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Abstract

The development of technologies related to automated ships, or MASS (Maritime Autonomous Surface
Ship), is currently being actively pursued in many countries around the world. Among the several
functions required for MASS, the automation of berthing maneuvers is one of the most important,
along with collision avoidance maneuvers. The Maritime Safety Committee (MSC) of the International
Maritime Organization (IMO) has conducted an RSE (Regulatory Scoping Exercise) survey of existing
regulations. The MSC (IMO: International Maritime Organization) is currently discussing the MASS
Code, a set of rules related to operations of MASSs, following the RSE. It is expected that autonomous
shipping technologies will support the crew as an extension of the current navigation support systems
such as automatic steering systems, even if they do not lead to the ultimate unmanned vessel. The
author has recently conducted research on the automation of berthing maneuvers, mainly with the aim
of reducing the workload of seafarers, considering the challenges posed by manpower shortage and the
aging of seafarers.

This paper deals with the control and sensing technologies for automatic berthing control. The
main purpose of the control technology for automatic berthing is to automate approach maneuvers to
a pier. Approach maneuvering refers to maneuvering at lower speeds within harbors, distinct from
navigation speed, and excludes activities such as rope tethering or mooring until the vessel reaches a
parallel stop near a wharf or pier. During a berthing maneuver, the vessel is navigated at low speeds.
In certain situations, the propeller may be in idle condition (main engine idling), resulting in relatively
poor rudder performance compared to normal navigation speeds. Furthermore, when operating a ship
under conditions of reduced rudder power, the impact of disturbance forces on the ship’s hull is also
relatively significant.

This paper first describes automatic berthing control techniques. An algorithm comprising path
planning and path following control is proposed for berthing control. Furthermore, within the harbor,
particularly near the pier, the ship motion can be influenced by external disturbances such as ocean
currents and winds. In order to reduce the problem of cross track error (CTE) during path following
control, a practical 2-DOF control method for berthing controller is proposed in this study. This method
can be used in conjunction with the base path-following control to reduce the path error by adjusting
the rudder in accordance with the estimated wind loads acting on the hull. This paper also describes
the numerical simulations used in the process of developing the control method and presents the results
of numerical simulations and shipboard tests to demonstrate the effectiveness of the proposed method.

With the practical application of autonomous navigation technology for not only the automation of
berthing maneuvers but also autonomous operation of ships, there is a demand for performance aspects
such as safety and stability. In this study, we also discuss the implementation examples of efficient
development flow, graphical user interface (GUI) for information provision, introduction of industrial
controllers capable of real-time control, and alert systems for safety, along with their implementation
examples.

Regarding sensing technology, research results using LIDAR (Light Detection and Ranging or Laser
v
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Imaging Detection and Ranging), which has recently been used in the field of automatic vehicle
operation, will be presented to explore its potential application to automatic pier landings. Specifically,
we present: 1) path planning for automatic berthing that avoids obstacles around a pier, 2) localization
at sea using LiDAR SLAM (Simultaneous Localization and Mapping), and 3) quay wall detection
during berthing.
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WTE, HEEMIAR, %55 Tk MASS (Maritime Autonomous Surface Ship) 12 B3 2 i B o3 i
REECTHEFICED LN TV S, BHEREMAIIKD 502 WL D DOFERED 5 b, BTN
HELREM AR O HENUERE T D 2. AN OWT S, FEFE#HEHE (IMO : International
Maritime Organization) D _FZ4eZE% (MSC : Maritime Safety Committee) 1235\ T b BEFH
HIAEDFi#E T % RSE (Regulatory Scoping Exercise) Z#2T, Wb b MASS 22— R IEiZh
2 HENREMBEDOHANC OV TR ED SN TWBIRHTH 2. Hho HEML OFERMIX, %
MR 72 N GERARICE S F TR & D, FRO HEHREHOLER e L THEBDREZ IR T 5 2
eI NS, FEHZ, EEMBOAFAEREMLE Vo 2B EZ RBIC, FIChBOAHE
Kz BV U CEREREMO BEMLICBE 5 258 2 217 L 7.

RESE, HEIBEKRICHR 2 GEEM e 2> > ZEffi 2k S . BESEROHIEEMc OV T,
FIEEANO7 o —F Mo BBtz HIVE §5. 22T, 770 —F#fih e FETHEES XD
INEVHINIZBWTHUUTT 2 EANFOERMMTH - T, RESHKBED(HINFEITIEMT 2 ET
DEFET, v—7EOMED, FRIMEEZEERVETZIET. AREME, MAsMK#E THIAT
THRETHD, Bk TR TR OIS 2R (T A PV VKB ToARL
—>a YBFET 5720, @H O#ES)TOMATIREEIZ LLARMEGAYICHER) 2 BN EHFTO AR
—>a UDEREINDG. Fi, ZO LI RMESIHBET LRI TORMTIE, MdcE < sEL
X2 DHEDHEMITKEL LS.

AL TIE, RONCERD BEFIEEMICOWTIRR S, ERGIEICOWTE, BEEHE 2 &
FOBIERIE 522 702 ) X6 %RT. X 5ICEN, FHICFEERLHEREHI I B W TEEIT < 8
FoMNELBEZ o 5. SELOFEIC X D REIERER ORE R~ (CTE: Cross track error) 23]
B dh, TNEREERT 27012, RIFFTIETICEINELICN 3 2 BRI 0 FZH7Z 2
HHERETFIEERET 2. AFEEF, R—RA 22K EMNGH#EE AbETHEHAT2 22T
&, METMEOREENEFIDES LI XCHTHEITS 28T, REBFEZERT2bDTH
5. KX T, HIETFEOMEOBETHMLZBMES I a2 —ayiZonTdhilRz e
B2, MEFIEOHNEICOVT, BES I 21— a v BLOEMHABOEREZRT.

HEEREM O BEILICR 53, BERENUN ORI O ERICH: - TIR PR E T O
REDERIND Z L ird. AMETIE, MRNRHE T v —, BRI DD 777 4 L
7% GUIL, U7 ARA LA ARELREEMIY bu—FDBA, REDEDDT 77— b AT A
WZOoWThH, ZOREHL & BITHEMT 5.

Uy Y IEMRICOWTIE, HEIERADIGHATREMEZ R 2 XL, EFHO HEEIKDO T
FIF DD 5T % LIDAR (Light Detection and Ranging 7\ L Laser Imaging Detection and
Ranging) % W/ 2R3, BEARICIE 1. BRERLZICB 2R 26T 2 X 5 CEIET
% HEIE RO EE, 2. LIDAR SLAM (Simultaneous Localization and Mapping) % i\~ 723
B HOMEBEREE, 3. BRI ORERANCOWTRT.
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1.1 BEEMMOESE

A WX O BEMLICBEF 2 B, 1960 FEE» S E 5. 1960 FER 0 HENLA O FEIZ O W
TEFH ] 255 L. Ry BELie SbhTw2 ok, B T£3E LA (1961 F1&
T) TH5. ELIICIIMED S D FEROBEREET 27V v oary ba— LR e EEEHD
LR EEHSIE T A X7z, 1969 4Fizid, HEBE XIS AL (MO i) D% 1 S5 L 72
[2]. FIEEAIC, 22 B2 — REEMDEAIC E DR WHTES 2T 200 - Mk s 27 4, #iET S
Y M RAT LAOEFFIE G EA, BEBAMIEE I N TV -7, 1980 FERIiE, A1br6H
MEANCBILARE D, fEEAMOESVHABSCHRIEED DD HELAHS SN, 2D kD
WHMiAD BEIfIc DWW TIX, BEBROEEZ T TRIMMERIEICOVWTOMENNEL 5.
NTIEZ D%, SEEEMELHRO ey 27 b ED SNz 2O, 3Tt A THIEE
(Al:Artificial Intelligence) (B 5 2 M23H 5 [3]. K, wHiEM o BEMLICEE T 215518V
T Fuzzy #lf#l [4,5] ®°, HFIERICBOLTEZF AR AT L2 =Ty b U=
AW [6-8] KR 5N S.

WifT2 X\ 2HEEICOVTIE, 20 HICEICA— b A a1y FE R L7 [9-11]. 1981 i
1%, ARPA(H Biffi2=¥ [/ 1% B %% & : Automatic Radar Plotting Aids) 75 1 /7 + > DI D AR IEH
DBEBMT SNz, 2Dk, AIS (I EBIEAI2E: Automatic Identification System) <° &1 iff
B (ECDIS) 122\ T b &2 iifi7e TN DB EHIRB N T S, 20 X 5 itz o
Fix, HEOHIEAUCRDPERVDDER STV S,

AT, HHERPMEREROEBLLE Wo -3 Y, AIS % ECDIS ¥\ 725818, Hitio
FREIE - THEENMAER STV 5. STk, MUNIN e = 7 b (2012-2015 4,[12]),
AAWA (2015-2018 4F, [13]),MAXCMAS 71 = 2 k (2015-2018 4, [14, 15], YARA(2017 4,
[16]), NOVIMAR(2017 4, [17]) %2 &, Z K OHEEMHMO 70y = 7 ML b Edio 7. BN
T, HARMEODO MEGURI2040 70> =27 DR ED, 500a Yy —> 7 LB ZhZh Mt
avrFHeh—7 2V —, KEMAMEZ SR E U GE O FEIEFE % 5 L 7 [18].

EERW 2w Em S, BEENMOBBEORNEMB T 2 L TEETH 3. IMO TiX, 1965
EIChfE X A7z MSC8 23, il HBEIMLICBI T 2 EEPREI N RYIORETH I I N3
[19]. ZDFEEXTIX, lship automation] & W5 FIED, IFeLBHEL 274, 7N EHE
Bt X7 40, TEBEM OMAZELSEL LTARNLNATVS. EEEEMKRE IMO 0%
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Table 1.1 The interim degrees of autonomy of MASS by IMO [20]

Degree one Ship with automated processes and decision support: Seafarers are on board
to operate and control shipboard systems and functions. Some operations may
be automated and at times be unsupervised but with seafarers on board ready
to take control.

Degree two ~ Remotely controlled ship with seafarers on board: The ship is controlled
and operated from another location. Seafarers are available on board to take
control and to operate the shipboard systems and functions.

Degree three  Remotely controlled ship without seafarers on board: The ship is controlled
and operated from another location. There are no seafarers on board.

Degree four  Fully autonomous ship: The operating system of the ship is able to make
decisions and determine actions by itself.

99 [a] T, B &L 2EES (MSC: Maritime Safety Committee) 1238\ T, HENEMifih%E (MASS:
Maritime Autonomous Surface Ship) @ HE{L L~V DB ERHHH THIRE X H, MSC100[20] T
SRR X M7= (Table 1.1).

IMO TR HEEMAOMFEZ MR 2L, HEEMMO N7 4 T VICETIEESA R
74 VBKEBES NI [21]. IMO A » 5 b, HEEMRICE T 204 74 3582 5 H T
W3 [22-30]. X512, RO LS BHANIOWTOHRmZ EM L, MASS 23R &4 2 AR
3 2 immEH RSE (Regularoty Scoping Exercise) % MSCI103 IZBW TR T Lz @lE LTV
[31]:

* SOLAS (International Convention for the Safety of Life at Sea)
* COLREGs (Convention On the International. REGulations for Preventing Collisions at Sea)
e STCW, STCW-F (Standards of Training, Certification and Watchkeeping for Sea)

Z DIz %, Search and Rescure (SAR) 72 ¥ DIEAWEHIHIZOWT S, HEL®ALIZHE S MG
PRI ENTW5S. RSE OFET IV, MSC O % 2 725k % 17 5 72 D MSC/LEG/FAL
@ JWG (Joint Working Group) %% E L, MASS Code DR ER iz ED TV I EMEICH 3.
MSC105 [ 5T, MASS Code SREED T — K< v ¥ LT, 2024 £ MSC109 12 B1F % JE5EH] A
L RI4 vk, i 2025 FDHEHIHA B4 OIS FTEZINTWS. BIEIMO THimsh
TW5 MASS Code 1%, V R 7Tz < HEEFRMZAIEYE (GBS: Goal Based Standards) DA%
Wi - TR X 5. GBS &, THAE (Goal, tier 1) |, MEBEZE M (Functional requirements, tier IT) | ,
[# & M EE (Verification of conformity, tier IIT) ) , TR#FIAIZE (Rules and regulations for ships, tier
IV) ., TFEFUEHEZE (Industrial standards, tier V)] @ 5 D THK XN 5. GBS 2T 2 HHID S
5, IMO TSN 2 bDIFTICHAEEGETTHD, GBS 2T 2 TN TOMRAIBED AL
THETIKKE, FLRRMEZETZEEINONS. KX OHRE T, HMEEELEEZ > TV
Wi BEREMAR O > X 7 ABFE L, FRAEYRICKRD SN 2 EREE A R 2 D BRI
OWT, VAZHMELZERMLRDBSHEFEL TV ZeARDHNS. 208 & ITHEKIT 2T,
HENEMTAR O EAICET TREIN 2 LMD 72012, FERNTIIHE 4 2, %25
HENEMANICET 254 R4 URITINTVWS [22,32]. ZDOEI3RBHTA KT 4 %, BIF



1.2 WRE = 3

DL TRHELREREREZRDZ TR EZ O, RARYL L THFEENI T T 2 RE
JHEIZZ W,

1.2 HRE=R

AR BTN L TAEMOEWEED VDD TH S [33]. COERE LT, Rtz adiE
ROMEEICBWTRHRERANBDZ W 2 LN, hoEBREICER T2 005 5. ERKED
finfiend, MUEENICHARTE L MEREDKRETHITT 2 2 & 2 5. Ml IEFHEGES 2B
WX, fitigEd ) CHiT LT 2 IRBUS LR TRED 21T 2 BRI AR E DT C 2 7=, fitzh = H3
BALT 5. F7, BEROEINTHBWTIE, HENINCHEICE SO ENPRE LS. Bk
BB VTR, BANOERKIBOEESLEEEDOREYOEL 2T 2 281Xk 23D, i
PEEE Vo LHRDOFRED @< 72 5. AU HIEM D X X7 T dH 2 RO BEIL & HER
LT, RELERIZFHEEZELTVWEEERS. 51, BRBMCBLTE, #HDEAK
gL, TaRIRLDIIFHTONT S TR T EHERO AR ST 717 MRk DD iz o
WTHIENTIREDND 5. T uRT PRI, [EHRRF & R U IEE ISR MR IRS O Z&
BH570, HEOTHIHEL RS, Zhredic, HEF#EOBHS» S, FREDO7 7 F
2 T —XDMBEZRAMZ BT 2 K5 ICHKEIT 2REN D D, BUAR IR 0GB Z T,
ZEMOBROEETDH S, AMKIE, 2O LS REARDEWVEMRIRMZZRT 2 5RIEXE
HEMIZ X D X8R % HIT, AERGIEIE 3 X & LIDAR(Light Detection and Ranging % 7 1
Laser Imaging Detection and Ranging) % W\ 7 HEIE KD 72 Dt > $ 152 B3 % i 52 % HE i
L7.

1.3 HARDOBER

AWrFEO HINZ, BEMLEMOBEANC X Z2MEBOAMKR TS S. Z07DIg, ifBICE > T
bAMOEWMEED—DOTH 2 ERIRMEMEONR L T 5. 72721, AT, BEMLEAN
BPEAT LI X AMBOAEFRKBIIROERNZFMIOVTIEERL 2V, HL FT, i
BOAMPEVERMMEELZ BT 2 -0 0B HZ2 M THIELS AT 480 N ICHELICE S
BHEAICOWT, B L EREDFHEi 2 S 2. AR T 25HEIEERE L Vb OD, 12—
PV T4 Z2EBRBLES AT LORFTICOVWTHIAL AT Lz, 72 212, HlENRH s oIk
REBHTIEDDI 774 hva—F—4 vy 2—7=z—2Z (GUIL, 3 L IEHIC UD, BERE
RFICRHEARIMZE EH S 2D DEHRS X7 LRI OWTHRAEITS. 72, BAWLZER
BAMcoOVT Y, BMAFIHOMEDOAICE ¥ ES T, KO LRLEEKEAND7 Tu—FMEICD
WTHBE 2B RS, BET2HEES 27 410%, FAMCH EICREESTFET 2 L5 2H
Bt L XL OB 2RISR RE R IR T 2 v 0 & L THIR S 5. FERIViciE, RIEL
VRAFLRWIRT AT, XDEELHILL ANANOBEHO RS2 D k5 k5 I12#&TF LT
W3 A5, IR, M DS DL 2R AEMIX, NOMRSFRERL LIS LEWnWE)., 20X
SHHEEEL AL ERMGRE L. Lidio T, EfiakatHis (ODD: Operational Design Domain)
WREEIN D, BELS R T 200R e 3 W72 RN T 2 REEEZ R L, BYIics X7
APANERIMELTBETE 2 X5 R LTS,



B A 4

-

—77C, BUROMAMCIER X N 2 B OMERER ALt Y ROITRICDOWT S, RIFK T
—flfE2 607 Fu—F2FE MT 5. 2, EFHEHEO HEHEREIN T H A H S5 LIDAR
Y ERHOWEMIETH 5. LIDAR &, L—FHEHOTE Y S ORFARE LT 2229 T
»%. LIDAR OFFMIZO B DETHH XN S, LIDAR 1, ik b ZoHIFEER I AR
2 5H, R 360 Ex 3 RoTiNcEHElS 2 —%rY7% 3 D LiDAR O #F1& 100 200 [m] #if% D #i
FZFHHIST 2 Z 23T & % [34]. HI2iE 500 [m] ML EBIFERTAE 2 & > B S 1FET 525, HHEED K
XR2 T E 2 NBFEENNE SRS, ABEEENNELS RS, ELXH /NSRS
HEZ ROV ERAI T2 Z e PH L k2720, 2L OB, SAHEEEHRT 220125
HEHZ K2 Z 2125, ZOXIRFEP S, BEHEEIZRRD, M~ Ve RTHTT %
RAENOEIMIEE L W SN TE L. — T, BARMCERERCBVLTIE, B LHELT
JEA D FEFY)L A2 LAY B AR O3 { WCHETES 2 72, — Y72 3D LIDAR TH +7ICiEH T
22 MTE3. 3DLIDAR OADIERHICOWTIZWL D DIBEMNE 2 5 25, KT
FREEY), RICREEORIEREZIEA U, RERETE, L8 (B O EHEE, F00M0HEE
Et), FEEOBRA L ORI O W TR E2 1T - 1=,

14 AHEOEE

ARFADEBIEIROBED TH 5. £3, HEEKREINICBE LT, EARNZMEKE U CTHERKETEH Y
FERETERIE D SR 2 HEER T LIV XL ZRET 5. A7 LTV XL, FER 2 DDOMHKEE
WEORETEZeBTE S0, HREKROER L FIHMEEZ 2T THFTT2 e TE 2F
MEATS. REFTEICOWTIE, T X MY v 7 RHFRTH % Bézier fifiE AWz E# CTiFE
REFEEMRET L. BEEEHIECOWTIE, XD IAWIMAAN OS2 RBEICHR/NED 7 7 F 2
T—R%ZERT DV EM2HMTHIEITFE LM L. Z 2 Tld, pure pursuit & PD il 2
LR XN 2 BENHEEHIZ A G D OB FIETH % PPA (Pure Pursuit and Autopilot) fillf#l % 2
RT 5. RigTlx, BEGHEB X COREEIERIENCE T 2 R BEFEE, BESI21—>a v
725 CICEMEBRICBOTHMCHAEL 72, BES I 21— 3 B0 TE, FHT 200
R O KRHIA %2 A3 2 EE) 2 R T X 2 BHGEEBAE T LVEMEL, Th2fHLTRE
FHEORIEZFEM L 7. - ORGEGEESEEF L OFEMIc O W TIE, REDOMNBRICEF AL LS Y
W F A= XDFEFIEZFLEHL TV 5.

X 51z, PPA il in 2 €, EAMELIC RS L 7= il #l#5 T & % FFPPA (Feed-Forward PPA) il fHl
PIRET 5. AHIENE, MASEBFICIMAICZ T 2RO BTN EH#EL, ZAUTHE TS
it hzitf 32 2T, AENC K 2EFDITZREDFHET IHNCZDHBIINIET2HDTDH
%. AHIEAIZE L - i fiiES 2 3 BHEOKREBAEAXTERLL, 1§ oML L 1M
HEENETNVIZEDSNT, 74 —F 73U — FHlHEHERT 2. RENIZT 4 — FoN v ZHilfH
THR Z N5 PPA fill#ENC R LT, BEAELICHIES 2 7 4 — K7 3 v — Fl#EIRIZMA 7 2 BHH
FERIfEH & L C FFPPA #llfflZ B A3 5. AFIEICEHLTH, BUl> 2 2L — 3 &6 ICEM
FEBICB W CHMIIRIEE N 5.

F7z, flH7 LY X6 ED - HENEHUICHEREELZ — DD AT 42 UTHEET 2 5E
WKOWTHRT. ZLOEEHMARICBVTE, 743V XLDFMICR NS DR, &
AT LD ZRTICE EFEo72bDHRE L, RFKTIE, BIEDRHTO MASS Oiamicih -



1.5 AL DK 5

e, BREBRI AT LEREDT-0D, FEOBMAKHIZRL, Z0EE2MET 5. 2T, BH
ERAICEHBDIEERNIES 2 Z e 2 E LT, BEHAKRE, ZHEE ta—~<> 71 —n
v 27, MRM (Minimum Risk Maneuver) & £ 3.

CAUCBE LT, HEEMOL MM LEE 57010, v RO EELHET
H5. KWL TRV 5 FEERRIZ GNSS (Global Navigation Satellite System) Z#&5#& L, HIfi & /7100
ADFHAIZIT o T3, @ERECHEEICE - T, MEREESZ N

1.5 FERX DB

ARESUIHE 1 B HE TEBIUOMNRICE DRI NS, ROE 2 BT, RsIcBEET 556
THERICOVWTE D 5. MRe LT, HEEEKH#EEdN, > X7 a0%E, LIDAR SLAM @
2D 5. 83 BICBWTIE, HEERHHEHOMELHIHS X7 4 KRET7 LTV XL
DWTIAR 2. FHZ, HEIBEKS AT D= Fv 278XV 7 by = 7O, 2 L CTEs}
BLTICB 20 724 AEERRERFITHRIORERICOWTRT. 4 BT, HEEKZEHEE
L 7z LiDAR DI DWW TN 3. LiDAR O EEIFMADISCHA . LT, BiEstE, HOME
HeE, FREEMFIOMITEREZ R T, BS5ETE, HEEROBMES I 21— a VB X UEMRE
BOMEERT. 56 HETIEZ, HEIERHEICE T2 Z0MOMGEEICOWTARS., F7%F
T, KR EBIET 5. (R, I 21— a VICHOEERIGEEBZEEFLICOWTREE
T 5.
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2.1 BEEREIE

2.1.1 B#HEZHAR

ZIZTX, HEIBERICHET TR EIET S, 2L, BNILANOMIGE S XD EERTF
FEIZDWVWTIERETTUHDH THNIZET 5.

AR BEILICBET 22  ORFFRICBWT, Al - M5 (PD) HilfH#es, —2—F 1% v b
v — 7, mEmIEEG, #E(LERE (ES: Evolution Strategy) 72 ¥ O 2 FEEH W47
T —FPRERERINT VWS, Ahmed 5%, 74 —F7 47— RK=a2—F)lxvy bV —2¥ PD il
{Hl D heading controller Z#lAGbHEa >y va—F 2L LK [1]. ZOHKETIE, RDEDE
M CERHIEZ AL =2—7/,12% v s V—2% (ANN: Artificial Neural Network) D% 3 % 72912,
FERRIEET 7L (NLP: Nonlinear Programming) % W TER L 72#E 7 — X Z2{E L T35, R
LTI, &K 300m 22 %5 VLCC & > 7 —DEMER 2 HWv, ERzHELTEBD, av b
00— F I ZERIN 2 REBERMEORE X £1.5L (EMMRT —1T450m L E) THotz. —7,
S CIEEHER I O W Tl TV WA, B Z W EBR TR Y 7 v X A4 A THIEITE T
W3 Zehns, ftERMICOVWTIEEHRTHEZEZONS. ZOWFELMNCDH, KESIEZR S
A7 47— FeWIOHIBETEZHWEHEIERS A7 L 2RRB LTV [2]. AREOEE
B AR DRI 12 DWW TIE, SCGR (Sequential conjugate-gradient-restoration) {512 & D 1§ & /= i
RO EZ LI — MBI L 0 ZFAHL TWS. AFERFAIZY y F /a7 Z2HEH L
BB W/ EMMERIC X DREEXI N7z, ER S, 2 ROIERIERAYERIE L L CHBIS
BreERL, FERELE VW TREREO Y 7o —FEr LT, Y4 PRI
2 — %o T2 HIE O ESF TV [3]. IR SE, RIS B B)E &SI 2 REREHIEEE Y L
T, B2 = DR EERA TV [4]. £, HR S IIRELFEZEbRVWAEL LT,
Za2—=INty P =T ERMoLHEBITo TV [S5]. BILSIE, WAL 72 8 o R
NN S AT L 2R B L, ZOFELFHEOEMZ AV ABIREMIEHA L [6]. Bilsi,
1995 I K S [7] 2372 SCGRA (sequential conjugate gradient-restoration algorithm) % Fu»
T, WRAERMREMOMZETVS. BETFELERITOBBREICEAL, EftickdBon
JfRICHE DWW THIRICE DEMZITS e THRIEEL 2. B olX, #7112V X2 D—DTH
2 5 BT H5E G L B I% (CMA-ES: Covariance Matrix Adaptation Evolution Strategy) % FiuC,
18l 1 fEfho BENE BB T 2 Rz EBE L TWwa. ¥ I a2 —ya TN RIEMR
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1, BIKIRRERZ AL ERRTEERZ LD LL VAL 107 DA — X —DREETH 7. L
L, HlfiE% R 2 ORI 270 3 72 8 FEREE T O FlfENC X E B FI1E T % 22 0h, CMA-ES
DIIZA > A4 VD7D DImE AR D 72 d DA 7 54 Ve LTHIHT 22 &
MTEZELTWS. £z, IMAAOENGES) D IFFEEN EREZEHIC L TV 3 RERKD—>
THDHEHERMLTWS., LT, ¥Ial—Ya YEROEEESLOIEREEOBHEHRICOW
TIXRANCIER 2S5 BEDXH D, Z4h TCS (Track Control System) DFRIAFEIFICBIT % > 2
2l —>a YHAOHEEE T (8] REAIFMOBELTI HWHNS KT 7L & W o M E
DOFEFHET N (e.g. [9]) ZEREFOHBTHESI NI TERVEEBTH 3.

212 RANELTFICE T3 BHBEXRDEITHR

FEANELTICEB T 2 5D HEMLICBE T 298 B2 < fF1E T 5. Ahmed et al. [10] 1%, ANN ¥
PD filfllZ A EbEZay tu—F 2R L, HI2AMNTICHI2EBES I 21— a VOB
WCBWT R Y H—D ESSO Osaka DA 2 — )L DEFFEICB W THREZMREF L 7. EEOFER,
Za—7%y T =212 X BT CIEEOFZE N LU THIE O &Wiili#Els T =3, PD
AR RTH 5 Z & PR X7z, Shuai 1%, FFVE X L HEH DS T T ANN (Artificial
Neural Network) R— 2D a >y tu—J2FHLZHES I 21—y a YoREHRELTVWS
[11]. 1 & DT, BAEICOWTIE Ry 20 BN 2 RO TOARIEEZ LTW5. FiY
RJEMSM T TR, MEEELEMBT Ry 2127 Fa—F# e LTWw35, ZEEDIRMIZ
BLTEMIERTAICHEZATWS. KEFLERZ, 3BOHF=2—71%y PV —72 (RNN:
Recurrent Neural Network) % HEERGIENICEA L TW5 [12]. #51%, AIEYy F a7 %
B L 72 425GT 0FEMmE AW TEBREEML 2. KESIZHIBERGEO-DDHEY 71X 4
LB FEZIRRE LTV A [13]. ZDF X, multiple shooting 7L ) X 4 & &7 LTI
{#l (MPC: Model predictive control) %N — 2 & L 7z IEHRTE 2 B HRHILE O REIc X DRk T
W3, ZOFELEMERICID ZOWRELIBMIEZINTWS. RFEEHVWEEGAE, BRETO
REER R T 2 OICHRERREIX 3 905 S5 - TE D, HlfEBashEIC L THRDIR
XN TW3B. F72, Martinsen 5 1%, Autonomous Surface Vehicles (ASVs) @ HEh#& & HIHIZ O W
THE LTV [14]. 51%, IEERERIEME L EXML L, ZOMEZPLEBEE OBIIAL
Bk Y b —FIZHEA L. 1~3 [m/s] ORISR 2 R AN T, /MY ASV ZHWTFEE
MRRE L7z, IR RE(LFEE HEERICHEA Lo R e LT, 5 [15] RKITs [16] @
ez o s, 2o DiFFETIX, CMA-ES IEDffbh T\ 5. JfTiisE CifH X 17z K5k
o7 7 Fax—2IiEHT 5, CPP a2 HWHINZ W, CPPITHERIICEM LA E
THRIENTELLD, FEEY Yy F /T aRIOMEHEL CEEFIENIAEZ TH 2. BEETax
7 R oFEMEME o LML, EHELOMEAZRNTIZE ALK [17]. Han 513, MAKRERK
(USV: Unmanned Surface Vehicle) @ H Bj#5 #Hil{#l D 7z 12, Extended Dynamic Window Approach
(EDWA) = H W= HEHEFEEZRRE L [18]. 2O FERX, USV 0EH), FEEY L - =l
KPREHOFER2ERL, REPEESG 2 5. Han o 3E#EE MM 2 ZEZ-8HY I 21—
2 ICEk BT —RARRT 4 BEMELT-. Piao 51X, &AM ZE W TEAEL T OBEAIEERZ 1T - 72
[19]. Piao 5%, EAEL T Ol %4T S 7212, Line of Sight (LOS) 7 /LY X 4% FW -2
#11H & Active Disturbance Rejection Control (ADRC) Z#H L7z. ZOFEZHWT, 1.5[m/s] D
AAELSE T TRBEITo728 25, {itEKD PID FlHZEZHEOBRTY 7ICEET 22T
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X o7zh, ADRC 1, HAGZ BEOEKRT Y 7 THIHT 2 2 e TE k. HKLHIE, &
filiz> b “%#3¥ (SL: Supervised Learning) & 7#{t%## (RL: Reinforcement Learning) % H\W\T, 7%
o BENE 21T 5 72 [20]. ZDNIERE, BERANOHEOL RV A7 2ERL b DT, HEAFE
EERULBER A — L ORMES 2 2L —> a VICK DMREEX N7z, Liv 1%, HENE RS
DDAV 7V 777 788 (BLF) ZHWEHEZRE L [21].

JEAVEL T D BRI D R AEE) 2 5 2 720120, 2 a2l — a YZERICBT 3 AN, R
JEE S BAIA AT 2 ZBRAOHHFIENEETH 5. ROPMBELH RO I 21 —varyF
‘e LT, AROBREORRINCED &, BT X DI SN HEHBICHE D WMERIMIC X
D, BLEEHWTERT 2 HERH 5. JEHEICOWTIZ Monahan 12 X HUXH 7 201 [22], &
AR L Cld Weibull 7017 [23] R EDPMERSNT WS, 2D X5 RAER, 500 m@ Bl
O RICE SV AN ZHHTE 52— T, SRAOEK S 2 EAM iid TH2 LWV F
WD 5. JEAX, AXRT T AR ERBGEEIC E D0z A3 5 720 [24], WBHFEROHH
THWHLNZERAEGDLEDOFEMEZAWLSEZID 5 25505 %. BENZ iid TRWVWED
RV Z BT 2 75EE LT, RBRICESSDOHNH 5. FlZ1F, Nichita lZFEDZARY + Z
L% 2RTLDT 4 VR =2 HWTCERL, RORRYZFET 2 FELZEEL TV [25]. %7,
CARMA (Continuous Auto-Regressive Moving Average) E7 MIZ K 2B L7 ARZ ML %, 22K
TCDOHERM 5> 7725\ (SDE: Stochastic Differential Equation) TRIR$ 2 %8055 % [26]. X 51T,
BoE 1 T ofERM 7y AEXTRZIEMS 2 Z & THTRZ KD, SEdIc AR E R RS
BART 2 FHEEZRERL TV [27-29].

22 JRATLOREICET BEITHR

AR TIHIREFEEF - 2 HEEKRS A7 %2002, HEENMMO > 27 2% FET 257K
OWTHIRT 5. ENTIE, HARF® MEGURI2040 71 =27 MIZBWT, HEFEERGIE
PEDHBNEMN S R T L DEMC X B HEIEEBRPI WL O EMI NI [30,31]. LrL, Z05
DML TITERBREICN T 522 XA 7 2 DREEMSL 7 7 — FEHOFERERIZOVWTIEMh s Ty
., BET AL LT, Yong HBBEANA ANA—N—DEDODOHE N v F 2 7Y 27 ARER
L72[32]. 2ORyFU AT LI, BEROAAy Y TE— b, BARKOMMA L BEIED K
XV IEARICT I -V 2y —E— FEATVWS. 22T, EEoRFEEDH I L
T, TCS (Track Control Systems) D kg% 2515721 [8]. IEC62065 1%, EFEFHEME] (IMO) 23R
U7 TCS OMERERMEICHEG T 2 &/MROEH - HREEG B ER L2 DTHS. 20D
Tk, BEMOTF—Z270—%, FHOZDD FXa Xy rORMREBED LN TS, %
T AR O TR, BRARPHERICEYREREZHET LI NI RATLREREIN TN S.

2.3 LiDAR SLAM (CB T B FiTHIZE

LiDAR ¥ LiDAR % i\ 7z SLAM (LiDAR SLAM) X, B#io Xy M HEIEHO HEETRY
WK M TWS., —7, A1) % LIDAR SLAM X, W< OO RN H 2 72 DI
Bl Do, #E ETO SLAM X, @dven 231T->TW3. ZDOFITIE, 2D SLAM T& % Hector
SLAM[33] & 22D 3D SLAM 7V 3 Y X A TdH % LOAM (LiDAR Odometry and Mapping[34])
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& BLAM (Berkeley Localization and Mapping, [35]) 73 16 7 4 > LiDAR T& % Velodyne VLP-16
W THENTOMBERD ¥ HIRKER % FEMHE L 72, Z D% TlE, RTK-GPS (Real Time Kinematic
GPS) HIfii & GPS a > RAD i & R L7 Ga DN E & A O ERAEZRLTS. Ly
L, WINOFELHUTICHER, T RBEEORBEMNEZERT 222N TETVRYL. Z0D
FEER, Odven 1X, ¥H5 50D SLAM 7132V X%, BT 2V —0#Effin 720D FiEr L TH
BET AWIKIEATATHE eMELTWVWAS.

BDWFETIE, Shan H237 LA T IVX LD % 3 KT L 72RO HlE%Z LIO-SAM @
MEEH 7 — X+t v b2 UTHERA L7 [36]. EFNIME O mfl2 EE I A TE D, LIDAR Ol
ERREED/NE 2o 72 GEFDOIEIZH 20~100 [m] TH - 72]). T DOWIZETIE, WAL S FEER G
3 5 Z T SLAM %17 - 7z. Shen 513 Z DWHFLDOH T, FEHIZBIT 5 SLAM 23\ D0 DR
HTHLWHETHZ Z e 2iEfML TWwa. EE mokELoftflly -2ty b L TLET
HHOFRHEDZ D InTc o, RABEEEE S /NI VI 20b 53, SLAM O SYHRIT R
HIKL, HBICHWZ 420 SLAM 712 X4 D55 3 DEEKDD ZEREHT Z 2T
T TV, EFTO SLAM MR EE 2B O —o1%, M /W72 0 /KE b o SFE RS
LAk, 207k, BEFMORBEEZMET 2 ePN#EETHL e THS. EE, ®BAD
L SLAM TlX, N7 X —XFEIC K> TUE, BEHMOD KV 7 M233%AE L, HIRKITERD RATEE
BRI D o7, ZOREZMHRT 2729, RIFFETIE LIDAR TR ¥ ¥ ¥ L7l A
LOPERICE T 2 XX x vy F U T ORBIIEWT, BEZHORIRICHNZMZ 2 Z 2T
RO~y F U VRERZRBIETVD

%72, Zhou 51, i E ¥ /KEZ &L ~LF > — VBB 2 S4-SLAM 713V X A ZRER
LTW3 [37]. Zhou 5% S4-SLAM 7L IV XL %ZHWT, HETF— &ty FMZBWTGPS &
EHEMEEE (INS) 2HHALAVEREZRLTVS. ZOARICBVWTHREXRATHS X512,
LOAM 7 V3V A LIFZ ZTH—HOEE T —XTRIMLTWS. LAL, HoDOMETIE, fil
e BN D RV 7 FREDADRINTED, HMAHEEICE T 25 iild s ST
W, ERCOMNTHEINTWS, S4-SLAM DL —F 70— v —DBHEHE L 72 5 o 72 R8I,
CO'ET—REy S THROMBBNL —T L Tk oz Z EBNRERO—DEZHNS. L
—77u—Y % —tlE, SLAM RIfTbh skt~ y F 2 7OBRMHETH D, 1ERH O 44k
EEAFRBRET U EIET. ZOHE, i km OFHIT 0.56~0.93% G~ o fif 0 #8158l FH
WX T 2RADESGTRLEZDD) DKUY 7 IPRELTWVWS.

FELOATR R R E 2, AR T, ERRMEHEL TV RE < VU —F 5 & L o &b
DEHEETOT A >V 7T LIDAR & IMU (BMEEHHIZEE) TOEHIZ 1TV, 1 To LiDAR
SLAM DA S ZRAET 5.
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ARETIE, RFRTHOZEBRIMCOWTZOLREPLER T 2HIHS 27 2 OMEZHHT 3.
¥7-, SEIEMT 2 BEIAKRHEL 2 BHEOMBIC X D EREIA S, —21%, BEISEKRHEOE
AR e U, R & BEBREHE» S22 71TV XATHD, b5 —oiF, AL
WXL THIE ST %2 2 HHERIESRTH 2. ZhZNOBRORFEIZOVWTS, RETANS. %
72, AR TIE, HIZEUZHEERS 27240 2 D0FEEHZ2RT. —21F PC L TEIET
37 027 THD, 5 —2@3EEHDay tu—S2HWEHAAAS ZT LY LTHEE
5.

3.2 WRMOEE

AEFFETIE, KAEfR X D HEHTEZ CONELOE R K& 2 % e FRINZ /N E 5
LTW3, ¥z, BEWEHFENMINCER T 2720, SMRMAOMLEE LT, 181 itz
SRR BEREOMIAZEEL TWE., ZITIALDEGEMETDHDL LT, KX TER
DXRE T 2 DM FEM LSRR EM S 5/ MU Tl T 5 (Fig. 3.1). fl&o 3
ZIH% Table 3.1 13, %7z, MIEOME e EHFORBER % Fig. 3.2 1IR3, MIEE, 181
flEfhcdbh, MAURI ORI AT 272X ZHEBWL WS, b 3EREEEORBREE
MBS T 2720 D RERD -0, LY FEETRBEE OFERZ LICHHICEETE 2> —
AL Afire UTHFE N [1]. Z D, BB REEA, KRBRIEM S X7 4 02 EMEE
FOMFRICHWONTE . RIFFETIIAMICKRR T 261> 27 2 %528 - B L, HEERK
WS A5 R BT LT

33 ##E7ILIVILOBE

331 #E

HEEKGIHO 27 2o 703V XA, BT, SEEED 2 DDETh oMM STy
%. HIEBAARALE 22 & A RO E £ T OREIE, HlHlS —7 > XDk IcAERENs. 0Nk
WIRWL O DHEDD 5. —21F, HEIHIHEZFGT 2 iNCERRKZHRETE2 2 TH 2.
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Figure 3.1 Experimental ship "Shinpo"
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Figure 3.2 Architecture and equipment of "Shinpo"

bS5 U eoi%, HENRIEHICHEED 5 O®BMB L2 2D T, AT LADPBEEELIHEEELTWVWS
MEIDLHEEICRZ L TH B, 512, 207 Fu—FTlE, HEERHEOMER, &£
TR ORGT, HOEIEORENE, BEBFEEHEE WS X /NS REIEECE LTS 2
TEMTES.

Z 2T, Fig. 33IRT X5, HOWMTRLLBEREREZ 4 DOl — 7 > R1257E]
LT, HIleE—RF2UDHEZE. Zhs0UBEAMEIX, EBRICAMDOARL - 0EKT 2 FIE
ZRELTRELTWVWS. $, FRANOBRKRAMHZERT 270, REBEOIFILE— FZRE,
T aRZMEELNIC X BB ETH T, FIRETHE T2 28 & Ui, o 2 e PR & (R
T 570, fllE— FOUDBEZMEE, BRAED SHEKIZIH > T 10, 70, 100 [m] DAIEIZ
flEXNTWS. b2 A, OMINMCERAT 2550, ToRilEEE R L2 LT, &M
E—-FOLHENEZIET 2 eHBETH 5.
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3.3.2

AEITIE, HRERKEERT 2 EBETEOFIEICONT
AR ENZ, TOHIEERATE 3 HAMEERL TR

Table 3.1 Principal particulars of the experimental ship "Shinpo"

Subjects Value
Ship length overall, L,, [m] 16.5
Ship length between perpendiculars, L, [m] 14.9
Ship breadth (1.0WL), B [m] 4.38
Ship draft, d,,, [m] 0.502
Trim, 7 [m] 0.348
Diameter of propeller, D [m] 1.0
Propeller pitch @ 0.7R, P [m] 0.775
Side area of rudder, Ag [m?] 0.780
Height of rudder, Hy [m] 1.05
Mass, m [kg] 21.53%10°
Moment of inertia, 1,5 [kgomz] 3.044x10?
Longitudinal coordinate of center of gravity, x; [m] —1.260
Longitudinal projected area, A, [m?] 14.40
Lateral projected area, A, [m?] 41.52
|
- 1. Path Following
200 1 =~<
s /_ Mode
150 1
\“
— \\
£100 - 1
> | 2. Neutral Mode | —<‘\\/
\
50 | \ .
‘\\ 4. Stopping
| 3. Turning Mode | —" ///_ Mode
| Berthing Point | ---- Path
200 -150  -100  -50 0 50
Y [m]

Figure 3.3 Scheme of automatic berthing control

RS EHE

BT 5. RET 2 FEZ, BREERD
FE .
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3.3.2.1 Bézier BifE % AL\ /-2 EREHH

BRHETHE 7 L2 ) X0, ANEDARL —RI2X 2 EBOWLIEEZ SE KT I TWS. FITiH
ZEDFER MG DFEMG [2] 205, AN OBERRER L U TR BELAEE DR o (& 2 & fih
HOFFANB, BB AT RAETERMENEZRT 2@ 00 RERTHNT LIV EEZS
N5, ZD XSGR, 3 K Bézier iR TR T Z e B TE % [3]. KB N D Bézier Hiffi%, N+1
DOHIHL By, By TERINSE N RHFRTH D, t BRI X=X L TUTO XS IRIN 3.

N
Bézier(t; N) = Z BiJy.(1) 3.1)
=0
%An=cya—o*i (3.2)

ZIZT, 0<t<1, Juoi(t) EXE n O Bernstein K ZIHATH D, 3 KX Bézier HiffiE r © 3
KRZENX e L CRETE %, Fig. 3.4, A B; (i=0,---3) 1 & % Bézier BifRIC X 2 B
HOBAKTH 5. Fig. 3.42BWT, HlHllS By &, MO EICEE XN 5. By &, BoB
DAEIROTHISTMNALELL, ZOREIN Ly =0.6|ypern| 7228 TH3. By ¥ L, =80
[m] THEIBIC T2, By 3EREEMBTHS. 22T, BREEME X, ERoZeEY, it
PORBETHRE - T2RITFE2 e P TELHHEOBED S, Xperths Ybersn) = (5, 0) [m] &
L7z, B Ly BBBMNEICX > TE(LT 2720, YOMEDL S HESERGIEEZHEGALTH, 1F
WBRICAETERBICHEET 22 TE5. EAAZOREKI, FITRI L ITXoTTbTL3.
HDOMARFEEHEHAT 2551F, BRI L. 22X XEVEBAT7 70 —F 32 20
EEEZDZEWARETH B.

B,

Lberth

Smmmmmmmmmmmmmmmmmm e ----> Yberth
Pier ::I

Figure 3.4 Path planning using a cubic Bézier curve with control points
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3.3.2.2 BhERRREZ SRIT oA RARER

A CIRR SN/, AR ETENX, EAELOZEIN NI VRRETIES $LEET 5. —A T,
Bl 5 B IEMEERIE ORI e LT, —E4A UK IRA (CTE:cross track error) Z/NX <55
CERMEET R WS DOND 5. EEIC, AL TIRE T % HEISKRHIHFEEZEA L, E
RSEER U 72 F5 R O MR 2S Fig. 3.510RENTW5. ZOfITiE, EAVELZE 21T 2 K CHIlE % 17
2 TWB A, HIEHFIHICE W T DHIEIS BRI TR E N2 ETHREE 2SO REENTNS
bbb, ZORIEENCREAE LU -BEREAZZ, BomE 2 B2 22 AMICEELTED, &
AELIC & IR 2 3B 2 HEo, SN RAE U 2B R 20N X {72 % % T2 200 [m] F2E D
FREEZ LREY LTW3., 2O XS IERRIEICEWT, EAELIC X 228 X ) BRI E
L7 R DR EP AT ELR W L b d 5.

s B Forward
3001 Neutral
B Reverse
\
2501 ‘7
\
\‘i
200+ \
!
'€ 1501 Trajectory | | Clutch condition
— |
x |
100+
501 |
ol = True wind at 3m/s - A .
----- Bézier path
—— QZSS position

-150 -100 =50 0 50 100 150
Y [m]

Figure 3.5 Full-scale experiment result of proposed method of automatic berthing
control.

HERI A DA BB IR AR DB SMEANCIE S AT L ES WO RIEIE, FFvZarbn
— LR BEL TWA. EfRTHERINSE L 706 MII TR XN S gk (curved track)
NET L7 &, BEEHRDZ X4 IV 7 THRET 2MAEBIOF v 7 2MEICR 2. Fv 71X
BCEOREREEXSE LS T2 M@ < 20, HRICEEI ENS Z2ICRkE.
DR % S 2728, TCS D & 577 A7 AT, i@ WOP (Wheel Over Point) O X 5 IZfig
(0] A 07 1 % FISMEGE O BlAA A& X D ANCEEE L, FEREEDBEN ZBET 2 TR R I T
% [4]. FEORBBETEFRCOVWTHD TR TAS L, HIFIBILAN E T O ORI O
WIRAARLA L AT TH 20, RIREFZZDDH & T CIWERBOA I > TWD. DF D, AiEHlE
RAAH S CREICHER 2 BtA LR AU 672 < #2203, WA AT/ NS Wiz, Fv 7 D%
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AHHE - TRIEHARENFREET 5 7-DIIIERHEZET 2. 20k, EEGI#EOIIAERR IS
W, RO EHEREE DIMINCE 5 X S ITED L W o RBRDIE X 3.

ZOMER RS 272012, K15 @ X 5 72 h#R#E =D TCS (Track Control System) DD K
512, EMRNEBIERMER T2 2 2K T 5. Fig. 3.61%, EMRNERBIEXMEEZR T -5HE
DI HOMELZRL TV, BIEXBEORKEXEZED X SIS DDHEYI»LITOWTIE, 5
S5FEICBVWT, BiES I 2L —Ya vy EHWERIEEITS.

4--"—_—, Lerth
Rl\)_l’lway

Bézier curve

R > Yberth

Floating PierI’ZI

Figure 3.6 Path planning using a cubic Bézier curve with runway

333 EEEREHE

AREITIE, FHEX N B 2 FEE R GBIE URRMIAZ B RN B IICFHEE T 2 KB NE O Fil il F 14
IZOWTEHT 3.

3.3.3.1 Pure pursuit ;EICED < #Z KB REHIHE

GNSS position

Trajectory

\ _____________ Target Point

Figure 3.7 Path following control using pure pursuit and autopilot (PPA)

ARIFFETIRREGEREHIE 7 L2 ) XA LT, aRT 4 7 ZARHO HIBEE (5] 205 H T
J5L Hbi 2 REEBHE T LT XL TdH % pure pursuit [6] Z - L 72. Pure pursuit /&, Fig. 3.7D
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X R TORE SN A2 FFOE MR LT, —ERBEZ TR O Loz BEA
LT, ZAUCERET 3 & 5 WChiERHIEZIT> 712V XA THS. 2 2T, R EOMEAE (2
CTRIv Yy 7ed2) LOREERY BIER X TOHRE Ly %/ /5 ESEEEE (Look ahead
distance) ¥ FER. fMARNIE X, %32 GNSSICX W EIGEN2d DL T5. 22T, GNSS ¢
%, Global Navigation Satellite System DWEFFTH b, EHBRBPINI > X7 2 (GPS), #EXTEMEE
AT L (QZSS) FEDWEHFTH 5. Pure pursuit IEZAMIMET 3 254, HIESO M AZE
EIC X DIBIRET 20ENDH 2720, HIEEFMMAIWH T 2 PD #lfHlo HCS Z2fHAGHE S Z & T,
HEREFTOAEREAZ D EIAZEHNTS. PDATr vy Zaryiiu—722H0VT, HES
FTOHNMNAEDZE ar WHESZHEHINMMAE 6 & L, KT +45 [deg] DHEHIPHIZINE % K
SIfEEY 5. EREOHAEREIRDO L5185

5* = Clip(Kp [a/T]_lg()o’]g()o - KD}", —450, 450) (3.3)

ZZT, Kp & Kp 32z entthlr4 v eWnsr4>Thsr. 547 X=X Kp & Kp 3,
Z L DI XN TWw 2 HCS (Heading Control System) DEEEWCH D ZRET E I DT
X2, W ODLHRNCEMLZS I 2L —Ya vy EfRFHoSRICESE, Kp=3.0,Kp=1.0
L7, BEETI, BENMTRO Kp ® HCS REFMHIEDSE, 20 fETH%. HCS D7 A
VEEETTIX, pure pursuit 2SEFE D E RTHIT ST 2 2 & 22 MO HIEN 2@ X %23 2729, Hl
AT 2N MEEREGBEEREZSE TR e TE S, 2L, @E ORHEIHEI AR E
W27 B I WEIH [7] TR EORDIHRARETVKEOBRMEZEEL T Kp 2 KERHICHETE
THEREDNDH L. FHitOHLZE LT, B LORDIMBORZTVWXHOEBREEZZRT 22
HE LW, SfE, BiFERES Ly 132 3 20— 3 > 2 FERMERIC X 2 F#E0BREHIE i
RHro, Lpp, D1O6MHETH2 264 [m] & L. FiHESERE Ly 3HEARICEE TH 55, HHL
DB XD AN E & AR L ORBGA IR RE U2/l 7 R X D KE SR B5E1F, &
BrEoRbLVEEHES LTHAT 2. ERREGTHOOWT, BEISE oW EICERK
MBSO BEEZFET 20N H 5720, Fig. 34D 5 By 2 HRMEICFATICR 2 & 5 135#
LB D EARR R IEE T 5.

3.3.3.2 REHIE

AR THEH L EBROGIHE S 27 20k, TV 77 78 HEE 77 v FREEL ThEE
HlHS 22D TES. 12720, EEANOEMARANDMNELEMERTOREMEEZEREL, 5
B, FHEEREE 7 4 R > ZEERBUCEE L CERHIEEITS 2 e Lk, 207k, 77
v FOUIDBEZDATHEERGMEST 2 221k 3. 77y FIXER 7, HHED 3 DDIKER
B2 ZeMTE3. BARMNZHIEEIY LT, Fig 3.31IR 3Nz 4 DOHIERTICB VT, XD LS
W AE 2 fil S 5

(1) REBRE—FTE, 727y FEAECKET 5.

) =a2—FINE—FRTIE, Z77vFE2HIICL, BOADPWVEL YT surge #HED u < 1.0
[m/s] IC72 o7& EDHGEWCHTHEICYIDEZ 5.

(8) [MEHE— FTIEHEEL 1.0 (m/s] L TIWCMZ 27DICFAINIIC v FE=a—bt 711
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(4)

ALBD, KD 3 DODEMEDONT DI &, 75y FIFFECANRS :

(A) a7 <0 [deg] 7D surge H/E u < 1.0 [m/s] D & &,

(B) GNSS S #EEINIMAD I v Ry FHED S BRAE £ TOEMRIERED 50 [m]
Y EDD |ar| > 5 [deg] D & =.

(C) u<03[m/s] DL %=,

FIEE—F T, 77y FeEBEIICHIRZIER1 5, surge I u 23 0.1 [m/s] LT & 72

2551 F5%. £F, —-10.0[m] < Xperen < —1.0[m] 22D u>05[m/s] DL X, 75w F

BUN—2IZYIDZ B, MAT, BEZCTOERCEGRZ u>01[m/s] DL =x7 5

v FEWEIZANS. BERMEDTHID xperm <0 [m] Tu <0 [m/s] DFE (DO HERE

NMEFRICHEREICR > 7258), 77 v FRAECYIDED 2. ZhoD5tEEiiz X

BWEE, 77y FEPILICT .

AMZETIE, ARMTITERTZZL2EELTWS. —J, EfMITITOERDGEX, 3) D

(A
A
b

) DARES DT FHITE 5. AHIEHAITIE, FEike— FLUOLCRBERICZ 2 v F2 1) N—
2T B idewv. TR, 77y FOIEMYIDEZIC L S BB oA ZH1ES 27D T
5. LiehioT=a— b IAMUATICE 28 21T 5 BIEHE— N Tix, BEGAMA EMET0A

DEDREL B THIREL+ /NS VWRETRZTRE T aRIBREMICETLEILICLDE
JElEl 24T h e vwakat & L.

3.3.3.3 RASEL#EETIE

7

Trajectory

47

Cross Track Error

Figure 3.8 Wind disturbance affecting path following control.

Table 3.2 Settings for estimation of coefficients

Subjects Forward Neutral Reverse

u [m/s] 2.072 2.072 0.0

v [m/s] 0.0 0.0 0.0
r [deg/s] 0.0 0.0 0.0
np [rps] 3.09 0.0 -3.09

ARETTHAA S 2 BAVELAE SIS, AiEiCHIH L 2B BE 7 L3V X 2 mAMEL E wifE T %
4 =R 77— FHlfHEEEIMNZ 725 DTH 3. Pure pursuit %1%, HIEEHIS 50905 % H
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BT X o CMmEAMAZHIES 2 2 & CREEBIEHBEZITS. ZoAMf#E%ZiT> 02 PD (M
B HER— 2D MNHIEH S 2T L TH 5. ZOHIEROFEIE, BDERHIHEHAS X —&0
PN e THB. KT, pure pursuit £iX, IRONMED & HIEE A FTOEBET D % /i /7 15 EEE
Ly #FABET 27200 T, &EI$52 T 3.

EANELO R BGBIERIENC 5 2 258 e LT, B2 o DRENET 2Nz Fig. 3.81IR7.
CORNRTIED, FRiMAOBE A D o DR ZEZIT 5 L, MIRAEOER D S DK = <
B Zebhd. JAIC K ERRERRRT 2 22T, ERBEHEORKERM EXEZ
MTED., ZIZTAMETE, AENTOMBE S EZX Y LT 5-DDELXIRET L7 4 —
K7 47— FHIRERT. Z 2 CHOEIHETLICESWT, MAICBRENEEZS. —
72 MMG € 7 VIZED CEBIE T LIEMAEDO I v Ry TR EBERAE LTRD X 5 RIF
TRHEINS.

(m+my)i— (m+my)vr — xemr® =X

m+my)v+ (m+my)ur + xgmir =Y
y

(3.4)

(16 +xém +J)F +xem(V +ur) = Ny,

TR HICT 2729012, BEOITIMARRENE BIER DR R Z B W5 E O O EHEEE) O
ITRERXEXDLSICEZS
(m+my)i=(m+my)vr+X(u,v,r,0)
(m+my)v =—(m+my)ur+Y(u,v,r,6) ¢,

(I,g+J;) 7 =N(u,v,r,0)

(3.5)

ZIZT, XY, NZELRAD ODMRIERT 2484 e e— XV v 23RS, ZoEEHFERICE, b
RIEH T 2T XA oY, ZLOEFFEIEENTVWE. ZOHERD2S, Hl#Elo7
DDRAFIZZAETFTAD, XD XS IZELNS [8,9]:

_m+mx 0 0 X;
3.5) = 0 m+m,y 0 | = |—(m +my)ur +7;
0 0 I+ J;] |7] Ny
-m+mx 0 0
= 0 m+my 0 (3.6)
0 0 Lo+J ] |F]
X, 0 0 1M« [7c Dx XA
n
=({0 Y, Y,—(m+mu||v|+]|0 D, Ply Yal,
0 N, N, r 0 D, Na
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Wind load coefficients

0 30 60 90 120 150 180
Wind direction, w4 [deg]

Figure 3.9 Estimated wind load coefficients.

1

V= Gnrmy)

[Yrv + {Yr —(m+ my)u} + Dyé] . (3.6")
T IT, MEODMKIT Fay % Fgy :=Dy6 EERT 5. RIEIZ, 74— F7 37— FilfHlDz0
DAL I NN ET A EZLLT DO X S ICEHT 3 ¢

de/(m+my) = D;épp, (3.7)

ZIT, Dy, MK o THI SR I SN 2N OBALE TV OIERLHATH 2. IRX T D FF
i, 74— K73V —FHIEARNC K25 B LEATHZ Z L 2RT. ZOHIERIZERRGE, @
HiDEFE TV FWT, BIEIC X o TIMARICIER 3 2 807 & fif i L7z, e R1E, Table 3.212
R IERR, W7, WEEDZIREICHIE S 2@ TH 5. [Ein, P OWTIE, FETA FY VS
EECTEEL TV e ZOHEIRELZET ML DTH L. HHIZOWVWTIE, 77 v FH
ZIEE— R TOAWERICA 272, ENE o DIRETHEN L TW5. @SR % Fig. 3.108 X
O Table 3.3127R3. 22T, Dy i3 Eq 37 23 X5 ICHBEINLMAEETHD, Fig. 3.100
FEERICBWTHEAD 0 [deg] DIETREL TWB. MEIC/ER T 2850 BE X, Bificd
RIZEIDRRDEIBETNTREINSG

1
Yo = EPAAFU,iCAY (Y a) (3.8)

Fig. 3.9 E B O BT RE2 RS, ZOME, Eq. 3.7) & Eq. 3.8) 25 Yo+ Fygy =0 ZfiE<
YRR ERITBHETHANREZ e bh s, BohftAlcEonwTifts s, A
JEIDOM D "X ¥ Y NTEIeNTESED, HLETHETH D, ERHPOREMEIL LS
T XY bR ONELERS, £ EOEANRET ML D 5. Zh b DERIC
EBHER, 74— PNy VHEHEE2EOPPA 712 ) ALk T—HELTHIEXI NS, fitfts
Al 6%, BRAOME7 4 — F 72— NEICHEHE L 6pr E PPA 7 LTV RLIICEKD T 4 —
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KNy ZHIHCER L -fitfa oppA DOMTH D, UTD &5k 5

6" =0ppa+0FF
3.9

m+my

= paAFULCay (Ya),
2D},

= KPQ'T —KDF' -

TZIT, Kpt Kplidt—txX4may bty 4 v eMnsr4 > ToHs, ZEEAEDME, r
WHEERETH 2. s, feedforward, pure pursuit and autopilot (FFPPA) 7 L3 XA TH 5.
ZHUZ2 HHE Q2-DoF) arytu—5ThH2. it MERIClERT 2BEOBMFRE 1 XX T
RTZETHEREZMZ, ERFEOV 7 AXA 2R L DD, BAELIIH T 2 HlE D Ew»
HIEZATS 2 e TES. RHKTIE, Kp=3.0,Kp = 1.0, AT EREREE 1.6L,, L&EL .

Table 3.3 Estimated coefficients of linear lateral rudder force model

Subjects  Forward Neutral Reverse

D -0.003272 -0.002771 0.0

0.002
0.001 ~
0.000 4 Levweleerenmrmmnmmnnnennnennsnssasennsesasennnnnnsnnnnnnnguannaaas
A" —0.001 -

—0.002 A

~ -
~ -
S~a————"—

— Forward
== Neutral
-+ Reverse

—0.003 4

-0.004 T T T T T
—40 -20 0 20 40
6 [deq]

Figure 3.10 Estimated coefficients of lateral rudder force.

334 BEERHEORIELHEADEA

Pure pursuit {£1Z & 2 RERBIEHIHOFHE . LT, FHHEiRZE (cross track error) 23K % < 72 % 12
5T, REICEBEICHEZINS X 51285, ZHUE Pure pursuit 12 X % FEEE B HERAE 13 AT 7 TEH
FEBEE—ETH B 728, LR EIT X o TR D S DIRZADS K E 725 L M, BT
X LT ORI EOMOBRESE R AN EEZERAADOHENRKELRE1-DTH 5. MR
FEp& ECHIET 2 M & D DREEANERTI2EGVEED S Z2ICRD, ZOEHIC X - THHL
BRI ZORBRETDIEERRT LN TES.
RRCHIERAR IS BV TR  ARE D BEREDV NS WS, IME 2B 228835 2 L1,
FAHBICRMEE 522002 H 5. ZOX 5K 7 Fa—F Tk, MEIERECERT 2 EMR
MHELRS. Lo TREDLDITE, BIEICHERES 20 A 022 @ bvnc filE 5 2
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Figure 3.11 Geometric meaning of a,44 on approaching pier.

CEMWEETHD. BB, ARCEANAY R T ZAZPEWRINTWE D, BELERREDONNY 25 2
RANDBARPREEINZ T2, KRR TEANATVZAZZRAZEZFHLENILICLE. £, N
ATAREFHLZBEOI —E—X > M, MICHHEREDL D 2551213/hE W, 22T, &
ANDMEARFD TN A, HEEE— F e FIEE— RSB 2 MBI X 25D EAZETE T 2
BRI, UTD XS ar WWHIEA augqg ZMET 2 THESTZ 2 LT,

0" = clip(Kp[ar + @gaal-180°,1800 — Kpr, —45°,45°) (3.10)

Fig. 3. 11ICHRAEHE AR D A M HITENC BT 2 aggq DRATENREBRE RS . aggq EMZ 2 L
T, DTNV XL XD BLFEEZFBTE N TES. auaq T REL T B 2T, BRI
B 5 DHEEN NS WA ICHIEEICANTENS ar ERELTZIENTES. 22T, K
BANOEER O AZRET 272018, MIEM agqq ZBALTWVWS. —7, BRERFICEYT)Z
Fhifa 723 & 512 Bézier iR DRI Z D b D % Hi J?éﬁ&%%é.%%@ﬁ#//7w
TWEH 20, ZOHE, PLEXHT LD SRIZH S LR v, 2ok, hiElEE— FUEDOM)
EOHRRETIEHIHRBIZ L A RWD, Fv 7 R Y 7 NEFH L ZIEFICEMERHIEZ T
W, HAEREIET 2 Zickhb. COHETRENICERMNE S TEEST 2 2 2 ERETH 5
2, ELLRBEZBHETETVINEDE Y AT L DERIEEHHEH O RIIRZDHBRD S Hlk
TR RZEWSIREANRD S, 22T, EHMEOBALS, MIEAEZMEST 25X
ZERHA L. Eq. 310 FHWT aggq ZZLZI BRI 0 HEBEREZIT - 2 EMORBRAERIE, 565
HETRIN3.
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Engine Governor Steering Hydraulic
Drive Unit Clutch System Unit Steering System

Remote Controller Remote Controller
Connector Connector

Thruster

Relay Circuit

.................................................. Shinpo
L
:- o -Sc:,n-sgrs_ I Analog outpUt = = = = e e e e e e e e e e e - m - - B
Il  mmmmmmem e === - = - - 1
' ! ! Ethernet !
» | Qzss(cLAS) H——; - AutoBerth PLC :
! 1 ! ! ! 1
! 1 ! ! ! . . 1
' |GPS Compass : : Support System : : Path Planning Path Following !
! 1 ! ! ! 1
' 1 ! . Data ! ! Speed Control = ODD Alert '
i | Anemometer ; : Monitor Visualization | . .
1 1
I : : I Voice I : :
1 1 1 [ - 1 -
: Others ; | Speaker Guidance : X Monitor Speaker :
1 1 f

Figure 3.12 Architecture of onboard control system and AutoBerth PLC
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HESEKRGIEZIT S 1CH 720, MIEIIEHTEIRIE S X 7 22 EHOHIH > X 7 24 2 LT PLC (Pro-
grammable Logic Controller, > — 7 > % ¥ ) ZHLE L7z X722 LEH L TW5 [10].
PLC IZMHARADY 7NV R A harytua—5Thh, BERIOZAL TV 1-DEBOEERL
TIOTIFIRNMMEETRD L VB TESIED, aX Y VPHODIREEHSEOKAELZ B LT
W3,

ANRISEERAR TRRIE ) 121X, Fig. 3.12 IR &Nl S 2 7 2 DEAXKTLX, HF0i2H % PLC H
SO Y 7 F 2 T — ZBFEH SN, Thict 3, SRENERT= %, R-HMEE
BEITH>8—=YFraryra—x (PC) & LLIFHOHEMHPLC B#ERENE. ZOKTIE, H
BRI PLC & 27 AT % AutoBerth PLC Z##i L 722D BB ERLTW2S. AHIMH S
25 LTI, EEELEECENE n S 7 rnyy Z7ay ta—3 (PLC) AN DR
RIZT 7 F 2L —ROHIEBEZHoTWaE. WERAT 7V VI RAT L EROVE—Fa Y
Fa—> 27 AE, RN PLC #ilfHlS 2 7 A TEM - BIET 2 Z T, i, A ANF—
(DT LTI 78BN, 727vF, NURFZAXEHRIETLZIeNTES. %/, &
XNt —HZTXTHA O PLC $lfll > 2 7 21288, i h, HIES 27 a2 E
ENFERYF T4 ATV ICHNENRRREINS. OFlIEZ, PChroksnba~wy K% PLC
MBZIWD e TEMEY 7 F 22— X0l 21T 5. FRICHIEICHER S &L 3 —1El
D PLC 2/ LT PC & L EHIOFHIEHA PLC XL N5 HA L Lo TWVS.
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Figure 3.13 Sensors installed on "Shinpo". QZSS Receiver (TOP), Anemometer, GPS
compass, antenna for QZSS (LOW)
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BRAE O, THIE) 13k A Ry —DFREINTWVWS. OB OEKREMTIE, F
WEMRE 0 — T2 LZE L TEBAET 2012, il BIGOESRAKTS 5 [m) BEICKR S
XM EFET ZREND D, —7, BIMEOHEE (11, 12D < XU, B LT 10~
15 EOBRWAETHELT 256, BRSCEOFLEN M/ ve 2i2iE, RERICHIE B ©
1.0~15 EREEOFECEILXE2HB. 2T, AME Loa 28165 [m] TH 370, Kif
TOMOIBIRE 1,, x B DHEBERET 2L, Iv Koy IEEZMAEMEL U TERHIEZ T
5 728G, BB LT 10 EoRwAMA THANICERBIGE S W LT, MEflokmy
ARG D BEREEA 1.43 [m] £ THOA T 5. FHH O ERGHIEIC BV TIE, HELPet v ofEEIC X
ZNEBHIHOBRENRETE 2 EERT 2 L, K MEI AL R0 & S RL e ElEE R
DBIIE, THICEWHNAEERRETH S, TRH6DI s, ERTEERERKEZT
57:12iE, 1 [m] A TORBETHUEZIETES ZePEELVWEEZILNS. Z£2T, fitfif
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DPIN7121E, CLAS (Centimeter Location Augmentation Service) it D3z {S#% Chronosphere-L6
ZERH L. CLAS &, QZSS MREET B LY F A — AL RLOFBIERTD 5. ZIEHD
EEE FF2720, 7T FIEIBEEEZEORRO LICRBINTWS. X561, HiA%2E2:D
12 GPS 22 > % Z Furuno SC-50 Z#5# L, F7-, MHIEME & &\ = %2 515 2 mia a8 E & it
EDLICHREZINTWS., ZDIE), TaxRIEEE, oIV EERE, ffitfd, v—1, v F
REYDBEHITE S, 25DV HIEPLC Y AT oA ERIN, HOME, e Ak off
ROBHIEERZ V 7V & A4 2ZEHE, ik, HBEHRREEHEICEIDZ2E=XY Y IHAREL Lo T
W3, iz, SENFEEH SN2 BEEEEET D T — &2 & W T&RIR S 2 EAELEE S E o F 5 A
M5 %. Fig3.13 &, EBMEHINLALPZOZERBIY, BEFEORRD LicErh
T2 Y EHOETERLTWS., X512, LIDAR ZH Wt Y ROTTEIITONVT D, ML
7z, ZOFMMIIRETIRNS.

AWFFETIE, HEIBR 7 L2 ) X 40%, EESOMZE[13] TiE/ — b XY a > TEfET 3 7
SR LTEEINTED, MAKIES 27 2R3 ZEDNAEETH B, X512, ZEW
IRENEDIATAEZ. PLC NOBAE DT o 7z, KHILIKET, PC 3 X & PLC TEMES 2 HE & LK RE
WOWTERENHHT 2. /2, AHKETIE, £3, lAutoBerth PLC) DO H I/ — b XY
aY ETHEIEST 2 TAutoBerth) 2L, #HZICRBE L7703 XL DEIEE 1T - 7.

3.6 BI:ERGEHS T L
361 N—=YFIILAYEa—RIZ&3HHE

°e AutoBerti R
STATUS PANEL CONTROL PANEL L umi; | CONTROL PANEL DATE/ TIME PANEL
STATUS:: [ONLINE] Automatic Berthing Control MON / JUN 28 / 2021
MODESETTING::TumuinzTﬂaoLI:ICe ernerente ° 20 :05 :35 .35 (utc+o900)
PROPULSION PANEL DATA PANEL

FORWARD TELEGRAPH ENGINE SP 20:

+463 .1

050:. 1,366
THRUSTER
RATE OF TURN PANEL
-105.5

WIND PANEL
DIRECTION: +(@D 5

RUDDER PANEL

R

Figure 3.14 Screenshot of the AutoBerth Ul

AutoBerth &, PC (S—YV Frar¥¥a—&) FTEHETIHIBHEY 7727 Th5. Au-
toBerth 1%, £ ¥ —F—XDfEtr, HEIBKRD DD 7 7 F 2 = — XFHOFHEITMAZ T, HH)
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RERT/NARIL SR

HIEE—F BEBERK - E=42UYYT - > Zal—> 3 VOB

REDRT & EBE, RUU—>r>aybREY
0 EIB?}/Y*JLZ
STATUS PANEL NTROL PANEL

STATUS:: RUNNING ANIMATION DEMO
MODE SETTING:: (DEMO)

R L s TRORMLSON PANEL o

DIV

T ORZ B S = S

TLYSTR%E ) T—ERFNFI

IO VEERK 5 BEHICG St T—2%, &,

25 RZSW A : F—2Y —ZADRT
ISTTO

IR XL | e N
o E i+ EEEY

REL — fiBRT(EE)
d 1 BN
RONTER - B
ABST (L—5—
C *J 7y k) | EED
R N BRIOET

== RUDDER PANEL
IR HEER

3D/O0y hITUT : FHENRIL (HD)
PRIAAIE, AL Ei. HAEE WEM= 5 TR
BUBSEERT

Figure 3.15 Components on the AutoBerth UI

FlEF OO EEFIREBPL BARREE L —HTHERTE2 X5 WebRXR—2D GUL AL TV
%. AutoBerth @ GUI % Fig. 3.141Z/R3. %7, B Lo a Y KR—x > b OFiH%, Fig. 3.151ZR
T, HELTE, EY 2o BEINET 7 F 2 —XORENLESIC, EHRESLHILEFD
AT 2 M EE AR OFNCERRINTWS., FICESN DY 7 F 22— &%, HEIEEH
e, AN a~Yy FEZITTRPEEL CW2 2052 — B L THIETE 2 X512, BT
KBRRIZITITRL, VI TRX—REFWZLDT I 74 WNVRBRERETHL DI, BRFEDA
ROTRRINT—RIEBRT A TR EZDL DR T 2 —FIRKRT L. FAEOITRIZ, &
BAXNVIZHID ANSHNTED, BFEDOAR S I T 2 A idEm - B#Ezr 75 7 4 h
WWHERRT M, L—X—=Tvy bOET, A - BEOERBEZEA LF I 78 LTRRL, B
DEMZ ED I EREREMT 5. PRI, ik, BROGHHERER, BREE (BEB X U0EUE
BE) v ZoftiopEiA 3DCG THR/RE LS. AutoBerth 1%, HE EOARZ > 2#ET 22 TH
FERHHZEEDO XA I V7 THIGTZ 21, EFo B8t 274 (PLC) 22 5FED X
FHN 22T S Z 2TV E— b o BEIE KRG Z B - (213 2 FENTE 5. HEEKRHIE
BIEL TV ARLIANE, E=& ) ¥ 72T ORRER R4 LBEOMN - BRIEOBHMERRT S 2
EDTES. 20X REERTHEAEE, BEDBBIGIEIEUNCEEL TV 30 2 BIEEHIE
T2 LTEETHL. AP, B TEESHEMULONELOREEDLD - 125EI2, ﬁ%ﬂ{feﬂ
HERZZOEFHOTLES TR Vo RABREBERLZWIRHTH 20 E0 e VWoTzC
X, BUCHERIMANLE 21 2 BT Oh vz, B S 2 i ES P, AELIEHR, ﬂ%lJ
fHEe— FEDEBEMRMEZANTHOBIFICHEE L CHE T 208N H 5. 20X RANDT, K
FERED GUI &GS TV 5.

AutoBerth ¥ fif b > 25 4 ¥ DBRIZ, Fig. 3.16{27R L TW5. AutoBerth 13 GUI 1213 3 D
PEDY v FRRFFICHE L 72 Web X— 2D E i E HWT 3. Ul D323 F1Z Electron FTHj
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i |
' : ) '
\ i Engine Governor Steering Hydraulic
— fin-PLC-PCD ' UIEEY Clutch [TVl ~ Steering System 1
N — =3 v H H H
~ = \ ' i i '
VAT L ng/?é ﬂiﬁﬁ ! | Remote Comrollerl | Remote Comrcllerl '
' Connecor Connector '
: I : g
L
————————————

Sensors ' Digital output i Analog output
i i

Rs-232C <« Control Input

= Sensor Data

Support System

! '
v i
'
Monitor Data Visualization 1 : Path Planning Path Following :
Vo '
'
'

H | Speaker Voice Guidance E H
Ship HTML/CSS WebGL JavaScript / PC
(Clutch, Rudder, Telegraph, Thruster) (View) (3D Plot) (Controller)
‘ PLG > Renderer Process
E Eﬂ%% | ipcRenderer I (BrowserWindow) Web GUI
- K 7} | — We
HIEEE Serial GUI&4 J e ]
Julia > Electron AP| — ipcMain l Main Process
|Channe| [ 4—| (app)
Julia REPL Y Electron N 5 > [
LLVM TGP Nodejs | [ Chromium /7 b7 x TR
(AutoBerth)

Figure 3.16 System architecture of the AutoBerth Ul

ES U
(fehi)
( PLC

vIial—%&
(Python/lulia)

$
o

7a-%
(Python/Julia)

E&&I#E D — K (Python/lulia)

B#hE& 32— K (Python/lulia)
VUT»EE(Yiﬂ&—Z)<§>%ﬁ@@&b(ﬁ@?—@

Figure 3.17 Development environment for prototyping of automatic berthing system

fE3 % JavaScript 12 & D EIH XN T3, AutoBerth DF 722 7 vt 21X, Julia 5578 [14] 12L& D
FHXNa— Pk hFEITEA, GUI (Electron API) ¥ @ 7+t ZAEEDHH->TW3. Julia
THEEINa—-FE, MEDOPLC ) 7LBEEEN L THWIER I TWVWS. Julia 535
W58 A AR ¥ LLVM &\ 5 JIT (Justin Time) 22 > %4 S %28 A $ % 2 & TEINEIS I S5E
THORYS, ZOMA Y2 T)ZFADOFTFELHE L TEVWHERE LS 2 7-0, FEETHS
BREBREHEEZEOHBEICOVWTHNE IS,

HEERZ S0 HBENROSEZ R T 2 LT, —RICEMZ - 7-MEEC 2 2 ReRiE D>
W, BRI, B L CO BB AMABE T2 2 AT 2 D5, BREDZDICR Yy ZAD L&A
IVIRECEFLUTHERS AT LB ZE T 201D D, slBRO TEHIT S HlR A 220
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3. LEdoT, EREEINCS I aL—YaryERrAVWTELCBI3ME 7 —ICHEHARE
SRERH L. 22T, KOMRZEAREITS 12D DFIRBREDEMICOWTHIEN L. Fig.
371, S| L 2RREOMELZRLTWS. £, KHPKB X UOAHIZFELEROEH S
WEPC ETESMTE2YI2al—yaVREEZERLTWVWS, 22T, BEENREZ2EHEERKD
— FrRIUEERECHHEATEA Y Ial—Yarya—FEEELTWVWE. YIal—>varR
B o — RiX, FEio PLC S AT 2 0@EXHHE LB LT, RDED 323 XFHT—
RDTFa—REBELTHEEEZITY. ZOKBICED, PC ETHRELEZa— 2 o&ZER <,
ZDFEFEFEMDPLC AT LIHEHRLTEEXIE 2 ZeAA[RE D, SHEH ORI E R a
— FMEBEZE/NRICT 2 ZE TATOREZHO TMRPAIAD S, I alb—ara— i3,
filfl o — N e mEREEE L, SHCETEMR R T 2N TE S, ZORETIE, RS
A=ZDBHI=HEDFD, flffla— FORANREEDANTEME LD T 2EEEHENIC
FITTHZeNTESL. —HT, ZOERMBETIIMIELFE— PC LR —FITREICE W THRGEX
NBEZDATH27D, V7 27 LONTOAPRIEIN S Z ik b. EFICIE, PLC &R
7 LY RS-232C Z W/ ) 7IVEEZRITS 72, PLC X7 4k DiEfER, PLC ¥ AT AU
FEXNTWEA v EZ -0y Z7HEOREEEL DTHB L Vo lon—F ¥ 2 7 IRKE T % B8 %
AT AZRENDL. ZO XD RMEE, RCAREALRD - ZICY 7 by =27 LTS
ZRET 2LV END L. LEN-oTIOEED, EMBEINCHIITEZ2 2 e nY
FLV. REOHKEBERORTIRICH 2WHEMPIFEE TSI = I 21—, JlFEHOS I 2
L—X %2808 Ld DT, EMMcBEH N2 PLC LR CHERD S 2T 4% HH LT, BEMNIC
frzedlHlls s 2 D TE2BERIEMT 2. 03I = I21L—%X L PLCOEEEZHWT, H
A REERERT 2N TE, Y7 27 D= Ry = 7 ICERT 2 REE % HR1ICHRE
THIEWTES., ZZETCOTEERE TR ETARERBOMAEZITo72Y 7 b7 = 7 2HEMIC
BHEH L, EBOEFHREICEDOEERKNB AT R —RF 2 —= v IR ET 5. FEMMIEERERC,
V72 b0 279N — R 27 DFAEFIZOVTHEHEFICH 2REDRIEDFEATVWS 120, BEX
LRWEIERERDRAETAAREERZB L2 22 TE 3. 2D LS, FEETRIRERHPFH DMK
AEZ FRNCHE E R THEL 28T, EMICHBEATRER S AT A DR ZIRIVICEMT 2 Z LT
X 5.

—77C, AutoBerth %, PC L CEIff3 2Bk L, EBMCEBRIhTWS PLC ¥ X7 4 DRKEE
BEINTHES 223 TERV. HAWICE, PLC 2otz F—%¥, PCH5 PLC
Wik EEXh2HlHla~y FOXFHDOAPHEICR DR XN2DATHS. PLCHET DV +
v I Ry 724 <EF0HCEMKIEEX, PCIXELTES T, AutoBerth 2SBIfEHICY 7 b v =27
DIRALHPDORRT7 Y =X LD @EIRET L2 2T 2L V. YrvF Py
TRATE, BENRO TR ST A ITHNCESNCEER T2 eI 40 THY, BEHERD
TRTTEWNY T T TTERELTOVROWHIZERIICF = v 7 L, BEIHIUIGIS L
PHRTE. TS AR FE o TR TRL, FIZIEHIE 2 — FOFES, HEHEO D
DFFEICREZEZ L, FrIchlla~ > F2RERBLUNICHATETWRWEEREX, el
L5 LTIEREREHNTWS 2, BRI NLEEEPTHIEITEZ TwiWnwid, AT
LZRENDHD. PCTINGDHEEERFEH L IS LEBIE, vrvF Ry 24 <%Z2Hlo7n
2R LTELYE, 777 008ERERT ILEDNH D EEOHFENEG V. £z, vty
FRYITRADTOELRABBZIAENT, RNV T 7 v T TE2HEGRE, PCHENYTT
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v T URBAICHEYNICERSTERWZ RIS, — /4T, PC Lo ur 7 ABFITA
PEHBLRLTVWENRSEC X 2R AETHD, 477 VEEHVLIRE L THEBEZBZE -
RE - T oL — T Z2ET e DARETH L. ZDORDHFOKETIE, PC LoTar I AT
ERMERET 2 e DMBNTH L. — /T, HIEEREDKIAL TE BT, ZENRE)
EPHCERSEOLEEAELZ B DAL HW T, PLC ANOFEEZ—>DEHZEIRETH 5. KE
TlX, AutoBerth DHEEEZ FEAH L, LEWEEZ B D A A S AutoBerth PLC DFEZEIZDOWTHNR S,

3.6.2 PLC IZ & 5l

il I
o %

e \

Speaker

Figure 3.18 Automatic berthing (AutoBerth) PLC system

REITIE, BEPEMOZDOHELS X7 L DFERFIE LT PLC NOFEEFIZRT. HEIE
Al 2 & D ERAMRRECE L LIAL 912, PC_ EOFEIZITW L O DORER D - 72, il X
X, PC T, BlWTWBY 7 27 DERDIDDT v F Ry 7 RADEENHL 2o
720, EDSABUIER X 4 2 EI L W0 o 7K L L OFIFISEE D EENHE L Ve WS BN D S,
PCOZD XS RN ERIATESLN—Fv 272 LT, PLCAH%. PLCIFEEHaI Y2 —
RTHY, ~RICTHRMRETY AR AL Lay -5 LTHHAINS. — &2 ER
T, SAL—YEZR =X VAL v FRYE, MNTOE Y -7 —XRDEESPT — X EH,
fEMT D 7= D DIHIEE » L THHI ATV S, EEBTIE, o3 —7—XDINE, @, n¥ >
7, BRI Y =2 A KA ¥ MIUTOFR Y R— b, $il#l7z C oAHIE > 2 7 2128 WT PLC
PEHIHTWS. 22T, A TIIATHITREL-AEEKR 7 L3 ) X 4% PLC IZHEEL>
ATFLELTEEL, 2O AT A% AutoBerth PLC ¥ &3 7-. PC L TH{E$ % AutoBerth V
7 v =7, EBMO PLC > A7 4205 Ol 2 RIGEIC T 2 HAE L FEHE L 722D, PLCIZT X
TLRFEETDHILT, ILICEERKEL LT, HEIEKS AT AR MOBBLS AT 240D
REEHAICHERT2 2 Vo KEER IRt 2 22T 5. PLC X, E¥EMHDarybu—J¢
LTENZER Y 724 22 BELTEY, HEflIoaY te—Jic#L T3, Fg.
3.1812, AWFZE T L 72 AutoBerth PLC ¥ 27 A% /RS, PLC IZBhi7K7 — 2NN b4, &
— WO enEZy FF4 AT LA TRV EDEROEBTRRPEEHIAX VR, 75— b
DHMEATOREEETALTWVWS., F—RAZ[iktRRICT 2720, BRI =714 =2y b7
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CR2008 R1513 = ON
00002 '
(00002) | one Scan ON at the
Start of Operation
00006 Save Data (Logging and Tracing)
R1511
00007 [ | * #1 # DIS0008 |
(00007) Logei :
ogging Logging
Interval
R1512 | DM50008
00008 | 17
(00008) Data save timer Deta Save
forced OFF Timer
r #o
00009 [ Lo ]
(00009)
R1502
00010
(00010) Save Data (L
0GD)

Figure 3.19 Example of the rudder diagram in AutoBerth PLC (translated by the
authors). In the diagram, "R" is a relay, "DM" is a data memory, "T" is a
timer and "CR" is a special relay named the control relay. For example,
lines 00007 to 00010 will be executed when the relay "R1511" is ON in
this program.

— TMEBIKD r — TN TS5 REELTY — ZADITEFR L TW 5. —f&i7% PC L2 E2 0S
YIWZEZY, PLC ETHET 2 7025 AIFIEC61131-3 TEFREINZ 50070 rsI V05
Bty hEAWTCHEINS., $FTPLCOTn T I <lX, HAMNICT X —KX (Ladder Diagram)
BTy —7 v AHIEILE %2508 T 5. Fig. 3103 EARNZ 7 X —ROflZ/RLTWS. 7&
—X, VL —[EEeR A v —mEEE 074 ETHEAL, -7 AGlHEERT 5. E
B2 AutoBerth PLC @ 7 & — KN Z D —HBiX, Fig. 3.200 & 517> TWb. R AT D%
AHRETH 2 HOMREFEE, ZRA~—UH, 752D VU H—1F, FX—KEHNTEEL .
DI RX—KTIE, XLIHHEREINMEEEE LTPC THAT2ERSHECMEZRZY T2
T2z enTE3. HEELSE 2 — o IF-ELSE-THEN fj72 ¥ OB &EET 2 E0E
HEZALFRX, sk F R (ST) BRETHEINTWVWS., RERY X7 2 OREEFHHE B
EHIEEDOF AL, ZDOSTHEHEICL->TEEINLZDBDTHS. AutoBerth PLC & iy NHI{H >
AT LDYARAT LT —FT7F %%, TTIATHO Fig. 3.12ITR 3TV 3.

AutoBerth PLC &, MiNHIHIS AT 062 E Lt o T =X b DT { Rnd K68
BbHELTWVWS. EEDY 27 4 GUI O I Fig. 3.210 H T 5. AutoBerth ¥ FIFEIZ, fiffk
MEBEZMIRT 2XPHt P —HEP B TP 2 LI RXEEINTVWE., Fha—HF LY T4
ERT 500, HERRLHF - RETOEECHIELEIA PE—F - X—=FJE—FtWo
7B Ul #EELTWVWS.

X 51T, PC L THIES % AutoBerth 127272 o 72 #%8E £ L T, ODD(Operational Design Domain)
WHT 2 EE, BRAEL REEHDOLDOF T arX=a—bfHx T3 (Fig. 3.22). ODD
YiX, HANCRET SN EILS R T ADHEYNCEET 2 2 DT E 3, HARBRECHITERES
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CRZO(I)S ~ MOV.F
00003 I +50 EM12
(01756) One scan ON at the 0DD default
start of operation value (minimum
tart distance)
 MOV.F
CR2008
|
00004 I +500 EM14
01757 One scan ON at the 0DD default
start of operation value (maximum
CR2002 — U_ELSTAT —— Kv-7500 —start distance)
| Unit No Link No Stored Devicel |
00005 | #X DM00000
(01758) Always ON KV-7500
R0O05
00006
(01759)

Reset Measurefent

CRZO?S "Wind speed measurement for the past 5 minutes
00007 I EM98 = 0 "Number of Data

(01760) | One scan ON at the
start of operation

CR2006 EM16 = INT (EM10. Fx10)
/[\I EM90.F = 0.0 'Average
EM92.F = 0.0 'Maximum Value
1s Clock Pulse EM96 = INT (EM94. Fx10)
EM99 = 300 'Max Num of Val (Measurement Interval [sec])
IF EM98 = EM99 THEN
00012 FIFOR (EM98. S, @EM98. S)

(01765) END IF

FIFOW (EM96, EM98)
EM90. F = AVG (EM100, EM98) x 0.1
EM92. F = MAX (EM100, EM98) * 0.1

Figure 3.20 A part of the ladder diagram of the AutoBerth PLC.

DEUEEDEZDIDTH 3. —RIIC, MASS DHEILY 2 T 2 LEMEHEET 272012, Z
DEERMRIEST 2 2 DTEBRED ODD IZHOWTHEIIN TV AR ELN D 5. BEAIZIE,
AT LD ODD NIZH B0 50 2R 288, 72132 X7 4753 0DD 2 o4t 5a1
AL RIHBAN R RBET A2 - Y T+ — Ny L ARV A BT O KEE R OB
MHB. T7+—NANY ZLARYRALWIFEIZIE, AT AN AT LADOWEIREZHH L7
B, BEBREOBERZHWT, FEHRFICERR S 17z MRC(Minimum Risk Condition) 2 H &Y
123 %5 MRM (Minimum Risk Maneuver) &% 5. 2D X5 BHEREIE, AN, =HiEE
EfR, HBWE TV v DIHED WRWE AR BO M) REDHELL XL THHEZIN 2B DTH
3. RFETE, BAMTY AT 20X EMNCHEHIHZ T ORNEREL, AT L0I12X5F
B LA RL — X — DB EED 7 + — LNy ZHIEEAT S 72D DIEREMEFSEE & F2%E
L7, HEIE&RTE, ABEOERMENFEICS AT LDREZEHRL, > 27 45 0DD 255941
2L ER, DATARMLPORENBELZL ZICHVNICHIETES XS 7 57— 2T &
IMRIAT L LTHKT 2222 L7z ODD OXMRY 2 3 &bEodcix, Bz Y, EiHic
AMCELTZ2b00H 5. ZD &I REHETIE, HIZIRERL ORI DR EEENIN L
THENRONS X5 BIRMANBEICKIE L RWE 512, —EDHEIEEIAZRE L CEHIESE%
FHT 22 LT, BFEOAMEBIMICHEINBVE I BRI AT LAKGPRLETHS. ZDX
I RHEZERLOD, AHFETIXHIFEBLAN E & EE IS LT ODD 23 E T 2 HREE L /.
Z OFERETIE, RREEFTENZ B UNCHAT T X 2 X 5 ICHIEHBI AR HIEBA AL E D D & 5 U Dk E
SNHFNICH 2 2, 5SHEOFEEE L RARKEBEDD &5 U DikE S BEELIT T
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s o Locationf _AF ) . .
28 AutoBerth PLC s Ba) 11:21:44
29 : ; : : : :
.Path Planning Control Mode 3 | Auto Berthing
.Autnmatic Control Clutch F " Data
Dist to Berth Telegraph B i
along Path 4'T-THI 0 . 0’-1'; Upt'l.ﬂl'l
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Figure 3.21 Main graphical user interface of AutoBerth PLC
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Figure 3.23 Test result of detection of communication disconnection and minimum
risk maneuver.
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AIETIE, HIEHN D BEERE LT, LIDAR 28 LR R Z2RT. KESHAN—F
ZEPHY LT, 1. MUTIREE, FRICRBEERER L RESTEAOEA, 2. SEMRER B OhL
BHEE, 3. BREERAID 3 DOFEREZRT. 2o, kb EAWLRAEFENMEZFZRST 272912,
FHEILN DER S TRELREEETH D, KD EZETIHEMDOD 2> A7 L DMHEE HI L THE
N,

HEIC A A1, LIDAR £ Y4 OMEZFHHT 5. AL THHT 2 LIDAR X, Y325
RS X2 L —¥ N KHREE (ToF: Time of flight) #5HHl$ 2 Z & TH#EE 2> 9 TH 3.
Sf#EH 3 %2 DX, Velodyne @ VLP-32C T&» % (Fig. 4.1). VLP-32C I&, 32 7 1 > ® LiDAR
LY THH LR 360 EEFHIT S22 DTE 2% 3DLIDAR ®D—>TH 5. Fig. 4.21%, MICH
£7- LIDAR Tt LS 7T — X 2R R L TWAHFTH 3. 2D XS5, LIDAR ZHWTH
RO EADEHRZEIF T 2HENTES.

Figure 4.1 LiDAR sensor: VLP-32C.
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Velodyne

Figure 4.2 Example of point clouds obtained with LiDAR.
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ZAVE TN T & 7z Bézier Hiff 2 AWK EHHI TR, SHHEENNE L, ELBBEIROH
B 4 ODHIEHMRCTHEBEIICITZ 2 Z e DBHETH -7, — 4T, ERNRE S SHITERE,
2RO EY) BT 2 RERBBERNPTERVE VWIS FENRD . ZHAE T, ODD %
WETHZ e TREPBETNCAERTZ 2O TOARMHATE 2 XS ICHIRZHT TV,
HARMNCIZEAFRN 2 E R L BB ER SN2 Z e ¥ Eh 3. 00D OFIREZS L, #A#
BEZR % [N 5 72 D121%, R OEHRE D & ICHIT AT RE R FEI O HCIBHE L= 3 Wi 2 4R K
FTRZENRETDHD. £ T TARMFETE, BEER7 LIV X LDV EDTHS Hybrid-state
A* 7LV XL BHA L, WATREE L E R L 7B ERSIENEY) 2888 2 AT 2 FiEiconT
WBARZ. BEEYOERE LT, FEEBE Ml 1CF%E L7z LIDAR IS X DEHEI L - fBE T — & %
FAWTEEEZIT > M RICOWTRT.

4.2.1 Hybrid-state A* 7ZJLJ 1) X L\

Figure 4.3 Comparison Search algorithms: classic A* (discrete state, left) and hybrid-
state A*(continuous state, right).
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422 LiDAR IC& 35T —R2Z AW

TG D 25 BRI AR IR I FIAR_E 12 E L 7= LiDAR (Velodyne VLP-32C) CEtIL 27 —&2 D55, &
BRI 7L =205 (&2F360 %) OF —XZKEHML, £2¥55 20 [m] MNDHR & & B
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Figure 4.4 Path planning using Hybrid-state A* for berthing control in waterway
geometry defined as obstacles.

@ LiDAR D58 (intensity) DB 25 I T % 7 4 R LTHRA L7 T — X Z{HH L 7=, 58E DK
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Figure 4.5 Path planning using Hybrid-state A* with point clouds measured by the

LiDAR.
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Figure 4.6 Path planning using Hybrid-state A* with point clouds measured by the
LiDAR. (Collision avoidance).
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itk z BENHIES 2 £, MAMEOREIIEETHL I, ZTNETIKBRZLEBITHS.
¥ 513 QZSS (Quasi-Zenith Satellite System, &5 X &) 1K U 722 E#% W ORMAD A E
ZEHILCTE . ZZTHALALAD U EZERIZ, £y F X —XRhoRIfis "7 CLAS (&
¥ F R — RPN RHIRTE ) 2R T 5 Z EAA[RET H %28, —J7 T GNSS (Global Navigation
Satellite System) (2@ 2B LT, ZEREIC X o TREICZEREN Y F X — &k 7
% Fix ffi2722 LI3R 5 3, HEIC & o TERINAEE DO Float i@ BIHIGIIC 2 2 5503 H
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Figure4.7 An example of measured GNSS quality data of the QZSS receiver around
the test sea area.
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W4, SLAM (Simultaneous Localization and Mapping) &\ Fiks, Ho HEREEE 3, 4] %
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AtizBF2 IMUDANAL 7RAEKRTA N4 X%RT. RV IZW 25 B ADEERITHI %K.
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~ Estimated ship position

Estimated trajectory

Figure 4.8 Z-axis drift of scan matching on the sea

Measurement
Direction

The angle error of
scan matching

Figure 4.9 The error in angular transformation of scan matching in the roll direction
of the ship
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R

Figure 4.10 Examples of SLAM failures at Sea. (a) is an example where horizontal
planar features are obtained with LiDAR scan, in which case the position
and angle of the ship (LiDAR) in the vertical plane can be determined.
(b) and (c) are examples where horizontal planar features aren’t obtained.
In (b), the heave displacement of the ship (LiDAR) cannot be determined
because the true height of the object is not known from the acquired point
clouds. In (c), it is not possible to determine whether the object being
measured is tilted or the ship (LiDAR) is tilted because it is not known
how much the obtained point cloud is tilted in the space-fixed coordinates.

CETRFX Y vy F U 7OUHRAELZIREET 2. 20, IMU OBHIEI&REL O wIHAE
WS 27210 T, RELDOFER Fig. 410060 & 5 i~ v F ¥ 7 ORMMPFREE T 2 MEERA
NIRRT 2 Z 2 X TERW. 22T, BLEOKFERFHEMEEOREICLZRAFy <y F
DR EIHIT 5 72012, SLAM FHEICE W TR O MEEZRHI 2B A Lz @ 1) z iz
T, XL T, T, < 1.0[m], 2) =LA ey FADERELE Tion Tpich 12T, Tron, Tpitch 1&
Trolls Tpiteh < 10 [deg] & U7z, HlfISRMAED T X — 213, EBICRIE L7 — XDV TIRE
L7z. 2o ofiliz Ll X D /NS WETBHI L7228, MROBEICHE IR, 7. THIT, A
HORX Y v F U IIRIC 4 X722 B ROz & 720 X 512, LIDAR OJF
30 [m] D RBERFRAL L 72

433 RRICERALIEEYY, VI hoxT, sHAIKES

3D printed

IMU mount 9-axis IMU

Figure 4.11 Sensor configuration of LiDAR and IMU
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QZSS Antenna

QZSS Receiver

Figure 4.12 Sensor configuration of GNSS (GPS and QZSS)

Figure 4.13 Screenshot of LiDAR SLAM (LIO-SAM).
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% 5D WitMotion f#t Dt > % TH 5. 9 #ili-t > ¥ D H 1B EIE 50Hz 1ICFE L7z, 9 Hlit >3
X % LiDAR AEDH & 25113 2720, IMU OISRt > S ANDEELEEL, @EHMDO~Y
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|© OpenStreetMap and contributors

Figure 4.14 Location and trajectory of measurement.

313 Ubuntu 20.04 LTS Z#&# L, Corei7-9750H v+t v ¥ ¥ 16GB RAM % %fi L 7=/ — b
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e D~y IHERENZ. SN, ERLEHK Y BoME#HEEEREEZE DT 2a~ Y e
FHITED, BT EITo 7. fERR L7z~ v 7, Fig. 4143 T &5, #EEIPL Kv 705 3
R MR 2 EE ST 20— N TER L 2. IO O FEEH FEEIX 4.2 [kt] TH - 7=,
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4341 RERIOIER

© Google Earth

Figure 4.15 Point cloud map generated using the NDT based algorithm without an
IMU. The background aerial photograph is referred to Google Earth.

EEMEZHOWTEHH LT — X1 LT, NDT R—Z2D7)LTY XA ¥ LIO-SAM 12 X %
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© Google Earth

Figure 4.16 Point cloud map generated using the LIO-SAM algorithm. The back-
ground aerial photograph is referred to Google Earth.
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STATUS PANEL CONTROL PANEL

Figure4.17 (a) The point cloud map created using LIO-SAM superimposed on the
3D map data in the automatic berthing control GUI. (b) Enlarged image
of the area around the floating pier. The original map data of 3D map is
referred to OpenStreetMap.
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HLUZMROIy Ry y FHEEZERLTVWS. 7L, UTORKICEB T 2D A1E, SLAM T
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DDHETHLNLEMPIE L —HLTWE. LarL, NFORBMIOIEAREZ B2 &, &
HEOEINE, 3 ODHETHLNLBPE X —HL T3, Fig. 4.18Tl%, GPS Ol iE
D2 ODYEIPSLRKEL ITNTOVWBHRLEDZZedbhrb. —F, SLAM ¥ QZSS O#lEIXIE
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Figure 4.18 Comparison of trajectories acquired by SLAM, QZSS and GPS. The point
cloud map in this figure was downsampled for plotting.

EAE—HLTWA. %7, GPS I X 2B IZRENICIE SN TRVDIZHR L, SLAM & QZSS

DHIEZE O TH 5.

Longitude
displacement [m]

Latitude
displacement [m]

Heading angle [deg]

0 200 400 600 800

—100 1

1001

—100

0 200 400 600 800
0 200 400 600 800
Time [sec]

Figure4.19 Time series of the displacement estimated using SLAM (LIO-SAM)
and GPS/QZSS positioning and the heading angle estimated using
SLAM(LIO-SAM) and the GPS/QZSS compass.

iz, SLAM, GPS, QZSS TH#EE -

FHAIL 748 - RREEZEAL & /T DR RS % Fig. 4.1912
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Figure 4.20 Error of the displacement using SLAM (LIO-SAM) and GPS positioning

versus QZSS positioning, and error of the heading angle estimated using
SLAM (LIO-SAM) and the GPS compass versus the QZSS compass.
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Figure 4.21 Position error of SLAM and GPS vs QZSS.
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Figure 4.22 Probability density of longitude displacement error of SLAM and GPS
versus QZSS.
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Figure 4.23 Probability density of latitude displacement error of SLAM and GPS
versus QZSS.
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Figure 4.24 Probability density of position error of SLAM and GPS versus QZSS.

Table 4.1 Statistics of error of GPS and SLAM compared with QZSS

subject average u  standard deviation o
Displacement
Longitude (GPS) [m] 0.90 3.1
Longitude (SLAM) [m] -0.34 0.59
Latitude (GPS) [m] -0.50 1.6
Latitude (SLAM) [m] 0.32 1.67
Position (GPS) [m] 3.3 1.5
Position (SLAM) [m] 14 1.2
Heading angle (GPS) [deg] -0.19 2.0

Heading angle (SLAM) [deg] -0.90

1.5

FEHHI T A R T L L TEET S,

KIS, FIHNE Y H—ICFE L7z LIDAR Z W TAHEREZ I L 72 d O 2 Fig. 4.26T
H5. BEEOBHILX, SEFOHICERICINFEREED MBI LT, ZOEMROAMECHEXF

DNRIRXA—=REWETEZLLT 5.

RHEEZIZ DD, /A RTHMAZBNA MY RT LT 5 72D, % ENE RANSAC(RAN-
dom SAmple Consensus) 73V XL %ZHH L7, SEZELE L7 RANSAC 3XD & 5 ICERRKR

HEITS ¢
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Figure 4.25 Probability density of error of heading angle estimated using LIO-SAM
and the GPS compass versus the QZSS compass.

Figure 4.26 Point clouds of the berth measured on the chemical tanker.
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Figure 4.27 PLC system of berth line detection.
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Figure 4.29 Screenshot of the line detection of the berth using the proposed system.
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Figure 5.3 Results of automatic berthing control under constant wind conditions using
the PPA and the FFPPA algorithm in numerical simulation. The white
"O" cells represent successful berthing and the black "X" cells represent
unsuccessful berthing. The initial ship’s heading angle was 104 [deg] for
all simulations.
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Figure 5.4 Success rate of automatic berthing control under variable wind conditions
using the PPA and the FFPPA algorithm in numerical simulation. Each
case was simulated ten times to calculate the success rate. The initial
ship’s heading angle was 104 [deg] for all simulations. The winds were
simulated using Eq. (A.16) for the speed and Eq. (A.17) for the direction
of a true wind. The average true wind speed was determined as the scale
parameter of the Weibull distribution calculated using Eq. (A.18). The
variance of the wind direction was set at 30 deg based on the observation
around the test sea area.
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Figure 5.5 Cross track errors during automatic berthing control under variable winds
at the average wind speed setting of 7 [m/s] in eight directions using PPA
and the FFPPA algorithm in numerical simulation. The suffix of each
legend represents the results of berthing control that (O) is success and
(X) is a failure of automatic berthing. The winds were simulated using
Eq. (A.16) for the speed and Eq. (A.17) for the direction of a true wind,
where A = 14/+/z [m/s] for true wind speed, o = V30 [deg] for true wind
direction. Each case was simulated ten times. Each line shows mean
value and an area surrounding each line is filled between minimum and
maximum values computed at every 1.0 m of the distance of the berthing
point on a path. The initial ship’s heading angle was 104 [deg] for all
simulations. The cross track error is negative if the ship is left of the
intended path.
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Figure 5.6 Trajectory of automatic berthing control using the PPA in a calm wind
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Figure 5.7 Measured values of the automatic berthing control shown in Fig. 5.6
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Figure 5.9 Measured values of the automatic berthing control shown in Fig. 5.8
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Figure 5.10 Trajectory of automatic berthing control using the FFPPA in wind distur-
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Figure 5.11 Measured values of the automatic berthing control shown in Fig. 5.12
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Figure 5.12 Trajectory of automatic berthing control using the PPA in wind disturbance
environment
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Figure 5.13 Measured values of the automatic berthing control shown in Fig. 5.12
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Table 5.1 Final state of automatic berthing control of FFPPA and PPA

Algorithm X [m] Y [m] Heading angle [deg] Surge vel. [m/s]

FFPPA 1.01 2.00 102.1 (-1.9) 0.046 (< 0.1)
PPA 0.180 6.15 120.4 (+16.4) 0.463 (> 0.1)
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Figure 5.14 Comparison of time-series of the heading angle and a; during automatic
berthing control when changing a,44. Note that each value of a7 in the
figure doesn’t include @444.
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Figure 5.15 Cross track error of early stage of automatic berthing control with various
straight runway distance of paths in numerical simulation. In all cases
except (a), a constant wind was simulated and the true wind speed was
8.0 [m/s], the direction was 104 [deg] for (b) and 284 (=104+180) [deg]
for (c). The initial ship’s heading angle was 104 [deg] for all simulations.
The cross track error is negative if the ship is left of the intended path.
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Figure 5.17 Trajectory and measured values of automatic berthing control with Auto-
Berth PLC in wind disturbance environment
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Figure 5.18 Comparison of computation time per loop. Each case includes measure-
ments of three trials respectively.
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Figure 6.1 Curvature of the path created by a cubic Bezier curve.
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Figure 6.2 Cross track error during automatic berthing control (no wind)
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Figure 6.3 Cross track error during automatic berthing control for wind in 8 directions
(constant wind, the true wind speed is 8.0 [m/s], the inlet distance of a
Bézier path is 20 [m].)
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Figure 6.4 Cross track error during automatic berthing control for wind in 8 directions
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Bl =IaL—&2EHT 52T, b hicE ) 2 BZEREZ R/IMET 2 %309 72 B 7
70 —%mRL7%. —/7T, AutoBerth PLC &, EE¥XHDV 7124 12> bu—7TH5 PLC (T,
AutoBerth DFEREZ AL, X 512 PC TIEFEBRTERWIREBEMMRELZFEE L. A X7 A
TlX, ODD 2FET 2 Z ik b, HEEKHIHOEITRIC, FilcfE Lz R T Eics
WTEHRIZATLADEHTEZ 2T 77— MERERRMET 2. 2512, RERT2E2D
WEPHERILD S AT L OMHEAIREEHKELZ AT 2 2 & T, BERER DO MRM EITHEEZ
S>TW3,

H4ETE, LI ROMAEMEDM LS HEEKRS X7 20EELZ2 HIVIZ, LIDAR ZHWw
FHEBERD DD > v FHMICET 2 3 DO EEf L. 1 DHIX, EEYZ[EE S
2 e ET I 2 S 2 FECOVWTHE FIC L 2R 2R L. Z 2Tl Hybrid-state A* 7
N3V X L%, LIDAR TEH L 72 REEL O REED SBHIN UCHEA L, AiEIc k20 DE 2
BPATO BRI ERTEB %2R L. 2 OHIZ, LIDAR SLAM IZ X 3 FicBIT % 5
HHXKIER & B OO EHEE IR T 28R 2 /R L7z, LiDAR SLAM &, —f&VIckE EofH)
I L THEZ K OMBEBITONTELD, BEANDOEHEZEZZ LW OBERD 2. K
B TIl%, LiDAR SLAM % L CHIH T 2, FHFEBEORMNIC KL S Z#AHMO KU 7 b
Roll, Pitch SO RBED R ¥ v v v F ¥ VRENRAET 2B E RNz, ZOHELMIRT 2
72912, BEED SLAM 7L 3 Y R LDAF v o<y F U VBBV TR ZEAT 2F
EERBRE L. NDT BXUMHESEFZEA L LIO-SAM 713V X 4%, EERCERL -
LiDAR ¥ 9 #ifi IMU @ FHAMEICEA L, BED 703V X AI2B W T 600 [m] O &P T EkEE %
KIS ERTE S Z e R L7z, F£72, QZSS % GPS Ol & L 21T\, BT LI EFEE
7% QZSS Y RIFEDHETCHCONEBHMETE 2 2R L 3 DHOMETIE, AT LANDHE
Y LT, LIDAR fff2 W FEEMAIS 2 T LA 2R L2, A X7 41%, PLC 2 W T HELE
Sz, PLC DR NG EEBERZAMTEA TR, RANSAC 703V X o zHHAL, #H
TORRMT—XZMR 2 TY 7R LEEDAIRER FREMA S A T L 2R L. I D
NRYH =R AT LARBEH L, EEORBEERAIT S 2T, BREELERBOER LT
X5 elERL 7.

BSETE, HIBEROREY I 2L —Y a B, EMOEBRER LR L. idBEERIcE
VJ B AT D BARSIE 2 R RIS, BRFIEICB T 2 KIEEG 2R L. 2k &, PPA il
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¥ FFPPA |l %, MO E2ZEZ TS Ial—Ya YO BEL BES I 21— a0
FER D, PPA HlfEX 5 [m/s] LUF O JEEHSM TR EMICHIBETE 2 Z ¥ 2”3 & $12, FFPPA
FHCIE X H12Z K ORGEMTHRIGSAZHE T 2 HEISKRHIE 21T - 7. EMFEBRICBVWTD,
PPA #llfl 35 & Of FFPPA #illfilic & 2 MREE % 1T - 7=. 512, FFPPA HllfllXJE DR EED K & WA
BWTHEEMNTHKIEUZMET 2R ko, 2o, ZERBBBEREFEMHET XL, B
XN X 2R BIER OB R Z DRI, 770 —F IO REEE BT 2 KGicx s 2
R A AOREE BN LZEEAMADHEICOVWTHEEY I 21— a VB XUEME
BIC X 2MEE R Ef L7z, £72, PC & PLC OFEZEDBE W X 2HlH> X7 2 DFHEICOWT D
MREEZ 1TV, AutoBerth PLC @V 7V R 4 AHEREICOWT, ZOENMNEERL 7.

%6 FETIE, HEAEKRIEICHE T 2 Z20MoMENicoWT, ZhE TOMRERMTT % idam %
Fr o 27, HFBERS AT L0ZEMHITOWT, 25D MASS DY 25 LXK Hh
BHEBEICOVWTIENT, ZOHFT, TNF TIRABRLZHMERRNED & S5 IcLZe2MIicHFES5T 20
WOWTHilNA., 2512, BBECHEOKRE LT, BREATEZS 20 D20DHBERIC
OWVWT, BT I 2L —Ya YIZXBEMNELTICBIT 2iHii 21T o /2. 2 2T, ROz, &
UREEDE R, BRIBRADBEZNRHELZITS 3HEEOTEEZMFL, 8 A2 5D EFESL X
UEFRERLZBHS T 2L —2 a2k, +VPF1D FFPPA #ilffl & L 217w, 2D
Rtz dfiR7z. 2o O TR Z OBEH#EN 2 ME %2 1T 5 FFPPA-CTE 235, HH RAFRiGHE
N L7eh, FED RO o .

AL TIE, EHNREBIEKRS X T 2RO SN ZEEEQHE S S, HEIERHIEH 7 L2V
R, HEIBEKRS 27 4, BIFE 70—, ZEXK, LIDAR XX 2t v ROTTEMICE T 2 R %
KL, ZhEToOHEEKGIEZ ST, BEEMMOMITICBV T, RSN T7 LIV XA
DOMREICN T 2R ERH SN 2 bR, —ATEBEOI R T LTEAICEDL LR
WHEDND - 7z, HEREMMOERICIE, B2 ORELD 2D DD, —J57T IMO D& &
2HNC, YU OHBENA O S R T 21K SN B HEEER R 2O AN RINTETWV 3.
— T, REEKWNR 7 70 —FIZOWTIEMABFNDP RN L bHEETHL. 2O S5DHE)
MR OISR, BRI OVWTIERBINSEZV AT LA LTOMEELZIRR T IRBICHE LS
Z, TORTTNIV XLDAEKELT, REEHSLT 7 — 1, MRM 72 £ OZ 42X, LiDAR 12
X3 VY RDOUEMCET 2MEEZRLEZZ X, 25 LRSS 3 —20fE# 2R
FTIENTELLEWVWRDE., ZNE TR > EHS X T L TH 2 HEHENMORAEICIE, VR
7Nk e U IERICIAHEE O Z2EDOFEHD KD S 2 iz d 5. MASS Code DFIEIZ
WG U2 2T 40 BRI RBRETRRT 2 L & HI12, SHROE L 722 FEFEFIIHIET 2> 2
T LAEREOFMRER E ZOMESFTECOVWTIRSHROFETH 3. 2iFWz, FEIRL 7 ODD
X MRM D%E%E BROKIGZEEEDTBIEY 2 2L —> a YFIHEZ, ZOENRPDICKDD
De#EZ3. %7, 73V RLDEEICONTHHRAL L TR IREIFEIE > T NS, 5
0] DR TIXEN D R D - RO E S, HEHEOH L v X b KB OMAN DA I
DWTH 5, MEEZED TV RBEND 3.
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Appendix A
HIEDIFHESRFETIL

KEFFETH W, flEOREBEEBIEE T MO WTAMNERTHAT 2. ZOEFE, AR
BT TOMIED BEIEKR 7 L3 XL OBFE - FHMCTEH S Nz, FEll7R & O — MY 7 i
HEENC TR D, BRI T a RS WIRE SOMEZLICHIE L BT ADRRBETDH L. F
7z, bt YV DOETHENZ X512, EREBMICTESHEEOEBHEALETHD, ¥Ial—
P aYIZBIAEHTFHOMEICOVWTD ZARXIGL T HFFIEWZ e RDENE. Z T,
MMG (Mathematical Modeling Group) € 7L [1] & X— 212, fiifl O #HEES) % EfE i Tl T
X2ENETVERKE L. EEE T L OMENBRBR E DT X — 210X, #ig%E Huviz5h
AHBRDAEFRICFE DO WTIRE LTz, KETTIX, 3 MMG (25D < G EE) o EH) 5% 55
2. ZLTC, EFETINLNDORIX—R 2T 2 FIELBTEHOBMES 2 21— a Y FIEIZD
WCHHBLICHIAS 2. 728, BRERICOVWTIE, 205 DAELIC X 2 iR D25 iR BRI
ORI TN I W EZ 5N 5720, SEIZERD bRV b L.

A1 BRERBEERMNITREOERMESHRFEETIL

Zo

True wind

Yo

0o

Figure A.1 Coordinate systems of ship motion and wind
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ARIFZETIE, MMG &7 WICHED S EHGEF 0BT T L% W T, AAELT To B E)E &SI
7N ZLINT BI0E, FHCREOFZE Y 3 - RH# R O fin A ES) 2 51l 3 2. ARem > CHEH)
HERZHLRT 272D T2 EIER% Fig. ANIRT. &2 U RILDRIIZ, Kk [1] <4
3 5. Fig. ANTRT & 512, ZEMEEBIER%E 0 —x0yoz0 £t L, xo &4k, yo ZH[A X I1THL
5. MAREEHBERDFE S o ZMED I v Ry FAEICIS. u, v, riZZHLEN, I v K
v FRIBICHBIT B surge SHEE, sway P, EIFHAEECH 5. MEHMMAIZYy TRENG. I
Ry PR ETORMIA BIEB=tan"! (=v/u) L L, SEEER U=Vu2+2 23 5%. 3 HHE
B B nERGES) 0 S ERE, Bq. (Al) DXkH kRIS,

(m+my)i— (m+my)vr — xomr? =X
(m+my)V + (m+my)ur +xgmri =Y (A.1)

(I, +x%m +J ) +xem(V +ur) = Ny,

Z T, surge, sway, yaw S AIOEFIOMNINE & & HMEMEE—X > b2 22 my, my, I, &
KT 5. (MINEEAMEEE—X Y M, TRF ¥ — FOEMFRICHIEREI NS [2-4].
MINERZBRWZI Yy Py TRED oM@ < X, Y, E=X > b N, &, FHERNZ MMG
DIFEIE > T, VMENEROBEDL ORDOWMDITTHEL Tl T2 2 e N TE S.

X=XH+XR+XP+XA
Y:YH+YR+YP+YA (A2)
N:NH+NR+NP+NA

ZIT, MAFDH, R, P, AZzhznfihk, fit, 7axZ, BENKEH hZ2EKRT 2. N
VAT ARIZKBINZ, KX TIZEBERFECTHEHALRVWDEL .

FARICIER 3 2 TRAR 17 T DFHEI2IE, cross-flow drag DBEGmICE D =, FHH S [5] 10 &
STIREINLERDETVERMA L. ZOETIE, KEATHER O K = 2 RHLA Z 70 EB) D
B BISEA MO FEN R ERATES. ZOETALOFHE LT, EHENZ MMG £
T E LT, I X—2DEND L THED.

1 ’ ’ 7’ |ﬁ| ’ ’
Xu ZEpLd [{XOF +(Xg, — XOF)?} ulU + (my +er) L- Vr]
1 Cp [
Yy ZEPLCZ [Y;VIMI +Y/L - ur - N [v+ Cryrx|(v + Crer)dx] (A.3)
-L/2

Ny :lp[}d [N;v|u| +N/L-|u|r - S /_L/2 [v + Cryrx|(v + Crer)xdx]
2 L2 J iy

TIT, X & X, RERZNAGER L RERFOESIRETH L. £, X, Y, Y N, N/ &

WIRNM AT TH 5. Cp,Cry,Cry ZZNZH Sway, Yaw (2B % Cross-flow drag (2B 3 2 E1E

R RS, IEROBIUREZ, T aXJEHGEED 3.1 [rps] D EET O FRBR ORI HE

DWTHRIE L7z, BRERFO|PURENL, BEICEMS N2 KEABRE RO 7 — X RXR—2A 0 H6HRE

SN
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TaRZFEB XUOHERO Y TaXR2CX23mEE, LIS [6] DEFALTREL, 7
ORZHEERIZ L D BET 2 AIERERBTCE 2 L5 xXAA0@Eh & L
XR = —(1 _ZR)FN Sln6
Yo =—(1+ay)Fycosd (A4)

NR = —(xR + aHxH)FN COS 6,

Xp = (1=tp)pn*D* - Kr (J)
0, forn>0

Yp = 24y
pn~D*.Y,, forn<0O (A.5)
{0, forn >0

pn*DYL(x).. Y7, forn <0

T IT, (1 —1g) IZHEIC X 2 BRI, ay BRI DBIERE, xg EIMENSIERE S 21
TIONER R DOMAHET ] x DEEIETH 5. BRI (1-1p) 1370 RF[EE n ODFFEIT K
DEZ 2., 7axIHENOFHEICHWS Kr —J i, MAU 7u X7 oMaefEa s L o
B-Series 70 RIT DE 2~4 RIRETCORMEZMET 27DDT —ER—-RITHEDIERD. 7
O RIFEER T X, ROLSICERINS

u(l—wp)

J =
nD

(A.6)

ZZT, DII7TuexRSOER, nl37axXIEHE [rps] TH 2. T rXRILETOHERGREZ
wp £33, 7RI OEEBICOVTIE, A THER XS ICERMEBEIEFHICEWTIEFERT
A RV TIRETDOZ 7y FOUID BRI 2HEZEEL TWS. 20D, EMoitHlr o
77y FOHiHE, —2—F I, BEICHLTERZN3.1,0,-3.1 [rps] ICXfET 22 L, 5H
377y FUIDBEZORMENIERTE23D Lz £/, 79 v Fh=a—F FVICKE
L7BOHNFTE T e R AEEAE Rk 270, AEER J OFtEE2EKL, TaxF
HHT=Xp/(1—tp) TEALTWEERE LA ZLTC, 7axFIHENT=Xp/(1-tp)iZ0EL
T/, BEANDRES T DTRAEE ug = (1 — wr)u 1Z ug DITDERICESVTEHE IR TWVWAS.
E 51T, MEANORIERGAENRAEE ug Z23XHK[1,7] DERICEOVTug=(1-wrlu & L7
n<0DrZxOHNBIEE tp X, ROXSKFHETES .

1 —tp=Cip1-Jp+ Cipo, (A7)

CITC,Jp =25 BAUNDETACET 2 AT ORTETETH 5. Cpo & Cip1 13 Jp ITE - T
Table A3D X HFKEL, TN 5 DEIE T 1R T s D HRBEAEER D 7 — X X — 212FDO W T
WEXN. FEEESN Fy &, XRTRXNS

1
Fy = EpARU%QCN (ar). (A.8)
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T IT, MAMETOERMEE Ur EEICH T 2EMTAAM ag 13, UTDXS1CRSNS !

UR = ﬂu%e ‘l‘V%e
R) (A.9)

v
ag =0 — 0y — tan™! (—
UR

Z T T, 6 i3, fEEEH DN 2 et TdH 5. FEELEN ORI Cn F, RO XS 1ckEN S !

Crosinayg, for0 < |ag| < |agsl| or (7 — |agss|) < lag| < 7
Cv(ag) = (A.10)

Cho sin(sgn(ag) - agrs1), for |ags| < lag| < (m = |agsil)

T IT, Cnyo BfEEFENOWMRETHY, BHORX 8] ZHVWTHREXN. /=, EOZX | —
N apgy TREND. ZLT, MEADTHAREE ug 1¥, UTDO XS ITERIND :

1- 8K
u(1 = we)r|ncos?as - {1+ ky—n® A1+ — -1
Up = I_WR 7T12

2
} +(l=n),forn >0

(A.11)
sgn(Urprsq )| (|Urprsql), forn < 0
z T,
Urprsqg =1 - Uprri |Uprri| + (1 = 1) - Uprro|ttprra| + Crrr - u|u]
Uprrr = U(l — wg) +cosas - nDpkpg 81K+ | (A.12)

Uprr2 = M(l - Wg)

ERMEEBIRF DAENLE T OMPMREE wr E RiLT 5. cos(as) DIEIE, ORI X 2HEHES %
ERLEMERKTH S, RN, ky, B3EBRERTHD, ToRSEHEROMEHSRLIFEINS. £z,
n FEEEAROHBICHT 2 T uxRIBRICBI 2 EMEEBOLLTHZ. 22T, MAMDER
TMAEE vr 1X, KDL ITRIN5.

Ve = —Yr(V + Igr) (A.13)

A1l REDCERDYZIalL—23Y

ARFFETIE, MARICVER 3 250U & LT, B2 5. JBIC & o THHMARICIER 3 % surge, sway
HEDHB XY, yaw HEDE— X ¥ FMERD XS I2ELSN 3 ¢

1
X4 = EPAAFUicAX('vbA)

1
Y, = EPAALUicAY(¢A) (A.14)

1
N,y = EpAALLOAU,%CAN(wA)
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Figure A.2 Estimated K;-J curves based on the estimate formula of MAU series
propellers for the 1st quadrant and the database of B-series propellers for
2-4th quadrants.
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Figure A.3 Estimated wind load coefficients using method proposed by Kitamura et
al.[9]

Z 2T, BEEMAEEE BENT oA EEERD XS icREIND

Uy = [ugva] = Uy Cf)S Yw — uc.osw +vsiny (A.15)
Uy sinyy —usiny —vcosy

ZZT, Uy ZERHE, ¢y ZEEMA, 0[deg] XEA»SDAMERT. U,y ERENT DR, ¢,
FRENT O RIAT 0 [deg] WEAE M2 LM AR E &3 5. BEREAZ, OSATDH2ED
SFEFEI D ICEBTHEZX NS, BT OEMNE, y,=tan™! (vy/u,) -y £ LTEIET 2. A
JEJIREL Cax, Cay, Cay WFALR HIC X DIREINIZF5TE (9, 10] TRE Lz, BEIREBD 5 —
7% Fig. 3R T. By 2 2L — 3 VICBY AN, EE - & —EDGA & RS
EHOWEY YTV T D2 ODFETER L. RS MEZHWESY I 21— a2y TiE, EE
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X Weibull 5376, EJEANX Gauss 3 ICHE-> T, UTFD X5 AR L= [11, 12]:

— ya—l1
fow Uy | Uy, a,2) = % % e~ (Uw/? (A.16)
- _ 1 (lﬁw ww)
JowWw | Yy, ) = VEEEEGXP( 52 ) (A.17)

2T, Uy ZFHEEE, ¢, 2 FEERATH 5. Eq (A.16) DIFIRAT X —X ald20 2 L
J2o AT = RI X=X X, RDOXIICFHEZXND,

20y
A=—. A.18
V- ( )
ZORIE, a=20 335G, VA TASHOHFEOR»r S/ LIS !
— 3

22T, T(x) @Ay ~BBTH 5. EUERE o1&, BRI THIE X W7z 8IS HE > T 30 [deg]
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Figure A.4 Comparison of simulated wind and full-scale ship experiment during au-
tomatic berthing.
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Table A.1 Principal particulars of the experimental ship "Shinpo" (Same table as the

preceding section)

Subjects Value
Ship length overall, L,, [m] 16.5

Ship length between perpendiculars, L, [m] 14.9

Ship breadth (1.0WL), B [m] 4.38

Ship draft, d,,, [m] 0.502
Trim, 7 [m] 0.348
Diameter of propeller, D [m] 1.0
Propeller pitch @ 0.7R, P [m] 0.775
Side area of rudder, Az [m?] 0.780
Height of rudder, Hy [m] 1.05
Mass, m [kg] 21.53x10°
Moment of inertia, I.; [kg-m?] 3.044x10?
Block coefficient, Cp, 0.642
Longitudinal coordinate of center of gravity, x; [m] —1.260
Longitudinal projected area, A [m?] 14.40
Lateral projected area, A, [m?] 41.52

Table A.2 Hydrodynamic force coefficients
Parameter  Ahead (u > 0) Astern (1 < 0)
Y, -1.23 -0.5
Y/ 0.106 0.0476
N}, -0.0791 —-0.0949
N, -0.134 -0.0614
Cp 0.185 0.0834
Cry 1.41 6.36
Crn 3.34 1.53
Parameter Forward (n > 0) Reverse (n < 0)
Y, - -0.00924
Xpp - -0.278
0o [deg] -2.47 5.0
Xy —-0.364 0.0

Table A.3 Hydrodynamic coefficients and parameters for simulation

0.0502  tp (n20) 0.075  Cipo Up <-1) 0.8294
0.385 Wg 0.0 Cipt Up<-1) -0.0071
0.00235  agsy [deg] 35.0 Cipo (-1 < Jp < Jpo) 1.5320
-0.049 ag [deg] 10.0 Cip1 (-1 <Jp < Jp) 0.6954
—0.056 n 0.847  Cipo Uro < Jp) 0.9246
0.055 Cxo 2.657  Cip1 Up < Jp) -0.8628
0.0 Xg -0.500 Jp —-0.3898
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Table A.4 Coefficients to representing force due to and rudder

Parameter n>0 n<0
tr 0.0897 0.642
ay 0.169 —0.696
xH/Lpp -0.364 0.138
k 0.541 0.144
07 0.452 1.0
Iz -0.931 -0.5
° Pid =TT 10+ /”‘O
ol 10 7 /,‘6
4 g o ;
2 = ’9/’
’e/e’\o\& _1079’,
-45 -30 -15 0 1 45 -30 -15 0 15 30 45
6 [deg] 6 [deg]
10>
lo Fo====o
1,——~\9 O 7 570 o \O\\
RN & \Y
O \\ S 04
21 \\ - \@
\ N -5 NS
M S S - S ¢ R DRt
45 -30 -15 0 15 30 45  -45 -30 -15 0 15 30 45 -45 -30 -15 0 15 30 45
6 [deg] 6 [deg] 6 [deg]

Sim.(n = 3.1 [rps])
Exp.(n = 3.1 [rps])
Sim.(n = 9.3 [rps])
Exp.(n = 9.3 [rps])

Sim.(n = — 3.1 [rps])
Exp.(n= — 3.1 [rps])
Sim.(n = — 5.5 [rps])
Exp.(n= — 5.5 [rps])

Figure A.5 Comparison on the full-scale ship experiment results and simulation re-

sults
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Figure A.6 Comparison of turning test results at idle speed between the full-scale ship
experiment and the simulation. (Rudder angle is +45 [deg]. For full-scale
ship experiment, the mean true wind speed is 2.08 [m/s], the mean true
wind direction is 348.4 [deg].)
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