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Abstract

The current study examines the potential of forecasting future waves and responses by
expanding the Kalman filter algorithm through the inclusion of spatial distance between two
points. The proposed idea is projected to be implemented as a part of the digital twin of a wind
farm. However, before the future predictions are investigated, the Kalman filter algorithm
feasibility to be utilized at floating offshore wind turbine is scrutinized. The Kalman filter works
by estimating the coefficients of elementary waves by incorporating response data from a
floating offshore wind turbine (FOWT). In this algorithm, the state variables are defined as the
coefficients of elementary waves, while the FOWT's responses are used as the observed data.
The observation matrix in the algorithm is determined based on the response transfer functions.
Two different designs of semisubmersible FOWT structures are chosen as the subject
structures for the first part of the study. Here, the impact of different types and locations of
measurements on the accuracy of wave prediction generated by the filter is examined. The
discussion also addresses the effects of nonlinearity resulting from the combined load of wind
and waves. Overall, it can be concluded that the algorithm's performance heavily relies on the
transfer functions employed in all the analyzed case study. After confirming the algorithm
workability in the context of FOWT, an experiment on a 2D tank using simplified floating
models is carried out to confirm the effectiveness of the Kalman filter based future predictions
after spatial distance between two points is introduced. When the causality limitation is met, it
is discovered that the model can predict future waves in the range of 3-10 s or several wave
cycles ahead, depending on the distance between the points. By adopting a scaling factor of
1/100, this translates to an estimation of waves occurring 30-100 s ahead. The predictive time
for future waves increases as the distance between the points becomes greater. Additionally,
the study investigates response predictions using wave prediction data. The results
demonstrate high accuracy in response prediction, with an even longer forecasted future time

(80-120 s ahead, given a 1/100 scale ratio) compared to the predicted future time for waves.
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Chapter 1

Introduction

1.1 Background

Wind energy is a more well-established renewable energy source compared to other resources
alongside with solar, particularly in terms of its technological advancements (IRENA, 2019).
While onshore wind energy technology is more mature, offshore wind energy has gained
increasing interest due to its numerous advantages (Ellabban, Abu-Rub, & Blaabjerg, 2014;
Esteban, Diez, Lépez, & Negro, 2011; Esteban, Lépez-Gutiérrez, & Negro, 2020). Compared
to onshore wind farms, offshore wind farms offer benefits such as greater wind resources and
reduced visual impact. Currently, bottom-fixed foundations are commonly used for offshore
wind turbines. However, as wind farms move towards deeper waters, floating foundations are
expected to become more prevalent (Sdnchez, Lépez-Gutiérrez, Negro, & Esteban, 2019; Wu,
et al., 2019). Despite the advantages of deeper water wind cultivation, floating offshore wind
turbines (FOWTs) face challenges, particularly in terms of economics (Tillenburg, 2021;
Ciuriuc, Rapha, Guanche, & Dominguez-Garcia, 2022). The installation costs of FOWTs are
significantly influenced by operation expenditures, with operation and maintenance (O&M)
expenses accounting for a significant portion of the total cost (Butterfield, Musial, Jonkman, &
Sclavounos, 2005; Castella, 2020). The installation and operation of FOWT's are complex tasks

due to factors such as site accessibility and design intricacies.

The concept of a digital twin (DT) system is expected to be employed to enhance safety and
operational efficiency throughout the various stages of implementing a floating offshore wind
farm. The concept of DT was first introduced by Grieves in 2003 and aims to monitor the real-
time status of a physical system by utilizing data from sensors and feeding it into a digital
representation of the system (Wang, et al., 2021). Several reports have explored the technical
aspects of applying DT technology to offshore wind turbines (Ciuriuc, Rapha, Guanche, &
Dominguez-Garcia, 2022; Wang, et al., 2021). It has become evident that a crucial component
in developing a robust digital twin is the algorithm used to process the collected data and make
predictions about important parameters. In this case, an algorithm capable of identifying
environmental conditions, particularly the incident wave, plays a vital role. The wave prediction
needs to be performed in real-time and should be both reliable and efficient. To provide a

solution to this problem, estimation of the coefficients for regular waves based on the
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assumption that the wave can be decomposed into a Fourier series of regular waves using
Kalman filter is proposed in this study. Later on, this information is used for future predictions
at x away. Structural responses are incorporated, and an inverse problem approach is employed
to estimate the incident wave by utilizing transfer functions (TFs). The state variables in the
Kalman filter are defined as the coefficients of the elementary waves, while the measurement
data serve as the observation variables. Transfer functions are employed to describe the
observation matrix within the Kalman filter algorithm and are predetermined. More details
about the Kalman filter algorithm are provided in Chapter 2. Additionally, to provide further
context, Figure 1.1 is given to provide the idea of DT for wind farm conceptualized by the
author. This dissertation only focuses on the future wave and response predictions indicated

by the red box on the aforementioned figure.

Monitoring and inspection data

[ L ]
Hypothetical offshore windfarm
(windfarm “shape” is arbitrary, black dots:
FOWT with sensors and instrumentation
® ® system, grey dots: digitally monitored
T
. e . o o FOWT)

Response data of FOWT at black

dots
e -~
[ e \
| Elementary waves identification 1
1 based on KF - !
! Wave data of a few minutes ahead :
: at grey dots (using KF after |
| incorporating spatial distance) :
" [ Real-time wave profile history ] 1
__________________________________________________ L
+ Non-measureable response - Future responses of FOWT
estimation (e.g. RNA, blade) motion 2 “safe-to-jump” time
- predictive maintenance of frame from boat to FOWT
RNA
. . + Future relative wind velocity
» Stochastic wave = hull fatigue > blade pitch control
calculation optimization

Digital data (cyber space)

Wave information could be utilized for other industry nearby such as
aquaculture, operation of fisherman boat, tsunami alert system, surfing, etc

Figure 1. 1 The proposed concept of DT for wind farm



As stated above, a real-time wave prediction using Kalman filter is carried out in this study.
However, the main goal of this study is to investigate the feasibility of finding future predictions
(wave and response) when the Kalman filter algorithm is extended. The Kalman filter provides
real-time wave history at a reference point, which can be used to predict future waves at other
points based on spatial distance. Figure 1.3 is provided to illustrate the concept. Figure 1.3(a)
represents a hypothetical offshore wind farm with multiple floating offshore wind turbines
(FOWTs). The black dots indicate selected FOWTs where the Kalman filter algorithm is used
to identify incoming waves. The real-time wave data obtained from the Kalman filter are then
utilized to predict future waves and responses at other FOWTs (grey dots), particularly those
within the inner perimeter. Implementing this approach in a wind farm can enhance
monitoring and maintenance efficiency as not all FOWTs require physical sensors and
instrumentation systems, potentially reducing monitoring costs and bringing the digital twin

concept closer to reality.

Additionally, knowing the real-time future wave allows for precise determination of the "safe-
to-jump-to-FOWT" time frame, enhancing the safety of maintenance crews. To carry out the
maintenance and service of offshore windfarm, Service Operations Vessel (SOV) is deployed
to the windfarm. SOVs are equipped with heave-compensated “walk-to-work” gangways as
seen in Figure 1.2(a), and small (typically 10-ton) cranes to transfer equipment onto the
platform's base. SOVs also serve purpose as on-site accommodations for workers with typical
capacity around 40 people. The majority of SOVs are designed and equipped with smaller
vessels or typically referred as daughter vessels. The primary function of these vessels is to
transport small crews to offshore wind turbine installations for day trips focused on operations,
maintenance visits, and inspections hence also referred as Crew Transfer Vessel (CTV). Since
CTVs are much smaller than SOV, it is not equipped with “walk-to”work” gangways as seen
in Figure 1.2(b). Consequently, precise determination of the "safe-to-jump-to-FOWT" time
frame becomes crucial in this case. One of the most common method to reach the decision for
maintenance crew members to safely access or disembark from offshore wind turbines typically
is via direct observation by experienced crew members and vessel operators. They rely on their
knowledge and skills to interpret visual cues such as wave height, wave patterns, and surface
conditions. Though visual observations are often used in combination with other methods
(such as weather forecast) to gain a qualitative understanding of the sea state, human errors
cannot be surely eliminated. Hence, knowing the real-time wave profile—especially the future

wave of a few minutes ahead, is truly beneficial to ensure higher level of safety.

Last but not least, by knowing the future wave height, it becomes possible to estimate the future
relative wind velocity, which is valuable for optimizing blade pitch control and improving

energy generation efficiency. Blade pitch control is a critical mechanism in offshore wind



turbines that helps optimize their performance and ensures safe operation in varying wind
conditions. The primary function of blade pitch control is to adjust the angle or pitch of the
turbine blades to regulate the amount of power captured from the wind. By controlling the
blade pitch angle, the wind turbine can optimize its power output, maximize energy capture
from the wind, and maintain a safe operating range. Blade pitch control is especially crucial in
high wind conditions to prevent over-speeding and potential damage to the turbine. Based on
this, it becomes apparent that the knowledge of future wind velocity at tower top relative the
substructure motion in wave is helpful so that the blade pitch control mechanism can operate

accordingly.

(b)

Figure 1. 2 (a) Service Operation Vessel (SOV) (b) Crew Transfer Vessel (CTV)



o o

o o

® o o o
(a)

Wave direction

X3

Water-depth (d)

(b)

Figure 1. 3 Visualizations of the concept (a) A hypothetical offshore wind farm (b) Point

locations assumed for the 2D tank test

Before investigating the application of Kalman filter for future predictions, the employability
of the Kalman filter for wave prediction with FOWT as subject structure is first evaluated.
Compared to ships, modeling the structure of a FOWT is more complex due to its unique shape
and size. Therefore, the first part of the study is set to investigate the feasibility and
effectiveness of implementing the Kalman filter for wave prediction in the context of FOWTs.
Here, two different semisubmersible types of FOWT are taken into accounts, where the main
difference lies on the corresponding TFs in which one of the designs generally has less

pronounced resonance peak compared to the other (see Chapter 3).

As mentioned, response data from the FOWT are crucial for the Kalman filter algorithm. Two
types of measurement data are used: numerically generated data and experimental data.

However, the experiment data provided are only for one of the designs, with further limitation.



The numerical data are generated using the NK-UTWind program, which simulates FOWT
structural responses in the time domain, taking into account hydrodynamic and aerodynamic
loads. Two load models are considered: one considering only hydrodynamic loads and another
considering both aerodynamic and hydrodynamic loads. These models are used to assess the
algorithm's performance under different levels of complexity and uncertainty. The presence of
aerodynamic damping introduces nonlinearity in the FOWT's structural response due to the
interaction between waves and wind. For experimental data, measurements are obtained from

a 1/50 scaled model tested in a towing tank.

Next, based on the concept illustrated in Figure 1.3(a), a 2D tank test was developed to
simulate a partial aspect of the idea of digital twin implementation for wind farm. Introducing
multiple bodies with spatial distance is necessary since it is found that carrying out future wave
prediction without taking into account a spatial distance will produce a very short future
predictable time (1-2 cycles ahead only). In this experiment, three simplified floating models
were used (see Chapter 5), focusing on the black box area in Figure 1.3(a) and further
explained in Figure 1.3(b). Point A represents the reference point where the Kalman filter
algorithm is implemented, and future wave predictions are made for points B and C, located at
distances x; and x, away from A. By knowing the wave at point A (or to be more specific, the
elementary wave coefficients), the future wave and responses at points B and C can be
calculated based on the wave at point A. This approach can be viewed as a variation of the
convolution integral, which determines wave history at one point based on the wave at another
point using an impulse response function (Davis & Zarnick, 1966). However, it is important to
address the issue of causality, as the impulse response function does not inherently satisfy
causality. Causality implies that a signal can be physically realized in real time, which is crucial
for time-dependent water wave prediction. A subsequent study by lida & Minoura (lida &
Minoura, 2022) discovered that introducing the assumption of finite-depth water can eliminate
the non-causality. In this part of the study, the limitation of causality based on these findings

1s taken into consideration.

1.2 Objectives

The objectives of this dissertation are described as follows:

e To investigate the possibility of employing a linear filter, i.e. the Kalman filter to predict
the wave surrounding FOW'T using responses as input.

e To investigate the effect of the nonlinearity from the coupling of wave and wind loads on
the filter ability to predict the correct wave input.

e To find the common grounds on what exactly influence the filter ability to give a high
accuracy prediction results by taking into accounts two different design of semisubmersible

type of FOWTs with different response characteristics.



e To investigate the possibility of extending the Kalman filter algorithm to estimate the
future waves and responses on the multiple floating systems after spatial distance is

introduced.

1.3 Organization of the thesis
In Chapter 1, the background, motivation, and problem statements of the study are elaborated.

In Chapter 2, the theory of the Kalman filter algorithm and its modelling for the wave
prediction adopted in this study is given. The chapter begins with an explanation of the filter
origin and its general formulation. The explanation followed by previous studies on the wave
prediction based on the Kalman filter algorithm, be it a prediction carried out using a more
similar modelling or a completely different modelling. The last section of this chapter explains
the modelling approach of the Kalman filter algorithm adopted in this study. Shortly, the wave
is assumed to be linear, hence, the wave is decomposable into many elementary waves based
within the range of the spectrum. The Kalman filter is prescribed to predict the Fourier
coefficients of the elementary waves. Structural response is incorporated as the inputs and TFs

are used to relate the input and output of the filter.

In Chapter 3, wave predictions based on the aforementioned Kalman filter algorithm is
undertaken. In this chapter, FOWT is adopted as the subject structure. Since this study
projects that the wave predictions should be incorporated as part of the digital twin of a wind
farm, it is important to firstly investigate the employability of the Kalman filter itself for wave
predictions surrounding FOWT. In this case, the semisubmersible type of FOWT is adopted.
Further, two different designs of the semisubmersible FOWT are taken into account. These
designs are referred as Semisub-A and Semisub-B. The main difference between the two
designs lay on the corresponding TFs, with Semisub-B having less pronounced peak in the

amplitude domain compared to Semisub-A.

First, a fully linear approach between the wave and response using Semisub-A design are taken
into account to investigate the frequency discretization influences to the filtering results
accuracy and time. Next, reference and input data containing different level of nonlinearity
from NK-UTWind simulations are used. Predictions on both design are carried out to
understand the effects of the TFs to the filtering results. The presence of aerodynamic loads
that effect the trend of the amplitude domain TFs is incorporated as well. Lastly, an
experimental based data limited to Semisub-A design is taken into account to predict the wave

around the structure, where the wave reference data are also from the same experiment.

In Chapter 4, causality limitation that dictates the experiment set-up is given. The way of the



Kalman filter algorithm being extended to obtain future predictions is also discussed in this
chapter. In the beginning, the non-causality phenomenon arisen in the water waves prediction
is explained. This is done via discussing a water wave prediction based on the convolution
integral. Shortly, when wave prediction using convolution integral is first introduced, it is found
that non-causality appears in the impulse response function of the integral. Later on, it was
found that the non-causality will be negligible given a long enough distance of the two points
involved in the wave predictions, that is, when the two points distance divided by the water
depth should be at least equal to 3. Hence, causality limitation was born. Since the convolution
integral is very much comparable to the Fourier series prediction, this limitation can be used
to ensure causality in the Kalman filter based prediction. Next, the basis of the algorithm
extension to obtain the future predictions is discussed. This extension is prescribed centering

around the spatial distance of multiple floating bodies.

In Chapter 5, the future prediction results based on the experiment in a 2D flume tank are
presented. The chapter begins with the description on the subject structure and tank set-up.
The tank set-up is dictated by the causality limitation discussed in the Chapter 4. The
explanation on the measurement system involved in the experiment is also provided in this
chapter. The experiment accounts for the rigid body response given regular and irregular
(JONSWAP spectrum) wave cases. The TFs retrieved from the experiment is compared with
numerical TFs from an in-house code developed based on the boundary element method. After
the TFs are confirmed, the wave prediction on point A (see Figure 1.3) is undertaken. The
results from the Kalman filter algorithm is compared with the wave time series from experiment.
Next, the future wave predictions at point B and C are carried out. Similarly, the future wave
predictions based on the Kalman filter results are compared to the experiment wave data. Lastly,
since the future wave at point B and C are known, the future response at the two points then
can be estimated as well. The accuracy is found by comparing the results based on the Kalman

filter predictions with the response time series obtained in the experiment.

In Chapter 6, the conclusion of the current study is discussed, as well as the suggestions for

future work.



Chapter 2
Theoretical background

2.1 Random process and general Kalman filter algorithm

Kalman filter was first introduced by R. E. Kalman in the 1960 as an algorithm that is meant to
solve linear filtering problem recursively, particularly for cases concerning random process
(Kalman, 1960). In the aforementioned published article, the Kalman filter is especially
prescribed to help eliminating problems encountered when Wiener filter is used to resolve the
prediction, separation, or detection of a random signal. Wiener filter itself is a statistical-based
approach linear predictor introduced by Norbert Wiener, with its resourcefulness includes the
ability to estimate a random process using an observed process with noise that is correlated to
the targeted random process itself (Dogariu, Benesty, Paleolugu, & Cioching, 2021). However,
in his article (Kalman, 1960), Kalman notes that when a prediction of random signals and/or
separation of random signals from random noise are done using Wiener’s formulation (Wiener,
1949), a Wiener-Hopf integral equation is bound to come across. Though different approaches
(Zadeh & Ragazzini, 1950; Darlington, 1958; Lanning & Battin, 1956) have been introduced
to find the Wiener filter’s specification that is able to perform the prediction, separation, or
detection of a random signals effectively, Kalman argues that formulating a method which
solves the Wiener problem given the practical limitations is needed. Hence, the Kalman filter

algorithm is externalized.

Like in most linear filtering methods, the notions of state and state transition are emphasized
in the Kalman filter algorithm. This simply means that the linear systems will be described via
its first order differential equations systems. When a random function is assumed to be the
output of a dynamic system excited by an independent Gaussian random process, the concept
of state then can be introduced. Intuitively, this refers to the known quantitative information
needed from the past behavior of a system to predict its future tendency. To enumerate the
transformation of one state into another state as time passes, a state transitionsis then required

to be introduced.

% = F(E)X A D(E)U(E) +eeeeeereeeseeeseesseesseesseessee s (2.1)
Y(1) = MI(E)X(£) +veeereeeernennsnsnnen ettt (2.2)



X(t 4 1) = A(t + 15 £)X(E) A W(E) wereerererrerresemmeennte (2.3)

Mathematically, a linear dynamic system can be described via its general vector differential
equation. This is further shown in Equation (2.1) and (2.2), where x represents the state vector
of the system (its components are known as the state variables), u is the system’s input vector,
y is the system’s output vector, and F,D,M are the matrix functions—with M is specifically
referred as the observation matrix in the Kalman filter algorithm. Figure 2.1 is presented to
visually explain the interpretation of Equation (2.1) and (2.2) via its matrix block diagram.
Next, if the system is assumed to be stationary and the input u is constant for every sampling
period and described as a vector-valued, independent, zero-mean Gaussian random process,
Equation (2.1) then can be discretized and transformed to Equation (2.3), where A defines the

state transition matrix.

uct) Xt X(t)
= b o 2 S

Figure 2. 1 Matrix block diagram of the general linear continuous-dynamic system (Kalman,
1960)

After the state-space model (Equation 3) and measurement model (Equation 2) of the dynamic
system are prescribed, the filtering the can be carried out. However, for the sake of
understanding the study presented in this report, several adjustments that are deemed to be
suitable are undertaken. Firstly, the variable t is now altered to n to avoid confusion between
the time variable and the number of sampling (due to the discretization of the process). Other
than that, v and w are now introduced as process and measurement noise vector, respectively.
These noises are assumed to be independent Gaussian process with zero-mean. Lastly, a
dynamic modelling that validates the termination of system’s input as a separate entity u is also

considered. Hence, Equation (2.2) and (2.3) are now respectively Equation (2.5) and (2.4).

XM 1) = AX(R) 4 V(I) soevererrersemsemsmneiiiiimi s (2.4)

V(1) = MX(70) A W(TL) rerverereeresnrsnenmen ettt (2.5)
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Since the targeted state to be predicted is essentially a random process rooted in the probability
theory, it is only natural that the Kalman filter works based on the propagation of the mean (x)
and covariance (P) of the state through time (Simon, 2006). The filtering itself is composed
out of two steps, i.e. prediction and correction step. Its full algorithm is given in the Equation
(2.6) until (2.10). Here, the mean and covariance of the state are what the filter tries to estimate
in the prediction step (results from this step are indicated with tilde, ~). This part of the
algorithm is shown in the Equation (2.6) and (2.7). After the state properties are calculated in
the prediction step, its results then will be used as the input in the correction step (results from
this step are indicated with caret, *). The process of the correction step is defined by Equation
(2.8) until (2.10). Here, the prediction results are essentially updated and compared with the
data from observation (or measurement). Other than that, the prediction results are also
weighted with the Kalman gain (K), hence producing the more accurate filtering results. In
these equations, Q,R and I are respectively the system noise covariance, the observation noise
covariance, and an identity matrix. A further reading may be necessary to understand the
derivation and theory behind the Kalman filter algorithm. However, a simplified chart to

provide an understanding on how the algorithm works is given in Figure 2.2.

KN A 1) = AR(1L) ++vrevreeserserserssssseistise st (2.6)
ﬁ(n + 1) = Aﬁ(n)AT + Q .................................................................................................... (2_7)
K=PFn+1)Mn+ 1M+ DPF(n+ )M+ 1)7 + R)T ............................................. (2.8)
KM+ 1D =K+ 1) +FK (Y4 1) = MR A4 1)) rereereerremememenenin (2.9)
P+ 1) = (1= KM@+ 1))P(1 4 1) cosssseereresssssmmmmmmmmssssssssssssnsssssssaans (2.10)
Filtering Initialization
outputs (%, P) (Xg» Py)
Observation ——> Correction i Predicti
1 v Predicion _—
data () —> (.28 2.10) (Fq. 2.6-2.7)
Unit delay
(n = n+l)

Figure 2. 2 Simplified chart of the Kalman filtering process
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2.2 Previous studies on Kalman filter-based wave prediction

Since its algorithm is first introduced, Kalman filter has been a subject of interest—especially
from the industrial electronics community and it also has been introduced and utilized in
engineering fields since the 1970s for various industry applications (Auger, et al., 2013).
Meanwhile, though the industry application of Kalman filter-based wave prediction is still very
limited—if not non-existent, there has been a considerable amount of studies dedicated to
explore the possibility on using this algorithm for wave prediction. In this section, several
selected studies are summarized to give further context on the proposed utilization of the

Kalman filter in this study and its characteristics compared to the precedent research.

Emmanouil, et al. conducted a study on the possibility to exploit Kalman filter as a
complementary algorithm to enhance wave analysis and forecasting results when numerical
atmospheric and ocean wave models are employed (Emmanouil, Galanis, & Kallos, 2012). To
be more specific, the Kalman filter algorithm is used as post processes to minimize the
systematic deviations of the wave model outputs. The North Atlantic Ocean is targeted in this
study and the significant wave heights at different coordinate are prescribed as the state
variables. Results show that this research is reasonably successful—though naturally with
several limitations. Similarly, Pinto, et al. also investigate a Kalman filter algorithm to be
assimilated to an ocean wave model (Pinto, Bernardino, & Pires Silva, 2005). The objective of
this study is more or less the same as Emmanouil, et al. (Emmanouil, Galanis, & Kallos, 2012),
i.e. to assist the wave model in finding the more accurate statistical sea-state forecast. The main
different lies in the state-space modelling for the Kalman filter algorithm, with Pinto, et al.
(Pinto, Bernardino, & Pires Silva, 2005) concentrate on specifying the wave energy over a

smaller area as the state variables.

While the study of Kalman filter-based prediction for statistical wave is undoubtedly an
important field of study, a real-time wave prediction outputs will be more beneficial given the
problem statement of this study. Hanaki, et al. (Hanaki, Takaoka, & Minoura, 2022) have
investigated the application of Ensemble Kalman filter (EnKF)—a variation of the Kalman
filter algorithm for nonlinear prediction, to estimate added mass, damping coefficients, and
wave-exciting force targeted for seakeeping purposes. Their method assumes that the wave-
exciting forces are the input of the dynamic system modelling and EnKF is used to predict the
parameters entitled to this force, among other state variables embedded to the filter. Though
the prediction is targeted for a real-time result, the wave elevation history—that becomes the
main prediction output in this present study, is needed to be known and/or measured

beforehand for the EnKF to perform predictions.

12



Another study intended to investigate the Kalman filter algorithm for wave prediction is done
by Pascoal & Soares (Pascoal & Soares, 2009). Here, the wave prediction is carried out by
estimating the wave coefficients for every elementary waves that build the irregular waves as a
whole based on the linear wave theory assumption. In their formulation, a vessel motions are
used as the observation data for the Kalman filter algorithm. Later on, their work is validated
by Pascoal, et al. (Pascoal, Perera, & Soares, 2017) based on the onboard sea-trial data of the
Portuguese Navy Oceanographic vessel “NRP Almirante Gago Coutinho”. The algorithm
formulation of the present study is similar with the aforementioned studies, with the main
difference lies in the fact that directional sea spectrum is selected as the main subject discussion

in there, not the real-time wave elevation history.

2.3 Kalman filter modeling for real-time wave prediction

While the general explanation of the Kalman filter algorithm and its working mechanism are
explained in 2.1, a particular modelling for the algorithm to make sense exclusive for a real-
time wave prediction assumed in this study is not incorporated in the aforementioned chapter.
Hence, a further explanation is included here. Firstly, it is necessary to note that the prediction
here works based on the inverse problem, meaning that the wave is assumed to be an unknown
input and it can be estimated if the system’s outputs—manifested in the form of structural

responses, are known.

To begin with, the ocean surface that follows the linear waves propagation is described. Based
on this assumption, a function of angular wave frequency (w) and heading direction (f) can
be used to describe the irregular plane waves. Then, the wave elevation history evolving at
every j-th position of p; = (x;,y;) with its respective wave vector k at any time t can be
expressed as Equation (2.11). Here, A(w, B) is the complex amplitude of the elementary waves
and i denotes the imaginary unit. When the irregular wave observed at a point of origin is
assumed to be built based on the weighted sum of the elementary waves, Equation (2.11) then
can be discretized. Consequently, the complex amplitudes are needed to be decomposed into
wave coefficients a and b. Equation (2.12) shows the discretized version of Equation (2.11),
with ng and n,, respectively denote the number of heading direction and elementary wave.
The two wave coefficients of every elementary wave for every heading angle (a, , and b, ;) are
then prescribed as the state variables in the Kalman filter algorithm (i.e. components of the

state vector x) in this study.

n(p]., t) =Re [[ A(w, B) eXCETHPI) gy d-ssevsevssemssvssemssmssssssissisiiissisiii e (2.11)
n(t) = 22212221 Apgq COS((L)pt) + 22212221 bp,q sin(wpt) ............................................... (212)
Y(t) = Re [[ H(w, B)A(w, B) e CEKP) dapdf «ereveeeeensessserensininmniisiniiiiisisiitisie (2.13)



Y(t) = Z;lil Z:{L:l Apq G(wp’ ﬁq) COS¥pq + Z:{lil 2221 bp.q G((L)p, 'Bq) sin Vpg rereeeeeeeeeeeees (214)

where y,, = (wpt + ‘P(wp’ﬂq))

Another important part of the Kalman filter algorithm is the observation matrix (M), as it
directly links the state variables and observation data as illustrated in Equation (2.5). To
prescribe the observation matrix, a response model is first needed to be described. In this study,
the responses measured from the FOWT are assumed to be linear to the waves. The properties
of these responses are expressed in the form of a transfer function exclusive for every measured
location and observation type itself—e.g. strain, displacement, acceleration, etc.
Mathematically, this can be written as Equation (2.13). Here, the transfer function is denoted
as H(w, B) and it is a function of angular frequency and heading direction. Oftentimes, a
transfer function used to describe an offshore structure’s responses are further expressed as a
pair of response amplitude operator (RAO) function and phase function that explains the phase
angle difference between the input wave and the response itself. This will be the case in this
study as well. Taking into accounts the aforementioned assumption, the discretized version of
Equation (2.13) then is written as Equation (2.14), with the RAO and phase function are
denoted as G and ¢, respectively. Equation (2.14) will later be utilized as the foundation to

determine the observation matrix components.

To summarize, the Kalman filter algorithm in this study is formulated in a way where the
elementary wave coefficients are the state vector components (Equation 2.15) with its
dimension to be 2x N by one—with N represents n, xng, and the observation matrix
(Equation 2.16) components are derived based on the RAO and phase functions that associate
the input wave with the structure’s response (the size of this matrix is m by 2 x N, with m
indicates the number of instrument used to retrieve the response data). The time history of the
responses is assumed to be measurable using sensors installed on the structure from m number
of sensor are prescribed as the components of the observation vector (y) in the Kalman filter.
Lastly, as the predicted state variables are assumed to be Gaussian, the drift model then can be
utilized. Consequently, the state-transition matrix (A) then can be defined as an identity matrix,

with its size to be 2 X N by 2 X N.

T
x(n) = [al (n) bl (n) a, (n) b2 (n) anw.np (n) bnw'nﬁ (n)] ................................................... (215)
G1((U1, ,81) COS Ypq Gm(wb ,81) COSYpq
Gl(wltﬁl) sin Ypq Gm(wl' Bl) sin Ypq
M= : R (2.16)
G, (wnw,ﬂnﬁ) COSYpy - G (wnm,ﬂnﬁ) COS ¥pq
| G1 (wnw,ﬂnﬁ) siny,g - Gn (wnm,ﬂnﬁ) Siny,gq |
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2.4 NK-UTWind

The filtering to predict the waves surrounding FOWT accounts for experiment and simulation
data based. For the simulation-based results discussion, a tool to generate the time domain
input and reference data for the filtering is unavoidably needed. For this purpose, an aero-
hydro-structural code referred as NK-UTWind is utilized. The code is developed by Suzuki, et
al (Suzuki, et al., 2013), and in the coming years, their works are further improved by Oh, et al
(Oh, Ishii, Iijima, & Suzuki, 2019) and Takata, et al (Takata, et al., 2021). The code has been
deemed suitable as NK-UTWind is coupled with FAST, another code—developed by NREL
(Jonkman & Buhl Jr., 2005), that can calculate the aerodynamic loads in the wind turbine.
Hence, simulating a structural analysis of offshore wind turbine that has combined loads from

wind and wave may be done using NK-UTWind.

STRUCTURE PART RNA PART
#global coordinate #local coordinate
Local to global coordinate
transformation
/ Aerodynamic loads
‘ calculation
External forces Blade responses
calculation calculation
Floating bodies Rotor central
responses calculation coordinates correction
Nacelle tip node N Naf:elle tip node
displacement ’K displacement
Global to local coordinate
transformation

Figure 2. 3 Flowchart of coupled simulation using NK-UTWind

In the code, the whole structure is divided into two parts, they are the rotor-nacelle-assembly
(RNA) and another part referred as the structure part. For further context, the structure
consists out of tower, substructure, and mooring. For further reference, Figure 2.3 that shows
the general process when coupled simulation is given. To get the time domain results, the
structure part is subdivided into node elements and beam elements, using a finite element

approach. Each node possesses three translational and three angular degrees of freedom. As a
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result, the structure part consists of 6L degrees of freedom, where L represents the number of

structural nodes.

The equation of motions to be solved by NK-UTWind is shown in the Equation (2.17). In the
equation provided, [M] represents the mass matrix, which has a dimension of 6 L for a structural
model with Z nodes. [C] represents the damping matrix, and [K] represents the structural
stiffness matrix. The variables x, x, and X correspond to the nodal displacement vector, velocity
vector, and acceleration vector, respectively. On the right-hand side of the equation, there is a
vector consisting of four force components: hydrodynamic force, forces from mooring lines,
restoring force, and aerodynamic force. The simulation is performed in sequential time steps.
Initially, FAST calculates the thrust force generated by the rotor and provides these results to
NK-UTWind as boundary conditions. Next, NK-UTWind evaluates the structural response
based on these conditions. The displacement and velocity at the top of the tower, obtained
from NK-UTWind, are then returned to FAST as boundary conditions. This iterative process
is repeated for each prescribed time step. The time-dependent behavior of the entire system is

assessed through a loosely coupled analysis.

[M]{x} + [C]{x} + [K]{x} = {phydro 4 Flines | pbuoyancy | paerO} .................................. (2.17)

The hydrodynamic load in NK-UTWind is evaluated based on the Morison’s formula (Morison,
O'Brien, Johnson, & Schaaf, 1950). Morison's equation can be applied to elongated members
where the diameter of the cylindrical element is smaller than the wavelength and the wave
amplitude is not negligible compared to the diameter of the elliptical cylinder. Since the
structure under the water surface can be assumed to be an elongated cylinder type column, it
was judged that the application is possible. This equation is semi-empirical equation used to
estimate the hydrodynamic forces acting on an object in the direction of incoming waves. It
incorporates three components, i.e. the Froude-Krylov force, which is generated by the
pressure field of the undisturbed waves; the added mass, which accounts for the inertia of the
surrounding fluid that needs to be accelerated; and the viscous drag. Mathematically, this can
be written as Equation (2.18). In the given context, p represents the density of the fluid, D
refers to the diameter of the column element, and v represents the velocity of fluid particles.
Additionally, C,, represents the coefficient for added mass, and C,; represents the coefficient
for drag force. This equation requires determining the added mass coefficient and drag
coefficient through empirical relations. However, the Morison equation can be easily applied
and enables the calculation of wave forces in the time domain, which contributes to its

widespread use in the field of hydrodynamics.

2 2
thdr"=p%1‘7+6mp%(i7—5&)+Cd%pD(v—5c)|v—5c| ...................................................... (2.18)
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Meanwhile, the mooring force can be determined using methods such as quasi-static catenary
calculation, lumped-mass method, or linear spring method. In this study, for the sake of
simplification, linear spring approach is adopted for the simulation. Using the linear spring
method, the interaction between the floating body and the mooring system can be
approximately analyzed by considering the mooring system as a linear spring. In this method,
the tension of the linear spring is described as Equation (2.19), where Ty, K, and L, are
respectively the initial tension of the mooring rope, spring constant, and initial mooring length.
Furthermore, (x,,y,,2,) are the coordinates of the bottom end of the mooring rope and
(x2,¥2,2Z,) are the coordinates of the top end of the mooring rope. The total length L, of the
mooring rope is expressed by Equation (2.20) and each directional component of the length of
the mooring rope is expressed by Equation (2.21). At last, the force components at the top of

the mooring then may be described as Equation (2.22).

Ty = Ty 4 K (L — L) weeeereeeeeesesses et (2.19)
Ly, = /L%( + ]_%, L e (2.20)
Lx X2 — Xo
Ly = (yz — yo) ............................................................................................................. (2.21)
L, Z3 = Zo
Ly
T
FT -2 Ly [ ereeereeeee e (2.22)
L,

Meanwhile, the aerodynamic loads in the simulation is calculated based on the Blade Element
Momentum theory (BEM theory), a theoretical approach used to analyze the aerodynamics of
rotating blades, commonly employed in the study of wind turbines and propellers. Principally,
the BEM theory is a combination out of two different theories, i.e. blade element theory and
momentum theory (Leishman, 2000). BEM theory calculates the aerodynamic forces on a
rotating blade by breaking down the blade into small sections, called blade elements, and
analysing the forces and velocities acting on each element. Figure 2.4 provides an illustration
of an airfoil with the velocities and angles that determine the forces acting on the element, as
well as the induced velocities resulting from the wake influence. In this figure, V,,, a, 2,7 and o'
are respectively mean wind speed, axial induction factor, rotor rotational speed, local radius,
and rotational induction factor. Moreover, ¢,, a,, and B, are inflow angle, angle of attack,
and pitch angle, respectively. Figure 2.5 depicts the resulting aerodynamic forces on the
element and their components, which are perpendicular and parallel to the rotor plane. These
forces, namely thrust and torque, are crucial in turbine design. In Figure 2.5, the local inflow
angle (¢,) establishes the relationship between the lift and drag of the airfoil element and the

thrust and torque forces. As shown in Figure 2.4, the inflow angle is the sum of the local pitch
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angle of the blade ( 8,) and the angle of attack ( a,). The local pitch angle depends on factors
such as the blade's static geometry, elastic deflections, and the active or passive blade pitch
control system. The angle of attack is determined by the local velocity vector, which is in turn
influenced by factors like the incoming local wind speed, rotor speed, blade element velocities,

and induced velocities (Moriarty & Hansen, 2005).

axial velocity V,, (1 — a)

rotational velocity
rQ(1 +a’)

sueld 10101

Figure 2. 4 Local element flow angles and velocities

d@: torque
o N/ kA Fr-total force

aueld 10101

Figure 2. 5 Local elemental forces in an airfoil section
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Principally, the thrust and torque of an airfoil section may be described based on the
mathematical relationship between lift force, drag force, and inflow angle of the blade element
(See Figure 2.5). Extensive derivation shows that respectively, thrust and torque around an
annulus of width dr can be further expressed as Equation (2.23) and (2.24), where B, p,, Cy, Cp,
and c, are respectively the number of blades, air density, lift coefficient, drag coefficient, and
chord length. The aforementioned two equations however, are formulated without taking into
accounts the wake effects that majorly influences the rotor induced velocity distribution. The
impact on induced velocity within the rotor plane is most noticeable in the vicinity of the blade
tips, which coincidentally holds the highest influence over the power output of the turbine. To
compensate, a theory developed by Prandtl (Glauert, 1935) is incorporated. The principle of
Prandtl's theory is that the velocity in the plane of the rotor is changed by the disturbed flow
near the tip, which is calculated after momentum theory is taken into accounts. For this purpose,
Prandtl expanded the equations by adopting a correction factor to the induced velocity field
referred as F,. This is expressed in the Equation (2.25). Considering this correction factor, the
local thrust and torque of an airfoil section then can be finally obtained using Equation (2.26)
and (2.27), respectively. The total thrust and torque are obtained by integrating these two

equations from all the blade elements.

dT = B %paVZ(CL COS Py + Cp SIN g )y +++veseeesseeseesemsseissiiissis i (2.23)
dQ =B %paVZ(CL SIN g — Cp COS g) Cr @ +++seemessessnesssnmsntnisnisitiei e (2.24)
F, = icos'l 0@ ettt (2.25)
where f, = %B Ti?n_;a, and R, is the rotor radius.

AT = A1 PGVE(L — Q) QF, A1 ++reeeeeereenesssnsentssetes et (2.26)
AQ = ATT3 pVeof2(1 — AF) Q' Fyr «+++esessesesesssessssstnisistiisiti ittt (2.27)
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Chapter 3
Wave prediction results on FOWT

3.1 Subject structures

In this study, the focus is on a semi-submersible Floating Offshore Wind Turbine (FOWT). As
mentioned previously, the semisubmersible types of FOWT design are adopted in this part of
the study. Specifically, two different designs of semisubmersibles, referred to as Semisub-A
(Inoue, 2021; Isnaini R., Toichi, lijima, & Tatsumi, 2022; Isnaini R. , Toichi, Tatsumi, & lijima,
2022) and Semisub-B (Adilah & [ijima, 2021; Inoue, Adilah, lijima, Oh, & Suzuki, 2020; Isnaini
R., Toichi, Tatsumi, & lijima, 2022), are considered. For further context, the visualization of
Semisub-A and Semisub-B can be found in Figure 3.1 and 3.2, respectively. While both designs
share a common feature of having a substructure composed of three columns, they also possess

distinct characteristics that result in different response behaviors and critical load points.

1<%

(a) (b)

Figure 3. 1 Design visualization of Semisub-A (a) Side-view, the numbers shown correspond

to some of the measured locations (b) Top-view
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(a) (b)

Figure 3. 2 Design visualization of Semisub-B (a) Side-view, the numbers shown correspond

to some of the measured locations (b) Top-view

N8 Semisub-B
= N10 Semisub-A

Normalized RAO (g m!/pm?)
[\

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Angular frequency (rad/s)

Figure 3. 3 Normalized RAO function comparison of Semisub-A (node 10) and Semisub-B
(node 8)

The assigned numbers in the Figure 3.1 and 3.2 indicate the nodes and sensor locations.
Further information regarding the design properties of both Semisub-A and Semisub-B can be
found in Table 3.1 and 3.2, respectively. For Semisub-A, the substructure comprises three

columns that provide buoyancy forces, while the superstructure, which directly interacts with
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the wind, is positioned in the middle of the substructure's deck. It is evident from this design
that the critical load point, which experiences the highest hydrodynamic and aerodynamic
forces, is located on the deck where the tower is situated (around node 10/11). Similar to
Semisub-A, Semisub-B consists of three columns along with its lower hull to provide buoyancy
forces. However, there are notable differences between the two designs, with the most
significant one being the placement of the superstructure. In Semisub-B, the superstructure is
positioned directly on top of one of the columns (around node 8). Other than the critical load
point location difference, the overall TFs, especially in the amplitude domain TFs (RAO) is
found to be quite distinct between the two designs. Overall, Semisub-B has less steepness and
peaky resonance compared to Semisub-A. To give more context, the strain RAO trend
normalized by mean value of the corresponding function (assuming no aerodynamic load) of
the two designs around their respective critical load point is shown in Figure 3.3. In this figure,
black is the strain RAO (node 10) of Semisub-A, while grey is the strain RAO (node 8) of
Semisub-B. Here, it can be seen that RAO belonged to Semisub-B is generally less peaky and
steep compared to RAO of Semisub-A. This difference of RAO “peaky-ness” and steepness is
observed to be consistent throughout different types of response between the two designs, be

it the structure’s elastic responses or rigid body responses.

NK-UTWind simulations (see Sec. 2.4) are conducted to calculate the transfer functions and
responses for each node, which are essential components of the Kalman filter algorithm. These
simulations also provide wave data that will be used as a reference for comparing with the
prediction results. Additionally, this study considers two types of load conditions: wave loads
only cases and combined load cases that incorporate both wave and wind forces. Further details

regarding the variations in the case studies are discussed in the subsequent section.

Table 3. 1 Details on the properties of Semisub-A, real scale (except the first row)

Young’'s modulus of experiment model 1.93 X 10" Pa
Young’s modulus 9.65 X 10'2 Pa
Displacement 1.37 X 108 N
Draft 47.30 m
KG 15.35 m
Tower height 83.75 m
Column height 40.00 m
Total height (from keel to tower top) 140.25 m
Column diameter 10.00 m
Footing diameter 16.00 m
Deck length 20.25 m
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Table 3. 2 Details on the properties of Semisub-B, real scale

Young’s modulus 2.06 X 10" Pa
Displacement 1.17 X 108N
Draft 25.00 m
KG 15.00 m
Tower height 113.9m
Column height (without tower) 36.00 m
Column height (with tower) 56.00 m
Total height (from keel to tower top) 136.0 m
Column diameter 11.00 m
Lower hull length 64.18 m
Lower hull width and height 6.00 m
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Figure 3. 4 Experiment set-up (a) Semisub-A in the towing tank (b) Sensors configuration

attached to the structure's "skeleton" in the experiment
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The experiment was conducted at Osaka University in 2020, using a towing tank. To retrieve
the experimental data, Fiber Bragg Gratings (FBG), strain gauges, and an accelerometer were
employed. The experimental setup is illustrated in Figure 3.4(a), while Figure 3.4(b) displays
the configuration of the sensors during the experiment. The accelerometer was placed on top
of the superstructure (depicted by pink circle), while the FBG locations were indicated by
green and blue circles on the superstructure and substructure, respectively. The strain gauges,
represented by yellow circles, were attached to the deck part. The sensors had a sampling rate
of 100 data points per second. Each FBG and strain gauge location was capable of capturing
responses in both the x and y directions. It is important to note that this experiment was not
specifically conducted for the present study, which implies that the available data is limited and
may have an impact on the analysis of the prescribed case study. The variation in the case study

are further discussed in the next section.

3.2 Case study

This section provides a more detailed explanation of the assumed case variations involved in
the filtering process. In general, three types of input response and wave reference data are
taken into account in this study. The first one is a fully linear assumption between wave and
response. This means that while the TFs utilized to relate wave and response are computed
using NK-UTWind (see the next section), the response time histories are found based on the
Equation 2.13 and 2.14, while the wave time histories are calculated based on the Equation
2.11 and 2.12, indicating a fully linear relationship between the wave and response data. The
goal of this part of the filtering is to find the influences of assumed discretization of the wave
spectrum to the filter accuracy when it is given different complexity in the context of the TFs
and the wave directionality. The TF trends are characterized by the assumed response
indicated by the second column on Table 3.3. Furthermore, the existence of aerodynamic load
(AD cases, where the wind is modeled as steady wind with its velocity as big as 10 m/s) is also
affecting the TFs trends, hence these types of cases are also adopted to see the filter ability to
estimate accurate results when different TFs are accounted for. Other than that, two types of
wave directionality, i.e. unidirectional and bidirectional are taken into account to investigate
the filter ability to find an accurate result when different wave complexity are taken into

account.

The unidirectional wave spectrum is assumed to come towards the structure's positive x-axis
direction (head sea), while the second scenario considers a bidirectional wave spectrum
comprising head sea and beam sea. In the case of the unidirectional spectrum (ISSC, with a
significant wave height (Hs)of 4.0 m and a peak period (7p)of 12 s), pitch motions are utilized

as the observed data. In the scenario involving a bidirectional wave spectrum, strain data are
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included as part of the observed data, alongside pitch and heave, due to the increased
complexity of the filtering process in this case. Strain data is known for its ability to detect
responses at higher frequencies. The investigation also explores the combination of
observation data locations and their impact on filter accuracy. In total, there are 11 case studies
examined, as outlined in Table 3.3. The measurement locations listed in the third column of
the table correspond to the numbers shown in Figure 3.1(a). Additionally, for the bidirectional
case, the ISSC spectrum is used as well. Since there are two headings of origin, two wave spectra
are specified. In Trial-1 to Trial-4 (both NW and AD cases), the significant wave heights (Fs)
for head sea and beam sea are respectively 4.0 m and 2.5 m, with peak periods (7pp) described
as 12 s and 9.5 s, respectively. In Trial-5AD, the Hsand 7p values for head sea are assumed to
be 3.0 m and 12 s, while for beam sea, they are described as 4.0 m and 9.5 s. All bidirectional

cases assume combination of two different measurement data for the filtering.

Table 3. 3 Case study variations description assuming total linearity for Semisub-A only

. Measured
Spectrum type Observation data . Case name
location
Unidirectional ] _ Trial-NW*
Pitch motion 22
spectrum Trial-AD**
Heave 1 Trial-INW
) Y Trial-1AD
Strain around y-axis -
22 Trial-2NW
Heave 1 Trial-2AD
Bidirectional Trial-3NW
10 and 22
spectrum Trial-3AD
Strain around y-axis Trial-4NW
10 and 12
Trial-4AD
10
Trial-5AD
Pitch motion 22

*NW: having only hydrodynamic load (no wind)
**AD: having both hydrodynamic and aerodynamic loads

The second type of data assumes the presence of nonlinearity as all data are based on NK-
UTWind simulation. These include the response, wave, and TFs. In this part, a unidirectional
wave spectrum in the form of a head sea is used for all assumed cases. The ISSC spectrum is
employed in the simulations for each design, with a significant wave height (Fs) of 1.0 m and
a mean period (7mean) of 12.0 s for Semisub-A. The angular frequency range for Semisub-A

is from 0.27 to 1.27 rad/s. On the other hand, Semisub-B assumes Hs and Tmean values of
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0.846 m and 7.352 s, respectively, with a frequency range from 0.16 to 1.2 rad/s. These values
are assigned to two load cases: one considering only hydrodynamic load and the other
accounting for a combined load from waves and wind. These two variations are indexed as NW
and AD, respectively. The inclusion of these two different load cases aims to examine the
adaptability of the filter when considering a more complex nonlinearity problem caused by the
coupling effect (Inoue, Adilah, Tijima, Oh, & Suzuki, 2020; Adilah & Iijima, 2021). The wind
itself is simulated as a steady wind with a velocity of 10.0 m/s for both designs. A summary of

the case variations and the details of their measurement data can be found in Table 3.4.

Table 3. 4 Case study variations fully based on NK-UTWind data

Design type Observation data Mea51.1red Case name
location
Semisub-A Heave motion 1 A-INW*
A-1AD**
Strain around y-axis | 10 A-2NW
A-2AD
12 A-3NW
A-3AD
Pitch motion 22 A-4NW
A-4AD
Acceleration 1 (of heave) | A-5NW
22 (of pitch) | A-6NW
Semisub-B Strain around y-axis | 8 B-INW
B-1AD
20 B-2NW
B-2AD
8
Pitch motion 1 B-3NW

*NW: having only hydrodynamic load (no wind)
**AD: having both hydrodynamic and aerodynamic loads

Initially, in the early stages of the research, the response data included in the observation model
mainly consisted of strain and nodal displacements. However, as the study progressed, it was
discovered that acceleration responses would be more dependable, particularly in cases where
the associated rigid body displacements were not entirely reliable across all frequency ranges

due to the very high steepness of the RAO functions in the lower frequency region. This makes
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the relative values of the RAO functions “appear” to be zero in the higher frequency domain.
Furthermore, the possibility of combining two types of measurement data to improve
prediction accuracy was explored, leading to the inclusion of case B-3NW in Table 3.4. A more

comprehensive discussion regarding these matters can be found in Sec. 3.5.

Lastly, a fully experiment based data are incorporated to the filter. These include the responses
for the input, wave for the reference, and TFs for the observation matrix. The experiment is
carried out in a towing tank, Osaka university based on the design of Semisub-A with 1/50
scaling factor. Due to the data availability, the variation in cases based on experimental data is
limited to a specific type of wave spectrum (ITTC spectrum, Hs=40 mm; 7, =1.56 s)
representing a head sea, with the presence of aerodynamic damping introduced as a constant
thrust generated by a fan. The load exerted by this fan is 5.0 N, which corresponds to the
maximum thrust at the rated speed. The filtering outcomes obtained from two different
observation points (point 11 and point 12, as indicated in Figure 3.1) will be compared. The
transfer function specific to a certain wave height will then be tested with input waves of
significant heights different from the prescribed wave height in order to assess its sensitivity.
Additionally, the experimental model includes additional attachments of a cylindrical plate and

a half ellipsoid at the substructure's bottom (see Figure 3.4(a)).

3.3 Wave prediction results (simulation based)

In this section, we present the results obtained from the filtering process when numerical data
are introduced. The prediction using data assuming fully linear relationship between wave and
response is first discussed in Sec. 3.3.1. This step is important mostly as the first check on the
filter algorithm workability. In this part, the transfer functions are obtained using NK-UTWind,
however, the wave and response data are generated separately based on the Equation (2.11)
and (2.13). The filter ability to accurately predict different level of wave directional complexity
(unidirectional and bidirectional waves) is discussed in this section. Subsequently, we delve
into the estimation results using the more realistic external forces and response relationship in
the context of FOWT. In this part the prediction is carried out fully based on NK-UTWind
data in Sec. 3.3.2.

3.3.1 Prediction results assuming fully linear wave-response relationship

Firstly, prediction results assuming unidirectional wave is discussed. When a structure is
exposed to a unidirectional wave, it means that the incoming waves are irregular but have a
consistent direction of travel. In this case, the wave is assumed to move in the direction of head
sea. Consequently, the number of heading directions (nﬁ) is one for the unidirectional wave

scenario. However, the discussion in this first part focuses on the number of angular
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frequencies that constitute the waves, as it holds more significance.

Other than that, in order to simplify the interpretation of results, the correlation coefficient
(1) is introduced. This is done to facilitate the analysis process, as relying solely on visual
images can be misleading when numerous figures are presented. By using the correlation
coefficient, a more accurate and comprehensive conclusion can be drawn. The correlation
coefficient (ry,) is selected because it directly quantifies the extent of linear correlation
between two sets of data. In this scenario, the two sets of data are the reference wave and the
predicted wave. The formula for calculating the correlation coefficient () can be found in

Equation (3.1) below, where X is the wave reference data and Y is the wave prediction data.

. XY-XY
o sqrt((ﬁ—?z).(ﬁ—?z))

From a mathematical perspective, ocean wave spectra are typically modeled as continuous
functions of frequencies. However, for the filtering process employed in this study, it is
necessary to discretize these frequencies. This allows us to determine the number of
elementary waves present in the spectrum. The challenge lies in obtaining the exact values of
these frequencies, which is practically impossible. To overcome this issue, a series of trial and
error operations is conducted. The objective is to identify the minimum number of frequency
discretization (n,) that ensures both efficient and accurate algorithm execution. The chosen
value for n,, significantly impacts the size of the observation matrix (M). A higher n,, leads to
a larger observation matrix and consequently increases computation time. Additionally, the
effective minimum number of observation data (ng) is also explored, and it is determined that
500 s of observation data with a sampling rate of 0.5 s (1000 data points) is suitable for this

case.

After multiple attempts, it is observed, through visual inspection, that discretizing the
unidirectional spectrum into 80 frequencies combined with 1000 observation data points yields
predictions that closely align with the reference data (Figure 3.5), with its r,, is found to be
around 0.9. Discretizing the spectrum into 80 frequencies indicates that 160 state variables are
introduced (annﬁ) for this specific prediction. However, even though the accuracy is found
to be significant, it is expected that the prediction results should fit the reference almost, if not
perfectly since in this part, it is assumed that the wave and response have a total linear
relationship and the wave is simply the long crested type. Hence, an attempt to achieve a
perfect fit is carried out by increasing the number of the elementary waves. When the number
of elementary wave frequencies is slightly increased to 100, it is found that the results are closer

to the expected outcome (see Figure 3.6), with its Ty 1s found to be 0.99. Based on this, this
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number of elementary waves frequency and observation data (n, = 100 and ng = 1000) are

reckoned as a guidance when applying the Kalman filter in the bidirectional spectrum case.

Next, the findings based on the bidirectional wave data are discussed. A total of nine cases are
examined for the prediction of bidirectional waves. Four out of the nine cases pertain to
hydrodynamic loads only, while the remaining five cases represent combined load conditions.
Each case involves different transfer functions based on the chosen measurement location. The
accuracy of the Kalman filter in these predictions is influenced by the transfer functions used,

which are known to be a sensitive factor.

Initially, the accuracy of the filter is assessed by considering the frequency discretization and
the number of observation data. Based on the findings from the unidirectional wave case, a
combination of n, = 100 and ng = 1000 is first explored. Similar to the previous case, 1000
observation data points correspond to a measuring period of 500 s. However, based on the
direct observation, the results show inadequate agreement between the prediction and
reference data considering the case are assumed to be linear in the context of its wave and
response relationship. The correlation coefficient is found to be only as big as 0.70 (see Figure
3.7). Therefore, the number of observation data and frequency discretization are increased in

order to find a better combination.
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Figure 3. 5 Real-time comparison results of wave elevation from Trial-NW case for Semisub-

A, unidirectional wave, assuming total linearity (n,, = 80, ng = 1000)
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Figure 3. 6 Real-time comparison results of wave elevation from Trial-NW case for Semisub-

A, unidirectional wave, assuming total linearity (n,, = 100, ng = 1000)

In the case of bidirectional wave spectra, the state variables and observation matrix are doubled
due to the inclusion of two directional waves for the heading angles. Consequently, increasing
the number of discretized frequencies and measurement data leads to longer computation
times. Thus, finding the combination with the minimum values of n,, and ng becomes crucial
to reduce the computation time, especially when the system is further developed to handle

more complex waves resembling real ocean surfaces with multiple heading angles.

Table 3. 5 Correlation coefficient values assuming fully linear wave-response relationship

) Measured
Spectrum type | Observation data . Case name Txy
location
Heave 1 Trial-1INW 0.890
Strain around y- | 12 Trial-1AD 0.884
axis 22 Trial-2NW 0.891
Heave 1 Trial-2AD 0.926
Bidirectional Trial-3NW 0.910
10 and 22
spectrum ) Trial-3AD 0.873
Strain around y- -
Trial-4NW 0.954
axis 10 and 12
Trial-4AD 0.962
10
Trial-5AD 0.940
Pitch motion 22

*NW: having only hydrodynamic load (no wind)
**AD: having both hydrodynamic and aerodynamic loads
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Figure 3.8 presents the prediction results from Trial-1INW assuming the combination of n,, =
120 and ng = 1200. The correlation coefficient of this specific case is found to be 0.89. Based
on this finding, the subsequent analysis for other cases will utilize 120 discretized frequencies
(n,) and a dataset of 1200 observation data points, equivalent to a 600 s of measurement.
Moreover, a correlation coefficient with the value around 0.9 is targeted for the bidirectional
cases, since the wave is now more complex than the fully linear long crested (unidirectional)
wave previously discussed. The prediction results (represented in the form of its corresponding
1yy) for all the adopted bidirectional cases are presented in Table 3.5. Based on the value in
this table, it is confirmed that the filter consistently gives the desirable accuracy level for
bidirectional wave case given different combination of TFs trends. In the next section, the
discussion assuming the more realistic external loads and response relationship based on the

NK-UTWind simulation data is given.
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Figure 3. 7 Real-time comparison results of wave elevation from Trial-1INW case for Semisub-

A, bidirectional wave, assuming total linearity (n,, = 100, ng = 1000)
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Figure 3. 8 Real-time comparison results of wave elevation from Trial-INW case for Semisub-

A, bidirectional wave, assuming total linearity (n, = 120, ng = 1200)
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3.3.2 Prediction results fully based on NK-UTWind data

Real-time predictions of incoming wave values fully based on NK-UTWind data (see Sec. 2.4)
have been conducted for two distinct designs of FOWT. Unlike ships, modeling an offshore
wind turbine, particularly a floating type, is more complex due to its unique shape and
functionality. The presence of coupling effects between wind and waves also contributes to
nonlinearity when predicting waves based on the structure's responses. The outcomes of the
filtering prediction are presented in this section of the report. A more detailed discussion of

coupling effects will be further expounded upon in Sec. 3.6.

As explained in Sec. 3.2, the incoming wave for these cases is assumed to follow the ISSC
spectrum for both the Semisub-A and Semisub-B designs. The wave approaches as a head sea
along the positive-x axis. To determine the optimal number of elementary waves, a series of
trial and error iterations were conducted. Through this process, it was discovered that the
optimal number of elementary waves for Semisub-A is 80, while for Semisub-B, it is 55. These
values are significant as they are closely linked to the discretization of the frequency spectrum.
The discretization directly corresponds to the number of state variables determined by
Equation (2.15), and it impacts the size of the matrix, thereby influencing computation time.
Additionally, these values remain consistent throughout the entire analysis. Furthermore, the
Kalman filter algorithm is applied to 1400 s of measurement data for the Semisub-A cases and

7200 s of measurement data with a sampling rate of 0.1 s for both designs.

Similar with the previous section, correlation coefficient (rxy) is introduced to ease the data
interpretation process, as relying solely on visual images can be misleading when numerous
figures are presented. Table 3.6 presents the prediction results in terms of the correlation
coefficient (ry,) for each case study. The correlation coefficient value ranges from -1 to 1,
where a value closer to 1 indicates higher accuracy. A value of 1 signifies a perfect match
between the reference and predicted waves at every time step. To provide additional context,
Figure 3.9 is included. Figure 3.9(a) illustrates the comparison results between the reference
and predicted waves for case study A-1AD, which has the lowest correlation coefficient (rxy).
On the other hand, Figure 3.9(b) displays the comparison results for case study B-3NW, which
has the highest accuracy among all the cases. Therefore, it can be observed that the time history
comparison results for the other cases will fall somewhere between the patterns seen in Figure
3.9(a) and Figure 3.9(b).

In general, the wave prediction results using the Kalman filter for the Semisub-A design cases
show less favorable outcomes compared to predictions for the other design. Further analysis
reveals a distinct behavior where the accuracy of predictions varies when the Kalman filter is

provided with different measurement data from different sensor locations. Upon closer
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examination, it is concluded that the applied transfer functions, which are specific to each
measurement data and location, have a more significant impact on the prediction results than
the measurement data itself. In other words, the accuracy of wave predictions is highly
dependent on the choice of transfer function used to relate the state variables and observation
data, as seen in Equation (2.5). Therefore, specific criteria for selecting response transfer
functions are necessary to achieve higher accuracy. This aspect will be further discussed in Sec.
3.5.

Table 3. 6 Correlation coefficient values for cases fully based on NK-UTWind data

Design type Measured location Case name | 1y,
Semisub-A 1 (heave) A-1INW* 0.470
A-1AD** 0.459
10 (strain) A-2NW 0.875
A-2AD 0.607
12 (strain) A-3NW 0.535
A-3AD 0.536
22 (pitch) A-4NW 0.663
A-4AD 0.624
1 (acceleration) A-5NW 0.618
22 (acceleration) A-6NW 0.751
Semisub-B 8 (strain) B-1INW 0.859
B-1AD 0.829
20 (strain) B-2NW 0.854
B-2AD 0.800
1 (pitch) and 8 (strain) | B-3NW 0.968

*NW: having only hydrodynamic load (no wind)
**AD: having both hydrodynamic and aerodynamic loads
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Figure 3. 9 Comparison between prediction and reference in real-time based on nonlinear
simulation data (a) Case A-1AD (b) Case B-3NW

3.4 Wave prediction results (experiment based)

The experiment takes place in a towing tank, and its setup is illustrated in Figure 3.4. In order
to predict the real-time wave elevation, the strain measured is utilized as the observed data.
The observed wave is positioned 4.6 meters ahead of the FOWT to avoid any influence from
wave diffraction and radiation effects. For this specific calculation, 120 elementary waves are
assumed, and the strain data input consists of 90 s of data with a sampling rate of 100 samples
per second. In this instance, two prediction cases are conducted based on the experimental data

obtained. The strain data from two locations along the y-axis are used as input measurements,
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and their respective transfer functions are incorporated into the filter as part of the observation
matrix. These locations are identified as number 11 and number 12 in Figure 3.1(a). For

simplicity, these cases are referred to as case A and case B, respectively.

Overall, the accuracy of predictions based on the experimental data is quite poor. The
correlation coefficient (ry,) values for case A and B are respectively found to be 0.49 and 0.44.
To provide more clarity, the prediction results based on the strain data from location 11 (case
A) are shown in Figure 3.10. Several factors could potentially contribute to the overall
inaccuracy of the filter. Firstly, the experimental transfer functions are limited to a narrower
frequency range compared to the range of wave frequencies encountered, primarily due to data
availability. Secondly, these transfer functions were derived from responses under regular
waves with a wave height of 36 mm, while this particular test was conducted using irregular
waves with a significant wave height of 40 mm. The nonlinearity of hydrodynamic forces leads
to transfer functions being specific to each wave height. Not only from combined loads, heave
plates are also present in this experiment, hence causing a higher degree of nonlinearity in the
system. Thirdly, it is possible that a longer period of time was required for the system to reach
a steady state, since it has been found that some time is needed for the filter to reach steady

state.

reference (experiment) prediction (Kalman filter)

h "/N,,\'\"u‘aﬂj’/’\(‘\W

Wave elevation (cm)
o [\S)
(__‘
-_—
=
> 3
P
-—
<l
=J
-
—
——
—_
—_
=
— ——
e —
:r
| B > 1
¢>
—

0 20 40 60 80
Time (s)

Figure 3. 10 Wave prediction results based on experiment data of Semisub-A adopting strain

measurement from node 11 (case A)

As mentioned, a significant source of uncertainty comes from the nonlinearity of the response
due to combined loads. Previous studies by Inoue et al. (2020) and Adilah & Iijima (2021) have
examined the coupling effect of wind and wave and nonlinear loads in FOWT with respect to
its response characteristics. For the semi-submersible type of FOWT, it has been observed that
a combination of wind and wave loads leads to a reduction in amplitude response around

resonance. In other words, the amplitude transfer function of a semi-submersible FOWT
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subjected to both wind and wave loads is lower compared to when it is subjected to only wave
loads. In cases where the transfer function is smaller than the "correct” transfer function, as in
this situation, the predicted waves will be overestimated. It is crucial to incorporate transfer

functions that consider the aerodynamic coupling effects.

3.5 Remarks on the filter dependency towards TFs

In this section, a discussion on the filter dependency towards the TFs is further elaborated.
However, it is necessary to clarify that the discussion in this section will be mainly based on the
simulation results fully based on the NK-UTWind data (Sec. 3.3.2). This is due to the fact that
prediction results given in Sec. 3.3.1 is deemed to be not realistic enough due to the assumption
of fully linearity between wave and response, while the experiment data only discussed cases

containing combined loads (this will be mainly discussed in the next section).

The correlation coefficients in Table 3.6 suggest that a particular factor influences the filtering
process in the Kalman filter algorithm. Upon closer examination of the algorithm, it becomes
apparent that the Kalman gain found in Equation (2.8) is primarily responsible for improving
the accuracy of estimation results during the correction step. This step is mathematically
expressed in the Equation (2.8) to (2.10). Essentially, the Kalman gain determines how much
the prediction results should be adjusted when provided with measurement inputs. Prediction
steps can be found in Equation (2.6) and (2.7). Additionally, the response transfer functions
play a crucial role in the algorithm. Not only do they directly link the state variables (x) with
the measurement data (y), but they are also integral to the calculation of the Kalman gain.
Further analysis in this study confirms the importance of response transfer functions in
achieving desirable wave prediction results using the Kalman filter. This section of the report
explores the dependence and preferred types of transfer functions for wave prediction using

the prescribed filtering model.

By examining the 7,,, values in Table 3.6, it is evident that Semisub-B generally outperforms
Semisub-A in wave prediction. Further comparison of the transfer functions associated with
the two designs reveals that the magnitude of the transfer function in the amplitude domain
(also known as the response amplitude operator or RAO) for each frequency is a factor that
influences the performance of the filter algorithm. When the RAO remains significantly
nonzero across all frequency ranges, the filter produces more accurate wave elevation

predictions.

To provide clarification, Figure 3.11 presents a case study comparing two different transfer
functions. The transfer functions in the amplitude domain for heave (node 1) and strain (node

10), used to make predictions for case A-INW and A-2NW, respectively, are shown. The
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magnitude at each point is normalized by the mean value of the function. Based on the r,,,

values in Table 3.6, it is observed that case A-2NW achieves almost twice the prediction

accuracy compared to A-INW. This is because the RAO for case A-2NW maintains nonzero

magnitudes when normalized. In contrast, the RAO for case A-INW approaches zero when

normalized within the frequency range of 0.8 rad/s to 1.2 rad/s, as depicted in Figure 3.11. To

provide a visual representation of the accuracy of the filtering results, Figure 3.12 illustrates

the prediction results for case A-2NW. This figure can be compared with Figure 3.9(a), which

represents A-1AD, and has a similar correlation coefficient value to the prediction result from

case A-INW.

Normalized RAO

4 ] [ . R PPErTR NWStrain N10  ——— NWHeave N1

0.2 0.4 0.6 0.8 1 1.2
Angular frequency (rad/s)

Figure 3. 11 Normalized RAO of heave at node 1 and strain at node 10 for Semisub-A
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Figure 3. 12 Prediction results of Semisub-A case A-2NW based on nonlinear simulation data
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The objective of any prediction endeavor is to achieve the highest possible accuracy within the
limitations of the system and model employed. Consequently, it is suggested that incorporating
acceleration responses may enhance the prediction results in this case, as their magnitudes are
proportional to the square of the corresponding frequency. Based on this rationale, cases A-
5NW and A-6NW are introduced. Analysis reveals that the r,,, values for these cases are indeed
higher than those using nodal displacement. Therefore, it is recommended to include
acceleration responses in future studies. Additionally, combining two types of measurements

is also advised, as it further improves accuracy. This finding is deduced from the comparison

between case B-1INW and B-3NW.

3.6 Remarks on the nonlinearity effects from combined loads

This section of the chapter discusses the interaction between wind and waves and how they
affect the filtering ability to accurately predict wave elevation. Results from 3.3.2 and 3.4 will
be mainly discussed. Previous studies by Adilah & Iijima (2021) and Inoue et al. (2020) have
highlighted that the combined load on floating offshore wind turbines (FOWTs) does not
follow a linear relationship. Therefore, it is necessary to perform prediction analysis that
considers the nonlinearity of the system, especially for FOWT structures, as they are typically

subjected to combined loads due to their functional nature.

The results of the filtering, assuming the presence of nonlinearity, are available in Table 3.6 as
correlation coefficient values. Comparing these results with the cases without nonlinearity, it
can be concluded that most of the cases with combined loads have slightly lower accuracy,
except for the A-2s cases. Further examination reveals that the cause of the accuracy
discrepancy lies in the amplitude response transfer function associated with each measurement.
For example, the correlation coefficient values between case A-INW and A-1AD are quite
similar, indicating that the response transfer functions in the amplitude domain are comparable
between the combined loads case and the wave load only case. This is illustrated in Figure 3.13.
On the other hand, the coupling effect has a greater impact on the strain response at node 10
in the Semisub-A design, particularly around the resonance frequency, as depicted in Figure
3.14. Due to this coupling effect, the measured response used in the Kalman filter algorithm
becomes more contaminated, resulting in less accurate prediction results. This finding is
further proven based on the experiment-based prediction results given in the Sec. 3.4. When
experiment data are used to estimate the waves, it is found that the prediction accuracy is
generally low. Though several factors could cause this inaccuracy as discussed in Sec. 3.4, it is
fair to deduce that especially in the context if case A, nonlinearity from combined loads plays a

significant role to the filter ability to find accurate wave prediction.

Based on these findings, it can be concluded that understanding the nonlinearity effect on
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FOWT responses is crucial for determining the appropriate location and type of response to
be used when predicting incoming waves using the Kalman filter algorithm. Additionally,

comprehensive experimental data is needed to further examine the nonlinearity effect in detail.
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Figure 3. 13 Heave RAO comparison (node 1) between case A-INW and A-1AD
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Figure 3. 14 Strain RAO comparison (node 10) between A-2NW and A-2AD

3.7 Summary

In this chapter, the real-time prediction results using Kalman filter based on two different
designs of FOWTs (Semisub-A with peaky RAO and Semisub-B with less peaky RAO) are

compared. In general, the prediction results for Semisub-A exhibit lower accuracy compared
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to Semisub-B. This discrepancy can be attributed to the response characteristics of the
respective designs. Specifically, Semisub-B displays less pronounced peaks in its response,
leading to more accurate predictions. Combining measurement data from different sensors can
be done to improve the prediction accuracy. Additionally, the impact of nonlinearity from
coupling effects of wind and wave on the filtering results is discussed. Certain cases are found
to be less affected by nonlinearity compared to others, depending on the structural response
under combined loads. The findings on the nonlinearity effects towards the filtering results is
further solidified after analyzing the prediction results based on experimental data of Semisub-
A. However, further validation through additional experiment data points is needed, especially
since the available experiment data is limited only for cases where combined loads, and heave
plates (which caused further nonlinearity on the overall response) are present. Another
experiment considering cases without aerodynamic load from the fan is needed to be carried
out as well to provide a more accurate understanding on the Kalman filter’s dependence on
TFs.

In summary,

e Prediction results for Semisub-A generally have lower accuracy compared to Semisub-B
due to response characteristics.

e Semisub-B has less pronounced response peaks, leading to more accurate predictions.

e Combining measurement data from different sensors can enhance prediction accuracy.

e Nonlinearity from wind-wave coupling affects filtering results, with some cases being less

impacted than others depending on structural response.
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Chapter 4

Future predictions and causality effects

4.1 Causality effects

Throughout the decades, there have been several methods introduced to cope with the
deterministic water waves prediction. Some examples of these methods are predictions based
on nonlinear dynamics (Klein, et al., 2020; Huchet, Babarit, Ducrozet, Gilloteaux, & Ferrant,
2021; Hlophe, et al., 2021), predictions based on machine learning (Tanaka, Hamamichi, Wada,
Takagi, & Imamura, 2018; Duan, Ma, Huang, Liu, & Duan, 2020), and predictions based on
linear time-invariant (LTI) system (Naaijen, Van Oosten, Roozen, & Van 't Veer, 2018; Al-
Ani, Belmont, & Christmas, 2020; lida & Minoura, 2022). Out of these methods, LTI-based
water waves prediction offers the more robust and faster computational time compared with
the rest of the methods, with the Fourier coefficients estimation technique being the most
successful (Iida & Minoura, 2022). This method is essentially the water waves prediction
technique adopted in this study, as seen in the formulation elaborated in Sec. 2.3. The wave
prediction method using the Kalman filter algorithm is extended to find the future wave and
response predictions. This will be further explained in the next section. This section discusses
the non-causality that arises when a water wave prediction is carried out in real-time. Firstly,
another technique for LTI-based water waves prediction by calculating the convolution integral
between the impulse response function and an input signal is discussed. The link between this
method, future predictions based on Kalman filter, and the zero-approaching state of the non-

causality phenomenon is discussed by the end of this chapter.

The convolution integral is a mathematical operation that combines two functions to produce
a third function, which represents the merging or interaction of the original functions. It is a
fundamental concept in calculus and is widely used in various fields, including signal processing,
image processing, and physics. Mathematically, the convolution of two functions referred as

f:(t) and g.(¢t) is denoted by (f; * g.)(t) and is defined as:

(% Ge) () = [ fo(T) % Ge(t — T) AT -eeeeeeeeeeemsmsmsmsmsnn (4.1)

where [ represents the integral sign, f.(r) and g.(t — 7) are the functions being convolved,

and dr is the differential element used for integration.
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To understand the intuition behind the convolution integral, consider f.(t) as an input signal
or function and g.(t) as a response or kernel function. The convolution operation determines
the output signal or resulting function at each point in time by calculating the weighted sum of

the products of the input signal and the kernel function, shifted and scaled appropriately.

The convolution integral involves the following steps:

1. Reversing the kernel function: The kernel function g.(t) is reversed or flipped along the
time axis, which is necessary to align the corresponding values of f,.(t) and g.(t) for

multiplication during integration.

2. Shifting and scaling: The reversed kernel function g.(—7) is shifted to the right by an
amount of t, aligning it with the current point in the integration. Additionally, the function

may be scaled by a factor depending on the specific convolution equation being used.

3. Multiplying and integrating: At each point in time, the values of f,(t) and g.(t — 1) are
multiplied together, and the products are summed up over the entire range of integration,
represented by the integral sign. This multiplication and summation process is performed

for every value of t.

4. Obtaining the resulting function: The outcome of the convolution integral is a new
function (f, * g.)(t), which represents the combined effect of the original functions f, (t)
and g.(t). It describes how the input signal is transformed or modified by the kernel

function over time.

The convolution integral possesses important properties, including commutativity (f, * g.) =
(gc * f.), associativity, linearity, and time-shifting. These properties make convolution a
powerful tool for analyzing signals, systems, and understanding the interactions between

different functions.

In the 1960s, Davis & Zarnick derived the analytical solution of the impulse response function
under the deep water assumption (Davis & Zarnick, 1966). However, it was found that this
impulse response function is non-causal. In mathematics, causality refers to the concept that
the cause of an event or phenomenon must precede its effect in time. It is a fundamental
principle that governs the relationship between cause and effect and is widely used in various
branches of mathematics, such as calculus, differential equations, and signal processing.
Causality can be understood through the concept of time ordering. If there is a causal

relationship between two events, it means that the cause event must occur before the effect
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event. In the context of mathematical models or systems, causality plays an important role in
determining the behavior and validity of the model. For example, in the study of differential
equations, a causal system is one in which the output at any given time depends only on the
input values at earlier times, not on future inputs. This ensures that the system's response is
consistent with the principle of causality, as the output is determined solely by the past inputs.
Causality is also closely related to the concept of time delay. If a system exhibits causality, it
means that any changes or perturbations in the input will only affect the system's output after
a certain time delay. This time delay is essential for maintaining the cause-effect relationship

and ensuring that the system behaves in a physically meaningful way.

In summary, causality in mathematics refers to the principle that the cause of an event must
precede its effect in time. It is a fundamental concept used to establish relationships between
variables, validate mathematical models, and ensure the consistency of mathematical systems
with the laws of cause and effect. Causality is often associated with the notion of predictability.
In a causal system, the future behavior can be predicted based on the past and present inputs.
This property is particularly important in areas such as signal processing, control systems, and
differential equations, where understanding causality allows for the analysis and prediction of
system behavior. It is worth noting that not all mathematical functions or systems are causal.
Some systems may exhibit non-causal behavior, where the output depends on future values of
the input. However, causality is a fundamental assumption in many mathematical models and
is often desired in practical applications to ensure logical and predictable behavior. Causality
implies that a signal can be physically realized in real time (Tan, 2008), hence it is important
to ensure that the impulse response function is causal as water waves prediction is time-

dependent.

While it was found that the water waves non-causality is caused by the waves dispersion (Falnes
J., 1995; Falnes & Kurniawan, 2020), adopting window function and shifting the phase can be
done to cope with the non-causality problem (Belmont, Horwood, Thurley, & Baker, 2006).
However, the method then is only valid for deep water waves, while most offshore structures—
including FOWTs, are usually installed in finite-depth water. [ida & Minoura have analytically
derived the impulse response function for finite-depth water between two points and found
that the distance between the two points highly influences the causality of the impulse response
solution (lida & Minoura, 2022). To give a further explanation, Figure 4.1 is given. Noted that
for the discussions from here onwards (to the end of this sub-chapter), every variable
corresponds to length is non-dimensionalized by the water-depth (d) and variables correlated

to time is non-dimensionalized by the square-root of the water depth divided by the gravity

acceleration (,/d/g ).
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Figure 4. 1 Point locations assumed for the convolution integral

Supposed that there are two points on the water surface (points A and B) with non-
dimensionalized distance of X (X = x/d) and the waves is propagating towards x-positive
direction. The time history of wave elevation at point B (ng) then can be found based on
convolution integral of the impulse response function (h) and wave elevation history at point
A (n,). This can be mathematically written as Equation (4.2). In the case of finite-water depth
water, it has been analytically calculated that the impulse response function is as shown in
Equation (4.3), where the extensive derivation of this function can be found in lida &
Minoura’s article (Iida & Minoura, 2022).

ng(0) = f_:° RUEINQ(E = TYAT coverseesersssasersssaserssiasessssasessssasesssssssssssssssssssssssssasssssasssessssssesass (4.2)
-(()2—()§Ai(a) on t<t,

h(t) = é (%)iAi(ﬁ) ON tg < £ < by oo (4.3)
IkRe [% ¢ (ko) mfl—’&me"(w“‘o”"‘ox‘@] on t>1t,

where @ = (X — t)(2/X)"/3 and g = (X — t)(2/t)'/3

where Ai(—) is the first kind of Airy function, t, = X, and t; is the intersection between the
middle and the last function in the Equation (4.3) when the two are plotted and compared.
Moreover, k, indicates the stationary phase points of wave number k and they are used to
calculate the angular frequency (w) and its first (also denoted as group velocity, ¢;) and second
derivative used in the last function in Equation (4.3). They are further expressed as Equation
(4.4), (4.5), and (4.6), respectively.
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As it has been discussed, causality criteria are necessary to be fulfilled for the time domain
water waves prediction, and it is found that for the case of finite-depth water, the non-causality
phenomenon for the impulse response function solution changes for different X value. To give
further understanding, Figure 4.2 is presented. Here, two different plots of the impulse
response functions for different X values are shown. Based on this figure, it can be visually
understood that the bigger the value of X, the “beginning” of the impulse response function is
more “shifted” to the right, hence indicating causality. This is plausible since mathematically
speaking, a non-causal system is indicated by f(t) # 0 when t < 0, which in this case will be
bound to happen if the value of X is smaller than three, roughly. In other words, it can be
concluded that the non-causality effects ought to be practically negligible if two different points
are introduced, and only if the distance between the two points is far enough. This distance
should be at least equal to three when non-dimensionalized with the water-depth (x/d = 3),

as mentioned prior.
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Figure 4. 2 Impulse response function plots of different X, all values are non-dimensionalized
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4.2 Future wave and response prediction based on the Kalman filter

In this part, the method utilized to obtain the future predictions is described. Identical with the
convolution integral-based prediction, the future predictions are carried out after introducing
spatial distance relative to the reference point where the waves are first identified using the
Kalman filter algorithm (see Figure 1.3). The causality criteria discussed previously is
implemented. The causality criteria are applicable here as well due to the fact that the water
wave prediction based on the convolution integral is principally the same as the Fourier
coefficients prediction based (which are the state variables of the Kalman filter algorithm).
Given the same problem definition, the two methods are principally the comparable as either
method provides the time domain solution to Equation (2.11). The main difference is that
convolution integral provides an analytical solution while the Kalman filter approaches the

problem numerically.

To further elaborate, Equation (4.7) is presented. This equation is the basis of the future
prediction calculation after spatial distance is introduced. In other words, after Fourier
coefficients (a and b) are found via the Kalman filtering, the wave profile at x-meter away from
a point of reference (in this case, where the first model is located) can be found using Equation
(4.7), where k is the wave number and x is the relative distance to the point of reference.
Further, given ng = 1 and y = 0, Equation (4.7) is then just another form of Equation (4.2)
which proves the point that causality criteria applicable for wave prediction via convolution
integral should also be applicable for the Kalman filter based prediction. As explained in the
previous sub-chapter, when spatial distance is introduced, causality should be practically
achieved when the ratio between two points distance and the water-depth equals to at least
three (x/d = 3). Hence, this ratio limitation is incorporated to this study and dictates the tank
and model set-up in general to ensure the non-causality phenomenon is avoided. Further
technical details on these matters are described in the next chapter. Another thing worthy to
mention is that the convolution integral could only be utilized if the input wave is defined as
long-crested. Theoretically, the ocean waves may be described as an addition of multiple long-
crested waves. Due to this reason, wave prediction via the Kalman filter algorithm is more

realistic as it accounts for wave directionality decomposition.

nxy(x’ v, t) = 2251 2221 ap,q COS((Upt + ¢) + 22212221 bp,q sin(a)pt + ¢)) ......................... (47)

where ¢ = —k,x cos 8, — k,ysinf,
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Since the future wave prediction is carried out in x-meter away from a point of reference where
structure responses are not part of the input data. Hence, those responses then may be
prescribed as another unknown variable that can be determined based on the predicted future
waves due to the existed theoretical dependency between input wave, response, and transfer

functions. Mathematically, this can be further expressed as shown in the Equation (4.8).

Yy (r,3,8) = Zzi1 2221 tpq G(wp, By) €0 Bpq + 2251 2321 bp.q G(wp, Bg) SN Gpg veeeeee (4.8)

where 6 = (wpt + (p(a)p,ﬁq) — kpx cos By — kpy sin Bq)

4.3 Possible offshore wind farm arrangement

This section explores a possible offshore wind farm arrangement considering wake effects, a
phenomenon that will significantly reduce the wind velocity and increase the turbulence
intensity of downstream wind turbines. The explanation on the realistic application of the

proposed future predictions based on the Kalman filter in the wind farm is also discussed.
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Figure 4. 3 Wind direction, downwind, and crosswind

When studies on the performance of an individual wind turbine are carried out, the calculations
typically yield results based on the highest-rated power, leading to significant errors in the
calculation of the levelized cost of energy (LCOE). Additionally, relying solely on the
performance of a single wind turbine can result in inaccurate estimations of downwind and
crosswind distances (see Figure 4.3), leading to incorrect calculations of the number of
turbines required for a specific production (Hassania, Helgadéttir, & Riedel, 2023).
Ragnarsson et al. (Ragnarsson, Oddsson, Unnthorsson, & Hrafnkelsson, 2015) provided LCOE
calculations for the Burfell site, an onshore wind site in Iceland, based on assumptions of seven

rotor diameters (7D) downwind and four rotor diameters (4D) crosswind. However, they did
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not account for the wake loss effect, which significantly impacts both the LCOE and the
financial aspects of the project. Hence, it is important to consider the wake loss effect when

designing a wind farm, not only for the onshore farm but also the offshore ones.

In wind farm layout analysis, six well-known wake loss models are commonly used. These
models are Jenson-Katic, Larsen, Frandsen, Gaussian-Bastankah, Porté-Agel (BPA), and
Gaussian—in which further divided into Xia and Archer (XA), and Geometric (Cristina, et al.,
2018). The literature extensively discusses the Jensen-Katic and XA models as recommended
options among the various wake loss models due to their consistent performance across
different directions and wind farms. The Jensen-Katic model is particularly suitable for layout
optimization involving annual energy production, as it exhibits satisfactory performance in
terms of the correlation coefficient. On the other hand, the XA model is well-suited for aligning

the wake loss model with the desired direction.

According to previous literature (Manwell, McGowan, & Rogers, 2004), wind farms that adopt
a configuration with 8-10 rotor diameters (D) in the downwind direction and 5 rotor diameters
in the crosswind direction experience array losses below 10%. Recent study conducted by
Hassania et al. (Hassania, Helgadéttir, & Riedel, 2023) revealed that opting for a downwind
distance of 10 times the rotor diameter (10D) will yield significantly improved power output.
These findings are used as guidelines to describe the possible FOWTs arrangement in the wind

farm proposed in this section.

As explained, when designing a wind farm, wake loss effect should be considered as it
influences the total windfarm power generation. A variable that effects the recommended
distance between wind turbines would be the rotor diameter (D). Until this report is being
written, offshore wind turbines commonly had capacities ranging from 6 to 12 megawatts
(MW). These larger turbines have rotor diameters typically exceeding 150 meters and are
designed to capture more energy from the wind, thereby improving the overall cost-
effectiveness of offshore wind farms. It's worth noting that the offshore wind industry is rapidly
evolving, and larger capacity turbines are being developed and deployed. Newer turbine models
with capacities of 14 MW or even higher have been introduced. Typically, as the capacity of a
wind turbine increases, so does the rotor diameter. In the range of 12 to 14 MW, which was the
highest commonly available capacity at that time, the rotor diameters ranged from
approximately 200 to 230 meters. If it is assumed that the FOWT in the wind farm has 200 m
rotor diameters, then the downwind distance should be 10 times larger than D, that is 2 km
apart from one another, while the crosswind spacing would be as long as 5D, or 1 km. To give
more concrete example, a fully commissioned offshore wind farm from The Hornsea Project is

discussed.
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The Hornsea Project (@rsted, 2023), located off the coast of Yorkshire, England, is one of the
largest offshore wind farms in the world in which primarily utilizes fixed-bottom wind turbines
since the site is considered shallow water. The project consists of multiple phases. These phases
are referred as Hornsea Project 1, Hornsea Project 2, Horsea Project 3, and Hornsea Project
4, with Hornsea Project 1 being fully commissioned in December 2019 in which the total
capacity is 1.2 GW, while Hornsea Project 2 is fully commissioned in August 2022 with total
capacity of 1.4 GW. With its completion, Hornsea Project 2 surpassed Hornsea Project 1 as
the largest offshore wind farm globally currently. Figure 4.4 presents the layout of the wind
turbines indicated by blue dots in Hornsea Project 1 and 2 (4C Offshore, 2023). For Hornsea
Project 1, the average distance between wind turbines is approximately 1.2 kilometers, using 7

MW turbines with 154 m rotor diameters.

Figure 4. 4 Wind turbine layout in Hornsea Project 1 and 2

Floating offshore wind turbines—which are the targeted structure, on the other hand, are
designed for deeper waters where fixed-bottom foundations are not feasible or economically
viable. As discussed in Sec. 4.1, in order to ensure the causality for future predictions, the ratio
of spacing and water depth should be at least equal to three (x/d = 3). Since the turbines is
targeted to be floating, deeper water assumption should be adopted to find the ratio. As a rule
of thumb, sites with at least 200 m of water depth can be considered appropriate for FOWTs
installation. Reiterating the prediction arrangement presented based on Figure 1.3(a), it can
be agreed upon that the “main” filtering is carried out in the black dots, where the Fourier
coefficients are first being estimated. After incorporating the spatial distance as explained in
Sec. 4.2, the future predictions at gray dots can be determined. Based on this, it becomes

apparent that the spatial distance is varied depending on the location of the gray dots relative
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to the black dots. However, the smallest x/d is found to be 5 if it is assumed that the spacing
between each turbines is around 1 km. This means that in any case the causality limitation is
fulfilled for the case of deeper water wind farm. Moreover, it is expected that the spatial
distance between turbines will become bigger and bigger due to the larger turbine expected to
take over the market as explained previously. Therefore, it is expected that the findings of the

study can be feasibly applied to both current and upcoming floating wind farm projects.
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Chapter 5

Future predictions results on multiple floating bodies

5.1 Subject structure and tank set-up

The experiment takes place at Osaka University in a two-dimensional tank. Based on the TFs
of the model, the tank test can be separated into two phase. Phase 1 accounts for the
experiment considering resonance free models, while phase 2 is the test that utilizes models
with resonance. Figure 5.1(a) and (b) present resonance free model, while Figure 5.1(c) and
(d) show the model with resonance. The drafts of the model are 12 and 59 mm for the
resonance free model and model with resonance, respectively. The primary component of both

floating models is a rectangular box made of 3 mm thick acrylic plate.

For the resonance free models, the dimensions of the box are as follows: length (L) of 500 mm,
width (W) of 280 mm, and height (h) of 40 mm. The model's draft is set at 12 mm using lead
(Pb) as ballast. A vertical tower, made of cylindrical acrylic with an outer diameter of 30 mm
and an inner diameter of 26 mm, is positioned at the center of the model. Atop the tower, a 50
mm rectangle made of 3 mm acrylic plate is attached. The tower and rectangle plate are
important for ensuring the accuracy of optical tracking measurements, which will be discussed
further in the subsequent section. The overall height of the model from keel to top measures
311.3 mm.

For the models with resonance, the main box is in general shorter in x direction and taller in z
direction. To be exact, the length (L), width (W), and height (h) of the main floater for this
model are respectively 200 mm, 280 mm, and 80 mm. Similar to the resonance free model, a
vertical tower, made of cylindrical acrylic with an outer diameter of 30 mm and an inner
diameter of 26 mm, is positioned at the center of the model. A 50 mm x 50 mm plate with
thickness of 3 mm is also placed on top of the cylindrical tower. The total height from keel to

tower top for this model is 317 mm. Steel is used as ballast to reach draft of 59 mm.

A total of three models, all having the same design, are taken into consideration for each phase
of the experiment. These models are placed approximately 3 m apart from each other within
the two-dimensional tank. For experiment considering resonance free models (or phase 1),

first model is positioned at a distance of 2 m from the wave-maker. To distinguish them based
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on their proximity to the wave generator, they are named Model 1, Model 2, and Model 3
respectively, starting from the nearest one. The water depth (d) is set at 0.4 m. In relation to
Model 1 (which serves as the reference point), the x/d ratios for Model 2 and Model 3 are
roughly 7.5 and 16 respectively, meeting the criteria for causality (see Chapter 4). The tank
has a breadth of 0.3 m and a length of 14 m.

The next experiment considering the models with resonance (phase 2) is carried out in the
same 2D tank assuming the same water depth (0.4 m). For this phase, the distance between
Model 1 and Model 2 is around 3.5 m, while the space between Model 2 and Model 3 is
approximately 3.8 m in the tank. Model 1 is located around 2 m from the wave maker. The x/d

ratios for Model 2 and Model 3 from Model 1 are about 8.7 and 18 respectively.
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Figure 5. 1 Model visualizations (a) Design visualization of the resonance free model (b) A
resonance free model on the 2D tank (c) Design visualization of the model with resonance

(d) A model with resonance on the 2D tank
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A schematic diagram of the tank setup is provided in Figure 5.2, which also depicts the
measurement system. This set-up applies for both phase 1 and 2 of the experiment, especially
in the context of wave gages placement. The specifics of the measurement system will be
explained in the subsequent section. The experiment involves gathering data for both regular
waves and irregular waves. The regular wave data is utilized to be compared with the
numerically calculated transfer functions (TFs). The method used to calculate the simulation
TFs can be found in Sec. 5.4. Meanwhile, the irregular wave data is used for the Kalman filter

and future wave prediction.

For the case of phase 1, fifteen different periods of regular waves are considered, ranging from
0.6 to 1.3 s (corresponding to 4.83 to 10.47 rad/s), with an increment of 0.05 s between each
wave period. Meanwhile, even though phase 2 considers the same wave period range (0.6 to
1.3 s) for its regular wave test, a total of 77 regular wave tests are conducted to help finding the
definite peak of the resonance. Moreover, various cases of irregular waves assuming the
JONSWAP spectrum are also examined. For more detailed information regarding the wave

conditions, refer to Sec. 5.3.
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Figure 5. 2 Experiment set-up (a) Side-view (b) Top-view
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5.2 Measurement system

This section describes the measurement system and sensors arrangement used during the test
in the 2D tank. Firstly, it is needed to declare that the measurement system described in this
section is applied in the same manner during phase 1 and 2 of the experiment unless mentioned
otherwise. The purpose of the tank test is to retrieve the TFs and compare them with the
simulated transfer functions (TFs), validate the Kalman filter algorithm, and prove the
feasibility of future predictions using the spatial distance between two objects. In order to
achieve these, it is crucial to accurately capture the responses of the structures and the time
histories of the waves. The wave time histories are measured using wave gauges, with a total of
three wave gauges being utilized. These wave gauges are positioned in front of each model,
indicated by black circles in Figure 5.2. For the case of phase 1, the wave gauges corresponding
to Model 1, Model 2, and Model 3 are respectively placed at distances of 0.15 m, 0.13 m, and
0.1 m in front of the model. For phase 2, the wave gauges are located 0.3 m, 0.27 m, and 0.47
m in front of Model 1, Model 2, and Model 3, respectively. Throughout the experiment, efforts

are made to maintain these distances constant.

Regarding the mooring system, only Model 1 is moored using a soft rubber band, while Model
2 and Model 3 are left unmoored due to minimal drifting. The rubber band is selected for its
low stiffness, minimizing interference with the rigid body movement. One end of the rubber
band is attached to the base of the tower, while the other end is connected to a lever holding

the wave gauge situated in the negative-x direction of the model.

The measured responses of the structure include the displacement and accelerations of the
rigid body. An optical motion tracking system called OptiTrack is used as the primary
measurement system to capture the rigid body displacement, particularly focusing on heave
and pitch. Four high-speed cameras are employed to assist the OptiTrack system. These
cameras track the movement of track markers placed on the top of the tower to ensure visibility.
Each model is equipped with three markers. Initially, the goal is to capture the displacement of
all models. For this purpose, the four cameras are set up as depicted in Figure 5.2 (represented
by green boxes). A real depiction of this high-speed camera can be found in Figure 5.3.
However, after analyzing the data obtained in a preliminary test, it was discovered that the
high-speed cameras were not reliably detecting the rigid body movement due to the narrow
space compared to its length. Therefore, the camera setup is modified to the configuration
shown in Figure 5.4 to ensure data quality for the remainder of the experiment. The revised

setup focuses on capturing the rigid body motion of Model 1 and Model 2.

In addition to the optical tracking for motion measurement, Model 2 and Model 3 are each

equipped with a single-axis accelerometer to capture their vertical acceleration. The
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accelerometer data serves as a backup since it is known to be quite noisy, whereas the optical
tracking measurement signal is more reliable in this aspect. The signals from both sensors are
synchronized in the time domain, and a sampling rate of 100 Hz is used for all the sensors
involved. To eliminate high-frequency noise from the measurement data, a Butterworth filter
is applied. The filter order is set to five, and its cut-off frequency is determined to be 5 Hz.

This filtering process helps to refine the data by removing unwanted noise.

Oprilrack

Figure 5. 3 A high-speed camera in the optical tracking system

X Track marker A cclerameter .l

‘\ Length :14 m 0

Figure 5. 4 Altered cameras set-up illustrated (top-view)

5.3 Test matrix

The wave test is conducted to examine both regular and irregular waves. Data from the regular
wave test is utilized to validate the transfer functions (TFs) obtained from simulations. These
TFs are particularly important for wave prediction at Model 1, where the wave is predicted

using the Kalman filter algorithm. The wave time series generated by the Kalman filter
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algorithm are then used to predict future waves on Model 2 and Model 3, taking into account
their spatial distances relative to Model 1. More details regarding the regular wave cases for
resonance free model can be found in Table 5.1. Meanwhile, regular wave cases for model with
resonance is given in Appendix due to the longer list and to avoid redundancy as the frequency

range is the same as phase 1 anyway.

Table 5. 1 Regular wave cases of resonance free model

Case Wave circular Wave Measu‘red wave
no. frequency (rad/s) | period (s) amplitude at
Model 1 (mm)
1 4.83 1.30 479
2 5.03 1.25 4.45
3 5.24 1.20 4.93
4 5.46 1.15 5.09
5 5.71 1.10 557
6 5.98 1.05 518
7 6.28 1.00 4.61
8 6.61 0.95 5.26
9 6.98 0.90 4.9
10 7.39 0.85 4.00
11 7.85 0.80 3.09
12 8.38 0.75 4.98
13 8.98 0.70 557
14 9.67 0.65 6.23
15 10.47 0.60 8.02

In addition to regular waves, data retrieval for irregular waves is also performed to serve as
input and reference for the wave predictions. Table 5.2 provides specific information about the
environmental conditions and the cases considered. Here, the same index number in “case
name” column indicates the same wave conditions. Six JONSWAP spectra (long-crested
waves) with varying significant heights (Fs) and periods (75) are adopted. The spectrum
ranges from 3.77 to 17.58 rad/s. In this table, the index number corresponds to a specific
combination of Hs and 75 for the wave, while the model condition indicates whether the
experiment and subsequent prediction involve the presence of a model or not. Two types of
model conditions are utilized: no model (NM) and with model condition, in which it is further

divided into RF (resonance free) and WR (with resonance) cases. For RF cases, the data being
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analyzed and discussed are coming from the experiment that uses resonance free models.
Meanwhile, WR cases discuss prediction based on data obtained on the 2D experiment that

utilizes models with resonance.

The no model condition is considered to represent the purest form of linearity between input
(wave) and output (typically responses) for the Kalman filter algorithm. According to Equation
(2.14), the relationship between input and output signals can be described using the response
amplitude operator (RAO, G) and phase (¢) functions. Under ideal conditions, where the
input and output signals are identical, the RAO and phase functions are typically represented
as 1 and 0, respectively, across all elementary wave components. The NM conditions are

justified based on this premise.

Table 5. 2 Irregular wave cases, its index description, and cases name

Wave Significant | Significant | Index Model
. . . Case name
spectrum | height (mm) | period (s) | number | condition
NM* NM_1
0.95 1
RF* RF_1
30
NM NM_2
0.87 2
RF RF_2
NM NM_3
0.95 3 RF RF_3
JONSWAP
15 WR* WR_3
NM NM_4
0.87 4 RF RF_4
WR WR_ 4
0.95 5 WR_5
20 WR —————
0.87 6 WR_6

*NM: no model, RF: resonance free, WR: with resonance

5.4 Boundary Element Method (BEM) solver

Before discussing the main results from experiment, a simulation intended to validate and
compare with the data obtained from experiment is needed to be carried out. For this purpose,
simulation code developed based on the boundary integral equations is adopted. Boundary
integral equations are a traditional approach used to analyze boundary value problems

associated with partial differential equations. The term "boundary element method", or BEM
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encompasses any technique used to numerically approximate the solutions to these boundary
integral equations. The distinctive characteristic of the BEM's approximate solution to the
boundary value problem is that it precisely satisfies the differential equation within the domain

and is represented by a finite set of parameters located on the boundary.

In the field of potential flow theory for water wave-body interaction problems, different
numerical models have emerged over the last 50 years or so, thanks to advances in numerical
computation (Papillon, Castello, & Ringwood, 2020). The biggest issues in solving potential
flow problems lie in the computation of the nonlinear free-surface boundary condition
equations, and in the treatment of the body boundary condition (in the case of freely moving
bodies) which takes into account the relative motion between the moving body and the
unsteady free-surface elevation. Different levels of assumption are made in the treatment of
those conditions, which lead to more or less complex models. Figure 5.5 summarizes the
“mathematical assumption routes” that may be taken when boundary element method is
adopted to solve the partial differential equations in potential flow theory. Technically
speaking, both the free-surface Green function and Rankine singularity serve as Green
functions. However, for the sake of convenience, the "free-surface Green function" will be

simply referred as the "Green function" in this study.

When tackling potential flow problems involving a body, two separate tasks must be addressed:
solving the equation governing the motion of the body and solving the equation governing the
fluid (potential flow problem). These two aspects are interconnected through the
hydrodynamic forces exerted on the body. The approach taken to solve the problem can vary
depending on whether a Green function method or Rankine sources are employed. Under the
assumption of small wave steepness and small body, the hydrodynamic forces acting on a body
can be found using the Green function formulation, which will be adopted in this study. This
formulation enables the analysis performed in either the time-domain or frequency domain
analysis. For the purpose of validating the TFs retrieved from the experiment, the frequency
domain analysis is considered. The coordinate system and notations related to this section is

shown in the Figure 5.6.

Let  and ) be the total potential and total complex velocity potential for wave with angular
frequency of w. Based on the Green function theorem, the total potential is given in Equation
(5.1), where the total velocity potential can be expressed as Equation (5.2). Here, 1, ¥p and
Yy are the complex incident, diffraction, and radiation velocity potential, respectively. Further,
the complex incident velocity potential can be described as Equation (5.3), where a,, is the
wave amplitude, g is gravitational constant, d is water depth, and is the k wave number.

Meanwhile, the complex generalized hydrodynamic forces can be found by integrating the
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pressure acting on the wetted surface (S,,). This may be expressed as Equation (5.4), where n

is the generalized unit normal vector.

wave
X

V [ Q >* <
\/

/ |
free surface S /‘

wetted surface S,

S—

/7

radiation
bottom of water Sp surface far
\j from body S,

Figure 5. 6 Coordinate system and notations

) = Re (¢e—iwt) .................................................................................................................. (5.1)
P = Py P T Pg weererereereree e e (5.2)
Wo = _%%ﬁ;@eikox ................................................................................................. (5.3)
Fh; = ffsw Re (ipa)l/)ie_i“’t)noi ds = Re (Fhie_i“’t) .............................................................. (5.4)
where,

Fh; = ipw st(lpo +Yp)n; ds + Z?=1 ipwV; ﬂsw ¢Rjni S vrrnnrrerrrrrrrrriiiieee et (5.5)

The first and second terms on left-hand side of Equation (5.5) may respectively be further
referred as excitation forces (F¢*) and radiation forces (FF) as seen in the Equation (5.6). The
difference between F¢* and F¥ lies in the situation of the body itself, with F¢* are the forces
exerted on the stationary body, while FR are the present forces when the body is in motion,

without the existence of the incident wave.
Fh; = F* + Ff .................................................................................................................... (5.6)

For the case of F¢*

¢*, it can be further decomposed into forces caused by the pressure of the

incident wave (further referred as Froude-Krylov forces, or FfX) and diffraction forces (F?).
This can be expressed mathematically as Equation (5.7). Another mathematical definition of

the excitation forces can also be found in Equation (5.8).
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ngex = FfK + FlD = lp(l) ffswll)onl. ds + lp(l) ffsw lpDni (S sveeverrrrnreneeiiiii e (5.7)

Fexi(t) =Im ((FfK + F?)e—iwt) ........................................................................................... (5.8)

Meanwhile, the radiation forces can be described as shown in the Equation (5.9). Here, fij
represents the force applied in the i direction as a result of a unit velocity motion in the jth
degree of freedom and V is the velocity of the moving body. Then the total radiation load can
be described as shown in the Equation (5.10) and (5.11).

FE = 531 1p\) ff; g ds = By fijVjeeesmseesmsssmsssnsissnsinssnstessc (5.9)
Fr, () = Re (f;Vie™@t) = Re [(Re fyj + Im fy;) Ve 70| covverrrrssssssisiiiiiiiiiivvinennneesssss (5.10)
or,

Fp,(£) = — (p I, Re (lPRj)ni ds))'('j _ (p If;, 1m (%,-)m ds) A —— (5.11)

where X] =V and)'('j = —iwV

As seen in the Equation (5.11), the radiation forces consist of two components: one that is
proportional to the acceleration of the body and another that is proportional to the velocity of
the body. Based on this understanding, the added mass and damping term arisen from radiation
forces can be defined and shown respectively in the Equation (5.12) and (5.13). These terms
are adopted to the equation of motion, and after incorporating the excitation forces, the

equation of motion to be solved is shown in the Equation (5.14) and (5.15).

Ag, = pﬂsw Re (¢Rj)nl, ds = llm (Fig) eemmmmssssssmssssssssssssssssssssssssssssssss s (5.12)
BRij = pffswlm (ij)ni e Y § ) R AR RIS (5.13)
(M +ARji)Xi(t) + BRjin(f) Ky Xi(£) = FERemOh st (5.14)

substituting X (t) = Re(Xe~i?),

[_wZ (Mﬁ + ARﬁ) — i(‘)BRji + KHji] X; = FJ?X ..................................................................... (5.15)

5.5 Transfer functions comparison

The simulated transfer functions (TFs) obtained based on the description mentioned above
are compared with the experimental TFs, focusing on heave and pitch responses in terms of

both amplitude (RAO) and phase. The experimental RAO and phase functions are obtained
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from the regular wave experiments by applying Fast Fourier Transform (FFT) to the data. The
phase TFs play a crucial role in the Kalman filtering process, as this study focuses on time
domain data. The phase TFs can be effectively obtained by calculating the phase difference
between the wave and the response. The RAOs are always normalized by dividing the response
amplitude by the wave amplitude measured at Model 1. Ideally, the undisturbed wave data
should be used to capture the hydrodynamic effects between the models. However, due to data
limitations, the wave measured at Model 1 is utilized instead. This is applicable for data
involving resonance free model and model with resonance. Figure 5.7 displays the TFs for the
pitch and heave response belong to resonance free model, while Figure 5.9 shows the TFs for

pitch and heave of model with resonance.

Firstly, TFs from resonance free model is discussed. The BEM simulations are carried out two-
dimensionally using in-house code assuming three degrees of freedom (surge, heave, and
pitch). In Figure 5.7, the dark grey lines represent the simulation results, the black dots
represent the experimental results for Model 1, and the grey dots represent the experimental
results for Model 2. When directly examining the retrieved time domain data, it can be
observed that the wave amplitude for long waves at Model 1 remains consistent with a
sinusoidal shape, whereas shorter waves exhibit the opposite trend. This indicates that
nonlinearity effects are less prominent in longer waves compared to shorter waves, resulting in
more noticeable differences in RAO between Model 1 and Model 2 in the higher frequency

domain.

The comparison between the retrieved TFs from the experiment and simulation also reveals
differences in terms of their curve regularity as seen in Figure 5.7(a) and (c). The plot
generated from simulation appears smoother, while the experimental-based plot exhibits more
waviness, particularly in the lower frequency range. This irregularity in the experimental data
can be attributed to hydrodynamic interactions among the three floats and reflections from the
end wall, which may have affected the consistency of the data. When extracting the TFs from
the experimental data, it was ensured that the sinusoidal data used for calculations were among
the first ten perfectly developed sinusoidal waves, aiming to minimize the influence of
reflection waves. However, for lower frequency waves, which correspond to longer periods, the
wave reaches the end of the tank more quickly, resulting in faster arrival of reflection waves.
Furthermore, wave interactions between floating bodies are expected to be more significant in
the lower frequency range due to the relatively closer distance between the models when the
wavelength is longer. Despite these encountered problems, the simulation and experimental
TFs generally exhibit acceptable values in comparison to each other. To enable filtering for RF
cases, the retrieved TFs from the experiment are combined with the simulated TFs to achieve

a wider spectrum range. The spectrum assumed for the irregular wave test covers a range from

3 to 16 rad/s.
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Next, discussion on the TFs of model with resonance is given. Unlike the resonance free model,
the simulations for model with resonance are carried out three-dimensionally using a BEM
solver tool called Nemoh. The mesh of this model can be found in Figure 5.8. The results of
simulated TFs and experiment TFs are given in Figure 5.9. Similarly, pitch and heave TFs are
compared in this figure. Results from simulation are indicated with grey lines, while results
based on experiment are indicated by black dots. Looking at the presented results, it is pretty
clear that the experiment vs simulation results are not as congruent as TFs results comparison

of resonance free model.

Firstly, the RAO results are discussed. For pitch, the results can be seen in Figure 5.9(a). Initial
simulation results (grey lines) indicate a poor match with the experiment data (black dots). A
better fit is found after center of gravity to metacenter distance (GM) and damping coefficient
in the simulation is tuned. The result from simulation after tuning is indicated by grey dots in
Figure 5.9(a). However, these tunings need to be proven practically, especially when it comes
to GM since the value of GM is initially found mathematically at 6.7 cm and recheck has been
done to ensure the value is correct. To further ensure the value of GM, a subsequent
experiment was conducted. In this experiment, heeling angles were measured using optitrack
by adding a small weight of m gr at a distance of x centimeters from the center of the structure.
The experiment allowed for the calculation of GM using Equation (5.16), where M, represents
the mass of the structure and e denotes the heeling angle. Four different weights (100, 200,
250, and 300 gr) were employed, while x remained constant at 8.8 cm. Interestingly, the
experimentally obtained GM was found to be 7 mm shorter than the analytical values. Figure
5.9(a) illustrates the pitch RAO functions assuming the experimentally obtained GM,
represented by disconnected grey lines. From these findings, it can be concluded that the
simulated pitch resonance peak approaches closer to the experimental results, but does not
precisely match. The observed difference could be attributed to the oversight of the limitations
on the heeling angle values during the follow-up experiment conducted to determine GM.
Theoretically, Equation (5.16) is applicable only for small angles, and the heeling angle of the
scaled model during the experiment should have been limited to a maximum of 2 degrees (ith
H, #H, 5, & PN, 2013). However, the heeling angle from the experiment ranges from 2.4
to 7.4 degrees. It is also advised that instead of keeping the x distance constant, the same
weight should be used while the x distance is shifted. Therefore, it is recommended to conduct
another experiment to determine the corrected value of GM based on the aforementioned

recommendations.

_ mx
(Mg+m) tane

GM

For the case of heave RAQ, it can be concluded that simulation and experiment data generally

give a much better match when compared as seen in Figure 5.9(c). The most noticeable
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discrepancy is found to be the trend of RAO data within the frequency range of around 6 to
8.5 rad/s. Upon further investigation, it is discovered that coupled motions with roll are

substantial in this frequency range, hence affecting the RAO of heave.

Lastly, the phase functions of the model with resonance are examined. Figure 5.9(b) and (d)
illustrate the pitch phase functions and heave phase functions, respectively. The heave phase
functions demonstrate a stronger agreement between the simulation and experiment compared
to the pitch phase functions, similar to the RAO functions. As seen in Figure 5.9(d), the heave

experimental phase functions cluster around the same values as the simulated phase functions.

To analyze the pitch phase functions, simulation data based on tuning is utilized due to the
closely matched trends observed between the simulation and experiment in the amplitude
domain TFs. In Figure 5.9(b), the simulated pitch phase functions based on tuning are
represented by grey dots. Comparing them with the experimental phase functions, it is noted
that the results align closely in the lower frequency range, up to approximately 8 rad/s.
However, this correspondence is expected, as the discrepancy in the RAO between the
simulation considering tuning and the experiment increases beyond the frequency of
approximately 8 rad/s. Hence, a similar phenomenon is anticipated in the phase functions. To
address the discrepancy in the phase functions, it is necessary to achieve better agreement in
the amplitude domain functions as well. As mentioned earlier, conducting another careful
experiment to determine a corrected value of GM might be the most logical initial step in
identifying the cause of the issue. Meanwhile, for the time being, predictions related to the
model with resonance (WR cases) are performed solely using data unrelated to pitch. Unlike
the free resonance model filtering (RF cases), the simulated TFs will be considered assuming

a frequency range from 3 to 16 rad/s.
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Figure 5. 7 TFs comparison between experiment and simulation of resonance free model (a)
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Figure 5. 9 TFs comparison between experiment and simulation of model with resonance (a)
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5.6 Wave profile identification

This section focuses on the outcomes of identifying the wave profile using the Kalman filter in
Model 1. In this case, the wave profile is determined by incorporating the response data (heave
in this case) obtained from an experiment as input in the Kalman filter algorithm. The
predicted wave profile is then compared to the wave gauge data. Just like results in Chapter 3,
in order to simplify the analysis, the accuracy is measured using the correlation coefficient ()
from this point forward. The correlation coefficient values range from -1 to 1, with a value of
1 indicating a perfect match between the predicted and measured signals. Equation (3.1) can
be used to calculate the correlation coefficient (ry,), with X representing the wave reference

data and Y representing the wave prediction data.
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The assumed elementary waves for all Kalman filter (KF) predictions are 80. Based on
explanation in Sec. 2.3, the state variables then can be determined as 160, with n, being 80
and ng being 1. Table 5.3 provides the correlation coefficients (r,) for all the assumed cases.
The numbers listed alongside the 7, values represent the assumed KF filtering time (referred
to as T), which is varied at 25, 40, and 55 s. Generally, a minimum r,, value of approximately
0.8 is considered indicative of "good results". Figure 5.10 provides additional visual context by
comparing the predicted and reference waves for three specific cases: NM_3 with r,,, ,5 = 1.0,
RF_3 with 7y, ,5 = 0.8 and WR_3 with r,, ,5 = 0.78. Here, the subscript value of 25

corresponds to the assumed KF filtering time T done in the unit of seconds.

Table 5. 3 Correlation coefficient of KF results at Model 1

Case name Ty 25 Ty 40 Txy 55

NM_1 0.979 0.950 0.937
NM_2 0.966 0.954 0.962
NM_3 0.975 0.940 0.926
NM_4 0.970 0.955 0.952
RF_1 0.799 0.507 0.432
RF_2 0.801 0.633 0.501
RF_3 0.813 0.718 0.649
RF_4 0.836 0.706 0.636
WR_3 0.782 0.703 0.662
WR_4 0.793 0.660 0.612
WR_5 0.815 0.670 0.633
WR_6 0.804 0.717 0.697

According to the defined "good results standard," it can be observed from Table 5.3 that the
NM cases exhibits different tendencies compared to RF and WR cases. NM cases consistently
yield high-accuracy results for all assumed filtering times, while the accuracy of RF and WR
cases decreases as the filtering time increases. This disparity is natural due to the presence of
hydrodynamic effects and reflection waves (especially for RF cases), which impact the high-
frequency wave region. The simulation, as discussed in the previous section, only considers
linear waves, resulting in greater difficulty for the filter to accurately predict waves in the higher

frequency range that occur later.
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5.7 Future wave prediction results

This section focuses on discussing future wave predictions carried out in Model 2 and Model
3. With the knowledge of elementary wave coefficients from the Kalman filter in Model 1, the
wave profile in Model 2 and Model 3 can be determined using Equation (4.8). The spatial
distances (x) for RF cases between Model 2 and Model 1, and between Model 3 and Model 1,
are 2.98 m and 6.55 m, respectively. Meanwhile, for WR cases, the spatial distance of Model 2
and Model 1 is 3.47 m, and the distance between Model 3 and Model 1 is 7.27 m. Since the
water depth (d) is 0.4 m, it satisfies the condition x/d > 3 for all cases, fulfilling the causality

criteria explained in Chapter 4 and justifying the future wave analysis.
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Figure 5. 11 Experimental vs KF-based wave histories (a) Wave at Model 2; case RF_3; KF
T:25s (b) Wave at Model 3; case RF_3; KF T: 25 s
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Figure 5. 12 Experimental vs KF-based wave histories (a) Wave at Model 2; case WR_3; KF
T:25s (b) Wave at Model 3; case WR_3; KF T: 25 s

Given that the input wave at the reference point has been decomposed using the Kalman filter
algorithm in the previous step, the wave time series at a distance x away from the reference
point can be plotted for 0 < t < T + At using Equation (4.7), where At represents the future
time. Consequently, the wave profiles in Model 2 and Model 3 can be calculated using the

elementary wave coefficients for T = 25 s in Model 1.

Figure 5.11(a) and (b) illustrate the wave time histories at Model 2 and Model 3, respectively,
obtained using the aforementioned method for the RF_3 case with KF T = 25s. The same
results for case WR_3 is given in Figure 5.12(a) and (b). From these particular examples, it can
be observed that Model 3, which has a greater distance (x) from Model 1, exhibits a longer

predictable future time. The correlation coefficients (ry,) consistently hover around 0.8,
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especially for RF cases, when the assumed future predictable times at Model 2 and Model 3 are
3 and 8 s, respectively. For WR cases, the future predictable time are found to be longer, that
is as long as 5 and 10 s at Model 2 and Model 3, respectively. This is found to be reasonable as
it has been stated in the beginning of this section, the distance between Model 2 and Model 1,
and Model 3 and Model 1 of WR cases are slightly longer compared to the RF cases. Hence,
the aforementioned finding of “alonger spatial distance will result in a longer predictable future
time as well, assuming the water depth remains the same” is further proven. Table 5.4 provides
complete data on 1, during the future predictable time for Model 2, while Table 5.5 presents
the same data for Model 3 for both RF and WR cases.

In the following comparison, future wave predictions at Model 2 are examined using two
different methods. Initially, when utilizing the previously mentioned method, the future
predictable time at Model 2 is consistently determined to be only 3 s ahead for RF cases.
Therefore, a direct comparison is made by assuming Kalman filter (KF) prediction directly at
Model 2. In this scenario, the ¢ term in Equation (4.7) can be disregarded, and the output
vector of the system in Equation (2.5) represents the response of Model 2, specifically the
heave motion. Consistently, it is observed that adopting the spatial distance method is more
favorable due to the existence of the spatial distance, resulting in a longer predictable future
time. Moreover, this method yields higher accuracy. To provide further context, Figure 5.13 is
presented, illustrating three types of data. The dark grey line represents the reference wave
obtained from measurements, the grey line represents wave predictions obtained by adopting
the spatial distance and calculated using Equation (4.7), and the discontinued black lines
represent wave predictions assuming KF is directly applied at Model 2, utilizing Equations
(2.4) to (2.10) with the heave response of Model 2 instead of Model 1 for y in Equation (2.5).
It can be observed that the accuracy deteriorates more rapidly in the future time for the

discontinued black lines scenario.
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Figure 5. 13 Experimental vs spatial distance based wave prediction vs direct KF wave
prediction at Model 2; case RF_3; KF T:25 s
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Table 5. 4 Correlation coefficient of future wave at Model 2 (based on KF T: 25 s)

Case name Ty 28
3 s ahead 8 s ahead 15 s ahead
NM_1 0.932 0.886 0.554
NM_2 0.945 0.820 0.493
NM_3 0.945 0.842 0.477
NM_4 0.893 0.796 0.541
RF_1 0.858 0.584 0.400
RF_2 0.810 0.584 0.408
RF_3 0.762 0.605 0.417
RF_4 0.764 0.585 0.426

Case name Tay.25
5sahead | 10sahead | 15s ahead
WR_3 0.780 0.622 0.442
WR_4 0.751 0.509 0.413
WR_5 0.864 0.571 0.463
WR_6 0.759 0.535 0.441

Table 5. 5 Correlation coefficient of future wave at Model 3 (based on KF T: 25 s)

Case name Ty 25

3sahead | 8sahead | 15sahead
NM_1 1.000 1.000 0.899
NM_2 0.905 0.966 0.617
NM_3 1.000 0.911 0.772
NM_4 1.000 1.000 0.888
RF_1 0.900 0.858 0.567
RF_2 0.772 0.755 0.626
RF_3 0.936 0.861 0.504
RF_4 0.822 0.815 0.461
Case name Tay2s

5sahead | 10sahead | 15 s ahead
WR_3 0.897 0.830 0.676
WR_4 0.823 0.778 0.554
WR_5 0.902 0.797 0.665
WR_6 0.911 0.828 0.626
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The future predictable time window can be explained by examining the correlation functions
of the signals involved. When considering the future predictable time based on direct Kalman
filter (KF) results, the auto-correlation function of the wave at Model 2 is considered. On the
other hand, the cross-correlation function between the wave at Model 1 and the wave at Model
2 or Model 3 is used to explain the future predictable time in predictions based on the spatial
distance. Equation (5.17) is utilized to calculate the cross-correlation of the signal f,(t) and
the signal g.(t) over a time lag of 7 s. In this case, f.(t) represents the time series of wave
elevation at Model 2 or Model 3, and g.(t) represents the time series of wave at Model 1 for
t = T, which is 25 s in this case. The bar symbol indicates the complex conjugates for complex-

valued signals.

(f. % g.) (@) = szmgc(ﬂrf) (L +eeeemeeseneneesesene ettt ettt ettt b et a et n et ne s s (5.17)

Cross-correlation measures the similarity between two signals as a function of their
displacement relative to each other. A value close to zero at a time lag indicates that the two
signals are uncorrelated or perfectly random at that particular time lag, suggesting non-
predictability between the signals. A value close to one indicates strong correlation between
the signals. The same interpretation can be applied to the auto-correlation function, which can
be calculated using Equation (5.17) assuming f,(t) = g.(t), where f.(t)represents the wave
time histories at Model 2 for t = T (25 s in this case).

Figure 5.14 provides further illustration of this explanation. Figures 5.14 (a), (b), and (c)
depict the auto-correlation function of the wave at Model 2, the cross-correlation function
between the wave at Model 1 and Model 2 (referred to as Q»), and the cross-correlation
function between the wave at Model 1 and Model 3 (referred to as Q3) for RF cases considering
KF T = 25 s. In the case of auto-correlation, the signals exhibit strong correlation when the
time difference is zero, indicating an extremely short future predictable time if the spatial
distance is not taken into account. For Q,, the densest correlation is found at around 4 s. This
means that the signal at Model 1 at t = 0 s has the most influence on the signal at Model 2 at
t = 4 s. Similarly, the signal at Model 1 att = —4 s has the most influence on the signal at
Model 2 at t =0 s. Thus, all the information at Model 1 before t = 25 s propagates
(convoluted) to Model 2 up to t = 25 + 4 s or slightly beyond. The same applies to the wave at

Model 3, but in this case, the highest correlation is found at t = 25 s seconds instead of 4 s.
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5.8 Future response prediction results

In theory, the responses of structures can be calculated if the input wave and transfer functions
(TFs) of the structures are known, as described in Equation (2.13) and Equation (2.14). The
wave data obtained and discussed in the previous section are utilized as the input to predict
the response of Model 2 and Model 3. Similar to the prediction of wave time series in Sec. 5.7,
the predictions of time response histories can be obtained using Equation (4.8). Since
satisfactory results are only achieved when T =25 s for RF and WR cases, the response
predictions are focused on these cases. The obtained results are then compared to the response
data obtained from experiments. Given the availability of reference data, the pitch and heave
predictions are performed for Model 2, while the response predicted for Model 3 is its vertical

acceleration.

Table 5.6 presents the values 1y, ,5 during the future predictable time for Model 2, and Table
5.7 displays the corresponding values for Model 3. From these tables, it can be observed that
the prediction of responses has been successfully carried out, except for the pitch response
prediction on Model 2 of WR cases. Figure 5.15 provides a set of examples illustrating the
future responses of heave at Model 2 and vertical acceleration at Model 3 for case RF_1; KF
T:25 s, while the same responses for case WR_3 can be found in Figure 5.16(a) and (b). Note
that the amplitude of heave acceleration at Model 3 for WR_3 case is generally over predicted.
This is caused by the decision of assuming that the heave acceleration RAO at Model 3 equals
to the heave acceleration RAO at Model 1, without taking into accounts the hydrodynamic
interactions among the three floats. Nonetheless, the trend of the predicted heave acceleration

response is found to reasonably fit the experiment data.

Table 5. 6 Correlation coefficient of future responses (based on KF T: 25 s) at Model 2

Case Pitch (ryy 25) Heave (7, 25)

name 3 sahead | 8 sahead | 15sahead | 3 sahead | 8 s ahead | 15 s ahead
RF_1 0.958 0.788 0.619 0.975 0.820 0.580
RF_2 0.952 0.821 0.579 0.956 0.792 0.492
RF_3 0.918 0.723 0.558 0.945 0.811 0.587
RF_4 0.951 0.808 0.592 0.964 0.821 0.542
WR_3 0.976 0.760 0.602
WR 4 Unavailable (see the explanation 0.985 0.733 0.501
WR_5 provided in Sec.5.5) 0.960 0.751 0.557
WR_6 0.972 0.753 0.561
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Table 5. 7 Correlation coefficient of future responses (based on KF T: 25 s) at Model 3

Case Vertical acceleration (yy, 55)

name 3 sahead | 8 sahead | 12 s ahead | 15 s ahead
RF_1 0.988 0.938 0.825 0.764
RF_2 0.867 0.849 0.751 0.613
RF_3 0.917 0.883 0.788 0.681
RF_4 0.978 0.949 0.871 0.824
WR_3 0.951 0.880 0.768 0.667
WR_4 0.881 0.798 0.766 0.635
WR_5 0.934 0.829 0.751 0.647
WR_6 0947 0.858 0.783 0.675

Generally, it can be observed that the future predictable time for responses is found to be
longer than the future predictable time for the associated wave. Specifically, the responses at
Model 2 and Model 3 can be predicted up to 8 s and 12 s ahead, respectively, for both RF and
WR cases. In the previous section, it has been established that the predictable future time at
Model 2 for RF and WR are respectively 3 and 5 s. With the same predictable future time of
response at Model 2 that is as long as 8 s, the excess duration of predictable future time for the
response of RF and WR cases is respectively 5 s and 3 s. Hence, it can be observed that the
excess duration for the predictable future time of WR cases is shorter than RF cases. Based on
this, it can be concluded the properties of the TFs might be the factor that determine the
predictable future time duration of the response, as they are the only additional factor in
Equation (5.6) to obtain the response. A longer future response prediction time (compared to
the future predictable time of the associated wave) can be achieved if the response amplitude
operators (RAO) functions are more significant in the longer wave region. However, if the
response characteristics of the models include resonance in the shorter wave region, it is
expected that the future predictable time for the response would not increase as much.
Nevertheless, this hypothesis needs further verification especially conclusions derived based
on the WR cases as for the time being, simulation TFs are incorporated in the Kalman filter

algorithm for this model rather than its experiment TFs.
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5.9 Summary

This chapter discusses the results of future wave and response predictions of models located
away from a reference point, based on the results of the Kalman filter applied at the reference
point. A series of experiments using scaled models in a 2D tank was conducted to validate this
method. The experiment is carried out under two different phase, namely phase 1 and phase 2.
In phase 1, three identical models with no resonance in their TFs are adopted, while in phase
2, three models with resonance are used. The proposed Kalman filter algorithm accurately
identifies the wave profile around a model by analyzing the measured time series of the model's
response, both for resonance free model and model with resonance cases. However, accuracy
decreases when significant hydrodynamic interactions and reflection waves are present.
Moreover, the study confirms that accurate future wave predictions at a specific point can be
achieved by extending the identified wave from the reference point when considering spatial
distances. It is observed that longer spatial distances result in longer predictable future time.
This can be explained by examining the cross-correlation function between waves at the
reference point and waves away from it. The slope of maximum values of the impulse response
functions may also be used to explain the future predictable time. Future response predictions
are also performed based on the previously mentioned future wave predictions. The study
reveals that the predictable time for responses exceeds the predictable time for the associated
wave input, with its excess duration depends on the response characteristics of the models.
However, additional confirmation is required for the findings drawn from phase 2 results. This
is due to the decision of utilizing simulation TFs in the Kalman filter algorithm instead of

experimental TFs, for the time being.
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In summary,

82

The proposed Kalman filter accurately identifies the wave profile around the model for
both resonance-free and resonance-included cases based on 2D tank experiment data.
Extending the identified wave from the reference point allows for accurate future wave
predictions at specific points, considering spatial distances.

Longer spatial distances result in longer predictable future time due to the cross-
correlation function between waves at the reference point and distant waves.

Future response predictions are performed based on the future wave predictions, and the
predictable time for responses exceeds that of the associated wave input, where the excess

duration depends on the response characteristics of the models.



Chapter 6

Conclusions and future works

6.1 Conclusions

This study investigates the feasibility of using the Kalman filter algorithm to predict the future
waves and responses using measurement data on multiple floating bodies targeted to be
implemented in digital twin system of a wind farm. The prediction is based on the coefficients
of elementary waves that constitute the overall wave spectrum. Firstly, the real-time prediction
results using Kalman filter based on two different designs of FOWTs are compared, where the
main difference lies on the corresponding TFs. Shortly, the first structure has steeper and
peakier RAO compared to the second one. The next part of the study proposes a method for
predicting future waves and responses of models located away from a reference point, based
on the results of the Kalman filter applied at the reference point. Experiment on 2D tank using
simplified floating models is conducted to prove the proposed method feasibility. The 2D tank
experiments can be further broken down into two phase. In phase 1, resonance free models are

adopted, while in phase 2, models with resonance are utilized.

e For the case of wave prediction carried out using FOWT designs, it is consistently found
that structure with steeper and pronounced peak in the RAO function gives less accurate
wave estimation results. The finding is further solidified when results from 2D tank
experiment are considered. Overall, resonance free model exhibit higher accuracy
compared to the model with resonance due to the absence of nonlinearity effects in

resonance free model.

e Prediction accuracy can be improved by combining different measurement data. However,
this should be done with caution as combining different responses to the filter affects

observation matrix size that influences the computational time.

e Filtering results based on the simulation and experiment using two FOWT designs point
out that nonlinearity from combined loads plays a big role on the prediction results. If the
nonlinearity caused by the combined loads is high, the prediction accuracy will be highly
affected as well. This finding is valid the other way around. Still, it is foreseen that wave

prediction based on Kalman filter should be effective for FOWT. One of the design
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introduced in this study is indeed characterized by its peaky resonance and high degree of
nonlinearity from combined load. Nevertheless, this is rather an odd design specially
crafted for research purpose. The other design, which consistently demonstrates
satisfactory accuracy across all case studies, aligns more closely with the commonly

preferred response characteristics when designing FOWT.

e The experiments conducted at the 2D tank confirm that accurate future wave predictions
at a specific point can be achieved by extending the identified wave from the reference

point when considering spatial distances.

e Itis observed that longer spatial distances result in longer predictable future time. This can
be explained by examining the cross-correlation function between waves at the reference

point and waves away from it.

e Lastly, it is found that the predictable time for responses exceeds the predictable time for
the associated wave input. This applies to both resonance free models and model with
resonance. However, it is observed that the excess duration of the predictable future time

of responses on the model with resonance is shorter than the free resonance model.

6.2 Future scopes

The study demonstrates the effectiveness of real-time wave identification around a model using
the Kalman filter algorithm. It also successfully predicts future waves and responses for
different models located away from the reference model. The findings suggest that
implementing this system in a wind farm could optimize the operation and maintenance
processes, potentially reducing maintenance costs. Further research is recommended to
revalidate the future predictability of responses by considering models with resonance in higher
frequency regions. Additionally, improvements in the algorithm, particularly regarding floating
body interactions and reflection waves, are necessary to validate the effectiveness of the
proposed method. Conducting experiments in a longer tank, such as a towing tank, using less
simplified models is suggested to thoroughly examine the interaction between floating bodies,
reflection waves, and their impact on prediction results. When it all has been done, then a real
scale test at sea is needed, especially to check the assumption that dispersion relations remain

constant at all point would still hold true.

Moreover, for practical applications on FOWTs, a thorough analysis is required to determine
the appropriate measurement data and location. It is essential to carefully consider these factors

when applying the Kalman filter algorithm in real-world scenarios. Short-crested wave cases
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should also be investigated since the present investigations basically covers only long-crested
wave cases. To achieve this, NK-UTWind needs to be improved. It is noted that Komoriyama
(2023) has validated and extended the currently used Kalman filter algorithm to predict short-
crested wave using a ship model as the subject structure. However, there is still a need for a
dedicated study to assess the feasibility and effectiveness of the Kalman filter algorithm in

predicting short-crested waves specifically for FOWT.

Last but not least, it has been proven that Kalman filter is heavily relied on the assumed TFs.
Hence, extending the algorithm in a way that it is able to automatically update the TFs based
on the input response is proposed. For cases with high nonlinearity, it is suggested to combine
Kalman filter—that is light in algorithm, with Neural Network (NN). NN is known to have the
ability to handle nonlinear prediction. However, the effectivity is highly dependent on the

training data provided.
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Appendix 1

Table of regular wave cases for model with resonance

Measured wave

Case Wave circular Wave )
no. frequency (rad/s) | period (s) height at Model 1
(mm)

1 4.83 1.30 3.14
2 4.83 1.30 7.47
3 5.03 1.25 6.41
4 5.24 1.20 10.28
5 5.24 1.20 12.16
6 5.46 1.15 8.33
7 5.46 1.15 10.34
8 5.46 1.15 12.11
9 5.71 1.10 8.73
10 5.71 1.10 8.89
11 5.71 1.10 11.25
12 5.71 1.10 13.38
13 5.98 1.05 8.83
14 5.98 1.05 10.88
15 6.04 1.04 8.04
16 6.04 1.04 9.98
17 6.10 1.03 6.31
18 6.10 1.03 8.10
19 6.22 1.01 6.74
20 6.22 1.01 8.33
21 6.28 1.00 9.47
22 6.41 0.98 8.97
23 6.41 0.98 11.24
24 6.61 0.95 8.52
25 6.61 0.95 8.41
26 6.61 0.95 10.37
27 6.76 0.93 7.16
28 6.76 0.93 9.05
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94

29 6.83 0.92 6.92
30 6.83 0.92 9.57
31 6.83 0.92 12.02
32 6.98 0.90 9.03
33 6.98 0.90 12.60
34 7.06 0.89 9.74
35 7.06 0.89 13.41
36 7.22 0.87 8.26
37 7.22 0.87 11.55
38 7.31 0.86 6.94
39 7.31 0.86 9.24
40 7.39 0.85 6.98
41 7.39 0.85 9.95
42 7.57 0.83 9.88
43 7.57 0.83 14.67
44 7.66 0.82 11.95
45 7.66 0.82 16.17
46 7.85 0.80 6.03
47 7.85 0.80 7.58
48 7.85 0.80 11.51
49 7.85 0.80 14.77
50 8.06 0.78 8.58
51 8.06 0.78 11.04
52 8.06 0.78 13.02
53 8.16 0.77 8.19
54 8.16 0.77 9.96
55 8.16 0.77 11.41
56 8.16 0.77 14.04
57 8.38 0.75 6.54
58 8.38 0.75 8.22
59 8.38 0.75 9.65
60 8.49 0.74 6.83
61 8.49 0.74 7.57
62 8.49 0.74 10.16
63 8.61 0.73 5.96
64 8.61 0.73 7.00
65 8.61 0.73 12.35
66 8.85 0.71 5.21




67 8.85 0.71 6.42
68 8.85 0.71 6.76
69 8.85 0.71 11.39
70 8.98 0.70 5.33
71 8.98 0.70 6.38
72 8.98 0.70 7.77
73 9.24 0.68 3.64
74 9.24 0.68 14.03
75 9.24 0.68 19.27
76 9.67 0.65 5.56
77 10.47 0.60 16.92
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Appendix 2

Transfer functions

Semisub-A

All TFs are calculated based on 1 m wave amplitude, and 10 m/s steady wind for AD cases

< @

Table 1. Heave node 1

No wind condition (A-1NW) Combined load condition (A-1AD)
Frequency RAO Phase Frequency RAO Phase
(rad/s) (m/m) (rad) (rad/s) (m/m) (rad)
1.26933 | 0.002988 0.8219 1.26933 | 0.006245 0.3054
0.987301 | 0.016522 0.4076 0.987301 | 0.021111 -3.0299
0.807815 | 0.031488 0.1998 0.807815 | 0.036076 | -1.83498
0.683549 0.14089 -2.18246 0.683549 | 0.069212 -1.2074
0.592362 0.11531 0.2673 0.592362 | 0.12377 -0.7666
0.522684 0.44965 -3.9465 0.522684 | 0.47677 -4.9795
0.467673 0.21069 3.1895 0.467673 | 0.21436 2.20648
0.444293 0.35373 -3.0761 0.444293 | 0.35288 -3.9484




0.423139 0.59795 3.22778 0.423139 | 0.59639 2.47655
0.386348 1.8637 3.4431 0.386348 1.8429 2.8972
0.355424 4.0506 -1.06781 0.355424 4.1965 | -1.26533
0.3291 1.7013 -0.1204 0.3291 1.6986 | -0.60101
0.306407 1.1674 -0.0438 0.306407 1.1546 -0.42
0.296195 1.283 -0.035 0.296195 1.2828 | -0.38826
0.26926 1.1195 -0.0223 0.26926 1.1169 -0.3072

Table 2. Strain node 10

No wind condition (A-2NW)

Combined load condition (A-2AD)

Frequency RAO Phase Frequency RAO Phase

(rad/s) (u/m) (rad) (rad/s) (u/m) (rad)
1.2693 12.674 -0.60963 1.2693 13.321 | -0.22861
0.9873 4.519 0.6924 0.9873 5.4503 0.22579
0.80782 5.8621 -4.7279 0.80782 6.0941 2.267
0.68355 11.572 -4.3989 0.68355 7.4901 | 0.051246
0.59236 9.1226 -5.0559 0.59236 9.2908 | -0.09139
0.52268 10.812 -4.7451 0.52268 10.594 0.48533
0.46767 9.7704 1.6086 0.46767 9.7427 -2.3237
0.44429 11.745 -4.6722 0.44429 11.813 0.94181
0.42314 13.093 1.6475 0.42314 13.109 -2.0404
0.38635 15.204 1.6901 0.38635 14.355 1.8085
0.35542 54.566 -3.7056 0.35542 37.285 -1.8212
0.3291 19.85 -1.8768 0.3291 18.384 0.19377
0.30641 7.44 4.6308 0.30641 7.3551 -2.4843
0.2962 6.7404 -1.5989 0.2962 6.5043 -2.3615
0.26926 3.3666 -1.5589 0.26926 3.2842 0.95545

Table 3. Strain node 12

No wind condition (A-3NW)

Combined load condition (A-3AD)

Frequency RAO Phase Frequency RAO Phase

(rad/s) (u/m) (rad) (rad/s) (u/m) (rad)
1.2693 10.865 -2.2429 1.2693 10.533 -1.88
0.9873 52.831 -2.6127 0.9873 52.831 0.159
0.80782 84.397 0.34783 0.80782 85.001 1.21
0.68355 220.63 0.32799 0.68355 223.95 1.86
0.59236 230.93 -0.31619 0.59236 242.23 1.57
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0.52268 551.57 -0.7209 0.52268 548.25 1.45
0.46767 109.98 0.16217 0.46767 111.31 -0.629
0.44429 87.055 0.25209 0.44429 86.39 2.68
0.42314 67.451 0.35419 0.42314 65.79 -0.273
0.38635 39.208 0.721 0.38635 24.854 0.368
0.35542 73.764 -0.57988 0.35542 62.467 -2.09

0.3291 32.928 1.7121 0.3291 27.778 0.602
0.30641 15.451 -0.92578 0.30641 15.451 -0.656

0.2962 15.484 -0.83424 0.2962 14.022 -1.54
0.26926 9.4697 2.4695 0.26926 9.2039 1.88

Table 4. Pitch node 22

No wind condition (A-3NW) Combined load condition (A-3AD)
Frequency RAO Phase Frequency RAO Phase
(rad/s) (deg/m) (rad) (rad/s) (deg/m) (rad)

1.26933 | 0.209351 -0.33884 1.26933 | 0.224314 | 0.064821
0.987301 | 0.379869 -2.56664 0.987301 | 0.416914 | 0.187386
0.807815 | 0.538244 0.776101 0.807815 | 0.572535 | 1.602956
0.683549 | 2.141435 1.896905 0.683549 | 1.21612 | 2.198914
0.592362 | 1.222211 -0.93349 0.592362 | 1.263884 0.95918
0.522684 | 3.605939 2.199538 0.522684 | 3.554351 | 1.226273
0.467673 | 1.169565 -1.01543 0.467673 | 1.20246 | -1.75012
0.444293 | 1.414313 1.945494 0.444293 | 1.469441 | 1.331117
0.423139 | 1.688346 -1.27239 0.423139 | 1.741781 | -1.75282
0.386348 | 2.287782 1.793195 0.386348 | 2.27304 | 1.975879
0.355424 | 9.716926 -0.49503 0.355424 | 6.453521 | -1.70238
0.3291 | 4.021192 1.28165 0.3291 | 3.701391 | 0.290011
0.306407 | 1.721911 -1.66308 0.306407 | 1.694273 | -2.40487
0.296195 | 1.657377 -1.61619 0.296195 | 1.599113 | -2.28408
0.26926 | 0.981864 1.555734 0.26926 | 0.958489 | 1.017632

Table 5. Heave acceleration node 1

No wind condition (A-5NW)
Frequency RAO Phase
(rad/s) (m.rad2/s2.m) (rad)
1.2693 0.004843 -2.319
0.9873 0.016093 -2.7338
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0.80782 0.020547 | 0.19989
0.68355 0.029314 | 0.13604
0.59236 0.040455 0.2674
0.52268 0.12284 | -0.80496
0.46767 0.046084 | 0.04824
0.44429 0.069826 | 0.065193
0.42314 0.10709 | 0.086249
0.38635 0.27818 | 0.30162
0.35542 0.51173 | -1.0678

0.3291 0.18424 | -0.12077
0.30641 0.10961 | -0.04428

0.2962 0.11253 | -0.03504
0.26926 0.08117 | -0.02276

Table 6. Pitch acceleration node 22

No wind condition (A-6NW)

Frequency RAO Phase

(rad/s) (deg.rad2/s2.m) (rad)
1.2693 0.3288 | -0.31182
0.9873 0.37036 | -2.5665
0.80782 0.35124 | 0.77576
0.68355 0.54728 | 0.68595
0.59236 0.42879 | -0.93343
0.52268 0.98529 2.1996
0.46767 0.25574 -1.015
0.44429 0.27934 1.9457
0.42314 0.30246 -1.2722
0.38635 0.34174 1.7928
0.35542 1.2279 | -0.49527
0.3291 0.43609 1.2795
0.30641 0.16208 | -1.6651
0.2962 0.14548 | -1.6161
0.26926 0.071103 1.5562
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Semisub-B

All TFs are calculated based on 1 m wave amplitude, and 10 m/s steady wind for AD cases

1<

Table 7. Strain node 8

No wind condition (B-1INW)

Combined load condition (B-1AD)

Frequency

Frequency

(ad/s) RAO (u/m) | Phase (rad) (rad/s) RAO (u/m) | Phase (rad)
0.16 3.328580553 -0.60455 0.16 9.772101 -0.65932
0.17 4.308732603 -0.52595 0.17 10.93868 -0.44039
0.18 5.405438063 -0.44736 0.18 12.51782 -0.22146
0.19 6.724209653 -0.39763 0.19 14.36825 -0.03724
0.2 8.370560096 -0.34791 0.2 16.34869 0.146983
0.21 10.45285492 -0.2768 0.21 18.35868 0.281644
0.22 13.09087091 -0.20569 0.22 20.46091 0.416306
0.23 16.38006307 -0.10737 0.23 22.69569 0.542329
0.24 20.30718809 -0.00905 0.24 24.85048 0.668353
0.25 24.71005857 0.156204 0.25 26.76462 0.802251
0.26 28.93940905 0.321454 0.26 28.73779 0.93615
0.27 32.29265703 0.489879 0.27 30.99501 1.021756
0.28 34.34103018 0.658304 0.28 33.00233 1.107362
0.29 34.88476654 0.79073 0.29 34.19514 1.180891
0.3 34.36633584 0.923155 0.3 34.64519 1.25442

0.3225 31.63930125 1.031642 0.3225 34.03442 1.320304

0.345 28.65366427 1.140129 0.345 32.8417 1.386188
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0.3675 26.9087242 1.169527 0.3675 32.38411 1.515702
0.39 25.63781288 1.198925 0.39 31.20813 1.645217
0.4125 23.80480153 1.134421 0.4125 27.79629 1.621665
0.435 21.56168618 1.069917 0.435 23.14587 1.598114
0.4575 19.26212879 1.051813 0.4575 18.55095 1.675285
0.48 16.87833001 1.033709 0.48 13.97787 1.752455
0.5025 14.29701475 0.977801 0.5025 9.284421 1.795824
0.525 11.44446608 0.921893 0.525 5.221754 1.839192
0.5475 8.326916064 0.684444 0.5475 2.758481 -0.04679
0.57 5.23083454 0.446996 0.57 2.839632 -1.93277
0.5925 2.750917213 -0.67666 0.5925 5.868939 -1.72521
0.615 2.434525493 -1.80032 0.615 10.10854 -1.51765
0.6375 5.376060242 -2.1931 0.6375 13.76751 -1.7132
0.66 9.90541444 -2.58588 0.66 16.9844 -1.90875
0.6825 14.13422112 -2.78646 0.6825 20.24422 -2.1089
0.705 18.06558141 -2.98704 0.705 23.48863 -2.30905
0.7275 22.07443129 -2.97777 0.7275 26.55955 -2.18471
0.75 26.13157797 -2.9685 0.75 29.44347 -2.06037
0.7725 30.11229512 -0.16012 0.7725 32.17152 -2.49762
0.795 33.91385101 2.648253 0.795 34.80884 -2.93487
0.8175 37.45471615 2.621219 0.8175 37.39238 -2.86146
0.84 40.7161756 2.594185 0.84 39.81238 -2.78805
0.8625 43.67495201 2.445795 0.8625 41.91531 -2.89663
0.885 46.22670391 2.297404 0.885 43.51936 -3.0052
0.9075 48.27558998 2.290004 0.9075 44.49239 -2.86588
0.93 49.84083364 2.282603 0.93 44.92918 -2.72657
0.9525 50.96001764 1.657506 0.9525 45.01748 -0.43036
0.975 51.62909745 1.032409 0.975 45.0901 1.865842
0.9975 51.84259259 1.028211 0.9975 45.32087 2.060939
1.02 51.63090609 1.024013 1.02 45.1026 2.256036
1.0425 51.05830405 0.768363 1.0425 43.86235 2.068775
1.065 50.28862134 0.512712 1.065 41.94493 1.881513
1.0875 49.53864894 0.136321 1.0875 39.88268 1.52098
1.11 49.13743363 -0.24007 1.11 38.04029 1.160447
1.1325 49.39549551 -0.56377 1.1325 36.69097 0.886645
1.155 50.43699237 -0.88746 1.155 35.90985 0.612843
1.1775 52.3394914 -0.93528 1.1775 35.72252 0.773023

1.2 55.18055979 -0.98309 1.2 36.15458 0.933202
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Table 8. Strain node 20

No wind condition (B-2NW)

Combined load condition (B-2AD)

Frequency RAO (u/m) | Phase (rad) Frequency RAO (u/m) | Phase (rad)
(rad/s) (rad/s)
0.16 0.161363 -1.69197 0.16 0.981092 3.077901
0.17 0.174034 -1.50527 0.17 0.936422 3.055319
0.18 0.19489 -1.31856 0.18 0.886374 3.032738
0.19 0.22607 -1.14078 0.19 0.834884 2.992742
0.2 0.269712 -0.963 0.2 0.785888 2.952746
0.21 0.329315 -0.81555 0.21 0.741951 2.894588
0.22 0.413823 -0.6681 0.22 0.700155 2.83643
0.23 0.536504 -0.54132 0.23 0.655803 2.841179
0.24 0.722474 -0.41453 0.24 0.602568 2.845929
0.25 0.981703 -0.22354 0.25 0.535315 2.915757
0.26 1.251751 -0.03254 0.26 0.455311 2.985585
0.27 1.461028 0.194644 0.27 0.372652 2.913348
0.28 1.573789 0.421828 0.28 0.326347 2.84111
0.29 1.577806 0.558099 0.29 0.343494 2.614644
0.3 1.519087 0.69437 0.3 0.37465 2.388178
0.3225 1.370831 0.699805 0.3225 0.337143 0.817982
0.345 1.298653 0.70524 0.345 0.420579 -0.75221
0.3675 1.353133 0.712472 0.3675 0.875324 -0.00915
0.39 1.438919 0.719704 0.39 1.364362 0.733914
0.4125 1.456732 0.5983 0.4125 1.530113 0.795828
0.435 1.437524 0.476895 0.435 1.520101 0.857742
0.4575 1.43125 0.435602 0.4575 1.546219 0.906015
0.48 1.433633 0.39431 0.48 1.572718 0.954288
0.5025 1.43121 0.294847 0.5025 1.528363 0.835916
0.525 1.427996 0.195385 0.525 1.447623 0.717544
0.5475 1.430104 -0.13813 0.5475 1.380607 0.262852
0.57 1.434548 -0.47164 0.57 1.334293 -0.19184
0.5925 1.439441 -0.48201 0.5925 1.306137 -0.18251
0.615 1.456379 -0.49239 0.615 1.298648 -0.17318
0.6375 1.497521 -0.86893 0.6375 1.315558 -0.53784
0.66 1.563775 -1.24547 0.66 1.36042 -0.90251
0.6825 1.653574 -1.62593 0.6825 1.43723 -1.26812
0.705 1.766684 -2.00639 0.705 1.551937 -1.63372
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0.7275 1.903685 -2.03516 0.7275 1.70775 -1.64258
0.75 2.067065 -2.06394 0.75 1.894964 -1.65144
0.7725 2.257932 0.508743 0.7725 2.103849 -2.19211
0.795 2.469959 3.081423 0.795 2.337502 -2.73278
0.8175 2.696066 3.040987 0.8175 2.598142 -2.73564
0.84 2.933586 3.000551 0.84 2.871654 -2.73851
0.8625 3.174236 2.792784 0.8625 3.139432 -2.9083
0.885 3.382857 2.585016 0.885 3.381242 -3.07809
0.9075 3.534291 2.63588 0.9075 3.580951 -2.98895
0.93 3.670259 2.686745 0.93 3.740466 -2.89981
0.9525 3.832693 1.760532 0.9525 3.871372 -0.64798
0.975 3.99751 0.834319 0.975 4.005916 1.603863
0.9975 4.12783 0.955712 0.9975 4.161898 1.764009
1.02 4.201613 1.077106 1.02 4.278653 1.924154
1.0425 4.208004 0.825505 1.0425 4.297957 1.710771
1.065 4.166055 0.573904 1.065 4.249816 1.497387
1.0875 4.100426 0.168563 1.0875 4.180971 1.129087
1.11 4.0283 -0.23678 1.11 4.116875 0.760787
1.1325 3.958347 -0.53128 1.1325 4.072187 0.500836
1.155 3.872666 -0.82579 1.155 4.03969 0.240886
1.1775 3.746712 -0.69149 1.1775 4.006698 0.420806

1.2 3.555944 -0.55718 1.2 3.960525 0.600727
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Table 9. Pitch node 22

No wind condition (B-3NW)

Frequency RAO (deg/m) | Phase (rad)
(rad/s)
0.16 0.266901 -1.47727
0.17 0.292592 -1.42379
0.18 0.323297 -1.3703
0.19 0.358642 -1.31143
0.2 0.398251 -1.25255
0.21 0.442319 -1.17658
0.22 0.493329 -1.10062
0.23 0.553005 -0.97749
0.24 0.617732 -0.85436
0.25 0.680198 -0.66533




0.26 0.723621 -0.4763
0.27 0.732712 -0.28375
0.28 0.707612 -0.09119
0.29 0.654447 0.067349
0.3 0.587853 0.225891
0.3225 0.446233 0.383078
0.345 0.335447 0.540264
0.3675 0.263199 0.689351
0.39 0.212107 0.838438
0.4125 0.163854 0.965207
0.435 0.121482 1.091977
0.4575 0.09191 1.425666
0.48 0.076224 1.759354
0.5025 0.073357 2.116126
0.525 0.079476 2.472898
0.5475 0.090318 2.52285
0.57 0.102677 2.572801
0.5925 0.114132 2.73513
0.615 0.124353 2.897458
0.6375 0.133404 2.804615
0.66 0.140838 2.711771
0.6825 0.146306 2.603773
0.705 0.150354 2.495775
0.7275 0.153556 2.571342
0.75 0.155687 2.646908
0.7725 0.156486 2.369058
0.795 0.156334 2.091208
0.8175 0.155671 2.109186
0.84 0.154534 2.127165
0.8625 0.152844 2.012826
0.885 0.15048 1.898487
0.9075 0.1474 1.911937
0.93 0.143925 1.925387
0.9525 0.140433 1.308163
0.975 0.137174 0.690938
0.9975 0.134335 0.680281
1.02 0.131988 0.669623
1.0425 0.130275 0.40839
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1.065 0.129731 0.147157
1.0875 0.130862 -0.21925
1.11 0.133662 -0.58565
1.1325 0.137936 -0.87134
1.155 0.143248 -1.15703
1.1775 0.149098 -1.15409

1.2 0.15499 -1.15114

Resonance free model (RF model)

TFs are combined between simulation and experiment. The experiment TFs are given in the
range of 4.83 until 10.47 rad/s.

Table 10. TFs at Model 1

Frequency | Wave number | RAO Pitch | Phase Pitch | RAO Heave | Phase Heave
(rad/s) (rad/s) (rad/kA) (rad) (mm/mm) (rad)

3 1.615 1.03 1.568842 0.9762 -0.00061

3.2 1.715 1.03 1.568423 0.9732 -0.00073

3.4 1.865 1.029 1.567708 0.9682 -0.00094

3.6 1.995 1.029 1.566975 0.9635 -0.00115

3.8 2.129 1.028 1.566085 0.9582 -0.00138

4 2.269 1.027 1.565037 0.9524 -0.00161

4.2 2.412 1.026 1.563781 0.946 -0.00185

4.4 2.56 1.025 1.562315 0.9389 -0.00208

4.6 2.715 1.024 1.560569 0.9309 -0.00229

4.8 2.875 1.022 1.558527 0.9222 -0.00244

4.833219 2.902 1.187024 1.359693 1.152726 -0.12659

5.026548 3.064 1.104104 1.164803 1.041987 -0.2585

5.235988 3.247 1.053946 1.101703 0.961179 -0.21605

5.463639 3.456 0.914222 1.534093 0.828377 0.16311

5.711987 3.695 0.955919 1.000543 0.862631 -0.38509

5.983986 3.972 1.114268 1.208443 0.997798 -0.2181

6.283185 4.296 1.253377 1.121643 1.134591 -0.33498

6.613879 4.68 1.122564 1.377693 0.994205 -0.26841

6.981317 5.139 1.000368 1.281173 0.844097 -0.35956

7.391983 5.694 0.979204 1.377913 0.74671 -0.28609

7.853982 6.372 1.006539 2.219316 0.860647 0.244424
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8.37758 7.206 0.961928 2.015943 0.659462 0.05017
8.975979 8.244 0.741425 2.494013 0.547764 0.3891
9.666439 9.544 0.511229 2.427578 0.394922 0.194985
10.47198 11.194 0.288657 2.738093 0.232289 0.1594

10.6 11.468 0.3713 1.462447 0.2863 0.682284
10.8 11.904 0.3396 1.499483 0.2687 0.756007
11 12.35 0.3102 1.542208 0.2522 0.833413
11.2 12.801 0.283 1.590606 0.2368 0.91457
11.4 13.262 0.2581 1.644415 0.2223 0.999219
11.6 13.731 0.2353 1.70346 0.2088 1.087306
11.8 14.208 0.2146 1.767548 0.1962 1.178709
12 14.699 0.1954 1.837379 0.1842 1.27458
13 17.2449 0.124 2.249364 0.136 1.794601
14 20 0.07984 2.761915 0.1015 2.389217
15 22.95918 0.06394 3.063613 0.08756 2.725944
16 26.12245 0.03496 -2.24676 0.05845 -2.5057

Table 11. TFs at Model 2

Frequency | Wave number | RAO Pitch | Phase Pitch | RAO Heave | Phase Heave
(rad/s) (rad/m) (rad/kA) (rad) (mm/mm) (rad)

3 1.615 1.03 1.568842 0.9762 -0.00061

3.2 1.715 1.03 1.568423 0.9732 -0.00073

3.4 1.865 1.029 1.567708 0.9682 -0.00094

3.6 1.995 1.029 1.566975 0.9635 -0.00115

3.8 2.129 1.028 1.566085 0.9582 -0.00138

4 2.269 1.027 1.565037 0.9524 -0.00161

4.2 2.412 1.026 1.563781 0.946 -0.00185

4.4 2.56 1.025 1.562315 0.9389 -0.00208

4.6 2.715 1.024 1.560569 0.9309 -0.00229

4.8 2.875 1.022 1.558527 0.9222 -0.00244

4.833219 2.902 | 1.28E+00 1.57E+00 1.09E+00 5.16E-01

5.026548 3.064 | 8.39E-01 1.37E+00 1.15E+00 -7.12E-01

5.235988 3.247 |  9.05E-01 1.42E+00 9.72E-01 5.88E-02

5.463639 3.456 | 8.98E-01 1.93E+00 7.10E-01 2.73E-01

5.711987 3.695 9.07E-01 1.60E+00 8.01E-01 1.15E-01

5.983986 3.972 | 1.01E+00 1.73E+00 9.32E-01 8.60E-02

6.283185 4.296 | 1.15E+00 1.56E+00 1.02E+00 -3.18E-02
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6.613879 4.68 | 1.05E+00 1.66E+00 9.25E-01 6.41E-02
6.981317 5.139 8.79E-01 1.64E+00 7.26E-01 4.25E-02
7.391983 5.694 8.18E-01 2.08E+00 6.67E-01 3.76E-01
7.853982 6.372 9.79E-01 2.44E+00 6.90E-01 6.26E-01
8.37758 7.206 7.11E-01 2.07E+00 5.19E-01 2.23E-01
8.975979 8.244 5.28E-01 2.34E+00 3.65E-01 3.26E-01
9.666439 9.544 2.67E-01 2.43E+00 1.92E-01 2.21E-01
10.47198 11.194 2.00E-01 2.09E+00 1.60E-01 -2.79E-01
10.6 11.468 0.3713 1.462447 0.2863 0.682284
10.8 11.904 0.3396 1.499483 0.2687 0.756007
11 12.35 0.3102 1.542208 0.2522 0.833413
11.2 12.801 0.283 1.590606 0.2368 0.91457
11.4 13.262 0.2581 1.644415 0.2223 0.999219
11.6 13.731 0.2353 1.70346 0.2088 1.087306
11.8 14.208 0.2146 1.767548 0.1962 1.178709
12 14.699 0.1954 1.837379 0.1842 1.27458
13 17.2449 0.124 2.249364 0.136 1.794601
14 20 0.07984 2.761915 0.1015 2.389217
15 22.95918 0.06394 3.063613 0.08756 2.725944
16 26.12245 0.03496 -2.24676 0.05845 -2.5057
Table 12. TFs at Model 3
Frequency | Wave number | RAO Heave acc Phase Heave
(rad/s) (rad/m) (mm.rad2/mm.s2) acc (rad)

3 1.615 8.7858 -0.00061

3.2 1.715 9.965568 -0.00073

3.4 1.865 11.19239 -0.00094

3.6 1.995 12.48696 -0.00115

3.8 2.129 13.83641 -0.00138

4 2.269 15.2384 -0.00161

4.2 2.412 16.68744 -0.00185

4.4 2.56 18.1771 -0.00208

4.6 2.715 19.69784 -0.00229

4.8 2.875 21.24749 -0.00244

4.833219 2.902 3.54E+01 0.5162

5.026548 3.064 2.47E+01 -0.71197

5.235988 3.247 1.67E+01 0.05876




5.463639 3.456 3.00E+01 0.2732
5.711987 3.695 2.71E+01 0.11505
5.983986 3.972 2.19E+01 0.08598
6.283185 4.296 4.59E+01 -0.03181
6.613879 4.68 3.10E+01 0.06408
6.981317 5.139 3.16E+01 0.042535
7.391983 5.694 3.15E+01 0.37601
7.853982 6.372 3.28E+01 0.625985
8.37758 7.206 2.70E+01 0.22322
8.975979 8.244 2.04E+01 0.325785
9.666439 9.544 1.10E+01 0.2211
10.47198 11.194 7.55E+00 -0.2785
10.6 11.468 32.16867 0.682284
10.8 11.904 31.34117 0.756007
11 12.35 30.5162 0.833413
11.2 12.801 29.70419 0.91457
114 13.262 28.89011 0.999219
11.6 13.731 28.09613 1.087306
11.8 14.208 27.31889 1.178709
12 14.699 26.5248 1.27458
13 17.2449 22.984 1.794601
14 20 19.894 2.389217
15 22.95918 19.701 2.725944
16 26.12245 14.9632 -2.5057
Model with resonance (WR model)
Simulated TFs are assumed.
Table 13. TFs at Model 1 and Model 2
Frequency RAO Heave Phase Heave
(rad/s) (mm/mm) (rad)

3 1.01 -0.0722

3.2 1.01 -0.0834

34 1.01 -0.0956

3.6 1.01 -0.109

3.8 1.02 -0.125
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4 1.02 -0.141
4.2 1.02 -0.159
4.4 1.03 -0.178
4.6 1.03 -0.2
4.8 1.04 -0.225
5 1.04 -0.251
5.2 1.05 -0.278
54 1.06 -0.308
5.6 1.07 -0.342
5.8 1.08 -0.381
6 1.09 -0.425
6.2 1.11 -0.466
6.4 1.13 -0.513
6.6 1.15 -0.565
6.8 1.18 -0.625
7 1.21 -0.697
7.2 1.26 -0.771
7.4 1.31 -0.846
7.6 1.37 -0.934
7.8 1.44 -1.04
8 1.53 -1.16
8.2 1.61 -1.32
8.4 1.72 -1.49
8.6 1.84 -1.69
3.8 1.92 -1.94
9 1.91 -2.22
9.2 1.8 -2.51
94 1.61 -2.77
9.6 1.39 -3
9.8 1.18 3.06
10 0.99 2.89
10.2 0.839 2.75
10.4 0.709 2.62
10.6 0.608 2.52
10.8 0.527 2.43

11 0.46 2.35
11.2 0.4 2.28
114 0.347 2.22




11.6 0.304 2.16
11.8 0.266 2.1
12 0.232 2.05

Table 14. TFs at Model 3

Frequency RAO Heave acc Phase Heave
(rad/s) (mm.rad2/mm.s2) acc (rad)

3 9.09 -0.0722
3.2 10.3424 -0.0834
3.4 11.6756 -0.0956
3.6 13.0896 -0.109
3.8 14.7288 -0.125

4 16.32 -0.141
4.2 17.9928 -0.159
4.4 19.9408 -0.178
4.6 21.7948 -0.2
4.8 23.9616 -0.225

5 26 -0.251
5.2 28.392 -0.278
5.4 30.9096 -0.308
5.6 33.5552 -0.342
5.8 36.3312 -0.381

6 39.24 -0.425
6.2 42.6684 -0.466
6.4 46.2848 -0.513
6.6 50.094 -0.565
6.8 54.5632 -0.625

7 59.29 -0.697
7.2 65.3184 -0.771
7.4 71.7356 -0.846
7.6 79.1312 -0.934
7.8 87.6096 -1.04

8 97.92 -1.16
8.2 108.2564 -1.32
8.4 121.3632 -1.49
8.6 136.0864 -1.69
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8.8 148.6848 -1.94
9 154.71 -2.22
9.2 152.352 -2.51
9.4 142.2596 -2.77
9.6 128.1024 -3
9.8 113.3272 3.06
10 99 2.89
10.2 87.28956 2.75
10.4 76.68544 2.62
10.6 68.31488 2.52
10.8 61.46928 2.43
11 55.66 2.35
11.2 50.176 2.28
114 45.09612 2.22
11.6 40.90624 2.16
11.8 37.03784 2.1
12 33.408 2.05




