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Abstract 

Construction sites are known for their inherent risks and hazards, and hazard prevention 

is of utmost importance in this industry. The safety of workers and those around them 

should always be a top priority for any construction company. Despite the 

advancements in safety technologies and management strategies, accidents still occur 

on construction sites, causing loss of life, injury, and property damage. 

This dissertation explores a three-step hazard prevention approach in construction sites 

via multi-sensor information fusion, mainly focused on people who work on the site. 

Step 1 focuses on the basic workers, aiming to detect their motion to avoid potential 

danger. This is achieved through the use of multi-sensor units that are installed on the 

construction site as well as the Initial Measurement Unit (IMU) sensors attached to the 

workers themselves. The unit is combined with a microcomputer, depth camera, and a 

learning unit to achieve visual detection, the IMU sensors attached to the body of 

workers achieved limb signal detection.  This method can achieve high accuracy in 

detecting specific motions of workers even beyond the suitable detecting distance of 

the depth camera and make a record to avoid potential hazards. 

Step 2 is focused on monitoring the condition of the operators of heavy machinery to 

avoid fatigue and distracted operation. This is achieved through the use of a monitoring 

method using a Mixed Reality device, which can detect the eye gaze, head orientation 

and hand grasp recognition of the operator in real-time. The system set up several visual 

zones during the detecting process, once the operator captured any abnormal operations, 

such as the focus of the eyes being wrong, the head pointing position not being 

corrected for a long time, or the hands being off the steering wheel. The system will 

alert the operator visually and aurally in no time, to ensure the safety of the operation. 

Step 3 aims to improve the monitoring method used in Step 2 by detecting more 

complicated conditions through the change of gaze, head orientation, and hand 

movement. By tracking the operator's eye movements, the system can detect if the 

operator is looking away from the machinery or not paying attention to the work area. 

The system can also track the orientation of the operator's head, allowing for the 

detection of fatigue or distracted behavior. Involuntary head nodding during extreme 

fatigue can be detected, as well as the large involuntary head turns when the operator is 

attracted. Finally, by monitoring the movement of the operator's hands, the system can 

detect if the operator is under normal status or not. 

Since the sensors are embedded in the MR device already, adaptability and error rate 

control is guaranteed. When an abnormal situation is detected, the alert from the device 

can be operated in no time, which, in construction sites, can ensure stable and high-

efficiency monitoring for the operators. 
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Through the implementation of this three-step approach, this dissertation aims to 

provide a comprehensive solution to safety management and hazard prevention in 

construction sites. It is hoped that the findings of this study will help improve the safety 

standards and practices in the construction industry and reduce the occurrence of 

accidents. 
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Chapter 1 

Introduction 

1.1 Background 

The concept of “Smart City” has been widely known by people around the world for 

many years. Its main purpose is to use information technology to help to improve city 

ser-vices. Currently, the smart city concept is being applied in transportation, citizen 

management, and urban resource allocation, all with good performance compared with 

traditional methods. Along with the rise of the smart city, the concept of “smart 

construction” (Xu & Lu, 2018) has also been proposed recently, in which many well-

applied methods from other fields are exported to the construction area. However, 

owing to the differences in management mode and implementation, these approaches 

have not performed well. Thus, there is much room for improvement in the 

development of smart construction. 

This lackluster performance is especially concerning in light of the construction 

industry field currently holding the worst record for safety compared with other 

industries: approximately 88% of workplace incidents in the construction industry are 

caused by unsafe behaviors (Shin et al., 2015). For example, in Japan, the average 

number of fatalities in construction accidents is over 300 people per year (Statista, n.d.), 

and this performance has not improved well during the last 20 years (Kensaibou, n.d.). 

In comparison with other developed countries, accident monitoring efficiency in Japan 

is the main reason that injured workers cannot be identified and rescued in time. 

After recent years of development and the wide application of deep learning, image 

processing has greatly improved the accuracy of human motion detection. However, 

single visual sensor detection still has its unreliability, it is easily affected by changes 

in the surrounding environment and the location of the measured object. 

Meanwhile, wearable devices have become increasingly popular recently. Some simple 

devices such as watches can perform basic body path or state detection. However, if 

these devices are the only angle of detection, they lack reliability. Complex special 
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clothing with hundreds of detection points can perform extremely detailed tracking. 

However, because of its inconvenience, worker resistance, and high cost, it is not 

suitable for use in ordinary construction environments.  

In the meantime, another necessary component in a construction site should not be 

ignored: The introduction of heavy vehicles and machinery has benefited the 

construction industry because they have made many tasks easier and reduced the 

workload and fatigue of workers. However, everything has advantages and 

disadvantages, and heavy vehicles are no exception. Due to their inherent objective 

limitations, the potential for injury to workers is not outweighed by the convenience 

that heavy vehicles provide. On many construction sites, workers are forced to share 

the worksite with heavy vehicles, increasing the chance of accidents due to the 

bulkiness of the vehicles. In many fatal accidents involving heavy vehicles, the cause 

of the accident is often improper operation by the driver, but it is other workers who 

tend to sustain the most serious injuries or even fatalities. 

According to a previous study (Olorunfemi et al., 2018), Mixed Reality (MR) is a 

visualization environment that combines the virtual world and the real world, creating 

a virtual space in which digital and physical objects coexist and interact in real-time, 

giving users have a comprehensive holographic experience. 

By superimposing virtual digital content in the real world, users can instantaneously 

experience enhanced interactions with the real world. MR has moved from the 

experimental stage to practical applications in fields such as medicine and healthcare, 

education, entertainment, and industrial maintenance. 

1.2 Motivation for the research 

In construction sites, the main causes of worker injury and death are related to health 

issues such as heat stroke, physical injuries from falling, contacting, and mental injuries. 

Some of the injuries are caused by accidents, and some of them are caused by 

unsupervised unsafe acts taken by workers as a result of cost limitations, time pressure, 

and other reasons. Normal monitoring systems, such as web cameras, require manual 

operation and are inefficient because of human neglect, visual obstacles, and other 

factors. A more efficient and accurate safety management and monitoring method is 

needed. 

Camera-based monitoring methods are widely used and researched around the world 

because of their many benefits, such as low cost and ease of assembly. However, 

unavoidable disadvantages are more numerous, such as low accuracy when it is too far 

away from the visual sensor or in poor lighting conditions. Some approaches 

concentrate on changing the RGB frame to an RGB-D frame by adding depth to pictures 

with machines such as Kinect (Lun & Zhao, 2015) and RealSense (Rabbani et al., 2020). 
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RGB-D is more accurate for detecting humans and objects compared with RGB pixel 

cropping, and it also works well even under poor lighting conditions. However, owing 

to the limitations of working distance, reflective surfaces, and relative surface angles, 

depth maps in RGB-D frames always contain significant holes and noise, and these 

errors limit the practical use of RGB-D frames in real ap-plications. Thus, depth maps 

for filling holes and removing noise are necessary steps in depth camera-based 

monitoring systems. Because of the high error rate of depth measurement over wide 

areas and long distances, depth scanning of large areas also increases the calculation 

demands. Therefore, an approach that can effectively achieve an in-depth analysis of 

designated areas is needed.  

Monitoring methods based on inertial measurement unit (IMU) sensors are also gaining 

attention in recent years because of their clear benefits compared with other methods, 

such as those relying on visual cameras. IMU sensors are non-intrusive, light-weight, 

and portable measuring devices that, when attached to a subject, can overcome the 

sensor viewpoint to detect activities in a non-hindering manner (Ann & Theng, 2014; 

Dehzangi et al., 2017; Cismas et al., 2017). After preprocessing of the motion for 

recognition, discriminative features are then derived from time and/or frequency 

domain representations of the motion signals (Preece, Goulermas, Kenney, & Howard, 

2009) and used for activity classification (Preece, Goulermas, Kenney, Howard, et al., 

2009). Although there are many benefits of IMU sensors, there are also some 

disadvantages. First, their output is not intuitively understood and not amenable to 

manual rechecks. Second, model complexity is hard to control, especially when precise 

motion capture is needed. Generally, construction workers stay outdoors, and the 

changing environment there makes them more resistant to accepting a huge number of 

wearable devices, such as some complex special clothing with hundreds of detection 

points on it. Therefore, reducing the burden on workers while stabilizing detection 

accuracy is an issue that needs to be resolved. 

The element of danger on a construction site is much more than simply the dangerous 

behavior of the workers themselves. Heavy machinery on the site that is meant to help 

workers in order to improve efficiency can also cause significant damage if not operated 

properly. For example, according to the record in the United States, on average more 

than 20,000 workers are injured as a direct result of traffic-related accidents during 

construction activity each year. In 2016, more than 25,000 workplace accidents 

occurred in Texas, resulting in the fatalities of 18 people (Steven M. Lee, n.d.). When a 

driver or operator is distracted or inattentive due to insufficient attention to the 

surrounding environment, it is possible to knock down or even run over road 

construction workers or deviate from the established route and collide with other 

vehicles. Similarly, some drivers who are not safety conscious on public roads also pose 

a threat to workers when passing through construction areas. 
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In the Japanese construction industry as well, such incidents are not uncommon. 

According to a questionnaire survey of more than 100 Japanese construction companies, 

more than half reported having vehicle collision accidents during the construction 

process. 

Previous reports have shown that the main causes of major fatal accidents involving 

heavy vehicles include inattention when overtaking or reversing, collisions between 

vehicles, and collisions between vehicles and equipment or workers. 

It has been reported that 85% of vehicle control depends on the state of the driver (Khan 

& Lee, 2019), and thus, when considering a safety warning system for large vehicles, 

more focus should be placed on the driver than on the vehicle itself. Figure 1 shows a 

truck that attempted to turn while speeding and failed, while Figure 2 shows that the 

driver’s inattentive driving caused the vehicle to enter the opposite lane, thereby 

causing an accident. 

 

Figure 1 Simulated accident of a heavy vehicle turning while speeding (Reprinted 

with the permission of the copyright owner). 
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Figure 2 Simulated accident caused by inattentive driving (Reprinted with the 

permission of the copyright owner). 

Most of the studies on hazard prevention methods for drivers or operators of machines 

are based on prevention, mainly in the form of extensive training and safety education 

for the operator to increase his safety awareness, but the reliability of these methods 

also depends largely on the attitude and state of the operator. The efficiency of these 

methods becomes low when there are some subjective uncontrollable situations. 

In the meantime, according to a previous study (Mixed Reality, n.d.), the use of MR in 

various industries is also starting to increase gradually. More and more construction 

companies and organizations are also conducting research on it because of its virtual-

reality nature which is highly compatible with the construction industry. MR is a 

visualization environment that combines the virtual world and the real world, creating 

a virtual space in which digital and physical objects coexist and interact in real-time, 

giving users a comprehensive holographic experience. 

By superimposing virtual digital content in the real world, users can instantaneously 

experience enhanced interactions with the real world. MR has moved from the 

experimental stage to practical applications in fields such as medicine and healthcare, 

education, entertainment, and industrial maintenance.  

1.3 Research questions and objectives 

A construction site is a complex environment that can include many corners, blind spots, 

and isolated spaces. When using only one type of sensor (such as a vision sensor) for 

worker hazard identification, the accuracy of the sensor can vary greatly due to lighting, 

camera angle, etc. For example, once an object or worker is outside the optimal 
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recognition area of a vision sensor, other types of sensors must be used to assist in 

recognition to ensure accuracy. 

To address the issues discussed above, an advanced worker hazard prevention method 

based on a multi-sensor network is proposed. The approach aims to use worker data 

obtained from different types of sensors to more accurately detect human motion and 

movement, including RGB cameras, depth cameras, and IMUs, and to combine them 

cooperatively to improve the accuracy of detecting specific worker movements and to 

improve the efficiency of accident warning and injury rescue. 

To address this research gap, the purpose of this study is to examine the application of 

deep learning in removing unwanted features from repetitive infrastructure images, an 

application that is both laborious and time-consuming. The impact of removing 

unwanted features on the process of moving from motion to the structure is also 

investigated. First, a new method called Selective Depth Inspection (SDI) is proposed. 

This method adds preprocessing and image aging assistance to the common depth map 

optimization, thus significantly improving computational efficiency and accuracy. 

Second, a multi-sensor-based construction site motion recognition system is proposed, 

which combines different kinds of signals to analyze and correct workers' motions on 

the construction site to improve the accuracy and efficiency of detecting specific body 

motions on the construction site. 

In hazard detection for heavy machinery operators, the possibility of accidents increases 

dramatically if the operator himself, who dominates the operation, shows some 

abnormal behavior or phenomenon. A more stable monitoring method is necessary to 

ensure that the operator can be alerted in any state (awake or distracted, etc.), rather 

than relying on the operator's subjective awareness. 

One of the technical features of MR is its ability to use Building Information Modeling 

(BIM) to display and manage holograms, which makes it highly adaptable to the 

construction field. Another important research direction is the use of remote monitoring 

to enhance presence. For example, a previous study (Olorunfemi et al., 2018) used 

holographic MR technology running on Microsoft HoloLens (Microsoft HoloLens, n.d.) 

to enable visual interaction and remote collaboration to discuss site risks at construction 

sites. 

Although most MR-based studies have focused on helping users perceive and interact 

with their environment through MR devices, few applications have utilized the internal 

cameras and sensors of MR devices to monitor the users themselves. Therefore, an 

active driving condition monitoring and early warning system based on MR is proposed 

to focus on real-time monitoring using individual sensors in order to analyze the current 

state of the wearer (heavy machinery operator) to correct problems and prevent 

accidents in a timely manner (T. Chen et al., 2021). 
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1.4 Overview 

Figure 3 shows the overview of this research and the dissertation is organized as follows. 

 

Figure 3 Overview of this research. 

Chapter 1 Introduction 

This chapter introduces the background information about this study and names the 

motivation for conducting this study. In the third subsection, the research questions, 

previous shortcomings, and the purpose of this study are highlighted. 

Chapter 2 Literature review 

This chapter briefly describes the directions and achievements of the research, 

including the first experiment-based research, such as the drawbacks and shortcomings 

of single-sensor research, and the second and third experiment-based research, such as 

the content of driver control assistance systems, and the application of MR in the 

construction industry. 
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Chapter 3 Motion recognition for workers using selective depth inspection and optimal 

IMUs 

In this chapter, a worker motion recognition method based on depth cameras and IMU 

sensors is proposed to maintain high motion recognition accuracy beyond the optimal 

depth detection distance. By combining IMU sensors with depth cameras, this research 

can identify workers' movements more accurately and thus prevent and avoid potential 

safety risks in time. 

Chapter 4 Active early warning system for heavy vehicle drivers using mixed reality 

In this chapter, an MR-based active safety monitoring solution for operators of large 

machines at construction sites is proposed. By wearing HoloLens 2 and monitoring the 

operator's eye gaze area, head pointing area and hand movements in real-time, the 

operator can be alerted by auditory and visual signals in case of distraction or fatigue 

to avoid accidents. 

Chapter 5 Mixed reality-based active hazard prevention system for heavy machinery 

operators 

This chapter is an improvement and enhancement based on the content of Chapter 4. 

After implementing basic eye, head, and hand monitoring, a series of operator 

movements are monitored and analyzed to further ensure the operator's status and 

prevent accidents. This technology allows for more comprehensive safety monitoring 

by monitoring specific movements such as frequent head nodding, disoriented eyes, 

large head bobbing, and hands off the steering wheel when the operator is tired. 

Meanwhile, this research considered the influence of indoor and outdoor environments 

in the experiment and used multiple random sampling in the result analysis to ensure 

objectivity. 

Chapter 6 Discussion 

This is the discussion section where the findings of the above three experiments will be 

briefly explained, and the results obtained will be analyzed and evaluated. 

Chapter 7 Conclusions 

This is the concluding chapter, which summarizes the study, describes the significance 

and conclusions, discusses the limitations and shortcomings of the study, and briefly 

introduces future work. 
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Chapter 2 

Literature review 

This chapter presents the related work of this dissertation. It is organized as follows. 

Sections 2.1 and 2.2 present research related to motion recognition for construction site 

workers, 2.1 presents a vision-based human modeling approach, and 2.2 presents an 

IMU sensor-based human modeling approach. Sections 2.3 and 2.4 present research 

related to safety management for large machine operators on construction sites, 2.3 

presents the main elements of a driving safety assistance system, and 2.4 presents the 

mainstream MR or virtual reality (VR) applications and development in the 

construction industry. 

2.1 Visual-based human modeling methods 

Among the studies on action recognition based on visual sensors, pure vision-based 

studies occupy the majority due to their very low cost and simple entry channels, while 

some studies use more advanced depth cameras in an attempt to obtain more stable and 

valid information through an additional dimension. 

2.1.1  RGB camera-based human modeling 

The use of RGB camera-based motion recognition is a cost-effective solution for many 

applications and can be easily deployed in various environments. However, it is limited 

by its sensitivity to lighting conditions and is susceptible to interference (Guo & Dai, 

2018). 

Commercial camera-based human detection systems often require the use of markers 

or multiple camera setups (Sarafianos et al., 2016), which can be inconvenient for users. 

Markerless approaches have been developed using multiple cameras, but these methods 

typically require offline processing to achieve accurate results (Ballan et al., 2012; 

Huang et al., 2017) 

Some real-time markerless approaches have been proposed, such as those that combine 

a skeletal model with image data or generative and discriminative methods (Elhayek et 
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al., 2017; Rhodin et al., 2015). However, these approaches may still require well-

calibrated cameras and are not suitable for mobile scenarios. 

Despite these limitations, ongoing research is focused on developing more robust and 

efficient markerless approaches for human motion detection and recognition. These 

advancements will enable the deployment of cost-effective and easy-to-use motion 

recognition systems in a wider range of scenarios, including mobile and dynamic 

environments. 

2.1.2  Depth camera-based depth map restoration and human 

modeling  

Most motion recognition based on depth cameras is performed at a short distance, so 

its range of practical application is relatively narrow and cannot be easily expanded 

(Amine Elforaici et al., 2018; C. Chen et al., 2015). As for regular cameras, RGB-based 

depth prediction normally relies on a large body of literature and is trained with ground 

truth data only (Bo Li et al., 2015; Eigen & Fergus, 2015; Liu et al., 2015; Zhang et al., 

2015; Zhou et al., 2017)  

In the case of depth cameras, various approaches have been proposed to restore depth 

maps with Kinect, including two main types: filtering-based methods and 

reconstruction-based methods. Filtering-based methods use different kinds of filters to 

restore captured depth maps. For example, a median filter has been proposed to 

recursively fill holes in a depth map, but the sharpness of the edges is often too blurred 

(Lai et al., 2011). To maintain sharp edges, a joint bilateral filter has been applied 

iteratively to the depth map (Camplani & Salgado, 2012). 

(Matyunin et al., 2011) considered using temporal information to restore the depth map, 

but this approach incurs a delay because it uses multiple consecutive frames for the 

restoration. Methods that are based on reconstruction use image inpainting to fill 

missing values in depth maps. For example, the fast-marching method (FMM) has been 

proposed for depth value reconstruction (Telea, 2004). A texture-assisted approach has 

also been proposed, in which texture edge information is extracted to aid the restoration 

of depth values (Miao et al., 2012). 

However, these methods may have difficulty filling large holes in in-depth maps, 

resulting in unsatisfactory results as illustrated in Figure 4. While these methods can 

remove noise and fill small holes in in-depth maps, more robust techniques are needed 

to address larger gaps in in-depth information. 
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Figure 4 Depth map (top) and infrared frame. 

To address human modeling, researchers have proposed a method named Shape 

Completion and Animation of People (SCAPE) (Anguelov et al., n.d.), which is a data-

driven approach to 3D human model building from both shape and pose aspects. The 

SCAPE model can obtain observation data with a high-resolution depth image from a 

single viewpoint. 

Building upon the SCAPE model, (Weiss et al., 2011) combined low-resolution scans 

and views of a person from different angles to construct an accurate human 3D model. 

(L. Liao et al., 2017) proposed a monocular depth camera 3D human modeling 

approach based on referring to previous human body pose and shape approaches. Their 

method relies on a single-depth camera to capture human motion and construct a 3D 

human model. 

2.2 IMU-based human modeling methods 

One study (Roetenberg et al., 2013) used 17 Inertial Measurement Units (IMUs) with 

the function of magnetometers, gyroscopes, and 3D accelerometers, which were fused 

by a Kalman filter. Although these IMUs can define the full pose of the subject in 

standard skeletal models, they are intrusive and difficult to reproduce due to their high 

number. Additionally, problems such as long setup times and placing sensors in the 

wrong position are common. 
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A study (by Marcard et al., 2017) achieved accurate 3D poses using only six IMUs. 

They placed synthetic IMU sensors on a skinned multi-person linear body model in a 

generic way and solved for the sequence of body poses that matched the observed actual 

measured sequence by optimizing the entire sequence (Loper et al., 2015). However, 

this approach relies on computationally expensive offline optimization, which makes it 

difficult to reproduce.  

Wearing a large number of sensors can be uncomfortable and impractical for long-term 

outdoor work, and it also increases the computational burden on the system (Rogez & 

Schmid, 2016). Therefore, researchers have been exploring ways to achieve accurate 

motion detection using a smaller number of IMU sensors and less complex algorithms. 

For instance, (Caputo et al., 2018) proposed a body pose recognition system that used 

six IMU sensors placed on the experimenter's arms, neck, and waist to achieve high 

precision in detecting posture angles for fixed movements. However, the system was 

limited to recognizing only two movements, standing and bending. 

In contrast, a study (Hirota & Murakami, 2016) implemented motion command analysis 

for an electric wheeled walker using only one IMU sensor. The system analyzed 

acceleration and triggered emergency behaviors such as electric wheel braking to 

ensure the carrier's safety. However, the study had significant limitations in terms of the 

diversity of motion and the applicability of the system. 

Another study (Bangaru et al., 2022) proposed a fatigue testing framework based on 

the construction industry that used a single IMU and forearm electromyography to 

evaluate physiological indicators. However, the application was relatively narrow since 

it focused only on fatigue testing. In comparison, a study (Mekruksavanich & 

Jitpattanakul, 2023) identified construction workers' activities using information from 

three IMU sensors, achieving high recognition accuracy. However, the placement of 

sensors on only one arm limited the system's ability to recognize complex limb 

movements.  

2.3 Driving monitoring and assistance system 

2.3.1  Vehicle safety-related research 

The growing emphasis on safety in the construction industry has spurred a significant 

amount of research on construction vehicle safety, with a particular focus on the 

development and implementation of driving monitoring and assistance systems 

(DMAS). These systems are designed to enhance the safety of construction vehicles by 

assisting drivers with various tasks and monitoring their behavior to prevent accidents 

and improve overall performance. There are three main types, which are described in 

the following sections. 
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2.3.2  Driver-focused research and studies 

Driver distraction is one of the leading causes of car-related accidents, accounting for 

50% of all driving accidents (Klauer et al., 2006). Driver distractions include mainly 

cognitive, olfactory, biomechanical, auditory, gustatory, and visual distractions. 

Previous studies (Angell et al., 2006; Y. Liao et al., 2018) have reported that research 

and analysis on gaze can differentiate between focused and distracted driving, thereby 

providing relative degrees of cognitive engagement. Another study (Hayhoe, 2004) 

reported that cognitive workload, distraction, and eye movements (e.g., staring, chasing, 

scanning) are correlated. Furthermore, as the cognitive workload increases, the driver’s 

head movement tends to increase as well. The increase in head movements can be 

explained as a compensatory action for the driver to improve their field of view. 

According to one study (Miyaji et al., 2009), a driver’s cognitive dispersion state can 

be properly detected by the standard deviation of head and eye movements. Meanwhile, 

another study (Liang & Lee, 2010) reported that frequently looking at distant objects 

increases the dispersion of vision; the frequency of blinking increases with the 

dispersion of cognition, while the concentration of gaze and the decrease in saccade are 

indications that the driver is visually and cognitively distracted. 

The previous study (Khan & Lee, 2019) suggested that about 25%–35% of car-related 

accidents are caused by fatigued driving. Driver fatigue is divided into three main types: 

drowsiness caused by mental and central nervous system fatigue, which is the most 

dangerous type; general fatigue, such as the tiredness that happens after a long day at 

work; and local fatigue, such as skeletal and muscle fatigue caused by prolonged sitting. 

Fatigue also substantially impacts driving performance, with some effects being 

directly related to the driver’s physical state. These effects include increased blinking 

frequency caused by yawning; burning eyes; difficulty maintaining a firm grip on the 

steering wheel; erratic eye movements; long response times; and increased nodding 

(Eskandarian et al., 2008; Z. Li et al., 2017; Mandal et al., 2017). These studies 

highlight the serious consequences that can result if the driver becomes unconscious 

while driving. 

2.3.3  Vehicle-focused research and studies 

Driver-focused safety systems are designed to monitor the physiological state of the 

driver, such as fatigue, distraction, and drowsiness, to enhance safety. On the other hand, 

vehicle-based safety systems take into account factors like driving style and 

environmental conditions to provide a personalized driving experience. This 

personalized approach takes into account individual differences in personality, age, and 

behavior and can adapt to changing road conditions. However, a significant 

disadvantage of a highly personalized system is that it can lead to major errors if the 

system becomes overly reliant on certain assumptions or data. Additionally, the same 
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individual may perform differently at different times due to varying physical, emotional, 

or mental states. Therefore, such systems need to strike a balance between 

personalization and generalization to ensure the highest level of safety possible. By 

combining both driver-focused and vehicle-based safety systems, it is possible to create 

a comprehensive safety framework that accounts for both environmental and human 

factors, leading to a safer and more efficient driving experience for everyone on the 

road (Filev et al., 2009; G. Li et al., 2015). 

2.3.4  Driving environment-focused research and studies 

DMAS is crucial for enhancing driving safety and has been widely implemented in real-

world driving scenarios. Many vehicles on the road today are equipped with basic safety 

functions, while some electric vehicle brands may have more advanced systems. DMAS 

improves drivers' attention by detecting surrounding vehicles and pedestrians, helping 

to prevent collisions. These systems rely on a variety of sensors, including passive video 

and audio sensors (J. Kim et al., 2012; Mizumachi et al., 2014), as well as active sensors 

such as radar and lidar (Cho & Tseng, 2013; Nashashibi & Bargeton, 2008), to capture 

information about the vehicle's status and the surrounding environment. With the aid of 

these sensors, most accidents can be avoided when the driver is fully in control. 

However, if the driver becomes unconscious, the accident rate can be significantly 

higher. Therefore, it is important to continue researching and developing new 

technologies that can detect and respond to unconscious drivers to further enhance 

driving safety. 

2.4 MR-related research in the construction field 

By analyzing MR research related to the construction industry, The truth that most 

studies focused on education and skills training, on-site environmental monitoring, and 

pre-construction planning is founded. 

2.4.1  Education and skills training 

MR (MR) has numerous applications across industries, and one of the most common 

uses is in providing training and education for students, employees, and managers. The 

unique properties of MR make it possible to provide training for hazardous jobs and 

simulate work environments without exposing users to actual risks (Jeelani et al., 2017). 

For example, a previous study (H. Li et al., 2012) developed a multi-user training 

program using a Nintendo Wii game controller, which allowed trainees to learn crane 

dismantling skills and practice them in a virtual environment. Another study comparing 

students who learn from an MR training program with those who learn from a skilled 

trainer showed that better training results can be achieved in an MR learning 

environment. 
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Several studies have highlighted the potential for MR in addressing the shortage of 

skilled workers in the labor market, specifically in the construction industry (Azhar et 

al., 2018; Elrawi, 2017; Lu et al., 2015; Wang & Dunston, 2013). Another study 

(Ogunseiju et al., 2022) explored ways to provide virtual education to construction 

students while helping them understand the precision and significance of construction 

activities. Communication has been identified as a crucial factor in improving safety 

performance in construction, as emphasized in various studies (Alsamadani et al., 2013; 

Christian et al., 2009; Haslam et al., 2005). Additionally, a study developed a system of 

key safety and quality performance indicators to evaluate potential benefits (Shohet et 

al., 2019). 

Therefore, MR technology has the potential to revolutionize education and training 

across industries, providing realistic simulations and a safe environment for learning 

and skill-building. As technology continues to evolve, it is likely to become an 

increasingly important tool in workforce development and safety training. 

However, the use of MR in safety training and education can also have limitations, such 

as the cost of implementing the technology and the need for specialized expertise to 

create virtual environments. Furthermore, while MR can provide a realistic simulation 

of hazardous situations, it may not fully capture the stress and pressure that workers 

may experience in real-world scenarios. Therefore, it is important to supplement MR 

training with real-world experience and provide ongoing support and feedback to 

ensure that workers can effectively apply what they have learned in both simulated and 

actual situations. Ultimately, a comprehensive approach that combines MR training 

with real-world experience and real-time safety systems can help improve safety 

performance in high-risk industries. 

2.4.2  On-site environment monitoring 

On-site monitoring often connects MR systems with location trackers and shares 

valuable safety information in real-time. In one study (K. Kim et al., 2017), researchers 

proposed a Google Glass (Google Glass, n.d.)-based system for tracking workers in 

real-time in order to expand their field of view and visually warn them when they 

approach a dangerous area or machine, and at the same time, the operator of the heavy 

machinery will receive an alert that someone is approaching. Another study (H. Li et 

al., 2015) focused on VR-based real-time tracking and training in which hazardous 

areas in the virtual environment are marked and radio frequency identifiers are attached 

to the workers’ helmets. Whenever workers enter a hazardous area or approach heavy 

machinery, the helmet emits an audible warning alerting them to move away. This 

approach also involves a virtual environment on site called the “virtual construction 

simulation system,” which can be monitored by managers and safety professionals. The 

researchers concluded that despite the limited realism provided by real-time 

visualization, augmented reality (AR) and MR will be the mainstay of construction 
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monitoring in the future. In another study (Kun et al., 2018), the participants used MR 

equipment and made Skype calls while driving to test whether the MR equipment 

negatively affected driver judgment. The experiment was performed in an isolated 

environment and carried out under strict safety standards. In yet another study (Wu et 

al., 2022), digital twins, deep learning, and MR were integrated into a real-time visual 

warning system. Finally, another study (Dai et al., 2021) reported that MR could be 

used to communicate and interact visually on the construction site and discussed the 

potential for preventing on-site accidents. 

These results demonstrate the practicality of using MR devices or similar equipment 

when performing operations outdoor. At the same time, the sensors installed in the 

equipment allow the identification system to more accurately determine the location 

and status of personnel, thereby facilitating more comprehensive protection. 

2.4.3  Pre and post-construction planning 

Preconstruction safety planning is a crucial step that should be taken before starting any 

construction project. It can help to prevent potential hazards and ensure the smooth 

progress of the project by ensuring that proper design specifications are followed. One 

promising method for carrying out preconstruction safety planning is through the use 

of MR technology. 

One study proposed a VR-based 4D simulation system (Boton, 2018) to support the 

analysis of designers and construction managers. This system allows them to identify 

potential safety hazards and develop strategies to mitigate them before construction 

begins. Another study (Malekitabar et al., 2016) investigated the use of Building 

Information Modeling (BIM) to automatically identify construction safety issues and 

related risks. 

Therefore, preconstruction simulations are essential for ensuring the safety and 

efficiency of the actual work and the efficient use of resources by reducing overturns 

and preventing false starts. MR-based simulations are expected to become a key 

preconstruction safety planning method in the construction industry in the future. 

In addition to preconstruction safety planning, MR can also be applied to post-

construction safety assessment and management. One study (Khurshid et al., 2023) 

proposed a system for monitoring and assessing the safety of building structures using 

a combination of MR and Internet of Things (IoT) technology. The system uses sensors 

to collect data on structural deformations and sends this information to a cloud-based 

MR platform, which can generate 3D visualizations of the building's structural integrity 

in real-time. This approach provides a more comprehensive and accurate assessment of 

a building's safety compared to traditional manual inspections. 
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Overall, MR has significant potential to improve safety in the construction industry, 

from preconstruction planning to post-construction assessment and management. By 

providing workers and managers with real-time information and feedback, MR systems 

can help to prevent accidents and injuries and improve the overall efficiency and 

effectiveness of construction projects. 

2.5 Summary 

In human motion, recognition approaches that are constrained to use a single sensor, 

certain hardware limitations may arise, such as utilizing a depth sensor, which may not 

provide accurate readings for targets that are beyond optimal range. Likewise, if only 

IMU sensors are used, the interference of the environment can lead to significant 

integration errors. These issues are particularly important in the complex environment 

of construction sites. Most studies using a single sensor are based on many conditions, 

whereas studies using multi-sensor fusion are necessary for complex environments and 

actions. 

Meanwhile, based on the research described above, it is clear that conventional driver-

based safety monitoring and early warning methods involve the measurement of 

biological indicators, which can be difficult to implement in everyday use in general 

environments. Many safety-related studies on vehicles and drivers have focused on the 

provision of information. For example, for vehicles with poor visibility, a large number 

of sensors are utilized to enhance peripheral vision and provide distance information so 

that drivers can actively assess their safety levels. Workers who operate large machinery 

generally have ample on-the-job experience. The main reason they have accidents is 

that their subjectivity is disturbed, keeping them from receiving or evaluating 

information in time, such as when they are fatigued or distracted. Therefore, safety 

research on drivers should focus on monitoring and analyzing the status of the driver 

while simultaneously providing warnings and reminders in a timely manner. 

Meanwhile, the complexity of the processing equipment makes it difficult to apply in 

real-world environments. On the other hand, MR-based safety research in the 

construction industry is macroscopic and tends to focus more on prior training, 

advanced layouts and hazard prevention, and remote human monitoring, but the 

response to emergencies remains insufficient. 
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Chapter 3 

A motion recognition for workers using selective 

depth inspection and optimal IMUs 

The construction industry has long been plagued by poor safety records, with accidents 

resulting in worker injury being all too common. With approximately 88% of accidents 

resulting in injury, there is a pressing need for improved hazard prevention methods to 

keep workers safe on construction sites. In recent years, deep learning and image 

processing have shown great potential for improving human motion detection accuracy, 

but equipment limitations have made it difficult to effectively address depth-related 

problems. Wearable devices have become increasingly popular, but the variable outdoor 

environment in which construction workers operate presents significant challenges to 

their widespread adoption. 

To address these challenges, an integrated sensor fusion method is proposed for hazard 

prevention on construction sites. The approach combines different kinds of signals to 

analyze and correct the movement of workers on the site, improving the detection 

accuracy and efficiency of specific body motions. The proposed approach incorporates 

a new method called selective depth inspection (SDI), which adds preprocessing and 

imaging assistance to an ordinary depth map optimization, significantly improving 

calculation efficiency and accuracy. 

The SDI method combines depth cameras and inertial measurement unit (IMU) sensors 

to achieve more accurate motion recognition, even beyond the suitable detecting 

distance of depth cameras. This combination allows for the detection of body 

movements that are not easily captured by depth cameras alone, making it a valuable 

tool for hazard prevention on construction sites. The proposed approach can reduce the 

burden on workers while stabilizing detection accuracy, making it an attractive solution 

for construction site safety. 

The multi-sensor-based motion recognition system for construction sites includes 

several key components. First, the system uses a depth camera to capture images of 

workers on the site. The SDI method is then used to optimize the depth maps and 
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improve calculation accuracy. Second, IMU sensors are attached to workers to capture 

data on their movements. This data is then analyzed in conjunction with the depth 

images to improve the detection accuracy of specific body motions. 

3.1 Methodology  

3.1.1  Overview 

The proposed method for hazard prevention of construction workers is an integrated 

sensor network approach, which utilizes a depth camera and IMU sensors to collect 

data from workers and construct a human model to analyze their motions and gestures. 

As shown in Figure 5, this approach involves a two-step process: visual-based motion 

recognition and IMU-based motion recognition. The visual-based motion recognition 

step uses image-processing-based real-time monitoring as a preprocessing step to 

enhance the accuracy of depth optimization. On the other hand, the IMU-based motion 

recognition step minimizes the number of wearable devices depending on the 

application environment while maintaining the detection accuracy of basic and 

relatively complex actions. 

One of the main advantages of this method is that it focuses on multi-sensor cooperation, 

which helps reduce errors caused by sensor defects, increase detection accuracy, and 

improve efficiency. Additionally, the use of a depth camera and IMU sensors allows for 

more accurate and comprehensive monitoring of workers' motions and gestures, which 

can help prevent potential hazards in the workplace. 

 

Figure 5 Overview of the proposed methodology. 
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However, it is important to note that the implementation of this approach may require 

additional resources, such as specialized hardware and software, which can increase the 

cost and complexity of the system. Moreover, there may be limitations to the range and 

accuracy of the sensors used, which can affect the detection and recognition of motions 

and gestures. Therefore, further research and development may be necessary to 

optimize the effectiveness and practicality of this method for hazard prevention in the 

construction industry. 

3.1.2  Human recognition via SDI 

The proposed selective depth inspection (SDI) method addresses the challenges 

associated with depth detection in complex environments, such as construction sites, 

by dividing the process into two steps. The first step utilizes image processing to 

identify the monitoring area and check for the presence of humans. This step helps to 

reduce the computational burden and avoids performing depth recognition and 

optimization on non-human objects, thereby improving efficiency. In the second step, 

depth recognition and optimization are performed on the selected areas, which reduces 

the recognition errors caused by specific actions and increases the effective recognition 

distance. This approach is particularly useful for situations where the object of interest 

is located at a distance from the camera, as it helps to reduce the high error rates that 

may occur in typical depth detection over long distances. By effectively combining 

image processing and depth optimization, the proposed SDI method can enhance the 

accuracy and efficiency of human motion recognition in complex environments, 

making it a valuable tool for hazard prevention in construction sites. 

The proposed preprocessing stage involves utilizing various image recognition methods 

to identify the selected area. Two methods are used: human recognition based on 

TensorFlow Lite (TensorFlow Lite, n.d.) and skeleton recognition using PoseNet 

(PoseNet, n.d.), both of which are based on TensorFlow Lite. The human recognition 

method quickly identifies potential human shapes in real-time through analysis, with 

varying accuracy based on the training sets used. The skeleton recognition method 

performs rough bone recognition through an RGB camera to enhance the accuracy of 

depth analysis and optimization. To ensure recognition efficiency, a microcomputer is 

used as the terminal in the proposed method. Although the models used, such as 

TensorFlow Lite and PoseNet, are slightly outdated, they still meet the experimental 

requirements of a low-consumption terminal and provide an acceptable recognition 

fluency. 

When a human signal appears in the monitoring range, the RGB camera will detect the 

body frame, and only the depth data inside the selected area will be collected. The raw 

depth information collected may cause too many holes and defects owing to factors 

such as distance and environmental interference. To fix the hole problem and other 

interference, depth information optimization is needed at this time. This optimization 
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can fill in the missing depth information at a long distance to effectively increase the 

effective distance of depth motion recognition.  

A study (Yin et al., 2019) proposed a two-stage stacked hourglass network based on a 

previous study (Varol et al., 2017) to obtain high-quality results for human depth 

prediction. Instead of using RGB images directly, this approach uses RGB images and 

human part segmentation together to predict human depth. It consists of convolution 

layers, a part-segmentation module, and a depth prediction module. First, the RGB 

image input goes through the convolution layer and is converted into heat maps, after 

which it enters the part-segmentation module. Then, the heat maps are converted into 

human part-segmentation results, and these heat maps are summed as the input of the 

following depth prediction module with the features of previous layers. Finally, human 

depth prediction results are output. 

Algorithm 1: Gradient Fast-Marching Method (GradientFMM) 

1.   Procedure GradientFMM (depthmap) 

2.   Known ← all pixels with known values in depthmap 

3.   Unknown ← all unknown pixels adjacent to Known in depthmap 

4.   insert all pixels in Unknown into min-heap 

5.   while Unknown not empty do 

6.       p ← root of min-heap 

7.       calculate p values using depth value equation 

8.       add p to Known 

9.       remove p from Unknown 

10.      perform down heap 

11.      for each neighbor q of A do 

12.        if q not in Known and Unknown then 

13.           add q to Unknown 

14.           perform up heap 

15.        end if 

16.      end for 

17.   end while 

18.   return Known 

19. end procedure 

Figure 6 Gradient FMM algorithm. 

Figure 6 above is an algorithm called Gradient Fast Marching Method (GradientFMM) 

(Yin et al., 2019), and it propagates the depth from known pixels to unknown pixels. 

After the process, every pixel in the unknown region of a depth map will be assigned a 

depth value. In this study, to extend the detectable distance of the selected area, the 

GradientFMM algorithm is applied for depth information optimization. 
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Figure 7 SDI method process. 

The depth camera produces images with a resolution of 848 × 480 pixels at a framerate 

of 30 frames per second. As shown in Figure 7, in the optimization process, this research 

first applies the GradientFMM algorithm to analyze each frame to fix undetected points 

of selected human areas, and then the area is considered as 3D coordinates by 

cooperation with the skeleton detection processing from the previous step. Finally, the 

depth information as a three-dimensional coordinate of each point of interest from the 

possible hu-man shape can be obtained. The points of interest include but are not limited 

to the hands, elbows, head, waist, knees, and feet. 

3.1.3  Portable computing terminal 

Some hazard prevention schemes are based on sensors placed on helmets, and the 

information collected by sensors on helmets can be analyzed only after workers end 

their shifts and remove their helmets. This kind of analysis method is relatively 

inefficient and cannot provide timely accident alerts.  

In this study, as shown in Figure 8, a portable computing terminal is used to divide the 

processing and perform data analysis for each small sensor locally, thereby reducing 

the transmission of data for large images and improving processing efficiency.  

Recently, Raspberry Pi 4 (Raspberry Pi, n.d.) has become one of the most popular 

microcomputers in the world owing to its portability, size (of a credit card), extremely 

low power consumption, and complete internal structure. In addition, Raspberry Pi uses 

the open-source Linux system as its main operating system, which makes it extremely 

scalable, and it can realize the required functions with the help of many open-source 

projects. 
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Figure 8 Portable computing terminal. 

However, Raspberry Pi also has some shortcomings. For example, because of its low 

power consumption, it cannot drive some large GPUs for deep learning training, and 

the integrated graphics card that it carries cannot do this work as well. Thus, in this 

research, the Neural Compute Stick 2 (NCS2) produced by Intel was used as an external 

neural network accelerator to make up for this shortcoming. This device can accelerate 

neural network inference operations at relatively low operating power. NCS2 needs to 

be used in conjunction with Intel OpenVINO Toolkit (Intel, n.d.). This is an open-

source software developed by Intel, which mainly includes the Model Optimizer and 

an inference engine to receive neural network architecture and weight information. 

Another important part is the visual information collection unit. In this study, the 

RealSense R435i depth camera produced by Intel was used to collect 2D image 

information and 3D depth information.  

Compared with centralized computing, the portable computing unit has better 

scalability and reduces the requirements for data transmission. It can perform real-time 

processing at the sensor and transmit the results to the central processing unit for rapid 

analysis. In some large construction sites, where a large number of sensors need to be 

deployed, the computational burden on the central processing unit can be effectively 

relieved. At the same time, because of the mobile computing unit’s high portability, 

real-time processing, and early warning capabilities, it can be deployed at the dead ends 

of construction sites, blind areas of large operating vehicles, and other accident-prone 

areas, thereby speeding up rescue after accidents and reducing secondary injuries. 

3.1.4  IMU-based human motion recognition  

This section introduces IMU-based human motion detection, in which IMUs measure 

triaxial (3D) accelerations and triaxial angular velocities. This approach can also easily 

obtain information directly without numerous restrictions.  
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In this proposal, motion capture during work activities is mainly considered, so the 

body’s four limbs are the observation focus. The limbs can express most of the 

essentials of movements. Despite minimizing the number of wearable devices, this 

research still maintains the detection accuracy of basic and relatively complex 

movements.  

IMU motion recognition is based on a previous study (Dehzangi & Sahu, 2018), which 

introduced a human activity recognition method in a normal environment; the activities 

they considered are walking, walking upstairs, walking downstairs, sitting, standing, 

and sleeping. In this proposal, because the subjects were construction workers, new 

motions are added: lifting objects (one or two arms are elevated), picking up heavy 

objects (the swing amplitude of both arms is reduced and stiff), holding up heavy 

objects (the arms are partially angled and stiff), raising arms (arms are at right angles 

to body), regular cyclical movement (arms making a circular motion), bending over 

(leaning forward or backward), and kneeling (one or both knees).  

The framework of the IMU-based human motion recognition system is as follows. First, 

relevant data is collected from users. Each motion is divided according to the time axis, 

and information such as the acceleration changes of the four sensors during the time is 

obtained. At the same time, for different motions, feature extraction is performed on the 

path changes of each sensor, and the activity label is created. Finally, by comparing the 

new action with the label data in the database, the action with the highest similarity is 

output as the result.  

Each worker wears 4 sensors, and each sensor owns a separate port identification code. 

The combined data group from the 4 sensors will be judged as one worker. All four 

IMU sensors continuously record data from each worker, and the motion recognition 

method analyzes amplitude changes. At the same time, when a motion process changes 

dramatically, the differences between triaxial accelerations and angular velocities 

before and after the change are counted and recorded as change graphs. Finally, the 

differences are compared with a motion database to identify the best match. The sensors 

can not only collect motion data, but they can also collect information about the workers’ 

surrounding environment, such as temperature, height, and air pressure, by exchanging 

data with environmental sensors to ensure that workers are in a proper working 

environment. 

3.1.5  Multi-sensor fusion and analysis 

Normally, because visual signals and IMU electronic signals are quite different, it is 

difficult to make a comparison between them. In this proposal, both the depth camera-

based method and IMU sensor-based method can obtain results independently, but 

when it comes to some specific circumstances, such as self-occlusion, using only one 

kind of signal will cause a high error rate and affect the whole system. 
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In this research, two kinds of signals are cooperatively used by reducing the ad-vantages 

and disadvantages of each to further improve accuracy. The detection area of the depth 

camera is considered a huge 3D coordinate system. The depth camera is placed on one 

side of the system, and IMU sensors are also calibrated before loading to make sure 

they are consistent at time 0.  

As described above, when recording starts, both the camera and IMU sides generate 

constant 3D coordinate changes. For the depth camera side, the variation and value of 

specific points are obtained from the coordinates in the depth map and frame platform. 

For the IMU sensor side, during movement the three axes change with different 

accelerations, and, using the origin set at time 0, the path changes and distance are 

calculated by Equation (3.1). 

𝑆 = ∫(∫(𝑎⃗)𝑑𝑡)𝑑𝑡,       (3.1) 

where 𝑆  represents directional distance and 𝑎⃗  represent average acceleration during 

period 𝑡. Although the units, distance, and size are quite different between depth map 

coordinates and IMU sensor coordinates, it can be described that the change amplitude 

curve between each set of specified coordinate points (in this case, points of two elbows 

and two knees) by considering the weight of each kind of sensor. Thus, a more accurate 

result is output for comparison with the database, resulting in higher reliability for 

human motion recognition. 

The final degree of change is shown in Equation (3.2). 

∆𝑃 =

∆𝑃𝑣

𝑃𝑣
0 ∙𝛼+

∆𝑃𝐼

𝑃𝐼
0 ∙𝛽

2
,       (3.2) 

where ∆𝑃𝑣 is the change of motion from the visual side, ∆𝑃𝐼 is the change of motion 

from the IMU sensor side, 𝑃𝑣
0 and 𝑃𝐼

0 are the initial states of the current time segment, 

and 𝛼 and 𝛽 are weight coefficients for visual and IMU sides, respectively. 

In this study, since the effectiveness of existing sensors cannot be evaluated in advance, 

in this experiment, the weight distribution between different sensors is relatively ideal, 

and in this experiment, they are distributed into 50%, and 50%. 

Figure 9 shows a flow chart of the cooperative method for fusing both data streams. 

The key point of this research is how to compare the data of the visual sensor and IMU 

sensor at the same latitude. In this experiment, a concept called “degree of change” was 

proposed, it is described as the change amplitude curve between each set of specified 

co-ordinate points (in this case, points of two elbows and two knees) by considering the 

weight of 2 kinds of sensors. The recognition based on the visual sensor will mark the 

interest points through skeleton detection, and the pixel path in 3d coordinates can be 

calculated. The recognition based on the IMU sensor will collect the acceleration and 
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angular velocity, by using the double integration method, the distance and path in 3d 

coordinates can be calculated. Finally, the degree of change formula is used to obtain 

the degree of change of each interest point, to compare with the database, and to find 

the best match. 

 

Figure 9 Flow chart of the proposed multi-sensor-based motion recognition. 

3.2 Hardware and details 

3.2.1  RGB-D camera 

The Realsense D435i is a stereo depth camera that combines depth sensing with RGB 

(color) imaging, enabling accurate and real-time 3D scanning and sensing in a variety 

of applications. It is a product of Intel and has been designed for use in various fields 

such as robotics, drones, AR, VR, and autonomous vehicles. 
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Figure 10 Realsense D435i used in this experiment. 

The D435i features a global shutter that enables accurate image capture, even in fast-

moving objects. It also has an infrared projector and a stereo camera that enable depth 

sensing and object tracking with high accuracy. Additionally, it has an IMU (Inertial 

Measurement Unit) that provides precise motion-tracking data, which is useful for 

navigation and robotics applications. 

The camera can be easily integrated with various platforms and operating systems, 

including Windows, Linux, ROS, and OpenCV. It also supports multiple programming 

languages such as C++, Python, and Java, making it a versatile solution for developers 

and engineers in various industries. 

In this experiment, Realsense D435i shown in Figure 10 is the main solution for human 

action recognition. 

3.2.2  Micro computer 

To ensure the portability and scalability of this method, it used a microcomputer as the 

processing terminal for the data. In this experiment, Raspberry Pi 4 has been used. 

The Raspberry Pi 4 is the latest iteration of the popular Raspberry Pi series of single-

board computers. The Raspberry Pi 4 features a quad-core 64-bit ARM Cortex-A72 

processor with clock speeds of up to 1.5GHz, which provides improved performance 

compared to its predecessors.  

In terms of connectivity, the Raspberry Pi 4 has dual-band 802.11ac wireless, Bluetooth 

5.0, Gigabit Ethernet, two USB 3.0 ports, two USB 2.0 ports, and two micro-HDMI 
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ports for connecting displays. It also has a 40-pin GPIO header, which allows users to 

connect various sensors, actuators, and other devices. 

3.2.3  Neural compute stick 2 

The Neural compute stick 2 (NCS2) is a small USB-based device designed to accelerate 

deep learning and neural network computations on edge devices. It is a product of Intel 

and is intended for use in a variety of applications, including computer vision, natural 

language processing, and speech recognition. 

The NCS2 features the Movidius Myriad X vision processing Unit (VPU), which is 

capable of performing up to 4 trillion operations per second (TOPS) of deep neural 

network inference. This makes it an ideal solution for running deep learning models in 

real-time on low-power devices such as Raspberry Pi or other embedded systems. 

In this experiment, NCS2 is used to accelerate motion recognition in a micro-computer. 

3.2.4  IMU sensor 

To capture the 3D motion data of workers, this research used two kinds of WitMotion 

IMU sensors to ensure the accuracy of the experiment. For the knee sensor, this research 

used model BWT901CL, and for the elbow sensor, model WTGAHRS2 is applied. The 

details of the sensors will be introduced in the next section. 

3.3 Experiment 

3.3.1  Setup 

This section describes a simulation to validate the feasibility of the proposal. It includes 

the following aspects:  

I. Using a depth camera along with the SDI method to identify possible humans in 

an area and detect the human skeleton, optimize the depth map of the human area, 

and collect the path change of interest points in a 3D coordinate environment.  

II. Using attached IMU sensors to detect the human skeleton based on four points of 

interest, and to record the coordinate differences to identify different motions.  

III. Using the weight-based multi-signal fusion correction approach generates 

coordinate differences from each frame and frequency and then outputs accurate 

position information.  

To obtain the depth maps of subjects, a portable computing terminal was constructed 

from a Raspberry Pi 4 as a computing unit, an NCS2 as a training accelerator, and an 

Intel RealSense D435i depth camera as a data collecting unit positioned at one side of 
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the experiment area. This camera can achieve smooth video streaming with 848 × 480-

pixel resolution at 30 frames per second. The possible depth detection ranges from 0.5 

to 16 m.  

To obtain the 3D motion data of subjects, four WitMotion IMU sensors were attached 

to both elbows and knees of each subject. At the outset of this experiment, sensors were 

selected with the goal of detecting worker safety from multiple angles, including 

environ-mental factors such as high-temperature work (heat stroke) and high-altitude 

work (falling, etc.). This consideration led to a different selection of sensors. Sensors 

for elbows are closer to the heart and head, so models that detect altitude, temperature, 

barometric pressure, and location information are used. For the knees, a functionally 

simpler model was used. The choice of the sensor did not affect the results of this 

experiment. The knee sensor model was BWT901CL, this sensor allows USB and 

Bluetooth 2.0 as its transmission method, and the detectable distance can reach 10 m at 

most. Its baud rate of it is 115200Bd, and the sampling rate of it is 60Hz. Meanwhile, 

the battery life of this sensor is about 4 hours, which is suitable for most workers. This 

research used the WTGAHRS2 sensor for the elbows, it can provide a more accurate 

3-axis inspection than the knee sensor, the baud rate of it is 9600Bd, and the sampling 

rate of it is 30Hz. Yet, the elbow sensor does not have a Bluetooth module, this problem 

can be solved by connecting to an external Bluetooth de-vice. Currently, the diversity 

of collected data is balanced with its low portability, in the future, this sensor will be 

considered to change to a more portable kind. Each IMU will provide a three-axis 

acceleration detection, making four of them 12-dimensional detection on the object. 

These IMU sensors can detect the above parameters plus air pressure and elevation, 

which can help to verify that the environment surrounding workers is stable and 

comfortable. A picture of the IMU sensor architecture is shown in Figure 11. 

 

Figure 11 IMU sensor architecture. 
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In this experiment, the visual sensor is directly connected to the microcomputer via 

USB, to provide stable large-capacity image and video transmission. The IMU sensors 

are connected via Bluetooth, through the built-in and external Bluetooth module, to 

collect motion data in real-time. Each microcomputer can be considered as a local 

terminal, in the real-world, environment, multiple local terminals will be connected by 

Wireless Local Area Network (WLAN), to provide multi-point monitoring.  

Before the beginning of the experiment, a database of actions is tested, which is also 

considered the comparison group. In this experiment, several motions were considered, 

including normal motions such as standing, sitting, and lying down, and motions 

specific to construction work, such as lifting objects, picking up heavy objects, holding 

up heavy objects, raising arms, regular cyclical arm movements, bending over, and 

kneeling. The reason to apply these motions is, in actual work, the possible motions of 

workers will be more complicated than in daily life, and many accidents also arise 

because of these actions (injuries to hands, waist, knees, etc.). By strengthening the 

monitoring and identification of the special motions, it is possible to effectively and 

quickly find out workers who continue to be in abnormal motion, thereby avoiding 

more serious accidents.  

 

Figure 12 A detailed description of detected motions (part 1). 
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Figure 13 A detailed description of detected motions (part 2). 

Here, this research gives a detailed description of the considered motions. Of these 10 

motions, three are normal motions and seven are specific to construction. All motions 

are considered as starting from facing ahead. Among the normal motions, standing, 

sitting, and sleeping (lying down) are included, which is also commonly seen in other 

studies.  Construction motions are motions that are commonly seen at construction sites, 

especially when workers are working in narrow areas or when they must reach a height 

that a normal standing person would find hard to reach. A mirror schematic diagram of 

these motions is shown in Figure 12 and Figure 13, where the yellow circles in the 

figures are the points of interest where sensors are attached. 

3.3.2  Area layout 

The data collecting and experiment area is shown in Figure 14 and Figure 15. The 

portable computing terminal was placed at the front of the whole area, the IMU sensors 

were attached to the subject’s elbows and knees, and then the workers made the 10 

motions (Table 1) in front of the depth camera. 
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Figure 14 The sensor arrangement and environment relationship diagram. (Front 

view) 

 

Figure 15 Experimental scenes and character relationship diagram. (top view and 3D 

front view) 

3.3.3  Procedure 

The experiment procedure is as follows:  
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Step 1. First, the sensors were attached to the experiment subject (worker surrogate), 

and the subject stood in different positions inside the experiment area to test the 

effectiveness of the SDI method.  

Step 2. Next, the subject performed the 10 motions in order, with a short pause be-

tween every two motions. (The data collecting process is done during the 

construction of the dataset)  

Step 3. Then, on the visual side, the possible human area was detected and the depth 

information inside the selected area was collected. Depth optimization based on 

GradientFMM filled in empty points inside the selected area and labeled points of 

interest. The coordinate amplitude of points of interest was also recorded.  

Step 4. Next, on the IMU side, data changes from the four sensors were during the 

process, and a low-pass filter was employed to eliminate redundant noise.  

Step 5. Then, the acceleration changes of each sensor were used to calculate path 

changes by the double-integral method.  

Step 6. Changes in the points of interest, human elbows, and knees, from both the 

visual side and IMU side, were calculated separately to obtain the degree of change 

within a certain period.  

Step 7. The degree of change from both the visual and IMU sides was used to calculate 

the average weighting, and the result was compared with the database to find the 

best match.  

Step 8. Finally, the similarity from the visual side, IMU side, and sensor fusion side 

was compared to determine whether the sensor fusion method showed the best 

result. 

To process the degree of change measured by the IMUs, this research set the 

experimental data processing environment as follows:  

Step 1. Calibration procedure: The output offset component of the acceleration sensor 

was removed because of the presence of static acceleration (gravity). Then the 

acceleration was averaged when the accelerometer was not detecting motion (the 

collection of more samples improved the accuracy of the calibration result).  

Step 2. Low-pass filtering: Signal noise in the accelerometers (both mechanical and 

electronic) was eliminated to decrease the error while integrating the signal.  

Step 3. Mechanical filtering: When in a stationary state, small errors in acceleration 

were treated as constant speeds, which indicates a continuous movement and 
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unstable position, affecting the actual motion detection. A mechanical filtering 

window helped to distinguish these small errors.  

Step 4. Positioning: The acceleration of each time period was known, and this research 

used the double-integral method to obtain distance information. The first integral 

gain speed and the second gain distance were applied to obtain the position. 

In the simulation, the 10 motions were expected to have their unique degree of change, 

including vector changes from the left and right elbows and knees: 

𝑀𝑛
𝑇 = [𝐴𝑛

⃗⃗ ⃗⃗ ⃗, 𝐵𝑛
⃗⃗ ⃗⃗⃗, 𝐶𝑛

⃗⃗⃗⃗⃗, 𝐷𝑛
⃗⃗ ⃗⃗ ⃗], 𝑛 ∈ [1,10],       (3.3) 

𝑊𝑛
⃗⃗ ⃗⃗ ⃗⃗ = (∆𝑥𝑛

𝑊, ∆𝑦𝑛
𝑊, ∆𝑧𝑛

𝑊), 𝑊 = 𝐴, 𝐵, 𝐶, 𝐷,      (3.4) 

where 𝐴, 𝐵, 𝐶,  and 𝐷  represent the left elbow, right elbow, left knee, and right knee, 

respectively, and 𝑊𝑛
⃗⃗ ⃗⃗ ⃗⃗  represents the change of motion from the four points of interest. 

From the visual side, the collected point of interest data included pixel position and 

depth information, which output a vector change. From the IMU side, through the 

acceleration of three axes and time, Equation (3.3) was used to obtain the distance in 

all directions, thereby obtaining the vector change. Then, a weighting coefficient was 

assigned to the visual and IMU sides through a standard normal distribution. Next, 

Equation (3.4) is used to calculate the integrated vector change: 

𝐹𝑇 = [

𝐴𝑣

𝐴𝑣
0∙𝛼+

𝐴𝐼

𝐴𝐼
0∙𝛽

2
 ,

𝐵𝑣

𝐵𝑣
0∙𝛼+

𝐵𝐼

𝐵𝐼
0∙𝛽

2
,

𝐶𝑣

𝐶𝑣
0∙𝛼+

𝐶𝐼

𝐶𝐼
0∙𝛽

2
,

𝐷𝑣

𝐷𝑣
0∙𝛼+

𝐷𝐼

𝐷𝐼
0∙𝛽

2
],    (3.5) 

where 𝐴𝑣 is the left elbow vector change on the visual side and 𝐴𝐼 is the left elbow 

vector change on the IMU side. 𝐹 is compared with 𝑀1 to 𝑀10 in Equation (3.5) to find 

the highest similarity. 

Regarding the construction of the dataset, this research recorded motion data from 5 

male adults between the age of 20 and 30. For each motion, 50 pairs of coherent and 

clearly behaved data from the perspective of visual and IMU sensors are collected. This 

process is done twice because the data from two different distance intervals are required. 

From the visual aspect, each motion is labeled based on the features such as the 

coordinate change of points of interest and depth information, from the IMU aspect, 

each motion is labeled based on the path change of each sensor attached.  

This study used the same simulation method that was used in one of the previous paper 

(T. Chen et al., 2020). For each motion, 100 pairs of sample data from each distance 

interval were prepared. The sample data were generated based on the dataset by adding 
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random interferences and white noises, to simulate deviations caused by the effects of 

real data collection. Weight coefficients obeyed a standard normal distribution. 

Table 1 Description of simulation situations. 

 Detecting distance Application of the SDI 

method 

Situation 1 4-6m × 

Situation 2 8-10m × 

Situation 3 8-10m √ 

As shown in Table 3.1, three situations for human motion detection were considered in 

this simulation. To determine whether the SDI method applied to human motion 

detection can succeed at a relatively long distance, the results for these three situations 

are compared and discussed.  

3.4 Result 

By combining the visual pixel changes based on the depth camera and acceleration path 

changes based on IMU sensors, this research generated graphs with the highest 

similarity of each set of sample data. Some typical motion captures and their results of 

similarity are shown in Tables 2, 3, and 4, and Figures 16, 17, and 18. 

Figure 3.10 shows the result obtained during situation 1, in which the subject stood at 

a highly detectable distance (around 4-6 m away from the camera) and the SDI method 

was not applied. The formulas for recall and precision are shown in Formula (3.6) and 

(3.7). 

Recall: 𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,         (3.6) 

 Precision: 𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,            (3.7) 

A recall is for the original sample, which indicates how many positive examples in the 

sample are predicted correctly. There are also two possibilities, one is to predict the 

original positive class as a positive class (𝑇𝑃), and the other is to predict the original 

positive class as a negative class (𝐹𝑁). Precision is for the prediction results, and it 

indicates how many of the predicted positive samples are true positive samples. Then 

there are two possibilities for predicting positive, one is to predict the positive class as 

the positive class (𝑇𝑃), and the other is to predict the negative class as the positive class 

(𝐹𝑃). 
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Table 2 Simulation result for situation 1. 

            Real 

motion 

Detected motion 

standing sitting 
lying 

down 

lifting 

objects 

picking up 

heavy  

holding up 

heavy  

raising 

arms 

regular cyclical 

movement 

bending 

over 
kneeling Precision 

standing 93 1   1 2 1   1     93.94% 

sitting   97                 100.00% 

lying down     98             3 97.03% 

lifting objects       87 5 7 2       86.14% 

picking up heavy  4     4 87 3         88.78% 

holding up heavy  3 2   8 5 89 5       79.46% 

raising arms         1   93       98.94% 

regular cyclical 

movement 
              95 3   96.94% 

bending over               4 97 1 95.10% 

kneeling     2             96 97.96% 

Recall 93% 97% 98% 87% 87% 89% 93% 95% 97% 96% 93.27% 
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Figure 16 Example group of optimized depth motion capture for situation 1. 

It can be learnt from Table 2 that most of the motions can be correctly identified, but in 

some motions, some points of interest have similar paths, which can be confused with 

other motions, resulting in wrong outputs. Figure 16 shows the example group of 

optimized depth motion captures for situation 1. 

Table 3 shows the result obtained during situation 2 when the subject stood at a 

relatively long distance (around 8-10 m away from the camera) and the SDI method 

was not applied. Figure 17 showed that when people stand a long distance away from 

the camera, the depth detection does not perform well, especially when the detection 

requires the identification of similar motions with different depth changes, such as 

bending over, regular cyclical movement, lifting, and picking up or holding heavy 

things. The reason is, the further the object is from the depth camera, the higher the 

RMS error will be, even after optimization, some of the motions still cannot be 

identified because of errors and interference. If the fusion results are not corrected by 

the IMU sensor results, the accuracy could be lower. 

Table 4 shows the result obtained during situation 3 when the subject stood at a 

relatively long distance (around 8-10 m away from the camera) but the SDI method was 

applied. It can be learnt from Figure 18 that some depth-based errors are well corrected 

by the SDI method using RGB person scale finding, and skeleton assistance based on 

PoseNet, which provide good separation for bending over and kneeling, and improve 

the identification between lifting and holding up or picking up heavy objects. There are 

still some problems while using the SDI method due to the long distance, and the 

skeleton or object scale is sometimes poorly constructed. In addition, the conflict 

between and misjudgment of some points of interest may lead the result to a completely 

unrelated motion, such as bending over, which was misidentified as five different 

motions several times. 
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Table 3 Simulation result for situation 2. 

            Real 

motion 

Detected motion 

standing sitting 
lying 

down 

lifting 

objects 

picking up 

heavy  

holding up 

heavy  

raising 

arms 

regular cyclical 

movement 

bending 

over 
kneeling Precision 

standing 90 2   2 2 3 1 1 3   86.54% 

sitting   84       2     7 4 86.60% 

lying down     95               100.00% 

lifting objects 3     75 10 7 8       72.82% 

picking up heavy  4     15 65 19         63.11% 

holding up heavy  3 6   8 22 68 5       60.71% 

raising arms         1   86       98.85% 

regular cyclical 

movement 
          1   82 13   85.42% 

bending over   8 2         17 77 11 66.96% 

kneeling     3             85 96.59% 

Recall 90% 84% 95% 75% 65% 68% 86% 82% 77% 85% 81.07% 
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Figure 17 Example group of optimized depth motion capture for situation 2. 

As for the validation of the result, this research considered the measure of precision and 

recall. Precision is based on prediction results, it indicates how many of the “predicted 

positive instances” are truly positive, recall is based on original samples, and it indicates 

how many positive instances are predicted correctly. As the final criterion, this research 

adopted the F1-measure approach, which is the weighted harmonic average of precision 

and recall. In Table 2, the recognition result shows that the precision and recall are 

93.43% and 93%, and the F1-measure is 93.27%, the similar results suggest a good 

classification outcome.  The evaluation standard in Table 3 and Table 4 is the same as 

in Table 2. In Table 3, the precision, recall, and F1-measure are 81.76%, 81%, and 

81.07%; in Table 4, the precision, recall, and F1-measure are 92.86%, 93%, and 92.80%, 

also support the good classification outcome.  

A comparison of the different detection situations is shown in Figure 19, from which 

can the result be seem, when the subject is far from the camera without the assistance 

of the SDI method, the visual side detection rate is much lower than that of the other 

situations. Because the Bluetooth transmission quality of the IMU sensor is also 

affected at long distances, the final accuracy is not very high. With the SDI method 

applied, long-distance motion detection can reach the accuracy of short-distance 

detection, and the lack of depth information is effectively compensated by image 

processing.  
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Table 4 Simulation result for situation 3. 

            Real 

motion 

Detected motion 

standing sitting 
lying 

down 

lifting 

objects 

picking up 

heavy  

holding up 

heavy  

raising 

arms 

regular cyclical 

movement 

bending 

over 
kneeling Precision 

standing  98     2 2 4     2   90.74% 

sitting    97           3     97.00% 

lying down      98             3 97.03% 

lifting objects        91 4 4 2 2     88.35% 

picking up heavy 1     5 89 3     2   89.00% 

holding up heavy 1 1   2 3 89 3   2   88.12% 

raising arms          2   95   3   95.00% 

regular cyclical 

movement  
              88 4   95.65% 

bending over    2 1         7 87 1 88.78% 

kneeling      1             96 98.97% 

Recall  98% 97% 98% 91% 89% 89% 95% 88% 87% 96% 92.80% 
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Figure 18 Example group of optimized depth motion capture for situation 3. 

Our experiment shows that the average accuracy of motion recognition by multi-sensor 

fusion at a short distance (situation 1) and relatively long distance assisted by 

optimization from the SDI method (situation 3) can reach 93.27% and 92.80%, 

compared with situation 2, the accuracy improved about 12%. Although the number of 

samples is not large, this result shows that the proposed SDI method based on multi-

sensor fusion makes it possible to realize high-precision motion recognition beyond the 

optimal recognition distance of the depth camera, and it can detect the different kinds 

of motions used at construction sites. 

 

Figure 19 Comparison of different detection situations. 

Currently, the assumed applicable environment of the proposed method can be 

described as some medium-sized indoor areas of the construction site or buildings, 

some corners or blind spots of the construction site. Due to environmental limitations, 

the workers that work in a blind spot, a closed or semi-closed area can be easily ignored, 

yet the danger occurrence rate of these places is very high, and because of the remote 

location, the rescue is not timely as well. Due to the different prerequisites, the proposed 
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method is different from the mainstream construction site monitoring approach, and the 

available situations are relatively limited, but the importance is still not to be ignored. 

3.5 Summary 

This experiment proposes a novel method for motion recognition and hazard prevention 

of construction workers using an integrated sensor network. The objective is to achieve 

time warning and rescue in dead ends and blind areas of different construction situations 

by monitoring workers. To effectively ensure the safety of workers in the complex 

environment of a construction site, this research extended the detection distance of a 

normal depth camera. This research improved the depth camera-based motion 

recognition with SDI, which uses preprocessing on human scale finding and depth map 

optimization methods to effectively reduce the detection errors and calculation burden 

of a broad range of depth data, while at the same time enhancing the recognition 

distance and accuracy of the depth camera in a selected area. A portable computing 

terminal is also used instead of a single depth camera to achieve local analysis, avoiding 

the computing burden caused by transferring a large amount of data to a central 

processing unit. This research also demonstrated that using different types of sensors to 

recognize human motion improves the accuracy of motion recognition.  

The proposed methodology has some limitations. To simplify the problem, this research 

limited the considered motions in the motion recognition method to detect only 10 

selected types of motion. Also, owing to the hardware limitations of the microcomputer, 

the current configuration of the SDI method cannot achieve real-time detection. The 

experimental data and results of the simulation were collected over time but analyzed 

at one time. In practical applications, data collection and analysis will be processed in 

a short period, so that even if workers experience abnormal conditions, they can be 

quickly discovered and rescued. At present, the result of this approach only represents 

its performance in a simulated environment. Although the function is basically realized, 

it is not yet mature enough to be applied. The next step will be focusing on real-time 

realization, improving the efficiency of recognition, and the application in the real 

construction site environment. The results collected from an actual construction site 

environment are expected to have lower accuracy due to interferences.  

During the simulation process, this research discovered several problems, such as the 

points of interest for some actions having similar trajectories, resulting in some 

misjudgments. Therefore, finding out how to use other methods to determine and 

classify similar actions more accurately to improve the performance of motion 

recognition will be the focus of future work. Future work will also include adding a 

real-time warning based on motion recognition to the detection system to realize the 

original intention of this method, specifically, improved construction hazard prevention. 
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Chapter 4  

Active early warning system for heavy vehicle drivers 

using mixed reality 

The use of heavy machinery has always been a challenging task that demands the 

utmost attention and concentration from operators. The increasing demand for 

automation in the industrial sector has led to the development of advanced technologies 

to ensure the safety of workers and minimize accidents in the workplace. MR is one 

such technology that has shown immense potential in enhancing safety and efficiency 

in various industries. This section proposes a novel method that utilizes an MR device 

to monitor heavy machinery operators in real-time to ensure their safety while driving. 

The proposed method involves the use of an MR device that can obtain the operator's 

gaze direction, head direction, and hand condition while driving heavy machinery. The 

device is equipped with sensors that can detect the operator's eye movement and head 

orientation and can detect whether the operator is relaxed or tense. Based on these 

parameters, the device sets dangerous and safe zones in the user interface (UI). If the 

operator's gaze or head movement falls into the dangerous zone, the device immediately 

alerts the operator with visual and auditory cues. 

The proposed method can help prevent accidents in the workplace caused by operator 

fatigue or distraction. It can detect whether the operator is too tired to move their head 

or gaze to dangerous areas, preventing accidents caused by inattention. The MR device 

can provide real-time feedback to the operator and warn them immediately of any 

potential dangers. The device's alert system can help prevent accidents caused by the 

operator's inattention, making the work environment safer and more efficient. 

4.1 Methodology 

After synthesizing all relevant studies, it can be known that most of the driver-based 

safety monitoring and early warning method is partial biological index measurement, 

which has high requirements for daily use and re-implementation. At the same time, 
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due to the complexity of the processing equipment, it is possible to implement the actual 

environment. The research on safety monitoring of the construction environment based 

on MR technology is based on macroscopic, and they focus more on training, danger 

prevention, and remote human monitoring.   

In this study, a mixed-reality-based active monitoring system for drivers of heavy 

vehicles will be proposed, instead of concentrating on the entire environment of the 

construction site and biological methods, this method focuses on the dangerous 

behaviors that are not subject to the drivers’ will, such as irregular driving due to 

distraction or fatigue, etc. 

4.1.1  Data collection and preparation 

This study is based on MR technology, using MR equipment worn by heavy vehicle 

drivers, to analyze the data and achieve real-time warnings. 

One of the current mainstream MR headsets, HoloLens 2 (HoloLens, n.d.) will serve as 

the hardware basis for this study. Because functions such as hand motion tracking, head 

gyroscope, and gaze tracking are available, active driver behavior monitoring can be 

achieved, and multi-dimensional prediction of some abnormal and dangerous behaviors 

of drivers can be detected. During the monitoring process, for suspected dangerous 

driving behaviors, the MR device will give visual warnings (levels that won’t affect 

normal driving), at the same time, it will also provide auxiliary reminders in auditory 

and other aspects. This research is mainly aimed at the slow-moving heavy vehicles in 

the construction area. Within the scope permitted by law, the system can be extended 

to roads and other areas. 

4.1.2  Method details 

As depicted in Figure 20, the various potential hazards that heavy vehicle drivers may 

encounter, such as fatigue and distraction, pose a serious threat to their safety and those 

around them. These risks can be identified by closely monitoring their hand gestures, 

head gaze, and eye gaze. Consequently, it is imperative to pay utmost attention to these 

abnormal behaviors in order to mitigate any potential accidents and ensure the safety 

of all road users. The monitoring focus can thus be divided into the following critical 

areas: 
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Figure 20 Introduction to dangerous actions based on three dimensions. 

4.1.2.1 Hand monitoring 

Based on the detailed functionality description of the Mixed Reality Toolkit (MRTK) 

(MRTK, n.d.), it is evident that HoloLens 2 possesses the ability to accurately recognize 

up to 25 nodes of a single hand (as illustrated in Figure 21). The hand is considered one 

of the primary input methods, and it offers a wide range of gesture-based interactions. 

These gestures include actions such as grabbing, clicking, air tapping, and long-distance 

cursor pointing, which can be readily executed on HoloLens 2. 

 

Figure 21 25 nodes that HoloLens 2 can recognize in one hand. 
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Our research has identified that when a driver is suspected of being distracted or 

fatigued, their hand movements can often become erratic, such as leaving the steering 

wheel. This may occur when they attempt to operate the center control panel or when 

their hands fail to maintain the proper position on the steering wheel. In view of the 

capabilities of MRTK, this research has opted to employ the grasping gesture to 

simulate the driver's hold on the steering wheel. By analyzing the grasping state of the 

driver's hands on the wheel, this research can accurately assess their current state in one 

dimension, as depicted in Figure 22. This approach will enable us to detect any 

deviations in the driver's behavior and take appropriate corrective action to ensure their 

safety and that of other road users. 

 

Figure 22 Description of grab motion in MR environment. 

4.1.2.2 Head gaze monitoring 

Given that the hands of the driver may be occupied during driving, it can become 

challenging to perform certain gestures. To address this issue, MRTK offers the added 

functionality of head gaze and stay, allowing the user to perform various operations by 

pointing their head toward the intended target. 

In this research, the primary objective is to identify and mitigate dangerous driving 

behavior among drivers. Specifically, this research aims to detect instances of driver 

distraction and fatigue, which are two major contributors to road accidents. When a 

driver is distracted for prolonged periods, their head tends to point towards non-frontal 

areas, such as the roadside, rearview mirror, or center control panel.  

To address these challenges, this research leverages the head gaze and stay functionality 

of MRTK to analyze the driver's head-pointing behavior and provide early warnings in 

cases of suspected distraction or fatigue. This proactive approach allows us to intervene 

before accidents occur, preventing potential injuries or loss of life. By utilizing MRTK, 

this research can contribute to enhancing road safety and reducing the risk of accidents 

caused by driver distraction or fatigue. 
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4.1.2.3 Eye gaze monitoring 

As shown in Figure 23, the HoloLens 2 introduces a novel feature of eye-tracking, 

which eliminates the need for head movements while selecting various objects within 

the same area of view. This feature, combined with the gesture functionalities, allows 

for convenient object selection, movement, and manipulation. 

 

Figure 23 Describe the range of eye recognition that hololens2 can perform. 

In this research, the main purpose is to detect dangerous driving behaviors among 

drivers, specifically those associated with distraction and fatigue. This research has 

observed that these states can significantly impact a driver's eye movements. In normal 

driving conditions, the driver's eyes are primarily fixated on the road ahead, with 

occasional drifts toward the rearview mirror or vehicle instrument information. 

However, distracted driving can cause a driver's gaze to focus on abnormal directions 

or objects, leading to unintended consequences such as fine-tuning the steering wheel 

and driving off the road or into oncoming traffic. Similarly, when fatigued, the driver's 

eyes may not concentrate, leading to increased blinking due to heavy eyelids and slower 

refocusing times after each blink. These factors can cause delayed analysis of road 

conditions and result in severe accidents. 

To address these issues, this research leverages the eye-tracking function of MRTK to 

monitor the driver's eye movements in real-time. By setting up a sensing function in the 

abnormal gaze areas, this research can provide visual and auditory warnings to drivers 

who gaze too much, thereby enabling timely alerts and sufficient preparation time for 

subsequent measures, such as slowing down the vehicle. This proactive approach can 
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help prevent accidents caused by distraction or fatigue and ultimately enhance road 

safety. 

4.2 Experimental setup 

For the purpose of conducting this experiment, the hardware used was the HoloLens 2, 

a mixed-reality device developed by Microsoft. On the software side, the experimental 

setup included Unity 3D version 2019.4.21f1 and MRTK version 2.6.0, which were 

utilized to create and develop the experimental environment. The scene construction 

involved utilizing Euro Truck Simulator 2 (ETS 2, n.d.) as the primary tool to evaluate 

the effectiveness of the implemented functions. Additional modifications and 

extensions were made to enhance the academic rigor of the experiment. 

4.2.1  Mixed reality device 

As illustrated on the left side of Figure 24, the HoloLens 2 is a second-generation 

mixed-reality device developed by Microsoft and released in 2019. This device boasts 

significant improvements from its predecessor, including a wider viewing range that is 

twice as large, a holographic resolution of up to 2K that provides a clearer projection 

of virtual objects, and greater visibility of internal details. 

 

Figure 24 HoloLens 2 used in experiment 2. 

Regarding its hardware, the HoloLens 2 is equipped with four visible light cameras for 

head tracking, two infrared (IR) cameras for eye tracking, a 1 MegaPixel (MP) time-

of-flight depth sensor to detect depth information, and an initial measurement unit 

(IMU). Additionally, the device is equipped with a camera that can capture 8-MP photos 

and record 1080p 30fps videos. 

The HoloLens 2 also supports advanced human-computer interaction features, 

including full-joint model recognition of both hands, enabling direct interaction with 
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virtual objects using bare hands. Moreover, the device supports real-time eye tracking, 

providing more natural and intuitive ways of interacting with virtual objects. 

4.2.2  Unity 3d and MRTK 

The Unity 3D version 2019.4.21f1 was used in this simulation experiment in 

conjunction with the Microsoft MRTK version 2.6.0 for developing MR applications. 

MRTK for Unity is a comprehensive, open-source development kit that facilitates the 

creation of spatially-aware applications that can be deployed across a wide range of 

platforms. 

MRTK provides a variety of essential components and building blocks for MR 

development, including a cross-platform input system that enables developers to design 

natural and intuitive user interfaces that can be used across various devices. This input 

system supports a range of input modalities such as voice, hand and eye tracking, and 

spatial mapping, making it possible to create interactive and immersive user 

experiences. Figure 25 shows some example functions that MRTK can achieve. 

Additionally, MRTK offers basic components for spatial interaction, including camera 

modules, coordinate systems, head gaze, text, and spatial sound effects. These features 

enable developers to design realistic and engaging environments that respond to user 

input and enable users to interact with digital objects in a natural and intuitive way. 

 

Figure 25 MRTK Examples holographic view. 
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MRTK also provides support for advanced features such as eye tracking, which can be 

used to create more natural and immersive user experiences, and spatial mapping, 

which enables the creation of virtual representations of real-world environments. 

In conclusion, MRTK for Unity is a powerful and flexible development kit that provides 

essential building blocks for mixed-reality applications. Its support for a wide range of 

input modalities and its cross-platform compatibility makes it an ideal choice for 

developers looking to create engaging and immersive user experiences in mixed-reality 

environments.   

4.3 Simulation 

The simulation described in this experiment was originally developed using Unity 3D 

and was subsequently installed on a HoloLens 2 device to facilitate actual MR 

experience feedback. The virtual scene was created in Unity to simulate the view of a 

truck driver, including position and distance information about the surrounding 

environment. The overall framework of an early warning system was also constructed 

as part of the simulation. 

In this experiment, a visual model of a right-hand drive truck was used to represent the 

driver's view (shown in Figure 26). The driving visual range was divided into four parts 

based on driving behavior habits and the distribution of various parts in the vehicle: 

gaze danger zone, gaze attention zone, gaze safe zone, and hand operation zone. When 

the driver displays abnormal behavior, such as looking at the wrong zone for an 

extended period or loosening their grip on the steering wheel, they are assumed to be 

distracted or fatigued, and corresponding alarm measures will be activated. 

 

Figure 26 Introduction of division on driver’s visual area. 
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The simulation provides a realistic representation of a truck driver's view and behavior, 

enabling researchers to evaluate the effectiveness of the early warning system in 

detecting driver distraction and fatigue. By using a mixed-reality device, the simulation 

provides an immersive and interactive experience, enabling researchers to gather more 

accurate and reliable feedback from participants. 

In general, this experiment aims to improve the early warning system for drivers in 

dangerous situations by adding feedback from two dimensions hand monitoring and 

head/eye gaze monitoring. 

For hand monitoring, components not limited to NearInteractionGrabbable and 

ManipulationHandler are utilized to provide feedback on the driver's grasping action 

on the steering wheel. The sensing objects are placed about 0.35 to 0.4 meters away 

from the driver to ensure a natural grasping position. A new script named HandDetector 

is also added, which can detect the three-dimensional coordinates of both wrists in real-

time to assist in early warning. 

For head/eye gaze monitoring, components such as EyeTrackingTarget, GazeProvider, 

and Gaze are used to divide the different levels of areas by different colors, except for 

the safe zone and hand operation zone. When the driver's eyes or head is pointed to the 

designated area for more than 0.8 seconds, the pointed area will turn red or yellow to 

provide a visual alert. A short "Beep" will also provide an auditory alert. In the gaze 

danger zone, the "Beep" comes along with the color change to alert the driver in 

different dimensions as soon as possible. In the gaze attention zone, the "Beep" will 

come slightly later than the visual alert since the danger level is not as high as in the 

danger zone. 

Overall, this enhanced early warning system provides drivers with additional feedback 

on their hand-grasping action and head/eye gaze, enabling them to respond quickly and 

avoid accidents. 

4.4 Result 

During the HoloLens 2 real machine test, the eye direction point was not shown to 

prevent interference with the driver. Therefore, the results of this experiment are 

presented in two forms. Head and hand monitoring are fed back through frames 

captured during the real machine test, while eye gaze monitoring is performed using 

Unity 3D's simulation result. 

The head monitoring result is shown in Figure 27. In a simulated truck cockpit 

environment, the experimenter's head is pointed at each area to confirm the function by 

getting feedback from alerts. The tester aims his head at different zones, such as the left 
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and top rearview mirror, top cockpit area, center control panel, right rearview mirror, 

and front windshield of the co-pilot side, to receive gaze warnings and feedback. 

 

Figure 27 Alert feedback of head gazing areas. 

The second part is hand monitoring, as shown in Figure 28. In a simulated truck cockpit 

environment, the tester's hands are used to grab the simulated steering wheel area. Two 

sensing objects, currently shown as red balls, are placed in the hand operation zone. 

When the tester grabs the right position, the sensing objects will provide feedback with 

a transparent effect. If the hand or both hands cancel the grasping action, the sensing 

objects will immediately provide an alert through color changes and auditory feedback 

to remind the driver to restore the correct driving posture. The position of the head-

sensing object is not fixed, but it is limited inside the hand operation zone. It also has a 

reset function, which allows the tester to reset the object to the original position if the 

object's position drifts too much. 
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Figure 28 Grabbing motion sensing of the hand/hands in hand operation zone. 

The last part is eye monitoring, as shown in Figure 29. In a simulated truck cockpit 

environment, the tester's head movement is fixed, and only the tester's eyes can look 

around the environment, stare and stay for a while in different zones. During the process 

of looking around, feedback from different zones is used to confirm whether the eye 

gaze warning function is available. The white points, marked with blue circles in Figure 

9, indicate where the eyes are pointed. 

 

Figure 29 Alert feedback of eye-gazing areas. 

 

 



56 

 

4.5 Summary 

This experiment proposes an MR-based active monitoring system for heavy vehicle 

drivers, with a focus on active early warning to detect potential distractions or excessive 

fatigue in real-time using HoloLens 2. The study concentrates on three frequently used 

body parts while driving: head, eyes, and hands, to further determine the driver's current 

state. Abnormal states based on these body parts are discussed, and a combination of 

components in MRTK and original components is used to collect and analyze 

information from hands, head orientation, and eye-pointing direction, providing multi-

dimensional feedback to monitor abnormal movements and states of designated body 

parts in real-time, thereby discovering and preventing potential dangers. 

The results of the experiment demonstrate the feasibility of the proposed active heavy 

vehicle driver monitoring system. The real-time hazard warning feedback function 

works well, and no unrecognizable state was observed during the tests. However, 

feedback from the testers highlighted the need for improvement in the UI interface 

design and adding richer feedback such as voice prompts. Due to hardware limitations, 

the realization of user-friendly products needs further improvement. Moreover, the 

study emphasizes the need to consider the ethics and safety concerns related to carrying 

MR equipment during high-concentration operations and the reliability and safety of 

the actual use of MR equipment, considering the various laws and regulations in 

different regions. 

Overall, this study provides a promising solution for detecting potential hazards in 

heavy vehicle driving, ensuring driver safety, and preventing potential accidents. 

However, further research is necessary to enhance the user interface and develop 

additional safety measures for the practical implementation of the system. Additionally, 

ethical considerations must be addressed to ensure the safety and reliability of the 

system in compliance with relevant laws and regulations. 
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Chapter 5 

Mixed reality-based active hazard prevention system 

for heavy machinery operators 

The construction industry relies heavily on heavy machinery to improve work 

efficiency. However, improper operation of this equipment can lead to serious accidents 

that may result in fatalities. While many studies have developed auxiliary warning 

methods for blind spots of heavy machinery, these methods may not be sufficient to 

prevent accidents that occur when the driver is unaware or accidentally causes them. 

Therefore, more advanced safety measures are urgently needed to improve the overall 

safety of heavy machinery operations. 

Recently, research based on MR technology has become popular in the construction 

industry. The safety management methods currently used in the industry include pre-

training of on-site staff, overall monitoring based on the construction site, and pre-

design of the technology of the building itself. However, this study proposes an actively 

monitored real-time system using MR technology that focuses on the driver's state to 

identify and alert them of fatigue or distracted driving to prevent serious accidents. 

This study utilizes MR technology to overlay virtual UI onto the real world for more 

effective monitoring of the driver's state while minimizing the impact on real-world 

operation efficiency. The system continuously monitors the driver's behavior, including 

head movement, eye gaze, and facial expression, to detect signs of fatigue or distraction. 

The proposed system provides significant benefits to the construction industry by 

improving the safety of heavy machinery operations. By continuously monitoring the 

driver's state and providing real-time alerts, the system can prevent serious accidents 

caused by fatigue or distraction. Furthermore, the use of MR technology enhances the 

overall efficiency of the monitoring process, improving the accuracy and speed of 

driver state assessment. 
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The proposed actively monitored real-time system using MR technology represents an 

innovative approach to improving the safety of heavy machinery operations. By 

utilizing a combination of wearable devices and in-car sensors, the system can detect 

signs of driver fatigue or distraction and provide real-time alerts and adaptive training 

modules. The system has the potential to significantly reduce the occurrence of serious 

accidents in the construction industry, improve worker safety, and increase overall work 

efficiency. The main contributions of this research are: 

⚫ The proposed method details the development of a proactive real-time monitoring 

system, specifically designed to prevent accidents involving heavy machinery 

operators; 

⚫ The proposed method is not dependent on the subjective behavior of the operator 

and can accurately detect instances of unconscious or inadvertent behaviors; 

⚫ The proposed method represents an expansion of the existing research on accidents 

involving heavy machinery operators, with a particular emphasis on the 

development and application of the novel method in this field. 

 

5.1 Methodology 

This study aims to fill the gap in research focused on preventing unintentional accidents 

involving heavy machinery operators and proposes an active real-time monitoring 

system that pays attention to the driver’s state in order to help them when they fall into 

some subjectively uncontrollable abnormal states. For example, driver distraction can 

be quickly identified, and the driver can be alerted, thereby restoring the normal driving 

state. The method of recognition used in this study is mainly supported by the built-in 

program of the MR device worn by the driver.  In the process of program development, 

the information (such as coordinates) of the driver’s head and eyes are detected by 

calling the “distance and visual sensors” that are built into the device. At the same time, 

the driver’s hands and the surrounding environment are analyzed using external sensors, 

and the current state of the driver is judged from multiple angles in order to confirm 

that the driver is capable of safely operating the vehicle. 

Figure 2 introduced the research methodology of the proposed method. The analysis 

from research method, system design and architecture, prototype development and 

implementation to system evaluation is as follows: 

Research method: An active real-time monitoring system based on the driver's state is 

proposed. Specifically, the method uses 11 actions as criteria for system evaluation and 

employs MRTK to analyze data from three angles: the wearer's eyes, head, and hands. 

During the experimental stage, testers conducted indoor and outdoor tests of each action 

and further analyzed the results by means of random sampling. 
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System design and architecture: The system design and architecture of this real-time 

monitoring system include MR equipment, distance and vision sensors, and external 

sensors. The system uses MRTK to analyze data from three angles of the wearer's eyes, 

head, and hands and monitor the driver's status in real-time. The system can alert drivers 

to improve their driving behavior and reduce the likelihood of accidents involving 

heavy machinery operators. 

Prototype development and implementation: During the prototype development and 

implementation phase, MRTK is utilized to analyze data from the wearer's eyes, head, 

and hands and established 11 actions as the system evaluation criteria. Testers 

conducted indoor and outdoor tests of each movement and further analyzed the results 

by random sampling. The resulting system can monitor driver status in real-time and 

alert drivers to improve their driving behavior. 

System evaluation: During the system evaluation phase, the comparison between the 

results of indoor and outdoor experimental scenarios is made to draw a final conclusion. 

The study focused on slow-moving heavy vehicles in construction zones, with the 

potential to extend to sparsely populated roads as far as the law allows. To ensure the 

recognition rate, this research classified abnormal behaviors by identifying specific 

actions.  

 

Figure 30 Research methodology. 

5.1.1  Method introduction 

Figure 31 demonstrates that fatigue, distraction, and inattentiveness can be detected and 

analyzed through various factors, including gestures, hand positions, head gaze position, 
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head movement, eye gaze position, and eye gaze status, among others, in heavy vehicle 

drivers. 

Considering the potential risks posed by the dangerous and abnormal behaviors 

mentioned earlier, the monitoring activities will focus on three distinct areas, as outlined 

in the subsequent sections. 

 

Figure 31 The main criteria for judging dangerous motions. 

5.1.2  Hand-related recognition solutions 

According to the introductory documentation of MRTK described in section 4.2.1, 

HoloLens 2 can recognize up to 25 nodes on one hand. By detecting the position of 

these nodes, MRTK can accurately recognize a wide range of hand movements within 

the visual range, making hand gestures one of the main inputs in MR interaction. Figure 

32 shows that HoloLens 2's node recognition is relatively accurate, and several common 

input gestures that can be handled include grasping, tapping, air tapping, and long-

distance cursor pointing. 

 

Figure 32 Hand nodes performance using HoloLens 2. 
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In this study, the operator's hand movements are an important benchmark for 

determining whether they are in an abnormal state (distracted or fatigued, etc.). These 

movements include releasing the steering wheel and exceeding a certain amount of time 

or taking the hand off the area where the steering wheel is located for too long. However, 

normal movements such as taking one hand off the steering wheel for a short period of 

time to operate the center control panel are not considered risky behavior. By comparing 

the similarity between actions, the research team found that the hand grip on the steering 

wheel is very similar to the basic grip in MRTK. Therefore, the default grip-me function 

of MRTK will be used in this study to simulate the operator's hand grip on the steering 

wheel. The current hand state of the operator can be quickly confirmed by the 

recognition of the grip action in the fixed area by the sensors of the MR device, as 

shown in Figure 33. 

 

Figure 33 The “grabbing” motion recognized in MRTK is similar to holding a steering 

wheel. 

Similar to the previous experiment, several hierarchical areas were set up within the 

driver's visual range in this experiment, including the “hand operation zone” around the 

steering wheel. During the real-time monitoring process, the presence or absence of the 

hand in the hand operation zone was used as an identification criterion to confirm the 

hazard level.  

5.1.3  Head-related recognition solutions 

The user's head can also interact with the system and receive feedback when the user's 

hands are engaged in a task and not idle. MRTK provides feedback on head pointing 

and dwell, which can help users to select or position points by head rotation alone. 

In this study, the concentration is focused on operator state analysis to determine if they 

were driving dangerously or if there was a high probability that such behavior was about 

to occur. Typically, during prolonged distractions, the operator's head will 

unconsciously gaze at a fixed area, which is usually the policy operating area (e.g., 

looking at the curb, the rearview mirror, or the central control panel). When an 
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operator's attention is drawn to something external, depending on the state of the 

attractor, the operator may make a short, large head turn and not quickly return to the 

previous state. Also, fatigued driving can lead to involuntary operator actions, such as 

frequent head nodding, etc. Based on the above reasons, this research analyzed the 

operator's head direction and motion trajectory based on the MRTK head gaze and stay 

function and gyroscope data based on the previous experiment to ensure that this 

research can warn the operator in time when he/she is suspected or has been distracted 

and fatigued driving, so as to prevent accidents. By using MRTK, this research can 

contribute to improving road safety and reducing the risk of accidents caused by 

distracted or fatigued drivers. 

5.1.4  Eye gaze-related recognition solutions 

The HoloLens 2 is equipped with eye-tracking functionality, enabling users to select 

different objects within the same field of view without the need for head movements. 

This feature can be combined with gesture functionality to enable the selection, clicking, 

moving, and manipulation of virtual objects. 

Our research indicates that a driver's eye state undergoes the most significant changes 

when they are either distracted or fatigued. Under normal driving conditions, a driver's 

gaze is primarily focused on the road ahead, with occasional glances to the rearview 

mirror or instrument panel. However, when a driver becomes distracted, their gaze may 

shift to unexpected directions or objects. Prolonged staring at distractions can have 

serious consequences, such as causing the driver to subconsciously steer in the direction 

of their gaze, potentially leading to collisions with oncoming traffic, pedestrians, or 

objects within a construction site. In addition, when a driver is fatigued, their eyelids 

may become heavy, their eyes unable to focus, and their blinking frequency may 

increase, necessitating more time to refocus after each blink. This state can impair the 

driver's ability to assess road conditions, leading to cognitive biases that could result in 

serious accidents or other consequences. 

Based on the above, the driver's eyes can be monitored in real-time using the eye-

tracking function in MRTK. By setting up sensing functions in areas where the driver 

should not be staring, the system can provide multi-dimensional early warnings and 

reminders to drivers who are staring at these areas while driving, immediately alerting 

them to return to a normal driving state and take sufficient measures such as 

decelerating. The eye-tracking system can also detect changes in the eyes' focus to 

identify erratic eye movements indicative of fatigue and promptly issue a warning. By 

analyzing the duration of time that the eyes are open versus closed, the system can 

determine whether the driver is too tired to continue driving. By using these methods, 

the system can determine whether the driver is fatigued, and the warning system can 

alert the driver to take action or stop for a rest to ensure their safety and prevent 

accidents. 
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5.2 Experiment 

In the experiment, the latest version of Microsoft’s MR headset is used, the HoloLens 

2, as well as Logitech’s G923 analog steering wheel controller (Logitech, n.d.). On the 

software side, Unity 3D and MRTK are used for the development of the MR 

environment, while Euro Truck Simulator 2 was used to construct the virtual driving 

scenarios. 

Released in 2019, HoloLens 2 improves upon the previous version by expanding the 

viewing range two-fold, with a holographic resolution of up to 2048×1080 pixels per 

eye, making the projection of virtual objects clearer and presenting more interior details. 

HoloLens 2 has four visible-light cameras for head tracking, two infrared cameras for 

eye tracking, a 1-megapixel time-of-flight depth sensor for detecting depth information, 

an inertial measurement unit (IMU) sensor, and a digital camera capable of capturing 

8-megapixel photos and 1080p 30-fps videos.  

As the hardware foundation of this research, the HoloLens 2’s advanced internal and 

external cameras and sensors enable functions such as hand recognition, head 

gyroscope, and eye tracking, which can realize the active monitoring of driving 

behaviors and perform multi-dimensional prediction of abnormal and dangerous 

behaviors in drivers. During the monitoring process, the MR device can issue visual 

warnings for some suspected dangerous driving behaviors at levels that will not affect 

normal driving, as well as audible auxiliary reminders. HoloLens 2 used in this 

experiment is shown in Figure 5.4. 

In terms of human–computer interaction, HoloLens 2 can recognize all the joints of the 

hands and consequently be operated directly by the user’s bare hands. It also supports 

real-time eye tracking. 

The version of Unity 3D used in this simulation experiment was 2019.4.21f1, and that 

of MRTK was 2.6.0. MRTK for Unity is an open-source, cross-platform development 

kit for MR applications. It provides a cross-platform input system, basic components, 

and general building blocks for spatial interaction, including but not limited to camera 

modules, coordinate system, head gaze, text, hand and eye tracking, voice input, spatial 

mapping, and spatial sound effects. 

5.2.1  Originalities and improvements 

The aim of the present work is to consider the unrealized functions and the outstanding 

issues in the previous work, to further refine the existing questions surrounding the 

abnormal state of drivers and implement new functionality using the existing conditions. 
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First, the detection of drivers’ hands has been improved. In the previous experiment, 

the detectable motions were limited to the grasping condition of the hands. Now, it is 

possible to detect which zone the hands are located in as well as determine the level of 

an emergency. It is also possible to avoid misjudging the driver’s state and ensure the 

best response state of the driver during driving. 

Second, the detection of drivers’ head gaze has been improved. In the previous 

experiment, only the head-pointing area could be detected. Now it is possible to detect 

wider head rotation based on accelerometer data and vision, and thus the driver’s 

abnormal behavior can be detected, and feedback can be provided more quickly. 

Meanwhile, a gyroscope-based method for monitoring nodding has been added to 

provide more accurate and timely warnings to drivers who are suspected of being 

fatigued. 

Third, the detection of drivers’ eye gaze has been improved. In the previous experiment, 

only eye gaze pointing could be detected. Now it is possible to monitor the state of the 

eyes. For example, when the movement of the eyes becomes erratic, the proposed 

method determines whether the abnormal behavior is dangerous. By recording the focus 

frequency of the eyes and monitoring whether the displacement of the focus point 

changes beyond a certain range within a fixed time, the state of the driver is determined, 

and an early warning can be immediately issued to prevent a potential accident. Another 

example is the problem of frequent eye closure caused by fatigue. By combining data 

such as whether the eyes can be detected and the ratio of open/closed eyes within a 

fixed time, the driver’s state of alertness can be determined, and a warning can be 

immediately issued to remind them to drive safely. 

5.2.2  Experiment setup 

The model was developed in Unity 3D and later tested in HoloLens 2 to evaluate the 

actual MR experience. A virtual truck driving scene is created in Unity to simulate the 

field of view of a real truck driver, and this team built the overall framework of the 

early-warning system, which includes the location of surrounding environmental 

content and distance information in the virtual environment. As shown in Figure 34, 

this experiment simulates a visual model of a truck driver from the perspective of a 

right-hand steering wheel. Because the actual virtual environment is curved, some 

distortion may occur in the outer parts of the image. Based on driving habits and the 

layout of various parts of the vehicle, the driving field of vision is divided into the 

following four zones: gaze danger zone (red), gaze attention zone (yellow), gaze safe 

zone (green), and hand operation zone (blue). As mentioned in the previous sections, 

staring or hand movements in the wrong zone of the virtual environment will be judged 

as distracted or fatigued driving, and appropriate early warning measures will be 

activated. 
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Figure 34 Different visual areas based on the operator’s habit. 

In this experiment, two-dimensional (visual and auditory) feedback is added to the early 

warning system in order to provide double redundancy for the driver’s danger 

perception and to help them respond quickly in dangerous situations to avoid accidents. 

The visual and auditory warnings in this experiment were designed to be noticeable but 

not overly disruptive while driving. 

Table 5 Experiment scenarios and action details. 

Action 2 Keep the head still and eyes on the danger zone  (Red)

Action 4 Keep the head still and eyes on the attention zone (Yellow)

Action 6 Keep the head still and eyes on the safety zone (Blank)

Action 11 Mimic a fatigued state, with eyes closed or unable to focus.

Action 1 Randomly point the head to the danger zone (Red)

Action 3 Randomly point the head to the attention zone (Yellow)

Action 5 Randomly point the head to the safety zone (Blank)

Action 9 Mimic a state of faigue, frequent nodding the head

Action 10

Mimic a state of distraction, with a large swing of the head to the

left or right

Action 7

Look at the hands, fist, raise the head and lower the head in a few

seconds.

Action 8

Look at the hands, fist, raise the head, relase the hand and lower

the head in a few seconds.

Indoor/Out

door

Eyes

Head

Hand

 

In this experiment, 11 actions have been defined to simulate the possible behavior of 

an operator in an unconscious state, such as when they are very tired or distracted. 

Among these 11 actions, 5 of them are related to eye movements, 4 to head movements, 
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and 2 to hand movements. The specific details of these actions are described in Table 

5. 

This experiment invited 4 testers, all of whom were young people between the ages of 

20 and 30, due to the requirements of MR devices for certain qualities of the test 

subjects (understanding of MR devices, the sensitivity of eyes, etc.). In order to ensure 

the objectivity of the test, the 4 testers were divided into 2 men and 2 women. The 

experimental scenes are shown in Figure 35. 

 

Figure 35 The experimental snapshots of testers. 

The venue for this experiment was arranged in the author's laboratory and divided into 

two scenes: indoor and outdoor. During the experiment, environmental factors were 

kept consistent with minimal changes. The indoor scene was a windowless, 

temperature-controlled environment with a temperature range of 15-20 degrees Celsius 

and illuminated with reading lights. The outdoor scene was an open balcony 

environment with no significant obstructions, conducted in clear weather in the 

afternoon with temperatures ranging from 12-17 degrees Celsius. The experimental 

results were obtained from real machine testing using HoloLens 2 and did not use PC 

software to simulate data. 

In the experiment, the main method of data collection is repeated observation and result 

recording of the testers and the experimental scene. To ensure the validity of the 

experimental data, as mentioned earlier, during the experimental process, this research 

try to keep other factors within controllable range except for the testers and designated 

test actions, such as environmental factors, instructions, and equipment. 
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Regarding the size of the data sample, in this experiment, each tester will perform 11 

action instructions with 100 repetitions of each action, resulting in a total of 4,400 times. 

The data results will be presented in tabular form. 

Since the uniformity of the testing efficiency of testers cannot be guaranteed, and 

outdoor experiments are included, various outdoor factors cannot be reasonably 

controlled. Therefore, the direct results of this experiment will have some errors that 

may affect the final experimental conclusion. Hence, multiple random sampling 

methods will be used to randomly select 80 sets from the 100 sets of results for each 

person and each action and re-analyze them. This way, individual bad results in the 100 

sets of data can be avoided from affecting the accuracy of the overall result as much as 

possible.  

5.2.3  Development concept 

Some components from the MRTK are used to implement some methods, including 

basic hand recognition and motion feedback. For example, because of the high 

similarity between the action of grasping the steering wheel and the action of virtual 

grasping, the NearInteractionGrabbable and ManipulationHandler components are 

used to identify whether the driver is holding the steering wheel correctly. In this study, 

a script named HandDetector (Figure 36) is also written originally, which is used to 

recognize the 3D coordinates of the hands in order to detect when the hands leave the 

operating area and issue an early warning alert. 

 

Figure 36 New-added scripts in the experiment. 

Some functions in the MRTK are utilized to detect the angle of the driver’s head and 

the focus of their eyes. For example, EyeTrackingTarget is used to lock the location of 

the eye focus, while functions such as GazeProvider and Gaze are used to activate the 

internal sensors of the MR device, thereby realizing eye tracking and information 

collection. When the driver is staring at an area within visible range, different colors 

will be displayed according to the level of danger (the safe zone is transparent). When 

the driver’s eyes or head point toward a danger zone or attention zone and remain there 
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for more than 0.8 s, this zone will turn translucent red or yellow as a visual warning to 

alert the driver. At the same time, in the gaze danger zone (displayed in red), because 

of the high level of danger, first a visual alarm is triggered, followed immediately by 

an audible alarm, while in the gaze attention zone (displayed in yellow), the auditory 

alarm will be activated later in order to reduce the level of interference. If the driver 

quickly resumes normal driving after receiving the visual warning, the audible alert will 

not be triggered to avoid disturbing the driver. 

In this experiment, two new scripts are implemented to realize the detection of frequent 

nodding during fatigued driving: HeadGestureRecognizer, and ColorChanger (Figure 

8). By collecting gyroscope data, this team was able to identify the motion of the head 

in three dimensions about the x-axis, as shown in Figure 36, and thereby realize the 

detection of frequent nods. During the experiment, this team found that when the driver 

nodded frequently due to fatigued driving, the head also dropped significantly and the 

target point of the front of the head would fall into the hand operation zone. Therefore, 

to further improve the accuracy of fatigued driving detection, a function is added to the 

hand operation zone that identifies the dangerous area level. When the head falls within 

this zone, the two-dimensional early warning system will be triggered to alert the driver 

and help them correct their status to avoid an accident. 

 

Figure 37 3-axis gyroscope and head movement. 

While driving, it is dangerous for a driver to become distracted by sounds or other 

external stimuli and turn their head sideways to observe them. To realize the recognition 

of such a large head rotation, the three-axis gyroscope inside the HoloLens 2 was 

utilized to detect large changes in the y-axis, as shown in Figure 37. This process allows 

the driver to be alerted in a timely manner, helping them return to normal driving 

conditions. 
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5.3 Result 

Experiments are tested on a HoloLens 2 in a real environment. Since the use of MR 

equipment to take photos and records will deepen the transparency of the virtual module 

when the results are presented, the real machine display screen will be more transparent 

than the pictures shown in this article (it will not affect the basic operation). 

 

Figure 38 Warning results during distracted driving. (head/eyes) 

The results for head pointing and eye pointing are generally similar, and thus, they are 

grouped together in the results. In the cockpit environment of the simulated truck shown 

in Figure 36, when the tester’s head (eyes) points to each zone, different visual and 

auditory feedback was obtained according to the danger level of the zone. The angle of 

view in this figure was obtained when the head was not moving. Because the eye gaze 

is invisible, it was marked with a three-dimensional ball for better observation. By 

including the hand operation zone in the warning area, this team was able to improve 

the accuracy of detecting fatigued driving and effectively reduce the likelihood of an 

accident. 

 

Figure 39 Frequent nodding detected during fatigued driving. 
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Figure 39 shows the detection of frequent nodding movements during fatigued driving. 

The driver’s head will fall unconsciously when they are in a fatigued state. A warning 

sign can be placed near the hand operation zone without affecting the normal driving 

angle of view and the warning sign will be triggered under conditions such as when the 

driver makes a big nod or nods constantly. When the driver returns to a normal driving 

state, the warning sign will instantly become transparent again. In addition, large head 

movements such as swinging caused by distracted driving can also be addressed 

according to the same principle. When a large head swing is detected, warning signs on 

the side of their field of view will alert the driver to return to a normal driving state.  

 

Figure 40 Upgraded detection of grabbing motion. 

Table 6 Real machine test data recording (original data). 

M1 M2 F1 F2 Average

√ × √ × √ × √ ×

Action 1 89 11 94 6 92 8 92 8 89% 94% 92% 92% 92%

Action 2 92 8 93 7 94 6 94 6 92% 93% 94% 94% 93%

Action 3 96 4 95 5 91 9 92 8 96% 95% 91% 92% 94%

Action 4 97 3 97 3 98 2 96 4 97% 97% 98% 96% 97%

Action 5 99 1 98 2 99 1 98 2 99% 98% 99% 98% 99%

Action 6 99 1 97 3 99 1 99 1 99% 97% 99% 99% 99%

Action 7 91 9 89 11 92 8 88 12 91% 89% 92% 88% 90%

Action 8 96 4 92 8 97 3 91 9 96% 92% 97% 91% 94%

Action 9 90 10 88 12 91 9 87 13 90% 88% 91% 87% 89%

Action 10 85 15 83 17 82 18 86 14 85% 83% 82% 86% 84%

Action 11 88 12 84 16 84 16 87 13 88% 84% 84% 87% 86%

Action 1 85 15 91 9 89 11 90 10 85% 91% 89% 90% 89%

Action 2 89 11 90 10 91 9 91 9 89% 90% 91% 91% 90%

Action 3 95 5 91 9 90 10 91 9 95% 91% 90% 91% 92%

Action 4 95 5 93 7 95 5 93 7 95% 93% 95% 93% 94%

Action 5 96 4 96 4 97 3 97 3 96% 96% 97% 97% 97%

Action 6 95 5 96 4 98 2 95 5 95% 96% 98% 95% 96%

Action 7 87 13 83 17 88 12 86 14 87% 83% 88% 86% 86%

Action 8 93 7 89 11 91 9 89 11 93% 89% 91% 89% 91%

Action 9 89 11 85 15 90 10 84 16 89% 85% 90% 84% 87%

Action 10 87 13 82 18 83 17 84 16 87% 82% 83% 84% 84%

Action 11 82 18 80 20 83 17 87 13 82% 80% 83% 87% 83%

Accuracy

Female 2

(F2)

Indoor

Outdoor

Original actions

(100 times)

Male 1

(M1)

Male 2

(M2)

Female 1

(F1)
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Figure 40 shows the results of detecting the grabbing motion during driving. In this 

figure, an update of the locator indicator of both hands is also presented, which will 

disappear after the driver maintains the grab state, thereby reducing the impact on the 

driver’s normal driving state. 

Table 6 presents the recognition results and accuracy information obtained from real-

world testing using HoloLens 2 in both indoor and outdoor environments. The tester 

was situated within the test environment and wore MR equipment in a normal fashion. 

Upon system initiation, the tester followed the observer's instructions step-by-step and 

recorded the outcomes. The experiment was evaluated using a standard in which the 

experimenter would be marked with a (√) if they received correct feedback within the 

specified time frame (normally less than 3 seconds) after completing a specified action, 

and a (×) if they did not. For each action, the average accuracy was calculated and 

evaluated. In this experiment, each person tested each action 100 times, a total of 4,400 

times. In the table, correct behavior recognition and the corresponding average 

recognition rates are indicated. Correct recognition with an accuracy of more than 90% 

is marked in green, while those with an accuracy of less than 90% are marked in yellow. 

Similarly, average recognition rates of more than 90% are marked in green, and those 

of less than 90% are marked in yellow. 

 

Figure 41 Trend chart of in/outdoor accuracy under the original data. 

Figure 41 depicts the accuracy trend of indoor and outdoor experiments using the 

original data. The figure clearly illustrates that the monitoring and recognition accuracy 

of actions remains above 80% for both indoor and outdoor settings. Moreover, the 

recognition accuracy of individual actions is almost close to 100%. However, due to 
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the impact of outdoor environmental factors, the recognition accuracy of almost all 

actions outdoors is consistently lower than that of indoors. 

 

Figure 42 Partial data in multiple random sampling. 

However, analyzing data solely based on raw data may result in some inaccuracies. For 

example, during the experiment, there may be some extreme data points that could 

cause an increase or decrease in the overall recognition rate. To further enhance the 

objectivity of the results, the method of multiple random sampling is applied to process 

the raw data. As shown in the example in Figure 42, 80 sets of data are randomly 

selected from the 100 sets of data for each action multiple times, thereby reducing the 

impact of extreme data on the overall trend. 

Figure 43 shows the trend graph obtained for the accuracy data after multiple random 

sampling. By this step, most of the extreme data in the original data that affects the 

overall trend is avoided. From the figure, it is known that after random sampling, the 

accuracy of both indoor and outdoor data reaches more than 85%, which is an overall 

improvement over the accuracy of the original data. At the same time, after random 

sampling, the overall accuracy derived from the outdoor data remains lower than the 

indoor accuracy. The specific reasons and the analysis will be explained in the next 

section. 
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Figure 43 Trend charts of in/outdoor accuracy after multiple random sampling. 
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5.4 Summary 

5.4.1  Discussion 

In this study, a MR-based active hazard prevention system for heavy machinery 

operators is presented. The approach details the development and experimentation of 

an active real-time monitoring system that is specifically designed to prevent accidents 

involving heavy machinery operators. As shown in Figure 14 and Figure 16, the 

proposed method does not depend on the subjective behavior of the operator and can 

accurately detect unconscious behaviors that may lead to hazards during operation. 

Furthermore, the proposed method represents an expansion of existing research on 

accidents involving heavy machinery operators and represents a new research direction 

and a unique approach in this field. 

The hardware is used to monitor several major critical parts of the operator (hands, head, 

and eyes) in real-time for safe driving. As shown in Figures 11-13, the sight distance is 

divided into different danger level areas while ensuring that safe driving is not 

compromised, and the driver status is analyzed with real-time feedback. At the same 

time, MR devices are effectively used to prevent accidents by analyzing the main causes 

of accidents among site drivers and linking these causes to monitorable driving 

behaviors and body parts. 

Despite hardware limitations, sensors are fully utilized to present experimental results 

without the need for additional connections or calculations. The local device provides 

all the computational power needed. 

In previous MR-based construction-related studies, the focus has usually been on what 

the users of the method can obtain from the external environment (e.g., pre-construction 

learning and training, etc.). This study, however, starts from the opposite direction and 

focuses on what information can be obtained from the users themselves and how this 

information will affect the external environment. Meanwhile, in previous studies on 

personnel safety in the construction industry, the physical state of personnel is mostly 

analyzed from a biological perspective, requiring the use of complex external 

equipment, such as electrical signal sensing, which is difficult to apply effectively in 

the real world. Other research has included adding various sensors to heavy machinery 

or vehicles to improve safety, but many of these features rely on subjective judgment 

by the operators themselves. In contrast, in this study, operator behavior and habits are 

monitored and analyzed in real-time and can be identified and detected regardless of 

whether the operator is in a subjective and controllable state, thus further ensuring 

safety and avoiding potential accidents. 

The results of this study show that the proposed method has a high recognition accuracy 

rate and can maintain a high recognition success rate even when detecting various 

actions for a long time. It is worth noting that in the abnormal detection of the head and 



75 

 

eyes (actions 1 to 4), the final recognition rate is above 90%. According to the later 

recall of the testers, most of the recognition errors are due to gaze to the corner of the 

field of view of the MR device, and the edge of the sensing area. In the anomaly 

detection for hand grasp (actions 7 and 8), there is a large gap between indoor and 

outdoor results, and the accuracy of grasp detection is lower than that of let-go detection, 

mainly because in grasp detection, Since the field of view of the MR equipment is too 

small when the operator raises his head, his hand is out of the field of view of the sensor, 

so when the operator looks back, the sensor will make more mistakes in the judgment. 

In the abnormal detection of large head rotation and rapid nodding (actions 9 to 11), the 

detection of eye focus in the outdoor environment is significantly lower than that in the 

indoor environment, mainly because the outdoor environment is complex, and the 

introverted sensor is too much interfered lead to. As for the misrecognition caused by 

looking at the normal operating angle (actions 5 and 6), most of them are misjudgments 

caused by habitual head turning and eye shifting. In total, under the given detection 

conditions, the proposed method can identify specific actions caused by fatigue or 

distracted driving that may occur in various driving processes with high accuracy and 

without delay, enabling real-time monitoring during normal operation and protection. 

For future expansion, the application of the proposed approach to the target industry 

has also been considered: construction. Although real-world testing has been conducted, 

it has been done in a relatively ideal environment and has not actually been introduced 

into heavy machinery or vehicles. Therefore, in order to be able to adapt to the complex 

environment of the construction industry, targeted development for different machines 

or vehicles is essential. At the same time, the proposed method has a lot of room for 

improvement. In this experiment, it is known that the need to identify the eyes makes 

it troublesome to calibrate it every time the tester is changed. At the same time, due to 

hardware limitations, errors are often made when detecting the edge area of the field of 

view, and the detection of the four corners is sometimes less accurate. Therefore, in 

future work, overly intuitive area edges should be avoided, while reducing the 

information in corners and other locations and placing more content in more easily 

perceived areas. Regarding technical limitations, first, MR devices are still not 

mainstream products and therefore costly to use widely. Second, although HoloLens 2 

doubles the visual range compared to its predecessor, it is still too small for holographic 

displays, so if you want to adapt to the field of view of heavy machinery, for example, 

you need to turn your head more significantly, which is quite inconvenient. Then, 

because HoloLens 2 is too integrated, so poor heat dissipation, and long-term operation 

after the hologram will be torn, the system slows down and other problems, while the 

long and efficient operation of HoloLens 2 battery life will also be shortened. Therefore, 

if the method needs to be applied to the construction industry in the future, it may be 

necessary to meet the basic functions of flat replacement products. 

In order to effectively utilize this method in construction sites, it is imperative to 

optimize the equipment in accordance with the unique features of the work environment 
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and scenarios. One such optimization measure is to integrate sensors, such as 

temperature and humidity sensors, within the heavy machinery. This will enable an 

expanded dimension of monitoring the operator's condition, which will ensure a higher 

level of detail in assessing the operator's state of wakefulness and comfort. 

Meanwhile, to ensure the successful implementation of this method, it is essential for 

the implementing organization or unit to enhance operator training and technical 

support. This will enable the operators to properly wear and comprehend the MR device, 

as well as to promptly return to the normal driving status in accordance with the 

guidance provided by the system. Moreover, in cases where heavy machinery operation 

is complex or hazardous, this method can be employed as a necessary safety measure 

to safeguard the lives of the workers. Furthermore, in expanding this method to sparsely 

populated roads, it is crucial to optimize and adapt to the various road conditions to 

ensure accurate identification of the driver's condition and environmental changes. 

5.4.2  Conclusion 

In this study, an MR-based advanced active monitoring system for heavy vehicle drivers 

is proposed. The purpose of it is to monitor operators in real-time to avoid dangerous 

behaviors despite of whether he or she is conscious or not. The MR device (HoloLens 

2) is used as the hardware, simultaneously calling and collecting information from 

various sensors to monitor the operator's state in real-time, so as to ensure that he will 

not fall into an unconscious dangerous state. This approach is novel in that it focuses 

on the active provision of early warnings based on the operator’s state. By using 

HoloLens 2 to monitor several body parts of the driver in real time, the system can 

confirm whether the driver is in a state of distracted or fatigued driving. This study is 

based on the hands, head, and eyes—the three main body parts used when operating; 

by analyzing the state of the operator based on abnormal behaviors detected in these 

body parts, early warning feedback can be provided to the operator, thereby helping to 

avoid an accident. In this study, the following points are mainly achieved: 

⚫ The development of an active real-time monitoring system is introduced 

specifically designed to avoid accidents or incidents caused by the dangerous 

behavior of heavy machinery operators. 

⚫ The proposed method can achieve real-time and accurate detection of unconscious 

or unintentional behavior independent of the subjective behavior of the operator. 

⚫ The presented method represents an extension of existing research on accidents 

involving heavy machinery operators, with particular emphasis on the 

development and application of new methods in this field. 

From the analysis of the results, it is known that some trend graphs were very typical, 

therefore further analysis is applied. In most cases, it can be concluded from the data 

that indoor recognition accuracy is generally higher than outdoor recognition accuracy. 
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However, in some cases, the outdoor recognition accuracy of some actions is higher 

than the indoor recognition accuracy. Therefore, this research reasonably speculate that 

although changes in environmental factors may lead to a decline in recognition accuracy, 

this is not an inevitable factor. Therefore, the future improvement of this method, which 

is mainly aimed at outdoor work, may result in better results than the experimental 

environment, which also provides a theoretical basis for the future implementation of 

this method. 

In future improvements, the concentration will be solving the hardware deficiencies of 

MR equipment and reducing misjudgments and errors caused by viewing angles. At the 

same time, the current mainstream MR equipment will be selected and compared to 

ensure that when it is applied to the construction industry in the future, it can reduce 

conflicts at the software and hardware levels, thereby improving efficiency. 
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Chapter 6 

Discussion 

6.1 Brief discussion 

The study titled "Research on construction safety techniques via multi-sensor 

information fusion" is a comprehensive exploration of how information technology can 

be leveraged to improve human safety on construction sites. The practical significance 

of this study cannot be overstated, as worker safety is a crucial aspect of any 

construction project. 

The study takes a targeted approach by focusing on the two main occupations on 

construction sites: workers and large machinery operators. By considering the unique 

characteristics of each occupation, the research plan is tailored to maximize accuracy 

and effectiveness. For instance, to deal with the uncertainty of workers' positions and 

movements, a dual-sensor method of remote and wearable devices is used, while head-

mounted devices are used for machinery operators who have fixed positions but need 

to frequently operate hands and feet. 

The equipment selection and experimental design are also carefully considered, with 

cost-effectiveness being a primary concern. The study uses relatively affordable depth 

cameras and IMU sensors that are suitable for small to medium outdoor scenes, which 

can significantly reduce deployment costs across different construction sites. The 

hardware's basic functions also ensure stability and upward compatibility, making it 

easier to upgrade the products. 

Traditionally, construction safety discussions have focused on the building or 

environment itself, but this study shifts the focus to the workers who are working on 

the site. Despite significant advances in the construction industry over the past decade, 

worker safety has remained a significant issue. By focusing on human safety, this study 
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aims to draw attention to the industry's safety shortfalls and provide a solution to ensure 

the most basic security issues are guaranteed. 

Therefore, "Improving the safety of construction site personnel using multi-sensor data 

fusion" is a well-planned, practical study that addresses one of the most critical issues 

in the construction industry. The study's results could revolutionize the industry by 

providing practical, cost-effective solutions to ensure worker safety. 

While the majority of the experiments in the "Improving the safety of construction site 

personnel using multi-sensor data fusion" were conducted in a controlled laboratory 

environment, steps were taken to add influencing factors to make the experiments more 

realistic. As such, the study's conclusions are oriented and informative, providing 

valuable insights into how information technology can be used to improve human safety 

on construction sites. 

One of the key findings of the study is that the dual-sensor method of remote and 

wearable devices is highly effective in tracking worker movements and ensuring 

stability without interfering with their work. This approach can significantly improve 

worker safety by alerting them to potential hazards and reducing the risk of accidents. 

The study also found that head-mounted devices are effective in tracking large 

machinery operators' movements and reducing the direct impact on them. This 

technology can help reduce the risk of injuries caused by machinery accidents, 

improving worker safety and reducing the risk of equipment damage. 

The study concludes that information technology, when used in combination with 

sensors and data fusion techniques, can significantly improve worker safety on 

construction sites. While the experiments were conducted in a laboratory environment, 

the study's conclusions provide a solid foundation for future research and the 

development of practical solutions to improve construction site safety. 

Overall, while the study's experimental content was based on a research laboratory, the 

conclusions were enriched by the addition of influencing factors that made the 

experiments more realistic. The findings highlight the potential for information 

technology to improve worker safety on construction sites, which could have a 

significant impact on the industry's safety practices. 

6.2 Reflecting of results 

For each experiment, the research added a discussion or introduction section at the end 

of the chapter, and in this section, the results of these three experiments will be 

summarized and discussed. 
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6.2.1  Experiment 1 

In the experiment on worker safety, this research discussed the recognition of actions 

performed by workers on construction sites using a fusion of signals from depth 

cameras placed at a distance and IMU sensors worn on the body. This study is an 

extension of a previous study, which not only discusses the detection of up to 10 actions 

on construction sites but also extends the range of depth cameras recognizable by 

combining different signals. The method achieves similar detection accuracy even 

beyond the optimal detection distance, making it suitable for environments in more 

medium-sized construction sites. 

In the first experiment, this research proposed a depth-assisted method called "Selective 

Depth Inspection (SDI)" which divides the recognition process into two steps to solve 

the difficulty of depth recognition in complex environments. The first step is to detect 

whether there is a person in the monitored environment. If a person is present, the 

second step is selected to recognize the area where the person is located and perform 

depth recognition and optimization. This method is more effective in detecting objects 

outside the optimal detection distance of the depth sensor while reducing the 

computational pressure on the depth camera during long-term detection. 

From the comparison of the results, the use of the SDI method enables long-distance 

motion detection to reach the accuracy of short-distance detection at the same 

recognition distance (beyond the optimal detection distance of the depth sensor), and 

the lack of depth information is effectively compensated by image processing. 

Our experiment shows that the average accuracy of motion recognition by multi-sensor 

fusion at short and relatively long distances, assisted by optimization from the SDI 

method, can reach 93.27% and 92.80%, respectively. Compared with the results without 

using the SDI method at the same distance, the accuracy has improved by about 12%. 

In the experiment, the action model data used was mostly obtained by adding white 

noise or other influencing factors to the standard data. As a result, in future real-world 

experiments, the performance may be relatively lower due to the increased uncertainty 

resulting from additional unknown factors. 

6.2.2  Experiment 2 

In this experiment, this research presented an innovative approach for actively 

monitoring the safety of drivers of large vehicles on construction sites, utilizing a 

mixed-reality device. This analysis of relevant research revealed that current safety 

methods for these drivers are mostly passive, relying on safety education and accident 

simulations, with feedback dependent on the driver's conscious reaction. However, 

accidents can often occur due to factors outside of the driver's control or unconscious 

operation, such as fatigue or distraction. 



82 

 

To address this issue, this research focuses on monitoring the hands, head, and eyes - 

three body parts commonly used during driving maneuvers. Using the MR device's 

sensors, this research monitor and analyze the driver's actions in real time, providing 

immediate feedback on their actions. The device is worn on the head to minimize any 

impact on the driver's normal operation and vision. 

Our experiment successfully demonstrated the feasibility of the method, with no 

unrecognized states observed. Although this approach offers a solution to safety 

monitoring for drivers of large vehicles on construction sites, challenges remain 

regarding the poor portability of MR devices and the inconsistency of regulations across 

different regions. Addressing these practical challenges will be essential for 

implementing this approach in real-world settings. 

6.2.3  Experiment 3 

In this experiment, this research is expanding the research question to include operators 

of large machinery, building upon the previous experiment's focus on drivers of large 

vehicles on construction sites. This research has also broadened the scope of the 

investigation based on the results of the previous experiment. While previously only 

relatively simple states are monitored, such as hand grasping and head gaze. Now, this 

research aims to capture more complex situations that arise when an operator is fatigued 

or distracted. These include scenarios such as the operator removing their hands from 

the steering wheel or operation panel, dozing off due to excessive fatigue, and being 

distracted by certain objects leading to large head turns. 

As this research has conducted more experiments, it has observed an increase in the 

complexity of the test phenomena. However, some limitations are also encountered. 

Specifically, due to the field of view of the MR device, it can be noticed that hand 

detection can be limited when the operator's head is in a higher position. As a result, 

this research will need to modify the methods to account for this limitation. 
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Chapter 7 

Conclusions 

7.1 Summary 

The topic of hazard prevention on construction sites is of utmost importance, as it 

ensures the safety of workers and operators while working on site. One of the key 

aspects of hazard prevention is worker monitoring, which involves mid-range action 

recognition using visual and sensor information. In order to ensure worker safety, it is 

necessary to detect the movements of workers who are at a medium-to-long distance 

from the surveillance camera. This can be achieved through the extension of the 

recognizable distance of the depth camera. Additionally, it is important to identify the 

10 kinds of actions that often appear on construction sites. 

The second part of hazard prevention on construction sites involves operator 

monitoring, which focuses on the status recognition of the operator of the MR head-

mounted device. The camera and sensors inside the device monitor the operator's status 

in real-time to identify the operator's intention. The main method is to use the internal 

camera to monitor the gaze position of the pupil, and at the same time use the orientation 

of the external camera to simulate the wearer's head orientation. By identifying the gaze 

position of the pupil, it is possible to determine the wearer's personal state at that time, 

such as whether they are distracted or fatigued. The external camera and depth camera 

can also recognize the wearer's hands and detect the actions at that time, such as 

pointing or grasping. 

The third part of hazard prevention on construction sites builds upon the content of the 

second article by adding more recognition and identification standards for the simple 

recognition of eyes, heads, and hands. For example, the recognition of eyes now 

includes the ability to detect "slack eyesight, such as being unable to focus under certain 

circumstances." Additionally, the recognition of the head now includes the nodding 

action, which is necessary for identifying head pointing. Furthermore, after the wearer 

is attracted by something, the head may follow the attraction to make a large turn, which 

could cause possible danger. The recognition of the pointing of the head will be far 
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away from the established recognition area, thus highlighting the importance of this 

aspect of hazard prevention. The recognition content for hands has also been increased, 

such as whether the hands are in the specified area. It is important to note that the main 

reasonable areas for the presence of hands are the range near the steering wheel and a 

part of the center console area. If the hand stays in this area for a short time, it is 

reasonable, but if it stays in this area for a long time, it means that the driver's driving 

has been harassed, and the driving state at this time is also unsafe. 

Overall, hazard prevention on construction sites requires a comprehensive approach 

that includes worker and operator monitoring. By using advanced technologies such as 

depth cameras and MR head-mounted devices, it is possible to detect potential hazards 

and prevent accidents from occurring. The continuous improvement and modification 

of recognition and identification standards will ensure that workers and operators 

remain safe while working on-site. 

7.2 Conclusion 

The research proposes three methods to address personnel safety issues on construction 

sites, with a focus on workers and operators. The first method aims to achieve timely 

early warning and rescue of blind spots in different construction situations through 

monitoring personnel, to ensure the safety of workers in complex conditions on the 

construction site. To achieve this, the researchers propose a Motion Recognition 

Method that uses a technique called Selective Depth Inspection (SDI) to optimize the 

computational pressure of depth maps and improve their accuracy. They also extend the 

detection distance of a normal depth camera and improve the depth camera-based 

motion recognition with SDI, which effectively reduces the detection errors and 

calculation burden of a broad range of depth data, while enhancing the recognition 

distance and accuracy of the depth camera in a selected area. Additionally, they use a 

portable computing terminal instead of a single depth camera to achieve local analysis, 

which avoids the computing burden caused by transferring a large amount of data to a 

central processing unit. The study also demonstrates that using different types of 

sensors to recognize human motion improves the accuracy of motion recognition. 

The second and third approaches aim to achieve active monitoring of operators in a way 

that does not interfere with their normal work. This approach is unique because it 

focuses on providing real-time early warnings based on the operator's status. The 

methods rely on the MR device HoloLens 2 to monitor the operator's head, hands, eyes, 

etc. in real-time and provide visual and auditory feedback when an abnormal situation 

is detected, urging the operator to quickly recover to normal status. Although the overall 

accuracy of the system is high, its detection effectiveness in some cases needs further 

improvement due to hardware limitations such as field of view and battery life. The 
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study shows that MR-based active detection of heavy machinery or vehicle operators 

is highly feasible and yields effective feedback. 

These methods propose innovative techniques to enhance personnel safety on 

construction sites and improve early warning and rescue systems. The study provides 

insights and solutions to address personnel safety issues and demonstrates the potential 

of emerging technologies in this field. 

7.3 Limitations and future works 

Limitations in Method 1: One limitation of this research is that it limited the identifiable 

actions on the construction site to only 10, which may not cover all possible actions that 

can cause injury to workers. Moreover, due to hardware limitations, the current SDI 

method cannot provide real-time detection, and the collected data and simulation results 

are analyzed over time. In practical applications, data collection and analysis are usually 

carried out in a short period of time, so real-time identification of specific actions is 

essential. 

Furthermore, this method has only been tested in a simulated environment, and its 

accuracy may decrease when applied to a real construction site due to unforeseen 

disturbances. During the experiments, it is also noticed that some actions with similar 

points of interest had similar trajectories, leading to misjudgment. To improve accuracy, 

this research plan to consider the movement of interest points or explore other methods 

to more precisely define similar actions in future research. This research also aims to 

add real-time alarms based on motion recognition to the detection system, which can 

enhance the hazard prevention scheme on construction sites. 

Limitations in Methods 2 and 3: The research focuses on the driver of vehicles and 

heavy machinery, and reducing their actual experience under available conditions is 

crucial. However, the HoloLens 2 device used in the experiments is not suitable for 

field application due to its weight and dark design to ensure holographic image clarity. 

This may cause discomfort to the driver and compromise their ability to concentrate for 

prolonged periods. Moreover, the high cost of HoloLens 2 presents a significant cost 

consideration. 

Additionally, the method has limited adaptability to different types of heavy vehicles 

or machinery. To improve adaptability, the research plan to explore UI adaptation or 

self-programming techniques that align virtual space points and real vehicle parts to 

ensure adaptability to different types of vehicles or machinery. However, in some 

European and Asian countries, wearing MR equipment while driving on public roads is 

not yet legal, and this research must be careful not to violate local regulations while 

promoting this method. 
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In the future, the reliability and safety of emerging VR/MR devices should be 

considered, and this research must also address legal concerns before promoting this 

method. Overall, these limitations provide opportunities for further research and 

improvement to enhance the accuracy, efficiency, and feasibility of the methods. 
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Program codes: 

Scripts based on Unity 3d introduced in Chapter 5, such as detecting the three-

dimensional coordinates of the hand, and detecting the nodding and shaking of the head 

are introduced below. 

HandDetector: 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using Microsoft.MixedReality.Toolkit.Utilities; 

using Microsoft.MixedReality.Toolkit.Input; 

/// <summary> 

/// This class detects the HoloLens 2's HandTracking joints. 

/// </summary> 

public class HandDetector : MonoBehaviour 

{ 

    [SerializeField, HeaderAttribute("DetectTargetHand")] 

    HandMode HandDetectMode; 

    Handedness handednesstype; 

    enum HandMode 

    { 

        RightHand, 

        LeftHand, 

        BothHand, 

    } 

    // Start is called before the first frame update 

    void Start() 

    { 

        //DetectRighitHandWrist 

        if ((int)HandDetectMode == 0) 

        { 

            handednesstype = Handedness.Right; 

        } 

        //DetectLeftHandWrist 

        if ((int)HandDetectMode == 1) 

        { 

            handednesstype = Handedness.Left; 

        } 

        //DetectBothHandWrist 

        if ((int)HandDetectMode == 2) 

        { 

            handednesstype = Handedness.Both; 

        } 

        Debug.Log(handednesstype); 

    } 

    // Update is called once per frame 

    void Update() 

    { 

        //DetectRighitHandWrist 

        if (HandJointUtils.TryGetJointPose(TrackedHandJoint.Wrist, handednesstype, out 

MixedRealityPose pose)) 

        { 

            Debug.Log("Detect"); 

            Debug.Log(pose); 

        } 

    } 

} 

 

HeadGestureRecognizer: 

using System.Collections.Generic; 

using UnityEngine; 

using System.Linq; 
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using System; 

/// <summary> 

/// Judgment class for head gesture 

/// </summary> 

public class HeadGestureRecognizer : MonoBehaviour 

{ 

    /// <summary> 

    /// Head rotation gesture type 

    /// </summary> 

    public enum HeadRotateGesture 

    { 

        /// <summary> 

        /// None (default) 

        /// </summary> 

        Nothing = 0, 

        /// <summary> 

        /// nod 

        /// </summary> 

        Nod = 1, 

        /// <summary> 

        /// swinging head 

        /// </summary> 

        Shake = 2, 

        /// <summary> 

        /// tilting head 

        /// </summary> 

        Tilt = 3, 

    } 

    /// <summary> 

    /// Rotation Pose Sampling Data Type 

    /// </summary> 

    public struct PoseSample 

    { 

        // Time stamp 

        public readonly float Timestamp; 

        // Direction of rotation 

        public Quaternion Orientation; 

        // euler angles 

        public Vector3 EulerAngles; 

        public PoseSample(float timestamp, Quaternion orientation) 

        { 

            Timestamp = timestamp; 

            Orientation = orientation; 

            EulerAngles = orientation.eulerAngles; 

            EulerAngles.x = WrapDegree(EulerAngles.x); 

            EulerAngles.y = WrapDegree(EulerAngles.y); 

            EulerAngles.z = WrapDegree(EulerAngles.z); 

        } 

        /// <summary> 

        /// Convert Euler angles to the range 180 degrees to -180 degrees 

        /// </summary> 

        public float WrapDegree(float degree) 

        { 

            if (degree > 180f) 

            { 

                return degree - 360f; 

            } 

            return degree; 

        } 

    } 

    /// <summary> 

    /// Head rotation gesture type 

    /// </summary> 

    [SerializeField, Tooltip("Head rotation gesture type")] 

    private HeadRotateGesture p_HeadRotateGesture = HeadRotateGesture.Nothing; 

    /// <summary> 

    /// Normal event 

    /// </summary> 

    public Action EventNothing; 
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    /// <summary> 

    /// nodding event 

    /// </summary> 

    public Action EventNod; 

    /// <summary> 

    /// bobble event 

    /// </summary> 

    public Action EventShake; 

    /// <summary> 

    /// tilt event 

    /// </summary> 

    public Action EventTilt; 

    /// <summary> 

    /// Rotation Pose Cues 

    /// </summary> 

    public readonly Queue<PoseSample> PoseSamples = new Queue<PoseSample>(); 

    /// <summary> 

    /// Event interval time (seconds) 

    /// </summary> 

    [SerializeField] 

    private float recognitionInterval = 0.5f; 

    /// <summary> 

    /// Last Gesture Occurrence Time 

    /// </summary> 

    private float prevGestureTime; 

    /// <summary> 

    /// Gesture execution flag 

    /// </summary> 

    private bool p_GesturedFlg; 

    /// <summary> 

    /// Periodic processing 

    /// </summary> 

    void Update() 

    { 

        // Get the current head local rotation 

        var orientation = Camera.main.transform.localRotation; 

        // Queue rotation information with timestamp 

        PoseSamples.Enqueue(new PoseSample(Time.time, orientation)); 

        if (PoseSamples.Count >= 120) 

        { 

            //Store up to 120 queues 

            PoseSamples.Dequeue(); 

        } 

        // Between the last gesture event and the interval time 

        // Do not perform new gesture judgment 

        if (!(prevGestureTime < Time.time - recognitionInterval)) return; 

        // Turn off gesture judgment flag 

        p_GesturedFlg = false; 

        // Detect nodding gesture 

        if (!p_GesturedFlg) 

        { 

            if (IsRecognizeNod()) 

            { 

                p_HeadRotateGesture = HeadRotateGesture.Nod; 

                // run the event 

                EventNod?.Invoke(); 

                // Record the judgment time of the gesture and turn on the flag 

                prevGestureTime = Time.time; 

                p_GesturedFlg = true; 

            } 

        } 

        // Judging the shaking gesture 

        if (!p_GesturedFlg) 

        { 

            if (IsRecognizeShake()) 

            { 

                p_HeadRotateGesture = HeadRotateGesture.Shake; 

                // run the event 

                EventShake?.Invoke(); 
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                // Record the judgment time of the gesture and turn on the flag 

                prevGestureTime = Time.time; 

                p_GesturedFlg = true; 

            } 

        } 

        // Judgment of tilting gesture 

        if (!p_GesturedFlg) 

        { 

            if (IsRecognizeTilt()) 

            { 

                p_HeadRotateGesture = HeadRotateGesture.Tilt; 

                // run the event 

                EventTilt?.Invoke(); 

                // Record the judgment time of the gesture and turn on the flag 

                prevGestureTime = Time.time; 

                p_GesturedFlg = true; 

            } 

        } 

        //Did all gesture tests fail? 

        if (!p_GesturedFlg) 

        { 

            // Judge as no gesture 

            p_HeadRotateGesture = HeadRotateGesture.Nothing; 

            // run the event 

            EventNothing?.Invoke(); 

        } 

    } 

    /// <summary> 

    /// Get rotation pose for specified time range 

    /// </summary> 

    IEnumerable<PoseSample> Range(float startTime, float endTime) => 

        PoseSamples.Where(sample => 

            sample.Timestamp < Time.time - startTime && 

            sample.Timestamp >= Time.time - endTime); 

    /// <summary> 

    /// Nodding judgment check 

    /// </summary> 

    private bool IsRecognizeNod() 

    { 

        bool isNod = false; 

        try 

        { 

            // Get the average vertical rotation between 0.4 seconds and 0.2 seconds 

ago 

            var averagePitch = Range(0.2f, 0.4f).Average(sample => sample.EulerAngles.x); 

            // Get the maximum value of vertical rotation (positive direction: downward 

rotation) from 0.2 seconds ago to the present 

            var maxPitch = Range(0.01f, 0.2f).Max(sample => sample.EulerAngles.x); 

            //Get the latest vertical rotation angle 

            var pitch = PoseSamples.Last().EulerAngles.x; 

            // The maximum downward rotation angle is 5 degrees or more than the average 

rotation angle. 

            // And whether the latest rotation angle is 2.5 degrees or more back from 

the maximum downward rotation angle 

            if (!(maxPitch - averagePitch > 5.0f) 

                || !(maxPitch - pitch > 2.5f)) return isNod; 

            Debug.Log("Nod last : " + pitch + ", average : " + averagePitch 

                + ", max : " + maxPitch); 

            // Determine that a nod has occurred 

            isNod = true; 

        } 

        catch (InvalidOperationException) 

        { 

            // Range contains no entry 

        } 

        return isNod; 

    } 

    private bool IsRecognizeShake() 

    { 
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        bool isShake = false; 

        try 

        { 

            // Get the average sideways rotation between 0.4s and 0.2s ago 

            var averageYaw = Range(0.2f, 0.4f).Average(sample => sample.EulerAngles.y); 

            // Get the maximum horizontal rotation value (positive direction: right 

rotation) from 0.2 seconds ago to the present 

            var maxYaw = Range(0.01f, 0.2f).Max(sample => sample.EulerAngles.y); 

            // Get the minimum horizontal rotation value (negative direction: left 

rotation) from 0.2 seconds ago to the present 

            var minYaw = Range(0.01f, 0.2f).Min(sample => sample.EulerAngles.y); 

            // Get the latest horizontal rotation angle 

            var yaw = PoseSamples.Last().EulerAngles.y; 

            // If the maximum rotation angle is not more than 10 degrees greater than 

the average rotation angle, it is not swinging. 

            if (!(maxYaw - averageYaw > 5.0f) || 

                !(averageYaw - minYaw > 5.0f)) return isShake; 

            Debug.Log("Shake last : " + yaw + ", average : " + averageYaw 

                + ", max : " + maxYaw + ", min : " + minYaw); 

            // Determine that a swing has occurred 

            isShake = true; 

        } 

        catch (InvalidOperationException) 

        { 

            // Range contains no entry 

        } 

        return isShake; 

    } 

    /// <summary> 

    /// Tilt judgment check 

    /// </summary> 

    private bool IsRecognizeTilt() 

    { 

        bool isTilt = false; 

        try 

        { 

            // Get the average frontal rotation from 0.4 seconds ago to now 

            var averageTilt = Range(0.01f, 0.4f).Average(sample => sample.EulerAngles.z); 

            // Get the angle of the latest frontal rotation 

            var tilt = PoseSamples.Last().EulerAngles.z; 

            // Is the average rotation angle in the front direction 20 degrees or more? 

            if (!(averageTilt > 20.0f) && 

                !(averageTilt < -20.0f)) return isTilt; 

            Debug.Log("Tilt last : " + tilt + ", average : " + averageTilt); 

            // Determine that a head tilt has occurred 

            isTilt = true; 

        } 

        catch (InvalidOperationException) 

        { 

            // Range contains no entry 

        } 

        return isTilt; 

    } 

} 


