4-3 (Jinko Solar, 2021). The range of cell

efficiency is considered between 20% to 30% in order to consider the futuristic improvement of

PV technology. Moreover, the different levels of CEI factors were used as per Tokyo Electric
Power Company (TEPCO, 2016) and Tokyo Gas (TG, 2021) to quantify the carbon emissions
of commercial building stock across different demand-supply scenarios as shown in Table 4-4.

Table 4-1. Description of decarbonization strategies at the demand-side.

Parameter

Base

Potential/Electric

Envelope (Supplementary

Table S1.1)

Lighting (Supplementary
Table S1.2)

Appliance
(Supplementary ~ Table

S1.2)

System stock composition
(Appendix Table B1 and
B2)

System efficiency

improvement (Appendix

Table B3)
Ventilation and  heat
delivery measures

(Appendix Table B4)

Thermal Storages

Current envelope standards
remain unchanged
Conventional lighting
devices (fluorescent and

incandescent lamps)
Calibrated as per metered

data

Current system types

remain unchanged

Same as base level

Same as base level

Additionally insulated to improve building performance standards

1. All lighting devices are replaced with LED.
2. Daylighting control is considered with indoor illuminance and limiting

glare of 500 lux and 22 index respectively.

40% reduction from the base level

In Electric scenario, all the systems are

In Potential scenario, Absorption
electrified by considering Elect-VRF and
chillers are replaced with Solar
AHP for decentralized and centralized

heating and cooling.

systems.

Improvement in COP standards

All possible combinations of these measures are considered

For passive thermal storage, Phase change material (PCM) is considered, whereas
in terms of active thermal storage, thermal ice storage is coupled either with an air-

source heat pump (AirS-HP) or Comb-EG.
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Table 4-2. Sensitivity analysis of key design and planning parameters of BIPV.

Parameter Units Roof Facade

Cell efficiency (%) 0-1 20, 25, 30

Generation  threshold
1-0 No, 400, 600, 800, 1000
(KWh/(m?-year))

Utilization factor 0-1 0.1,0.3,05,0.75, 1 1

Note: Bold values indicate nominal values.

Table 4-3. Specifications of BIPV module.

Parameter Description

Cell type Mono-crystalline PERC
Dimensions (mm) 1855 x 1029 x 30
Maximum power (W) 390

Cell efficiency (%) 20.43

Temperature coefficient of maximum power (%/°C)  -0.35

NOCT (°C) 45+2

Table 4-4. Overview of carbon emission intensities (CEI) for different fuels.

Fuel Baseline 2030

0.47 (TEPCO, 0.25 (MOE,
Electricity (kgCO2/kWh)
2016) 2016)

Gas (kgCO2/Nm?d) 2.21 (TG, 2021)

42,4 Carbon neutrality assessment

In this study, the performance assessment of these scenarios was performed at the static and
dynamic temporal level by using two metrics: self-sufficiency (SS) and import/export index
(11/E1) (Sartori et al. (2012); Ala-Juusela et al. (2016)). These metrics were selected that fit the
scope to be utilized with the further consideration of more physical energy infrastructures, electric
vehicles and storages, which lead to load shifting and flexibility. The SS is formulated to estimate
the percentage of energy demand met by renewable energy at annual temporal resolution. SS
varies between 0 and 1, with a value equal to 0 and 1 depicting all annual energy demand needs
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to be imported and all annual energy demand is met by local renewable energy supply
respectively. The II/El index is developed to assess how well the energy demand and supply are
balanced at an hourly temporal resolution that provides quantification of excess or deficit local
renewable supply relative to energy demand. II/El index equal to O indicates that energy demand
is met by local renewable energy at a particular hour, whereas a positive (or export index (EI)
value of the index (greater than 0) indicates the amount of hourly surplus of local renewable
supply to the energy demand at that particular hour and a negative value (or import index (I1)) of
the index (varies between -1 and 0) indicates the amount of hourly deficit of energy demand to
the local renewable supply at that particular hour. The SS and II/EI indices were expressed as:

Es a
SS = 2 -
Ern 4-1
Es hr — Ed hr
I/E] = ———
/ Eqnr 4-2

where Es, and Espr are the BIPV supply at annual and hourly temporal resolution respectively,
and Eq. and Eqp is the total energy demand of the building stock at annual and hourly temporal
resolution respectively (whereas the annual aggregated units are specified in terms of MJ (or TJ
or PJ) and the hourly units are specified in terms of MW). Hence, larger SS and EIl are both
desired.

4.3 Results
4.3.1 Building stock analysis

This analysis presents the results related to the development of RBMSs based on the geo-referenced
and sample datasets. The data-driven approach involving data pre-processing and segmentation
was performed on the geo-referenced dataset resulting in 17 RBMs on the basis of physical
elements (see Appendix C). Furthermore, the logistic regression technique was applied to the
sample dataset to assign technical elements to each building within the stock. As a result of the
hybrid approach, the development of 17.2 million (17 clusters x 3 construction types x 6 vintages
x 5 system age-band x 256 ESMs combination x 44 HVAC systems) RBMs was possible. To
reduce the number of RBMs, aggregated criteria combined buildings that exhibited the same
classification in terms of the building size, construction type, age band, ESMs, and HVAC
systems. For example, the aggregated criteria reduced 91,299 actual buildings in the Tokyo region
to 7,145 RBMs for the base scenario. In the case of other scenarios, this specified criterion
reduced models to 1,280 and 440 RBMs for potential and electric cases, respectively.
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Figure 4-2 shows the composition of commercial building stock for different scenarios. In terms
of building usage and vintage, it is observed that the office segment constitutes a major proportion
of floor area with higher built-up density, whereas the average age-band of existing stock is 1990
that estimated to transition to 100% highest insulation level (or 2010 level) for potential and
electric scenarios. The composition of the heat source of HVAC systems showed that the
proportion of AHP increased from 6% in the base case to 31% in the electric scenario, whereas
the potential scenario constitutes 10% of solar heating and cooling systems with the replacement
of absorption chillers. The adoption of ventilation measures showed the aggressive deployment
of ESMs in potential and electric scenarios as compared to the base case.
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Figure 4-2. Composition of commercial building stock for different scenarios: (a) building usage (Appendix C); (b)

envelope; (c) HVAC system heat source (Appendix Table B1); and (d) ventilation measures (Appendix Table B4).
4.3.2 Aggregated evaluation

1) Energy demand

To validate the UBEM model, the archetype and aggregated-level validations were performed, as
explained in detail in Perwez et al. (2022), that showed the model estimate agreed well with a
difference of 10.2% and -1.9% in terms of the coefficients of variation for the root mean square
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error (CV(RMSE)) and normalized mean bias error (NMBE) respectively. Figure 4-3(a) shows
the cumulative frequency distribution of energy use intensity (EUI) across the commercial
building stock. The EUI range varied from 126 to 6321 MJ/(m2-year) with a mean value of 1558
MJ/(m2-year). In terms of segment-wise, the EUI pattern shows left-side skewness due to school
buildings, whereas long-tail distribution representing higher EUI levels was mainly due to the
hotel and hospital buildings. Figure 4-3(b) shows the average hourly energy demand of
commercial building stock at the regional level and to compare load profiles, the daily load factor
is calculated as the ratio between the average daily demand and daily peak demand. As observed,
the peak demand occurred in the summer month for electricity®, whereas gas peak demand
happened in the winter month. In terms of peak demand analysis, it is observed that a higher load
factor is observed in spring which depicts a better utilization rate, whereas a lower load factor is
observed in winter due to higher maximum peak demand for heating.
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Figure 4-3. (a) Cumulative frequency distribution of EUI across the commercial building stock; (b) Average hourly
regional electricity demand of commercial building stock.

2) Reduction potential

At a regional level, the primary energy consumption of commercial building stock is estimated
to be 316 PJ/year in the base case. The incorporation of multiple measures resulted in a reduction
potential of 49% with a significant decrease in gas consumption by 68% to 78% as shown in
Figure 4-4. In terms of end-use, space heating and cooling demand were reduced by 68% which
implied the potential impact of active design strategies on the demand side. Figure 4-5 shows the
average hourly regional electricity and gas demand considering seasonal changes and the impact
of various measures on commercial building stock. The incorporation of multiple measures also
resulted in a peak average ratio to decrease by 18% and 65% for electricity and gas respectively.

1 Anunnatural peak observed in the winter month due to stochastic synchronization of occurrence
of occupancy events with the HVAC system operation schedule (Yamaguchi et al. (2022)).
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The scale of the change of gas demand in the electric scenario was not significant in comparison
to the potential scenario due to a large portion of heat sources using gas boilers being shifted to
solar HVAC in the potential scenario. Consequently, the dissemination of electrification of
exterior equipment (or for cooking purposes) was not considered in the electric scenario.
Moreover, the monthly values during winter months were significantly reduced when system
efficiency improvement and highly insulated envelopes were implemented, whereas the
upgradation of lighting and appliances resulted in the reduction of energy demand during summer

months.
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Figure 4-4. (a) Annual primary energy consumption of commercial building stock across different pathways (Note:

negative values indicate the reduction induced by each measure between the transition of pathway).
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Figure 4-5. Average hourly regional electricity and gas demand considering seasonal changes and the impact of various
measures on commercial building stock (Note: negative values indicate the reduction induced by each measure between

the transition of pathway).
3) BIPYV potential estimation

To consider different levels of the penetration rate of BIPV on the supply-side, key design and
planning parameters, PV generation threshold, cell efficiency, and utilization factor, were
considered to perform the sensitivity analysis for selecting the most feasible supply scenarios.
Figure 4-6 shows the sensitivity analysis of key design and planning parameters of BIPV on
yearly supply potential. The cell efficiency shows a strong correlation with PV potential in
comparison to other parameters. Moreover, the PV rooftop has a dominant role in the energy
generation potential of BIPV. The roof-facade pairwise analysis shows that the utilization factor
is more critical in the deployment of PV rooftop, whereas the deployment of PV facade is more
sensitive to generation threshold criteria. Overall, it is found that generation threshold criteria of
1000-400 kWh/(m?-year) for roof-facade and 30% utilization of rooftop are selected in terms of
deployment suitability and yearly potential output. Hence, two BIPV supply strategies are
considered to further perform demand-supply assessment: (1) 1000 kWh/(m?-year) as PV roof
threshold and 400 kWh/(m?-year) as PV facade threshold, 20% cell efficiency and 30% utilization
factor (S1), and (2) No roof-facade threshold, 30% cell efficiency and No utilization factor (S2).
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Figure 4-6. Sensitivity analysis of key design and planning parameters of BIPV on a yearly supply potential.
Figure 4-7 shows the composition and annual generation of BIPV for different supply strategies.
The installed capacity of BIPV increased from 78 to 243 million m? area in S1 and S2 strategies
respectively, which showed a four-fold increase in the overall potential of yield area. The area of
the roof accounted for 23% to 26% of the total installed capacity, while the PV generation
accounted for 42% and 60% in S1 and S2 strategies respectively. This indicated the high yield of
PV rooftop that signify the importance of utilization of roof area in a high-density urban
environment. Moreover, the duration curve shows a considerable difference in supply peak with

a steep gradient observed in the overall potential estimation (or S2) strategy.
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Figure 4-7. (a) Composition of BIPV module area for different supply strategies; (b) BIPV annual generation for
different supply strategies at the regional level; and (c) load duration curve of different supply strategies.

4) Carbon neutrality assessment

The annual energy balance and emission reduction potential of commercial building stock across
different demand and supply-side strategies are shown in Figure 4-8. At a regional level, SS
improved from 0.16 to 0.63 with 2.5 times improvement among both scenarios that show higher
utilization of BIPV yield higher SS. In terms of emission reduction potential under different
intensities (CEl), it is found that the annual CO, emissions decreased by 84% with the adoption
of ambitious demand-supply strategies illustrating that carbon neutrality of the commercial
building stock requires further concrete measures. Moreover, the demand-side efficiency
measures resulted in the largest emission reduction potential, ranging from 10.3 to 15.4
MtCOa/year reduction, whereas the share of BIPV ranges from 2.2 to 10.1 MtCOz/year reduction.
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Figure 4-8. Annual energy balance (a) and emission reduction potential (b) of commercial building stock across

different demand and supply-side strategies at the regional level.

As per dynamic energy balance analysis, as shown in Figure 4-9a, it is observed that the peak
value of grid import reduces by 21% and 59% with the adoption of ambitious demand-supply
strategies in the summer and winter seasons respectively, whereas the time-duration of grid
import occurred at both day-time and night-time. The peak value of grid export increased
manifold with maximum resource utilization of BIPV, whereas the time-duration of grid export
mostly occurred during the daytime. Moreover, the difference in onsite consumption is mainly
due to the difference in PV generation and demand levels. In terms of performance assessment
(Figure 4-9b), the highest total number of hours of grid export is observed during the spring
season, whereas El improved up to 2.43 at noon time with the adoption of ambitious demand-
supply strategies. Moreover, Fig. 8¢ shows the load duration curve of commercial building stock
across different demand and supply-side strategies at the regional level. The negative net load
duration increased from 0.8% (Base-S1) to 23% (Potential-S2) with the total number of hours

with grid export increasing from 78 hrs to 2020 hrs in the year respectively.
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Figure 4-9. (a) Average monthly dynamic energy balance; (b) performance assessment; and (c) load duration curve of

commercial building stock across different demand and supply-side strategies at the regional level.

4.3.3 Multi-scale evaluation

1) Energy demand

Figure 4-10 shows the scale-level distribution of EUI and the average daily load factor. In terms

of variation in energy demand, it is observed that the larger the description of a scale, the lower
the EUI. This was because of varying building stock compositions that exhibit energy hot spots
in a few districts of each city. In terms of peak demand analysis, it showed a significant deviation
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of load factor that varied between the range of 0.22 to 0.82. This also demonstrated higher
variability of load factor with the transition from larger to smaller scale, whereas peak damping
is observed at a larger scale. Moreover, the load factor seems to be more sensitive to seasonal
changes resulting in more deviation and lower load factor in the winter season that demonstrates
the pronounced effect of heating demand on peak load.
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Figure 4-10. (a) Distribution of EUI; and (b) Comparison of average daily load factor across different scales.

2) Reduction potential

Figure 4-11 shows the spatial distribution of primary energy consumption at the city scale for
different pathways. The primary energy consumption has a strong spatial dependence with higher
variance in dense urban areas, whereas the spatial distribution for electric and potential scenarios
as expected are nearly identical due to the maximization of building efficiency. The distribution
of primary energy consumption of the districts and cities indicated more skewness and stacking
with the incorporation of demand-side efficiency measures (see Supplementary Fig. S1). The
percentage of districts ranged lower than 50 TJ/year increased from 59% in the base case to 71.6%
and 73.6%, whereas in the case of cities, the primary energy consumption lower than 2000
TJlyear increased from 53% in the base case to 73% and 75% for electric and potential scenarios
respectively.
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Figure 4-11. lllustrative city scale map of the spatial distribution of primary energy consumption for various pathways.
The measure-by-measure comparison, as shown in Figure 4-12, showed that the most impactful
decarbonization measures are system efficiency improvement, and the upgradation of lighting
and appliances that varies across the scales. In contrast, PCM and daylighting control caused
negligible impact due to internal heat gain and loss effects. The active-passive measures pairwise
comparison shows that only 10% reduction potential was attributed to passive design measures,
whereas 90% reduction potential is due to active design measures. This demonstrates that simply
focusing on passive design measures, envelope insulation, and natural ventilation, is not enough
to decarbonize commercial building stock.
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Figure 4-12. Reduction potential of demand-side measures across different scales: a) Active; and b) passive measures.
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3) BIPYV potential estimation

Comparing different BIPV supply strategies at various scales, it is found that the total PV
potential of districts ranged greater than 50 TJ/year increased from 8.9% to 34.7%, whereas in
the case of cities, the total PV potential greater than 1000 TJ/year increased from 20.4% to 51.8%
for S1 and S2 supply scenarios respectively (see Supplementary Fig. S2). Figure 4-13 shows the
temporal variation of BIPV generation across different scales. The maximum absolute deviation
(MAD) is also shown on both sides of the generation pattern to indicate the diurnal variability
across the number of districts and cities. The total BIPV potential changes in the order of
magnitude of 29 to 54 with the variation of scale that presents a favourable transitional
decarbonization supply choice to incorporate BIPV at a large scale. The highest electricity yield
is observed in spring with generation variability across the whole year due to changes in climate
conditions. In terms of roof-fagade pairwise hourly analysis, it is observed that the PV facade
gives an added value by providing a similar and steady supply during the period of low potential
output (early morning or late afternoon) in comparison to the rooftop. The high potential supply
period increases with the relaxation of threshold and utilization factor constraints. Overall, this
demonstrates the dominant role of maximum resource utilization of building roof and fagade on
total BIPV potential.
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Figure 4-13. Average hourly BIPV generation across different scales: i) District; ii) city; and iii) regional level (showing

the amount of added potential with the change in integration level).
4) Carbon neutrality assessment

As per the scale-bounded emission reduction potential analysis, as shown in Figure 4-14, it is
observed that the annual carbon peak reduced by 59.4% and 61.5% with the adoption of demand-
side efficiency improvement and integration of BIPV at district and city scales respectively. The
improvement of CEI resulted in a further reduction of the annual carbon peak from the range of
0.72-1.74 MtCO:z/year to 0.40-0.97 MtCO-/year at the district scale, whereas the annual carbon
peak reduced from the range of 2.24-5.55 MtCO-/year to 1.24-3.09 MtCO-/year at city scale. In
the Base-S1 scenario, the annual carbon emissions of most districts and cities that presented 40%
of the stock TFA were below 0.12 and 1.67 MtCO-/year, whereas in the Electric-S2 scenario, the
annual carbon emissions of most districts and cities that presented 40% of the stock TFA were
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below 0.04 and 0.5 MtCOa/year respectively. This highlights the significant spatial variation of
annual emission reduction potential that depicted the analytical capability of the UBEM model.
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Figure 4-14. Annual emission reduction potential under different intensities, (a) CEI=0.47 and (b) CEI=0.25, for
different scales: i) District; ii) city; and iii) regional level.

Figure 4-15 illustrates the spatial distribution of SS at the city scale for various demand-supply
pathways. In the Base-S1 scenario, the SS of most cities were below 0.4, and in some cities, the
SS were above 0.6, whereas in the Electric-S2 scenario, the SS of most cities were above 1, and
in some cities, the SS were below 0.4. This highlights the significant spatial variation of SS with
the adoption of demand-side efficiency improvement and integration of BIPV.
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Figure 4-15. lllustrative city scale map of the spatial distribution of SS for various demand-supply pathways.
The scale-bounded comparison, as shown in Figure 4-16(a), shows that the ambitious demand-
supply strategies, Potential-S2 or Electric-S2 scenarios, resulted in sharp skewness of SS
percentage at the building-by-building level. Among the different demand-supply strategies, SS
greater than 1 increased from 14.4% in the Base-S1 scenario to 70.1% in the Potential-S2 scenario
at the building-by-building level. At other scales, 28% of districts transition into net positive
energy districts, whereas, at the city scale, 22% of cities become net positive energy cities with
the implementation of ambitious demand-supply strategies. In terms of average performance
assessment (Figure 4-16b), the grid indexes showed similar temporal patterns with the variation
of the magnitude across the scale. In the S1 scenarios, BIPV generation is mostly self-consumed
at the regional level with maximum time-duration of grid import happening even in daytime,
whereas most of the districts and cities showed much higher grid export in the daytime with the
peak El at 1.12 and 0.82 respectively. Meanwhile, the implementation of the ambitious demand-
supply strategies, S2 scenarios, resulted in maximum time-duration of grid export in the daytime
with the peak EI reaching up to 4.42, 3.92 and 2.43 for districts, cities and regional levels.
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Figure 4-16. (a) Self-sufficiency analysis of commercial building stock across different scales: i) Building-by-building;
ii) district; and iii) city level; (b) average dynamic performance assessment of different demand and supply-side

strategies across different scales: i) District; ii) city; and iii) regional level.

4.4 Discussion

4.4.1 Development of UBEM-BIPYV coupled approach

With the development of the proposed hybrid UBEM workflow, the model builds upon the
building-level data obtained from GIS to facilitate consideration of a series of geometric and non-
geometric parameters, and further utilized synthetic element modelling to assign technical
elements to the commercial building stock. As shown in Section 4.3.1, this multi-stage process
enhanced the analytical capability of the model by concurrently incorporating physical, technical,
and socio-behavioral factors within a commercial building stock. Moreover, the integration of the
physical-based approach of BIPV potential estimation resulted in the calculation of the point-
based solar irradiance at a range of spatial scales with reduced computational time. From a
practical implementation process, this further informs the stakeholders about the varying aspect
of the adoption of BIPV technologies in the urban environment. Overall, this UBEM-BIPV
coupled scheme enables the coordination among different methodological characterizations to
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adequately manage the degree of complexity and modelling resolution for the energy transition

of the commercial building stock.
4.4.2 Relationship between decarbonization strategies

In terms of reduction potential, the incorporation of multiple active and passive design measures
resulted in a reduction potential of 49% with a significant decrease in gas consumption by 68%
to 78%. The comparison of the reduction potential of these design measures in commercial
building stock shows that only 10% reduction potential was attributed to passive design measures,
whereas 90% reduction potential is due to active design measures. This demonstrates that simply
focusing on passive design measures, envelope insulation, and natural ventilation, is not enough
to achieve carbon neutrality in commercial buildings. Thus, the concurrent consideration of active
and passive design measures needs to be investigated when performing a carbon neutrality
assessment of commercial building stock. Moreover, it is worth noting that when all the
decarbonization strategies are simultaneously deployed, it is found that the annual CO; emissions
decreased by 84% with the simultaneous implementation of all the measures illustrating that
carbon neutrality of the commercial building stock requires further concrete measures.

4.4.3 Scalability

Considering the evaluation capabilities, Section 4.3.3 shows that the differences in the demand
reduction and BIPV potential exist across different scales due to varying structural and system
stock composition, and urban morphological characteristics. However, the research gap of
coupling the UBEM-BIPV scheme exists in the previous multi-scale studies that either only
established UBEM models for a different scope (like residential building stock) (Nutkiewicz et
al. (2018); Yang et al. (2022)) or focused only on estimating BIPV potential in an urban
environment (Cheng et al. (2020); Liu et al. (2023)). This implies that the proposed coupled
scheme identifies various drivers and determinants to better understand the mechanisms and
conditions leading to different demand and supply levels across the scale. Additionally, the
carbon neutrality assessment of commercial building stock (Section 4.3.3(4)) indicates that the
maximum co-benefit of demand-side efficiency improvement and integration of BIPV is
observed at building-by-building level with 70% of buildings has SS greater than 1 while at other
scales, 28% and 22% of districts and cities transition into net positive energy districts and cities
respectively. This spatial imbalance is mainly due to typological utilization constraints and
diverse functionalities of commercial buildings. Therefore, those studies focusing on the
optimization of a single building model result in insignificant or redundant findings at a larger
scale.
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4.4.4 Future work and limitations

Although the developed coupled scheme demonstrated improved adequacy at the multi-scale
level and could be further applied to different regions, there are still some limitations that need
to be addressed. An auto-calibration framework needs to be developed that can transform the
existing multi-scale UBEM model into a scalable model, ensuring transparency at a granular level
by providing a comprehensive insight into uncertainties at the spatial level. In a physical-based
BIPV potential estimation approach, an anisotropic hourly diffuse radiation model is used without
considering the ground-reflected irradiance that needed to be involved. Moreover, future work
will be extending this GIS model to perform techno-economic analysis of physical energy
infrastructure, electric vehicles, storages, and synthetic gas generation, for assessment of
emerging technologies, and in terms of modelling capabilities, lifestyle changes (teleworking and
relaxation of room set point temperature) and effect of socioeconomic factors on the
implementation of decarbonization strategies need to be considered.

4.5 Conclusion

This study presents a GIS-synthetic hybrid UBEM model coupled with a physical-based approach
of BIPV potential estimation to incorporate a building-level energy model at a large scale that
could further evaluate the feasibility of carbon neutrality of commercial building stock at a multi-
scale level. As a case study, the proposed coupled scheme is applied to the commercial building
stock of Tokyo to evaluate the cofound influence of active and passive design measures, and
BIPV on the overall decarbonization potential. Results show that the annual CO2 emissions can
be reduced by 84% with the simultaneous implementation of all the measures. The measure-by-
measure comparison showed that the most impactful demand-side efficiency measures are system
efficiency improvement, and the upgradation of lighting and appliances while passive design
measures only contribute a 10% reduction potential which is not enough to achieve carbon
neutrality in commercial buildings. BIPV has a dominant role that satisfies 8% to 16% and 34%
to 63% of electricity demand if threshold constraints and full exploitation of building surfaces are
considered respectively. However, BIPV contributes 16% to 40% of the decarbonization potential
which is less than demand-side efficiency measures. The scale-bounded comparative analysis
shows that total PV potential changes in the order of magnitude of 29 to 54 with the variation of
scale (with reference to district scale) and higher self-sufficiency are observed at the building-by-
building level in comparison to district and city scales. This demonstrates that this coupled
approach can provide a purpose-driven perspective of the energy transition at multiple scales with
reduced computational time. Overall, this analysis provides a multi-level perspective to energy
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modelers and policymakers on how to achieve the carbon-neutral goal in commercial building
stock.

4.6 Appendix
4.6.1 Appendix A. Development of a physical-based BIPV potential estimation

This approach is developed by initially using a 3D GIS database and then sensor points were
generated at a specified distance to calculate the point-wise irradiation (Shono et al. (2023)). For
solar irradiance estimation, the direct solar irradiance (B) was calculated as follows:

B = B, cosi A-1

where By is the direct normal radiation and i is the incidence angle. To consider the effects of

shadow, the maximum shaded angle was determined by:

_1 Zmax ~ Zp

0 = tan ETEE s —
max dis(P, Qmax)

A-2
where zmax is the elevation of the highest surrounding building point Qmax for each sensor point
and dis(P, Qi) is the horizontal distance between the two points. The diffuse solar irradiance was
estimated by using the anisotropic diffuse model as proposed by Perez et al. (1986 & 1987). The
sky view factor (Fsky) was calculated as follows:

2m T/2

1
Foy = Ef f sin (6,) cos(6,) df, dA A3
)

where 6, is the zenith angle, A is the azimuth angle, and v(1) is the maximum shading angle
Omax 1n direction A. For PV potential estimation, the equivalent power capacity was calculated
as follows:

A
P=G (—) A-4
X1exnex (g

where G is the global irradiance (Wh/m?), A is the representative area (m?) of each sensor point,
7 is the conversion efficiency of the PV module, 7, is the temperature coefficient of the PV

module, and f is the slope angle of the PV module.
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4.6.2

Table B.1. Types of heat source in HVAC system.

Appendix B. Types of HVAC systems and other measures.

Heat source for Thermal
Type Heat source for cooling
heating storage
Elec-VRF Electricity-driven VRF Same as cooling
Decentralized
Gas-VRF Gas-driven VRF Same as cooling
system
Mix-VRF Both Elec-VRF and Gas-VRF Same as cooling
AirS-HP Air-source heat pump Same as cooling
AirS-HPS Air-source heat pump Same as cooling Yes
E-C&G-B Electricity-driven chiller Gas boiler
Gas-AbCB Absorption chiller Gas boiler
Centralized
Gas-AbCH Absorption chiller-heater Same as cooling
system
Electricity-driven chiller and Absorption
Comb-EG
absorption chiller-heater chiller-heater
Electricity-driven chiller and Absorption
WaterS-CS Yes
absorption chiller-heater chiller-heater
Table B.2. Types of air-conditioning system.
Type Heating and cooling Ventilation
Decentralized VRF Variable refrigerant flow (VRF) The ventilation system is
system system is used independently installed
Centralized FCU Fan coil unit (FCU) is used Same as VRF
system
CAV Air handling unit (AHU) with Air-intake is mixed in AHU
constant air volume (CAV)
control is used
VAV AHU with variable air volume Same as CAV
(VAV) control
CAV+FCU Same as in CAV but perimeter Same as CAV
zone is controlled by FCU
VAV+FCU Same as CAV+FCU but VAV is Same as CAV
used in AHU.
OHU+FCU FCU is used in both interior and Outdoor air handling unit

perimeter zones.

(OHU) is used
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Table B.3. System efficiency of various sources.

Base Potential/Electric
Rated Rated
Sources Efficiency Efficiency
COP COP
(%) (%)
(WIW) (WIW)
Electricity-driven chillers 55 7.0
Absorption chillers 11 1.6
Air source heat pump Cooling 31 4.0
Heating 3.2 4.1
Gas-driven VRF Cooling 1.0 15
Heating 1.2 1.6
Electricity-driven VRF Cooling 3.0 3.8
Heating 3.4 4.2
Heat pump water (HPWH) 4.3 4.3
Electric water heater 90 90
Gas/oil boilers 86 93
Fan efficiency 36-63 46-75
Heat exchanger for air-intake 60 65

Table B.4. List of ventilation and heat delivery measures.

Type Measure Combination
Heat exchanger as air-intake
(HEX)
Ventilation Natural ventilation using an I
All combinations of the three
related economizer (OA)
measures
measures Air-intake quantity control based

on COz concentration (CO2)

Centralized Variable water volume control
The adoption of VWYV control
system (VWV)
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4.6.3 Appendix C. Description of commercial RBMs for UBEM model

Table C.1. Description of commercial RBMs of Tokyo.

Cluster GFA Floors Height Shape Coefficient Aspect Orientation

Segment
(m?) (Nos) (m) (SIV) ratio ©)
CcL1 118 4 13.6 0.36 0.55 -2
CL2 213 8 245 0.27 0.53 2.1
Office CL3 373 8 28 0.18 0.47 -2.6
CL4 1056 9 29.6 0.12 0.46 -2
CL5 2761 23 94.6 0.07 0.42 -3.2
CcL1 130 4 13.6 0.34 0.53 0.3
CL2 363 8 27.2 0.20 0.44 -6.2
Hotel CL3 465 11 37 0.18 0.41 -4.4
CL4 1654 14 49.4 0.10 0.34 -6.7
CL5 4298 30 110.2 0.06 0.31 -0.8
CL1 171 2 7 0.32 0.50 -0.2
CL2 868 5 18.5 0.13 0.40 -6.1
Hospital
CL3 1149 6 19 0.12 0.28 -1.4
CL4 4160 11 42 0.06 0.27 -2.7
CL1 1731 4 114 0.11 0.44 0.2
School CL2 2221 6 15.2 0.1 0.36 3.1
CL3 2837 7 19 0.09 0.23 -0.1

Note: Positive orientation is considered as clockwise.

4.7 Supplementary data

Supplementary data to this chapter can be found online at:
https://doi.org/10.1016/j.enbuild.2023.113086
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5 Integrated discussion

In the following chapter, an integrated discussion is presented to illustrate the critical overview
of the research questions in terms of data acquisition, modelling capability and purpose-driven
perspective. Initially, the chapter outlines the novel contributions to the field of BSEM and then,
analyses the limitations and uncertainties of developed models.

The thesis aim is to assist the regional (or city) level energy planners and policy makers in
understanding the role of data acquisition on the energy performance of BSEM, the analytical
capability of multi-scale modelling using BSEM and further support them in evaluating the carbon
neutrality of commercial building stock at multiple scales. This thesis resulted in three-fold
contributions with the advancement of data acquisition and modelling techniques for commercial
building stock. Firstly, to understand the transitional limitations of various BSEM approaches, a
comparative study of three major bottom-up BSEMs was performed to evaluate the accuracy and
added-value of these approaches for use in the bottom-up engineering model. Secondly, a hybrid
BSEM is developed to facilitate the concurrent consideration of physical and technical elements
and further extend the model to different spatial resolutions. This provided a multi-tier framework
using spatial intelligence building stock approach to develop long-term energy efficiency
monitoring strategies for commercial building stock at multiple scales. Thirdly, a UBEM-BIPV
coupled approach is developed to consider the SER framework for the evaluation of carbon
neutrality of commercial building stock. The coupled approach resulted in a purpose-driven
perspective of the energy transition at multiple scales with reduced computational time.
Moreover, a detailed description of the main contributions and limitations related to developed
models is discussed below:

5.1 Role of data acquisition

The accuracy and reliability of BSEM mainly depend on the quality and quantity of data due to
the interlinkage between the availability of input data and the use of computational methods.
Thus, data acquisition is one of the main processes in the development of BSEM due to challenges
associated with the retrieval of geometric, non-geometric, socio-behaviour, meteorological and
measured energy data at a scale. In terms of best practices and use cases, it is important to select
a model based on the availability and quality of data as well as the relevant system features
required to develop a discrete representation of building stock. Moreover, most of the previous
BSEM studies used a specific approach to quantitatively improve the robustness and accuracy of
models but have not focused on identifying the impact of these approaches on the performance
level of BSEMs. There is a lack of knowledge about the influence of data acquisition techniques
on the model’s accuracy. Hence, there is a need to focus on exploring the comparative
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performance of these approaches to further assess the evaluation of accuracy in predicting the
energy demand and carbon emissions of the commercial building stock.

To assess the comparative performance of BSEM approaches, Chapter 2 provided a detailed
overview of the cross-over framework of the three major building stock approaches, sample-free
synthetic, sample-based synthetic and geo-referenced, to quantify the accuracy and added-value
of each approach in terms of heterogeneity, data dimensionality, integration and non-linear
interactions within the stock. As discussed in Section 2.4, the sample-based synthetic method
can incorporate multiple input distributions using a survey micro-dataset, while the geo-
referenced method provides additional key determinants such as building typology (shape
coefficient, aspect ratio and orientation) and morphological attributes. This implies that these are
data-enriched methods which resulted in better performance in terms of building stock
development and simulated building energy use that signifies the accuracy and added-value of
these methods. However, a sample-based synthetic method provides a better compromise between
data availability and simulation accuracy in comparison to other methods. This shows that the
synthetic approach can be extended to commercial building stock, which mostly has a poorer data
availability than residential building stock, which further allows to encompass modelling of a
typical mixed-use urban environment. Moreover, this cross-over analysis will provide a granular
level framework to assist the city-level planners and policy makers in choosing the right building
stock modelling approach for predicting the energy demand and carbon emissions of the
commercial building stock.

5.2 Multi-scale modelling

Urban energy planners and policymakers mostly experience scalability issues due to a lack of
coordination in terms of availability and incomplete coverage of stock data. This hinders
the implementation of target-based urban planning that requires intensive information at
the granular level to identify the target areas where the energy policymakers can conduct
target-based planning and decision-making. The selection and description of spatial resolution
of the model mainly depend on the use case, availability of measured energy data and quality of
data. To address these challenges, multi-scale modelling is one of the possible techniques that
can improve the analytical capability of conventional BSEM by involving end-use energy
processes (function and boundary of the systems), practices (socio-behavioural interaction, such
as occupancy patterns and resource usage), and context (structure and conditions of systems)
across a range of scales and sectors. However, for energy modelling of the commercial building
stock, several methodologies were developed focusing on technology alternatives and retrofits for
climate change mitigation, but they often have limitations to involve a differentiated description
of practices and policies across a range of scales and sectors. Hence, there is a need to address the
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limitations of existing commercial BSEMSs, such as non-scalable framework and fragmented
consideration of influencing factors (focusing on either physical or technological attributes), by
establishing a multi-layer model across the scale.

To incorporate granularity and multi-dimensionality within BSEM, chapter 3 presented a novel
GIS-synthetic hybrid model by integrating spatial and synthetic modelling approaches to
facilitate the concurrent consideration of multiple building-oriented elements at multiple scales.
As discussed in Section 3.3, the differences in the energy end usages and reduction potential exist
due to varying structural and stock composition across different scales. This implies that the
hybrid models capture these variations, which a conventional non-scalable model could not
distinguish. From a practical implementation perspective, this further helps address the data
limitations and context-specific issues to overcome the disparate coordination between the local
and national level stakeholders, which could identify priority areas for implementing target-based
energy efficiency strategies. Moreover, the selection and description of the appropriate spatial
boundary are critical for the base year and long-term studies related to building stock energy
modelling. The long-term studies are more sensitive to an adequate spatial boundary than the
base year studies and show significantly different energy consumption patterns, 10-17%, and
reduction potential, 2-3 times, when a non-representative scale is applied to other scales. This
implies a need to develop multi-tier long-term building stock strategies to promote the adoption
of ESMs and alternative technologies for achieving net-zero emissions in the building sector.
Additionally, the two most critical building-oriented elements are geometry and plug loads when
the non-representative scale is applied at other scales. This suggests that these elements lead to
higher scale-bounded uncertainties, induced due to structural heterogeneity, typological
complexities, and diverse functionalities associated with the stock composition of commercial
buildings. This granular-level framework uses a spatial intelligence approach that can assist urban
energy planners and policymakers in developing long-term energy efficiency monitoring
strategies at multiple scales. The framework could further open new avenues in building stock
methodologies by integrating conventional approaches with emerging information technologies.
Such strategies are crucial to achieving valuable advances by incorporating emerging modelling
techniques, and treatment of additional modelling dimensions within commercial BSEM.

5.3 Purpose-driven coupling

In order to mitigate the effect of climate change and meet carbon emission targets, there is a
paradigm shift towards the shared global goal of achieving carbon neutrality. Recently, more
aggressive national mitigation commitments have been adopted to meet the target of net-zero
carbon emissions by 2050 (UNFCC COP 26, 2021). The transitional pathway to carbon-neutral
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building stock includes an interplay of planetary and non-planetary boundaries, technological and
non-technological options, and dispatchable and non-dispatchable energy resources. These
interlinkages can not be captured by a singular or focal model with limited external coordination.
Therefore, there is a need to develop a multi-model framework to illustrate the process of model
coupling for the assessment of carbon-neutral building stock, which can involve a higher degree
of coordination to adequately manage the modelling functionality and integration, resolution and
data coherence.

To demonstrate purpose-driven model coupling, chapter 4 presented a coupled workflow that
facilitated the homogenous use of a comprehensive GIS dataset to provide the necessary
coordination of a hybrid UBEM model with a physical-based BIPV estimation approach at the
multi-scale level, leading to further improvement in the methodological characterization to
evaluate the carbon neutrality of commercial building stock. As discussed in Section 4.3, the
differences in the demand reduction and BIPV potential exist across different scales due to
varying structural and system stock composition, and urban morphological characteristics. This
implies that the proposed coupled scheme identifies various drivers and determinants to better
understand the mechanisms and conditions leading to different demand and supply levels across
the scale. Additionally, in terms of modelling resolution, the maximum co-benefit of demand-side
efficiency improvement and integration of BIPV is observed at the building-by-building level
with 70% of buildings having Self-sufficiency (SS) greater than 1 while at other scales, 28% and
22% of districts and cities transition into net positive energy districts and cities respectively. This
spatial imbalance is mainly due to typological utilization constraints and diverse functionalities
of commercial buildings. Therefore, those studies focusing on the optimization of a single
building model result in insignificant or redundant findings at a larger scale. This demonstrated
that this coupled approach can provide a purpose-driven perspective of the energy transition at
multiple scales with reduced computational time. Overall, this UBEM-BIPV coupled scheme will
provide a multi-level perspective to energy modelers and policymakers on how to achieve the
carbon-neutral goal in the commercial building stock.

5.4 Future work and limitations

Although the developed BSEMs demonstrated the comparative analysis of interlinkage

between the availability of input data and use of the computational method, improved adequacy

at the multi-scale level and could be further applied to different regions, and also provided

purpose-driven coupling perspective of BSEM, there are still some limitations that need

to be addressed. A summary of those limitations is provided as follows:

1. The segmentation process of data-driven modelling needs to be improved by overcoming the
issue of homogeneity across the scale. The same number of classifiers are used to perform
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the segmentation, resulting in an equal number of clusters at different scales. This scheme
needs further improvement by implementing it at a specific granular level to obtain the
optimum number of classifiers as per the specifications.

In synthetic modelling, a multi-nominal statistical approach is applied to a large sample
dataset to fill the energy modelling gap due to a lack of information related to the technical
factors. This requires further effort to conduct a multi-scale field survey for validating the
probabilistic building systems stock model by comparing it with actual stock.

An auto-calibration framework needs to be developed that can transform the existing multi-
scale UBEM model into a scalable model, ensuring transparency at a granular level by
providing a comprehensive insight into uncertainties at the spatial level.

In a physical-based BIPV potential estimation approach, an anisotropic hourly diffuse
radiation model is used without considering the ground-reflected irradiance that needed to be
involved.

The developed BSEMs model mainly focused on physical and technical factors while the
effect of lifestyle changes and socioeconomic factors are not considered within the model.

This thesis provided significant improvement in the analytical capability of BSEM in terms of

building stock characterization and evolution, and further extended the scope and use case of

BSEM. However, further future work can be performed to extend these research contributions as

follow:

1.

The development of multi-scalable reduced-order models for commercial building stock,
which could speed up the development cycle by minimizing computational resources.

The dynamics of building stock transition also involve non-technological options that need
to be assessed for the effective implementation of decarbonization measures. Urban energy
planners and policymakers have to consider energy vulnerability and poverty issues for
target-based urban planning to streamline the uptake of decarbonization measures. Further
research can focus on the incorporation of lifestyle changes (teleworking and relaxation of
room set point temperature) and the effect of socioeconomic factors on the implementation
of decarbonization strategies.

The UBEM-BIPV coupled scheme can be further extended to perform techno-economic
analysis of physical energy infrastructure, electric vehicles, storages, and synthetic gas
generation, for assessment of emerging technologies on demand-supply synergy.
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6 Conclusion

BSEM has gained a lot of attention recently with the development of a range of methodologies
for various use cases by evaluating the trends of energy demand and carbon emissions,
implementation of building efficiency retrofits, energy system integration and the effect of climate
change. With the advancement of data-driven techniques, BSEMs involve a higher degree of
complexity with the varying model structure and output that requires comprehensive reporting
guidelines to improve the transparency and consistency of BSEM. In BSEM, several bottom-up
methodologies have been developed to assess the energy demand and emission reduction potential
of the stock but, often have transitional limitations either to shift from aggregated to disaggregated
stock boundary conditions or involve a differentiated description of practices and policies across
a range of scales and sectors. This thesis developed multiple BSEM methodologies to identify the
best practices for minimum viable model guidelines that can provide transparency and capture
value with the least cost and effort. To this extent, the comparative analysis of BSEM approaches
was performed to assess the accuracy and added-value of quality and quantity of data on the model
performance. Additionally, to improve the analytical capability of conventional BSEM, a GIS-
synthetic hybrid model is developed to involve a differentiated description of practices and
policies across a range of scales and sectors. This provided a multi-tier framework using spatial
intelligence building stock approach to develop long-term energy efficiency monitoring strategies
for commercial building stock at multiple scales. Moreover, to demonstrate a process of purpose-
driven coupling, a multi-model framework of UBEM-BIPV coupled scheme is developed to
illustrate the process of model coupling for the assessment of carbon-neutral building stock, which
can involve a higher degree of coordination to adequately manage the modelling functionality and
integration, resolution and data coherence. The coupled workflow facilitated the homogenous use
of a comprehensive GIS dataset to provide the necessary coordination of building stock
interventions with renewable DERs at the multi-scale level. The summary of findings related to
formulated research objectives is given below:
1) How can the data acquisition influence the performance level and applicability of bottom-up
BSEM in predicting the energy demand and carbon emissions of the commercial building
stock.

A comparative analysis of BSEM approaches showed that the sample-based synthetic method
provides a better compromise between data availability and simulation accuracy in comparison
to other methods. The sample-based synthetic method can incorporate multiple input distributions
using a survey micro-dataset, while the geo-referenced method provides additional key
determinants such as building typology (shape coefficient, aspect ratio and orientation) and
morphological attributes. This implies that these are data-enriched methods which resulted in
better performance in terms of building stock characterization and estimation of building energy
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use that signifies the accuracy and added-value of these methods. Moreover, it is observed that
the combination of sample-based synthetic and geo-referenced approaches can provide cross-
sectional and longitudinal enrichment within the model.

2) How can bottom-up BSEM be modelled to incorporate scalability and multiple building-
oriented elements characterization within the model.

The proposed multi-scale model identifies various drivers and determinants of energy end-uses
and resource usages to provide a better understanding of mechanisms and conditions that lead to
different levels of demand for commercial building stock across the scale. This addresses the
underlying complexity associated with the BSEMSs by examining influencing factors that cause
different levels of outcomes at different scales. As per the quantitative analysis, disregarding the
physical and technical factors drops cumulative performance by up to 32%. This signifies the
need for a concurrent consideration of these factors within BSEM. Moreover, the scale-bounded
comparative approach indicates that the larger the description of the scale, the higher the error
uncertainty when applied to a smaller representative scale. This scale variability seems significant
due to relatively higher thermal dynamics induced by the building typology and functional
composition of the commercial building stock. In terms of model complexity, a more integrated
model is needed at a large scale than other scales because of the modular and diversified
distribution of large-scale building stock, which leverages variability within the model output.
The results imply that the performance gap increases significantly up to 21% when the description
of a scale shifts from a smaller to a larger one. Overall, the developed model provides a
comprehensive understanding of selecting and describing the minimum viable requirements for
a specific scale by considering the effect of various influencing parameters on scale-bounded
uncertainties.

3) How does the SER framework be considered for the evaluation of carbon neutrality of
commercial building stock.

A GIS-synthetic hybrid UBEM model is coupled with a physical-based approach of BIPV
potential estimation for the consideration of the SER framework in estimating the overall
decarbonization potential of the commercial building stock. Results show that the annual CO,
emissions can be reduced by 84% with the simultaneous implementation of all the measures. The
measure-by-measure comparison showed that the most impactful demand-side efficiency
measures are system efficiency improvement, and the upgradation of lighting and appliances
while passive design measures only contribute a 10% reduction potential which is not enough to
achieve carbon neutrality in commercial buildings. BIPV has a dominant role that satisfies 8% to
16% and 34% to 63% of electricity demand if threshold constraints and full exploitation of
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building surfaces are considered respectively. However, BIPV contributes 16% to 40% of the
decarbonization potential which is less than demand-side efficiency measures. The scale-bounded
comparative analysis shows that total PV potential changes in the order of magnitude of 29 to 54
with the variation of scale (with reference to district scale) and higher self-sufficiency are
observed at the building-by-building level in comparison to district and city scales. This
demonstrates that this coupled approach can provide a purpose-driven perspective of the energy
transition at multiple scales with reduced computational time.

Overall, this thesis has contributed to the advancement of BSEM by providing comprehensive
reporting guidelines in terms of accuracy, granularity and multi-dimensionality aspects. This has
enhanced the capability of the BSEM to be further extended to any demographic landscape or
spatial resolution and evolve into a long-term transitional workflow. Thus, enabling long-term
spatial energy resource planning and decision-making for commercial building stock across
various scales. From a practical perspective, this thesis develops a multi-level framework using
spatial intelligence to assist the urban energy planners and policymakers in: (1) the selection of
the BSEM approach on the basis of availability and quality of data; (2) the development of long-
term energy efficiency monitoring strategies at multiple scales; and (3) how to achieve the carbon-
neutral goal in the commercial building stock.
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