
Title

Real-Time Future Response Predictions
Considering Multiple Floating Bodies Based on
Kalman Filter Algorithm: A Digital Twin
Application for Offshore Wind-Farm

Author(s) Isnaini, Rodhiatul

Citation 大阪大学, 2023, 博士論文

Version Type VoR

URL https://doi.org/10.18910/92966

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



 

 

Doctoral Dissertation 

 

 

Real-Time Future Response Predictions Considering Multiple 

Floating Bodies Based on Kalman Filter Algorithm: A Digital Twin 

Application for Offshore Wind-Farm 

 

(カルマンフィルタを用いた複数浮体応答のリアルタイム将来予測 ～デジタルツ

イン技術のウィンドファームへの応用～) 

 

 

 

Rodhiatul Isnaini (28J20824) 

Supervisor: Prof. Kazuhiro Iijima 

 

 

Committee members: 

飯島 一博（主査） 

大沢 直樹 

千賀 英敬 

 

 

June 2023 

 

Department of Naval Architecture and Ocean Engineering 

Division of Global Architecture 

Graduate School of Engineering 

Osaka University 



 
 

  



iii 

 

Abstract 

 

 

 

 

 

The current study examines the potential of forecasting future waves and responses by 

expanding the Kalman filter algorithm through the inclusion of spatial distance between two 

points. The proposed idea is projected to be implemented as a part of the digital twin of a wind 

farm. However, before the future predictions are investigated, the Kalman filter algorithm 

feasibility to be utilized at floating offshore wind turbine is scrutinized. The Kalman filter works 

by estimating the coefficients of elementary waves by incorporating response data from a 

floating offshore wind turbine (FOWT). In this algorithm, the state variables are defined as the 

coefficients of elementary waves, while the FOWT's responses are used as the observed data. 

The observation matrix in the algorithm is determined based on the response transfer functions. 

Two different designs of semisubmersible FOWT structures are chosen as the subject 

structures for the first part of the study. Here, the impact of different types and locations of 

measurements on the accuracy of wave prediction generated by the filter is examined. The 

discussion also addresses the effects of nonlinearity resulting from the combined load of wind 

and waves. Overall, it can be concluded that the algorithm's performance heavily relies on the 

transfer functions employed in all the analyzed case study. After confirming the algorithm 

workability in the context of FOWT, an experiment on a 2D tank using simplified floating 

models is carried out to confirm the effectiveness of the Kalman filter based future predictions 

after spatial distance between two points is introduced. When the causality limitation is met, it 

is discovered that the model can predict future waves in the range of 3-10 s or several wave 

cycles ahead, depending on the distance between the points. By adopting a scaling factor of 

1/100, this translates to an estimation of waves occurring 30-100 s ahead. The predictive time 

for future waves increases as the distance between the points becomes greater. Additionally, 

the study investigates response predictions using wave prediction data. The results 

demonstrate high accuracy in response prediction, with an even longer forecasted future time 

(80-120 s ahead, given a 1/100 scale ratio) compared to the predicted future time for waves.  
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Chapter 1 

Introduction 

 

 

 

 

 

1.1 Background 

 

Wind energy is a more well-established renewable energy source compared to other resources 

alongside with solar, particularly in terms of its technological advancements (IRENA, 2019). 

While onshore wind energy technology is more mature, offshore wind energy has gained 

increasing interest due to its numerous advantages (Ellabban, Abu-Rub, & Blaabjerg, 2014; 

Esteban, Diez, López, & Negro, 2011; Esteban, López-Gutiérrez, & Negro, 2020). Compared 

to onshore wind farms, offshore wind farms offer benefits such as greater wind resources and 

reduced visual impact. Currently, bottom-fixed foundations are commonly used for offshore 

wind turbines. However, as wind farms move towards deeper waters, floating foundations are 

expected to become more prevalent (Sánchez, López-Gutiérrez, Negro, & Esteban, 2019; Wu, 

et al., 2019). Despite the advantages of deeper water wind cultivation, floating offshore wind 

turbines (FOWTs) face challenges, particularly in terms of economics (Tillenburg, 2021; 

Ciuriuc, Rapha, Guanche, & Domínguez-García, 2022). The installation costs of FOWTs are 

significantly influenced by operation expenditures, with operation and maintenance (O&M) 

expenses accounting for a significant portion of the total cost (Butterfield, Musial, Jonkman, & 

Sclavounos, 2005; Castellà, 2020). The installation and operation of FOWTs are complex tasks 

due to factors such as site accessibility and design intricacies. 

 

The concept of a digital twin (DT) system is expected to be employed to enhance safety and 

operational efficiency throughout the various stages of implementing a floating offshore wind 

farm. The concept of DT was first introduced by Grieves in 2003 and aims to monitor the real-

time status of a physical system by utilizing data from sensors and feeding it into a digital 

representation of the system (Wang, et al., 2021). Several reports have explored the technical 

aspects of applying DT technology to offshore wind turbines (Ciuriuc, Rapha, Guanche, & 

Domínguez-García, 2022; Wang, et al., 2021). It has become evident that a crucial component 

in developing a robust digital twin is the algorithm used to process the collected data and make 

predictions about important parameters. In this case, an algorithm capable of identifying 

environmental conditions, particularly the incident wave, plays a vital role. The wave prediction 

needs to be performed in real-time and should be both reliable and efficient. To provide a 

solution to this problem, estimation of the coefficients for regular waves based on the 
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assumption that the wave can be decomposed into a Fourier series of regular waves using 

Kalman filter is proposed in this study. Later on, this information is used for future predictions 

at 𝑥 away. Structural responses are incorporated, and an inverse problem approach is employed 

to estimate the incident wave by utilizing transfer functions (TFs). The state variables in the 

Kalman filter are defined as the coefficients of the elementary waves, while the measurement 

data serve as the observation variables. Transfer functions are employed to describe the 

observation matrix within the Kalman filter algorithm and are predetermined. More details 

about the Kalman filter algorithm are provided in Chapter 2. Additionally, to provide further 

context, Figure 1.1 is given to provide the idea of DT for wind farm conceptualized by the 

author. This dissertation only focuses on the future wave and response predictions indicated 

by the red box on the aforementioned figure. 

 

 
Figure 1. 1 The proposed concept of DT for wind farm 
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As stated above, a real-time wave prediction using Kalman filter is carried out in this study. 

However, the main goal of this study is to investigate the feasibility of finding future predictions 

(wave and response) when the Kalman filter algorithm is extended. The Kalman filter provides 

real-time wave history at a reference point, which can be used to predict future waves at other 

points based on spatial distance. Figure 1.3 is provided to illustrate the concept. Figure 1.3(a) 

represents a hypothetical offshore wind farm with multiple floating offshore wind turbines 

(FOWTs). The black dots indicate selected FOWTs where the Kalman filter algorithm is used 

to identify incoming waves. The real-time wave data obtained from the Kalman filter are then 

utilized to predict future waves and responses at other FOWTs (grey dots), particularly those 

within the inner perimeter. Implementing this approach in a wind farm can enhance 

monitoring and maintenance efficiency as not all FOWTs require physical sensors and 

instrumentation systems, potentially reducing monitoring costs and bringing the digital twin 

concept closer to reality. 

 

Additionally, knowing the real-time future wave allows for precise determination of the "safe-

to-jump-to-FOWT" time frame, enhancing the safety of maintenance crews. To carry out the 

maintenance and service of offshore windfarm, Service Operations Vessel (SOV) is deployed 

to the windfarm. SOVs are equipped with heave-compensated “walk-to-work” gangways as 

seen in Figure 1.2(a), and small (typically 10-ton) cranes to transfer equipment onto the 

platform's base. SOVs also serve purpose as on-site accommodations for workers with typical 

capacity around 40 people. The majority of SOVs are designed and equipped with smaller 

vessels or typically referred as daughter vessels. The primary function of these vessels is to 

transport small crews to offshore wind turbine installations for day trips focused on operations, 

maintenance visits, and inspections hence also referred as Crew Transfer Vessel (CTV). Since 

CTVs are much smaller than SOVs, it is not equipped with “walk-to”work” gangways as seen 

in Figure 1.2(b). Consequently, precise determination of the "safe-to-jump-to-FOWT" time 

frame becomes crucial in this case. One of the most common method to reach the decision for 

maintenance crew members to safely access or disembark from offshore wind turbines typically 

is via direct observation by experienced crew members and vessel operators. They rely on their 

knowledge and skills to interpret visual cues such as wave height, wave patterns, and surface 

conditions. Though visual observations are often used in combination with other methods 

(such as weather forecast) to gain a qualitative understanding of the sea state, human errors 

cannot be surely eliminated. Hence, knowing the real-time wave profile—especially the future 

wave of a few minutes ahead, is truly beneficial to ensure higher level of safety. 

 

Last but not least, by knowing the future wave height, it becomes possible to estimate the future 

relative wind velocity, which is valuable for optimizing blade pitch control and improving 

energy generation efficiency. Blade pitch control is a critical mechanism in offshore wind 



4 

 

turbines that helps optimize their performance and ensures safe operation in varying wind 

conditions. The primary function of blade pitch control is to adjust the angle or pitch of the 

turbine blades to regulate the amount of power captured from the wind. By controlling the 

blade pitch angle, the wind turbine can optimize its power output, maximize energy capture 

from the wind, and maintain a safe operating range. Blade pitch control is especially crucial in 

high wind conditions to prevent over-speeding and potential damage to the turbine. Based on 

this, it becomes apparent that the knowledge of future wind velocity at tower top relative the 

substructure motion in wave is helpful so that the blade pitch control mechanism can operate 

accordingly.  

 

 

 
 

(a) 

 

 
 

(b) 

 

Figure 1. 2 (a) Service Operation Vessel (SOV) (b) Crew Transfer Vessel (CTV) 

 

“walk-to-work” gangways 
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(a) 

 

 

 
 

(b) 

 

Figure 1. 3 Visualizations of the concept (a) A hypothetical offshore wind farm (b) Point 

locations assumed for the 2D tank test 

 

Before investigating the application of Kalman filter for future predictions, the employability 

of the Kalman filter for wave prediction with FOWT as subject structure is first evaluated. 

Compared to ships, modeling the structure of a FOWT is more complex due to its unique shape 

and size. Therefore, the first part of the study is set to investigate the feasibility and 

effectiveness of implementing the Kalman filter for wave prediction in the context of FOWTs. 

Here, two different semisubmersible types of FOWT are taken into accounts, where the main 

difference lies on the corresponding TFs in which one of the designs generally has less 

pronounced resonance peak compared to the other (see Chapter 3).  

 

As mentioned, response data from the FOWT are crucial for the Kalman filter algorithm. Two 

types of measurement data are used: numerically generated data and experimental data. 

However, the experiment data provided are only for one of the designs, with further limitation. 
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The numerical data are generated using the NK-UTWind program, which simulates FOWT 

structural responses in the time domain, taking into account hydrodynamic and aerodynamic 

loads. Two load models are considered: one considering only hydrodynamic loads and another 

considering both aerodynamic and hydrodynamic loads. These models are used to assess the 

algorithm's performance under different levels of complexity and uncertainty. The presence of 

aerodynamic damping introduces nonlinearity in the FOWT's structural response due to the 

interaction between waves and wind. For experimental data, measurements are obtained from 

a 1/50 scaled model tested in a towing tank. 

 

Next, based on the concept illustrated in Figure 1.3(a), a 2D tank test was developed to 

simulate a partial aspect of the idea of digital twin implementation for wind farm. Introducing 

multiple bodies with spatial distance is necessary since it is found that carrying out future wave 

prediction without taking into account a spatial distance will produce a very short future 

predictable time (1-2 cycles ahead only). In this experiment, three simplified floating models 

were used (see Chapter 5), focusing on the black box area in Figure 1.3(a) and further 

explained in Figure 1.3(b). Point A represents the reference point where the Kalman filter 

algorithm is implemented, and future wave predictions are made for points B and C, located at 

distances 𝑥1 and 𝑥2 away from A. By knowing the wave at point A (or to be more specific, the 

elementary wave coefficients), the future wave and responses at points B and C can be 

calculated based on the wave at point A. This approach can be viewed as a variation of the 

convolution integral, which determines wave history at one point based on the wave at another 

point using an impulse response function (Davis & Zarnick, 1966). However, it is important to 

address the issue of causality, as the impulse response function does not inherently satisfy 

causality. Causality implies that a signal can be physically realized in real time, which is crucial 

for time-dependent water wave prediction. A subsequent study by Iida & Minoura (Iida & 

Minoura, 2022) discovered that introducing the assumption of finite-depth water can eliminate 

the non-causality. In this part of the study, the limitation of causality based on these findings 

is taken into consideration. 

 

1.2 Objectives 

 

The objectives of this dissertation are described as follows: 

 To investigate the possibility of employing a linear filter, i.e. the Kalman filter to predict 

the wave surrounding FOWT using responses as input. 

 To investigate the effect of the nonlinearity from the coupling of wave and wind loads on 

the filter ability to predict the correct wave input. 

 To find the common grounds on what exactly influence the filter ability to give a high 

accuracy prediction results by taking into accounts two different design of semisubmersible 

type of FOWTs with different response characteristics. 
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 To investigate the possibility of extending the Kalman filter algorithm to estimate the 

future waves and responses on the multiple floating systems after spatial distance is 

introduced. 

 

1.3  Organization of the thesis 

 

In Chapter 1, the background, motivation, and problem statements of the study are elaborated. 

 

In Chapter 2, the theory of the Kalman filter algorithm and its modelling for the wave 

prediction adopted in this study is given. The chapter begins with an explanation of the filter 

origin and its general formulation. The explanation followed by previous studies on the wave 

prediction based on the Kalman filter algorithm, be it a prediction carried out using a more 

similar modelling or a completely different modelling. The last section of this chapter explains 

the modelling approach of the Kalman filter algorithm adopted in this study. Shortly, the wave 

is assumed to be linear, hence, the wave is decomposable into many elementary waves based 

within the range of the spectrum. The Kalman filter is prescribed to predict the Fourier 

coefficients of the elementary waves. Structural response is incorporated as the inputs and TFs 

are used to relate the input and output of the filter. 

 

In Chapter 3, wave predictions based on the aforementioned Kalman filter algorithm is 

undertaken. In this chapter, FOWT is adopted as the subject structure. Since this study 

projects that the wave predictions should be incorporated as part of the digital twin of a wind 

farm, it is important to firstly investigate the employability of the Kalman filter itself for wave 

predictions surrounding FOWT. In this case, the semisubmersible type of FOWT is adopted. 

Further, two different designs of the semisubmersible FOWT are taken into account. These 

designs are referred as Semisub-A and Semisub-B. The main difference between the two 

designs lay on the corresponding TFs, with Semisub-B having less pronounced peak in the 

amplitude domain compared to Semisub-A. 

 

First, a fully linear approach between the wave and response using Semisub-A design are taken 

into account to investigate the frequency discretization influences to the filtering results 

accuracy and time. Next, reference and input data containing different level of nonlinearity 

from NK-UTWind simulations are used. Predictions on both design are carried out to 

understand the effects of the TFs to the filtering results. The presence of aerodynamic loads 

that effect the trend of the amplitude domain TFs is incorporated as well. Lastly, an 

experimental based data limited to Semisub-A design is taken into account to predict the wave 

around the structure, where the wave reference data are also from the same experiment. 

 

In Chapter 4, causality limitation that dictates the experiment set-up is given. The way of the 
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Kalman filter algorithm being extended to obtain future predictions is also discussed in this 

chapter. In the beginning, the non-causality phenomenon arisen in the water waves prediction 

is explained. This is done via discussing a water wave prediction based on the convolution 

integral. Shortly, when wave prediction using convolution integral is first introduced, it is found 

that non-causality appears in the impulse response function of the integral. Later on, it was 

found that the non-causality will be negligible given a long enough distance of the two points 

involved in the wave predictions, that is, when the two points distance divided by the water 

depth should be at least equal to 3. Hence, causality limitation was born. Since the convolution 

integral is very much comparable to the Fourier series prediction, this limitation can be used 

to ensure causality in the Kalman filter based prediction. Next, the basis of the algorithm 

extension to obtain the future predictions is discussed. This extension is prescribed centering 

around the spatial distance of multiple floating bodies. 

 

In Chapter 5, the future prediction results based on the experiment in a 2D flume tank are 

presented. The chapter begins with the description on the subject structure and tank set-up. 

The tank set-up is dictated by the causality limitation discussed in the Chapter 4. The 

explanation on the measurement system involved in the experiment is also provided in this 

chapter. The experiment accounts for the rigid body response given regular and irregular 

(JONSWAP spectrum) wave cases. The TFs retrieved from the experiment is compared with 

numerical TFs from an in-house code developed based on the boundary element method. After 

the TFs are confirmed, the wave prediction on point A (see Figure 1.3) is undertaken. The 

results from the Kalman filter algorithm is compared with the wave time series from experiment. 

Next, the future wave predictions at point B and C are carried out. Similarly, the future wave 

predictions based on the Kalman filter results are compared to the experiment wave data. Lastly, 

since the future wave at point B and C are known, the future response at the two points then 

can be estimated as well. The accuracy is found by comparing the results based on the Kalman 

filter predictions with the response time series obtained in the experiment. 

 

In Chapter 6, the conclusion of the current study is discussed, as well as the suggestions for 

future work. 
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Chapter 2 

Theoretical background 

 

 

 

 

 

2.1  Random process and general Kalman filter algorithm 

 

Kalman filter was first introduced by R. E. Kalman in the 1960 as an algorithm that is meant to 

solve linear filtering problem recursively, particularly for cases concerning random process 

(Kalman, 1960). In the aforementioned published article, the Kalman filter is especially 

prescribed to help eliminating problems encountered when Wiener filter is used to resolve the 

prediction, separation, or detection of a random signal.  Wiener filter itself is a statistical-based 

approach linear predictor introduced by Norbert Wiener, with its resourcefulness includes the 

ability to estimate a random process using an observed process with noise that is correlated to 

the targeted random process itself (Dogariu, Benesty, Paleolugu, & Ciochinǎ, 2021). However, 

in his article (Kalman, 1960), Kalman notes that when a prediction of random signals and/or 

separation of random signals from random noise are done using Wiener’s formulation (Wiener, 

1949), a Wiener-Hopf integral equation is bound to come across. Though different approaches 

(Zadeh & Ragazzini, 1950; Darlington, 1958; Lanning & Battin, 1956) have been introduced 

to find the Wiener filter’s specification that is able to perform the prediction, separation, or 

detection of a random signals effectively, Kalman argues that formulating a method which 

solves the Wiener problem given the practical limitations is needed. Hence, the Kalman filter 

algorithm is externalized. 

 

Like in most linear filtering methods, the notions of state and state transition are emphasized 

in the Kalman filter algorithm. This simply means that the linear systems will be described via 

its first order differential equations systems. When a random function is assumed to be the 

output of a dynamic system excited by an independent Gaussian random process, the concept 

of state then can be introduced. Intuitively, this refers to the known quantitative information 

needed from the past behavior of a system to predict its future tendency. To enumerate the 

transformation of one state into another state as time passes, a state transitions is then required 

to be introduced. 

 
𝑑𝐱

𝑑𝑡
= 𝐅(𝑡)𝐱 + 𝐃(𝑡)𝐮(𝑡) ·········································································································· (2.1) 

𝐲(𝑡) = 𝐌(𝑡)𝐱(𝑡) ··················································································································· (2.2) 
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𝐱(𝑡 + 1) = 𝐀(𝑡 + 1;  𝑡)𝐱(𝑡) + 𝐮(𝑡) ························································································ (2.3) 

 

Mathematically, a linear dynamic system can be described via its general vector differential 

equation. This is further shown in Equation (2.1) and (2.2), where 𝐱 represents the state vector 

of the system (its components are known as the state variables), 𝐮 is the system’s input vector, 

𝐲 is the system’s output vector, and 𝐅,𝐃,𝐌 are the matrix functions—with 𝐌 is specifically 

referred as the observation matrix in the Kalman filter algorithm. Figure 2.1 is presented to 

visually explain the interpretation of Equation (2.1) and (2.2) via its matrix block diagram. 

Next, if the system is assumed to be stationary and the input 𝐮 is constant for every sampling 

period and described as a vector-valued, independent, zero-mean Gaussian random process, 

Equation (2.1) then can be discretized and transformed to Equation (2.3), where 𝐀 defines the 

state transition matrix. 

 

 

 
 

Figure 2. 1 Matrix block diagram of the general linear continuous-dynamic system (Kalman, 

1960) 

 

After the state-space model (Equation 3) and measurement model (Equation 2) of the dynamic 

system are prescribed, the filtering the can be carried out. However, for the sake of 

understanding the study presented in this report, several adjustments that are deemed to be 

suitable are undertaken. Firstly, the variable 𝑡 is now altered to 𝑛 to avoid confusion between 

the time variable and the number of sampling (due to the discretization of the process). Other 

than that, 𝐯 and 𝐰 are now introduced as process and measurement noise vector, respectively. 

These noises are assumed to be independent Gaussian process with zero-mean. Lastly, a 

dynamic modelling that validates the termination of system’s input as a separate entity 𝐮 is also 

considered. Hence, Equation (2.2) and (2.3) are now respectively Equation (2.5) and (2.4). 

 

𝐱(𝑛 + 1) = 𝐀𝐱(𝑛) +  𝐯(𝑛) ···································································································· (2.4) 

𝐲(𝑛) = 𝐌𝐱(𝑛) +𝐰(𝑛) ·········································································································· (2.5) 
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Since the targeted state to be predicted is essentially a random process rooted in the probability 

theory, it is only natural that the Kalman filter works based on the propagation of the mean (𝐱) 

and covariance (𝐏) of the state through time (Simon, 2006). The filtering itself is composed 

out of two steps, i.e. prediction and correction step. Its full algorithm is given in the Equation 

(2.6) until (2.10). Here, the mean and covariance of the state are what the filter tries to estimate 

in the prediction step (results from this step are indicated with tilde, ~). This part of the 

algorithm is shown in the Equation (2.6) and (2.7). After the state properties are calculated in 

the prediction step, its results then will be used as the input in the correction step (results from 

this step are indicated with caret, ^). The process of the correction step is defined by Equation 

(2.8) until (2.10). Here, the prediction results are essentially updated and compared with the 

data from observation (or measurement). Other than that, the prediction results are also 

weighted with the Kalman gain (𝐊), hence producing the more accurate filtering results. In 

these equations, 𝐐,𝐑 and 𝐈 are respectively the system noise covariance, the observation noise 

covariance, and an identity matrix. A further reading may be necessary to understand the 

derivation and theory behind the Kalman filter algorithm. However, a simplified chart to 

provide an understanding on how the algorithm works is given in Figure 2.2. 

 

�̃�(𝑛 + 1) = 𝐀�̂�(𝑛) ················································································································ (2.6) 

�̃�(𝑛 + 1) = 𝐀�̂�(𝑛)𝐀𝑇 + 𝐐  ···································································································· (2.7) 

𝐊 = �̃�(𝑛 + 1)𝐌(𝑛 + 1)𝑇(𝐌(𝑛 + 1)�̃�(𝑛 + 1)𝐌(𝑛 + 1)𝑇 +𝐑)
𝑇
  ············································· (2.8) 

�̂�(𝑛 + 1) = �̃�(𝑛 + 1) + 𝐊 (𝐲(𝑛 + 1) −𝐌�̃�(𝑛 + 1)) ······························································· (2.9) 

�̂�(𝑛 + 1) = (𝐈 − 𝐊 𝐌(𝑛 + 1))�̃�(𝑛 + 1)  ·············································································· (2.10) 

 
 

Figure 2. 2 Simplified chart of the Kalman filtering process 
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2.2  Previous studies on Kalman filter-based wave prediction 

 

Since its algorithm is first introduced, Kalman filter has been a subject of interest—especially 

from the industrial electronics community and it also has been introduced and utilized in 

engineering fields since the 1970s for various industry applications (Auger, et al., 2013). 

Meanwhile, though the industry application of Kalman filter-based wave prediction is still very 

limited—if not non-existent, there has been a considerable amount of studies dedicated to 

explore the possibility on using this algorithm for wave prediction. In this section, several 

selected studies are summarized to give further context on the proposed utilization of the 

Kalman filter in this study and its characteristics compared to the precedent research. 

 

Emmanouil, et al. conducted a study on the possibility to exploit Kalman filter as a 

complementary algorithm to enhance wave analysis and forecasting results when numerical 

atmospheric and ocean wave models are employed (Emmanouil, Galanis, & Kallos, 2012). To 

be more specific, the Kalman filter algorithm is used as post processes to minimize the 

systematic deviations of the wave model outputs. The North Atlantic Ocean is targeted in this 

study and the significant wave heights at different coordinate are prescribed as the state 

variables. Results show that this research is reasonably successful—though naturally with 

several limitations. Similarly, Pinto, et al. also investigate a Kalman filter algorithm to be 

assimilated to an ocean wave model (Pinto, Bernardino, & Pires Silva, 2005). The objective of 

this study is more or less the same as Emmanouil, et al. (Emmanouil, Galanis, & Kallos, 2012), 

i.e. to assist the wave model in finding the more accurate statistical sea-state forecast. The main 

different lies in the state-space modelling for the Kalman filter algorithm, with Pinto, et al. 

(Pinto, Bernardino, & Pires Silva, 2005) concentrate on specifying the wave energy over a 

smaller area as the state variables. 

 

While the study of Kalman filter-based prediction for statistical wave is undoubtedly an 

important field of study, a real-time wave prediction outputs will be more beneficial given the 

problem statement of this study. Hanaki, et al. (Hanaki, Takaoka, & Minoura, 2022) have 

investigated the application of Ensemble Kalman filter (EnKF)—a variation of the Kalman 

filter algorithm for nonlinear prediction, to estimate added mass, damping coefficients, and 

wave-exciting force targeted for seakeeping purposes. Their method assumes that the wave-

exciting forces are the input of the dynamic system modelling and EnKF is used to predict the 

parameters entitled to this force, among other state variables embedded to the filter. Though 

the prediction is targeted for a real-time result, the wave elevation history—that becomes the 

main prediction output in this present study, is needed to be known and/or measured 

beforehand for the EnKF to perform predictions. 
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Another study intended to investigate the Kalman filter algorithm for wave prediction is done 

by Pascoal & Soares (Pascoal & Soares, 2009). Here, the wave prediction is carried out by 

estimating the wave coefficients for every elementary waves that build the irregular waves as a 

whole based on the linear wave theory assumption. In their formulation, a vessel motions are 

used as the observation data for the Kalman filter algorithm. Later on, their work is validated 

by Pascoal, et al. (Pascoal, Perera, & Soares, 2017) based on the onboard sea-trial data of the 

Portuguese Navy Oceanographic vessel “NRP Almirante Gago Coutinho”. The algorithm 

formulation of the present study is similar with the aforementioned studies, with the main 

difference lies in the fact that directional sea spectrum is selected as the main subject discussion 

in there, not the real-time wave elevation history. 

 

2.3  Kalman filter modeling for real-time wave prediction 

 

While the general explanation of the Kalman filter algorithm and its working mechanism are 

explained in 2.1, a particular modelling for the algorithm to make sense exclusive for a real-

time wave prediction assumed in this study is not incorporated in the aforementioned chapter. 

Hence, a further explanation is included here. Firstly, it is necessary to note that the prediction 

here works based on the inverse problem, meaning that the wave is assumed to be an unknown 

input and it can be estimated if the system’s outputs—manifested in the form of structural 

responses, are known. 

 

To begin with, the ocean surface that follows the linear waves propagation is described. Based 

on this assumption, a function of angular wave frequency (𝜔) and heading direction (𝛽) can 

be used to describe the irregular plane waves. Then, the wave elevation history evolving at 

every j-th position of 𝐩𝒋 = (𝑥𝑗 , 𝑦𝑗)  with its respective wave vector 𝑘  at any time 𝑡  can be 

expressed as Equation (2.11). Here, 𝐴(𝜔, 𝛽) is the complex amplitude of the elementary waves 

and 𝑖 denotes the imaginary unit. When the irregular wave observed at a point of origin is 

assumed to be built based on the weighted sum of the elementary waves, Equation (2.11) then 

can be discretized. Consequently, the complex amplitudes are needed to be decomposed into 

wave coefficients 𝑎 and 𝑏. Equation (2.12) shows the discretized version of Equation (2.11), 

with 𝑛𝛽  and 𝑛𝜔  respectively denote the number of heading direction and elementary wave.  

The two wave coefficients of every elementary wave for every heading angle (𝑎𝑝,𝑞 and 𝑏𝑝,𝑞) are 

then prescribed as the state variables in the Kalman filter algorithm (i.e. components of the 

state vector 𝐱) in this study.  
  

𝜂(𝐩𝒋, 𝑡) = Re∬𝐴(𝜔, 𝛽) 𝑒𝑖(𝜔𝑡−𝑘.𝐩𝒋) 𝑑𝜔 𝑑𝛽 ··········································································· (2.11) 

𝜂(𝑡) = ∑ ∑ 𝑎𝑝,𝑞 
𝑛𝜔
𝑝=1

𝑛𝛽
𝑞=1 cos(𝜔𝑝𝑡) + ∑ ∑ 𝑏𝑝,𝑞

𝑛𝜔
𝑝=1  

𝑛𝛽
𝑞=1 sin(𝜔𝑝𝑡) ··············································· (2.12) 

𝑌(𝑡) = Re∬𝐻(𝜔, 𝛽)𝐴(𝜔, 𝛽) 𝑒𝑖(𝜔𝑡−𝑘.𝐩𝒋) 𝑑𝜔𝑑𝛽 ···································································· (2.13) 
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𝑌(𝑡) = ∑ ∑ 𝑎𝑝,𝑞  𝐺(𝜔𝑝, 𝛽𝑞)
𝑛𝜔
𝑞=1

𝑛𝛽
𝑝=1 cos 𝛾𝑝𝑞 + ∑ ∑ 𝑏𝑝,𝑞  𝐺(𝜔𝑝, 𝛽𝑞)

𝑛𝜔
𝑝=1

𝑛𝛽
𝑞=1 sin 𝛾𝑝𝑞  ······················· (2.14) 

where 𝛾𝑝𝑞 = (𝜔𝑝𝑡 + 𝜑(𝜔𝑝, 𝛽𝑞)) 

 

Another important part of the Kalman filter algorithm is the observation matrix (𝐌), as it 

directly links the state variables and observation data as illustrated in Equation (2.5). To 

prescribe the observation matrix, a response model is first needed to be described. In this study, 

the responses measured from the FOWT are assumed to be linear to the waves. The properties 

of these responses are expressed in the form of a transfer function exclusive for every measured 

location and observation type itself—e.g. strain, displacement, acceleration, etc. 

Mathematically, this can be written as Equation (2.13). Here, the transfer function is denoted 

as 𝐻(𝜔, 𝛽) and it is a function of angular frequency and heading direction. Oftentimes, a 

transfer function used to describe an offshore structure’s responses are further expressed as a 

pair of response amplitude operator (RAO) function and phase function that explains the phase 

angle difference between the input wave and the response itself. This will be the case in this 

study as well. Taking into accounts the aforementioned assumption, the discretized version of 

Equation (2.13) then is written as Equation (2.14), with the RAO and phase function are 

denoted as 𝐺 and 𝜑, respectively. Equation (2.14) will later be utilized as the foundation to 

determine the observation matrix components. 

 

To summarize, the Kalman filter algorithm in this study is formulated in a way where the 

elementary wave coefficients are the state vector components (Equation 2.15) with its 

dimension to be 2 × 𝑁  by one—with 𝑁  represents 𝑛𝜔 × 𝑛𝛽 , and the observation matrix 

(Equation 2.16) components are derived based on the RAO and phase functions that associate 

the input wave with the structure’s response (the size of this matrix is 𝑚 by 2 × 𝑁, with 𝑚 

indicates the number of instrument used to retrieve the response data). The time history of the 

responses is assumed to be measurable using sensors installed on the structure from 𝑚 number 

of sensor are prescribed as the components of the observation vector (𝐲) in the Kalman filter. 

Lastly, as the predicted state variables are assumed to be Gaussian, the drift model then can be 

utilized. Consequently, the state-transition matrix (𝐀) then can be defined as an identity matrix, 

with its size to be 2 × 𝑁 by 2 × 𝑁. 
 

𝐱(𝑛) = [𝑎1(𝑛) 𝑏1(𝑛) 𝑎2(𝑛) 𝑏2(𝑛)…𝑎𝑛𝜔,𝑛𝛽(𝑛) 𝑏𝑛𝜔,𝑛𝛽(𝑛)]
𝑇
··················································· (2.15) 

𝐌 =

[
 
 
 
 
 
 
𝐺1(𝜔1, 𝛽1) cos 𝛾𝑝𝑞 ⋯ 𝐺𝑚(𝜔1, 𝛽1) cos 𝛾𝑝𝑞
𝐺1(𝜔1, 𝛽1) sin 𝛾𝑝𝑞 ⋯ 𝐺𝑚(𝜔1, 𝛽1) sin 𝛾𝑝𝑞

⋮ ⋱ ⋮

𝐺1 (𝜔𝑛𝜔 , 𝛽𝑛𝛽) cos 𝛾𝑝𝑞 ⋯ 𝐺𝑚 (𝜔𝑛𝜔 , 𝛽𝑛𝛽) cos 𝛾𝑝𝑞

𝐺1 (𝜔𝑛𝜔 , 𝛽𝑛𝛽) sin 𝛾𝑝𝑞 ⋯ 𝐺𝑚 (𝜔𝑛𝜔 , 𝛽𝑛𝛽) sin 𝛾𝑝𝑞 ]
 
 
 
 
 
 
𝑇

 ·················································· (2.16) 

where 𝛾𝑝𝑞 = (𝜔𝑝𝑡 + 𝜑(𝜔𝑝, 𝛽𝑞)) 
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2.4  NK-UTWind 

 

The filtering to predict the waves surrounding FOWT accounts for experiment and simulation 

data based. For the simulation-based results discussion, a tool to generate the time domain 

input and reference data for the filtering is unavoidably needed. For this purpose, an aero-

hydro-structural code referred as NK-UTWind is utilized. The code is developed by Suzuki, et 

al (Suzuki, et al., 2013), and in the coming years, their works are further improved by Oh, et al 

(Oh, Ishii, Iijima, & Suzuki, 2019) and Takata, et al (Takata, et al., 2021). The code has been 

deemed suitable as NK-UTWind is coupled with FAST, another code—developed by NREL 

(Jonkman & Buhl Jr., 2005), that can calculate the aerodynamic loads in the wind turbine. 

Hence, simulating a structural analysis of offshore wind turbine that has combined loads from 

wind and wave may be done using NK-UTWind. 

 

 
 

Figure 2. 3 Flowchart of coupled simulation using NK-UTWind 

 

In the code, the whole structure is divided into two parts, they are the rotor-nacelle-assembly 

(RNA) and another part referred as the structure part. For further context, the structure 

consists out of tower, substructure, and mooring. For further reference, Figure 2.3 that shows 

the general process when coupled simulation is given. To get the time domain results, the 

structure part is subdivided into node elements and beam elements, using a finite element 

approach. Each node possesses three translational and three angular degrees of freedom. As a 
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result, the structure part consists of 6L degrees of freedom, where L represents the number of 

structural nodes. 

 

The equation of motions to be solved by NK-UTWind is shown in the Equation (2.17). In the 

equation provided, [𝑴] represents the mass matrix, which has a dimension of 6L for a structural 

model with L nodes. [𝑪] represents the damping matrix, and [𝑲] represents the structural 

stiffness matrix. The variables 𝒙, �̇�, and �̈� correspond to the nodal displacement vector, velocity 

vector, and acceleration vector, respectively. On the right-hand side of the equation, there is a 

vector consisting of four force components: hydrodynamic force, forces from mooring lines, 

restoring force, and aerodynamic force. The simulation is performed in sequential time steps. 

Initially, FAST calculates the thrust force generated by the rotor and provides these results to 

NK-UTWind as boundary conditions. Next, NK-UTWind evaluates the structural response 

based on these conditions. The displacement and velocity at the top of the tower, obtained 

from NK-UTWind, are then returned to FAST as boundary conditions. This iterative process 

is repeated for each prescribed time step. The time-dependent behavior of the entire system is 

assessed through a loosely coupled analysis. 

 

[𝑴]{�̈�} + [𝑪]{�̇�} + [𝑲]{𝒙} =  {𝑭𝒉𝒚𝒅𝒓𝒐 +𝑭𝒍𝒊𝒏𝒆𝒔 + 𝑭𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚 + 𝑭𝒂𝒆𝒓𝒐} ·································· (2.17) 

 

The hydrodynamic load in NK-UTWind is evaluated based on the Morison’s formula (Morison, 

O'Brien, Johnson, & Schaaf, 1950). Morison's equation can be applied to elongated members 

where the diameter of the cylindrical element is smaller than the wavelength and the wave 

amplitude is not negligible compared to the diameter of the elliptical cylinder. Since the 

structure under the water surface can be assumed to be an elongated cylinder type column, it 

was judged that the application is possible. This equation is semi-empirical equation used to 

estimate the hydrodynamic forces acting on an object in the direction of incoming waves. It 

incorporates three components, i.e. the Froude-Krylov force, which is generated by the 

pressure field of the undisturbed waves; the added mass, which accounts for the inertia of the 

surrounding fluid that needs to be accelerated; and the viscous drag. Mathematically, this can 

be written as Equation (2.18). In the given context, 𝜌 represents the density of the fluid, 𝐷 

refers to the diameter of the column element, and 𝑣 represents the velocity of fluid particles. 

Additionally, 𝐶𝑚 represents the coefficient for added mass, and 𝐶𝑑 represents the coefficient 

for drag force. This equation requires determining the added mass coefficient and drag 

coefficient through empirical relations. However, the Morison equation can be easily applied 

and enables the calculation of wave forces in the time domain, which contributes to its 

widespread use in the field of hydrodynamics.  

 

𝐹ℎ𝑦𝑑𝑟𝑜 = 𝜌
𝜋𝐷2

4
�̇� + 𝐶𝑚𝜌

𝜋𝐷2

4
(�̇� − �̈�) + 𝐶𝑑

1

2
𝜌𝐷(𝑣 − �̇�)|𝑣 − �̇�| ······················································ (2.18) 

 



17 

 

Meanwhile, the mooring force can be determined using methods such as quasi-static catenary 

calculation, lumped-mass method, or linear spring method. In this study, for the sake of 

simplification, linear spring approach is adopted for the simulation. Using the linear spring 

method, the interaction between the floating body and the mooring system can be 

approximately analyzed by considering the mooring system as a linear spring. In this method, 

the tension of the linear spring is described as Equation (2.19), where T0, Km  and L0  are 

respectively the initial tension of the mooring rope, spring constant, and initial mooring length. 

Furthermore, (𝑥0, 𝑦0, 𝑧0)  are the coordinates of the bottom end of the mooring rope and 

(𝑥2, 𝑦2, 𝑧2) are the coordinates of the top end of the mooring rope. The total length Lm of the 

mooring rope is expressed by Equation (2.20) and each directional component of the length of 

the mooring rope is expressed by Equation (2.21). At last, the force components at the top of 

the mooring then may be described as Equation (2.22). 

 

 

Tm = T0 + Km(L − L0) ······································································································· (2.19) 

Lm = √Lx2 + Ly2 + Lz2 ··········································································································· (2.20) 

(

Lx
Ly
Lz

) = (

𝑥2 − 𝑥0
𝑦2 − 𝑦0
𝑧2 − 𝑧0

) ············································································································· (2.21) 

𝑭𝑇 = −
Tm

Lm
(

Lx
Ly
Lz

) ················································································································· (2.22) 

Meanwhile, the aerodynamic loads in the simulation is calculated based on the Blade Element 

Momentum theory (BEM theory), a theoretical approach used to analyze the aerodynamics of 

rotating blades, commonly employed in the study of wind turbines and propellers. Principally, 

the BEM theory is a combination out of two different theories, i.e. blade element theory and 

momentum theory (Leishman, 2000). BEM theory calculates the aerodynamic forces on a 

rotating blade by breaking down the blade into small sections, called blade elements, and 

analysing the forces and velocities acting on each element. Figure 2.4 provides an illustration 

of an airfoil with the velocities and angles that determine the forces acting on the element, as 

well as the induced velocities resulting from the wake influence. In this figure, 𝑉∞, 𝑎, 𝛺, 𝑟 and 𝑎′ 

are respectively mean wind speed, axial induction factor, rotor rotational speed, local radius, 

and rotational induction factor. Moreover,  𝜙𝑎,  𝛼𝑎, and  𝛽𝑎 are inflow angle, angle of attack, 

and pitch angle, respectively. Figure 2.5 depicts the resulting aerodynamic forces on the 

element and their components, which are perpendicular and parallel to the rotor plane. These 

forces, namely thrust and torque, are crucial in turbine design. In Figure 2.5, the local inflow 

angle ( 𝜙𝑎) establishes the relationship between the lift and drag of the airfoil element and the 

thrust and torque forces. As shown in Figure 2.4, the inflow angle is the sum of the local pitch 
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angle of the blade ( 𝛽𝑎) and the angle of attack ( 𝛼𝑎). The local pitch angle depends on factors 

such as the blade's static geometry, elastic deflections, and the active or passive blade pitch 

control system. The angle of attack is determined by the local velocity vector, which is in turn 

influenced by factors like the incoming local wind speed, rotor speed, blade element velocities, 

and induced velocities (Moriarty & Hansen, 2005). 

 

 
 

Figure 2. 4 Local element flow angles and velocities 

 

 
 

Figure 2. 5 Local elemental forces in an airfoil section 
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Principally, the thrust and torque of an airfoil section may be described based on the 

mathematical relationship between lift force, drag force, and inflow angle of the blade element 

(See Figure 2.5). Extensive derivation shows that respectively, thrust and torque around an 

annulus of width 𝑑𝑟 can be further expressed as Equation (2.23) and (2.24), where 𝐵, 𝜌𝑎, 𝐶𝐿, 𝐶𝐷, 

and 𝑐𝑟 are respectively the number of blades, air density, lift coefficient, drag coefficient, and 

chord length. The aforementioned two equations however, are formulated without taking into 

accounts the wake effects that majorly influences the rotor induced velocity distribution. The 

impact on induced velocity within the rotor plane is most noticeable in the vicinity of the blade 

tips, which coincidentally holds the highest influence over the power output of the turbine. To 

compensate, a theory developed by Prandtl (Glauert, 1935) is incorporated. The principle of 

Prandtl's theory is that the velocity in the plane of the rotor is changed by the disturbed flow 

near the tip, which is calculated after momentum theory is taken into accounts. For this purpose, 

Prandtl expanded the equations by adopting a correction factor to the induced velocity field 

referred as 𝐹𝑎. This is expressed in the Equation (2.25). Considering this correction factor, the 

local thrust and torque of an airfoil section then can be finally obtained using Equation (2.26) 

and (2.27), respectively. The total thrust and torque are obtained by integrating these two 

equations from all the blade elements. 

 

𝑑𝑇 = 𝐵
1

2
𝜌𝑎𝑉

2(𝐶𝐿 cos𝜙𝑎 + 𝐶𝐷 sin𝜙𝑎)𝑐𝑟𝑑𝑟 ········································································· (2.23) 

𝑑𝑄 = 𝐵
1

2
𝜌𝑎𝑉

2(𝐶𝐿 sin𝜙𝑎 − 𝐶𝐷 cos𝜙𝑎)𝑐𝑟𝑟𝑑𝑟 ······································································· (2.24) 

𝐹𝑎 =
2

𝜋
cos−1 𝑒−𝑓𝑎 ················································································································ (2.25) 

where 𝑓𝑎 =
1

2
𝐵

𝑅𝑎−𝑟

𝑟 sin𝜙𝑎
, and 𝑅𝑎 is the rotor radius.  

𝑑𝑇 = 4𝜋𝑟𝜌𝑎𝑉∞
2(1 − 𝑎)𝑎𝐹𝑎𝑑𝑟 ······························································································ (2.26) 

𝑑𝑄 = 4𝜋𝑟3𝜌𝑎𝑉∞𝛺(1 − 𝑎𝐹)𝑎
′𝐹𝑎𝑑𝑟 ······················································································ (2.27) 
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Chapter 3 

Wave prediction results on FOWT 

 

 

 

 

 

3.1  Subject structures 

 

In this study, the focus is on a semi-submersible Floating Offshore Wind Turbine (FOWT). As 

mentioned previously, the semisubmersible types of FOWT design are adopted in this part of 

the study. Specifically, two different designs of semisubmersibles, referred to as Semisub-A 

(Inoue, 2021; Isnaini R. , Toichi, Iijima, & Tatsumi, 2022; Isnaini R. , Toichi, Tatsumi, & Iijima, 

2022) and Semisub-B (Adilah & Iijima, 2021; Inoue, Adilah, Iijima, Oh, & Suzuki, 2020; Isnaini 

R. , Toichi, Tatsumi, & Iijima, 2022), are considered. For further context, the visualization of 

Semisub-A and Semisub-B can be found in Figure 3.1 and 3.2, respectively. While both designs 

share a common feature of having a substructure composed of three columns, they also possess 

distinct characteristics that result in different response behaviors and critical load points. 

 

 

 
  

 (a) (b) 

 

Figure 3. 1 Design visualization of Semisub-A (a) Side-view, the numbers shown correspond 

to some of the measured locations (b) Top-view 
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 (a) (b) 

 

Figure 3. 2 Design visualization of Semisub-B (a) Side-view, the numbers shown correspond 

to some of the measured locations (b) Top-view 

 

 
 

Figure 3. 3 Normalized RAO function comparison of Semisub-A (node 10) and Semisub-B 

(node 8) 

 

The assigned numbers in the Figure 3.1 and 3.2 indicate the nodes and sensor locations. 

Further information regarding the design properties of both Semisub-A and Semisub-B can be 

found in Table 3.1 and 3.2, respectively. For Semisub-A, the substructure comprises three 

columns that provide buoyancy forces, while the superstructure, which directly interacts with 
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the wind, is positioned in the middle of the substructure's deck. It is evident from this design 

that the critical load point, which experiences the highest hydrodynamic and aerodynamic 

forces, is located on the deck where the tower is situated (around node 10/11). Similar to 

Semisub-A, Semisub-B consists of three columns along with its lower hull to provide buoyancy 

forces. However, there are notable differences between the two designs, with the most 

significant one being the placement of the superstructure. In Semisub-B, the superstructure is 

positioned directly on top of one of the columns (around node 8). Other than the critical load 

point location difference, the overall TFs, especially in the amplitude domain TFs (RAO) is 

found to be quite distinct between the two designs. Overall, Semisub-B has less steepness and 

peaky resonance compared to Semisub-A. To give more context, the strain RAO trend 

normalized by mean value of the corresponding function (assuming no aerodynamic load) of 

the two designs around their respective critical load point is shown in Figure 3.3. In this figure, 

black is the strain RAO (node 10) of Semisub-A, while grey is the strain RAO (node 8) of 

Semisub-B. Here, it can be seen that RAO belonged to Semisub-B is generally less peaky and 

steep compared to RAO of Semisub-A. This difference of RAO “peaky-ness” and steepness is 

observed to be consistent throughout different types of response between the two designs, be 

it the structure’s elastic responses or rigid body responses. 

 

NK-UTWind simulations (see Sec. 2.4) are conducted to calculate the transfer functions and 

responses for each node, which are essential components of the Kalman filter algorithm. These 

simulations also provide wave data that will be used as a reference for comparing with the 

prediction results. Additionally, this study considers two types of load conditions: wave loads 

only cases and combined load cases that incorporate both wave and wind forces. Further details 

regarding the variations in the case studies are discussed in the subsequent section. 

 

Table 3. 1 Details on the properties of Semisub-A, real scale (except the first row) 

 

Young’s modulus of experiment model 1.93×1011 Pa 

Young’s modulus 9.65 × 1012 Pa 

Displacement 1.37 × 108 N 

Draft 47.30  m 

KG 15.35  m 

Tower height 83.75  m 

Column height 40.00 m 

Total height (from keel to tower top) 140.25  m 

Column diameter 10.00  m 

Footing diameter 16.00  m 

Deck length 20.25  m 
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Table 3. 2 Details on the properties of Semisub-B, real scale 

 

Young’s modulus 2.06 × 1011 Pa 

Displacement 1.17 × 108 N 

Draft 25.00 m 

KG 15.00 m 

Tower height 113.9 m 

Column height (without tower) 36.00 m 

Column height (with tower) 56.00 m 

Total height (from keel to tower top) 136.0 m 

Column diameter 11.00 m 

Lower hull length 64.18 m 

Lower hull width and height 6.00 m 

 

 

 

 
 

 (a) (b) 

 

Figure 3. 4 Experiment set-up (a) Semisub-A in the towing tank (b) Sensors configuration 

attached to the structure's "skeleton" in the experiment 

ballast 
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The experiment was conducted at Osaka University in 2020, using a towing tank. To retrieve 

the experimental data, Fiber Bragg Gratings (FBG), strain gauges, and an accelerometer were 

employed. The experimental setup is illustrated in Figure 3.4(a), while Figure 3.4(b) displays 

the configuration of the sensors during the experiment. The accelerometer was placed on top 

of the superstructure (depicted by pink circle), while the FBG locations were indicated by 

green and blue circles on the superstructure and substructure, respectively. The strain gauges, 

represented by yellow circles, were attached to the deck part. The sensors had a sampling rate 

of 100 data points per second. Each FBG and strain gauge location was capable of capturing 

responses in both the 𝑥 and 𝑦 directions. It is important to note that this experiment was not 

specifically conducted for the present study, which implies that the available data is limited and 

may have an impact on the analysis of the prescribed case study. The variation in the case study 

are further discussed in the next section. 

 

3.2  Case study 

 

This section provides a more detailed explanation of the assumed case variations involved in 

the filtering process. In general, three types of input response and wave reference data are 

taken into account in this study. The first one is a fully linear assumption between wave and 

response. This means that while the TFs utilized to relate wave and response are computed 

using NK-UTWind (see the next section), the response time histories are found based on the 

Equation 2.13 and 2.14, while the wave time histories are calculated based on the Equation 

2.11 and 2.12, indicating a fully linear relationship between the wave and response data. The 

goal of this part of the filtering is to find the influences of assumed discretization of the wave 

spectrum to the filter accuracy when it is given different complexity in the context of the TFs 

and the wave directionality. The TF trends are characterized by the assumed response 

indicated by the second column on Table 3.3. Furthermore, the existence of aerodynamic load 

(AD cases, where the wind is modeled as steady wind with its velocity as big as 10 m/s) is also 

affecting the TFs trends, hence these types of cases are also adopted to see the filter ability to 

estimate accurate results when different TFs are accounted for. Other than that, two types of 

wave directionality, i.e. unidirectional and bidirectional are taken into account to investigate 

the filter ability to find an accurate result when different wave complexity are taken into 

account. 

 

The unidirectional wave spectrum is assumed to come towards the structure's positive 𝑥-axis 

direction (head sea), while the second scenario considers a bidirectional wave spectrum 

comprising head sea and beam sea. In the case of the unidirectional spectrum (ISSC, with a 

significant wave height (Hs) of 4.0 m and a peak period (Tp) of 12 s), pitch motions are utilized 

as the observed data. In the scenario involving a bidirectional wave spectrum, strain data are 
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included as part of the observed data, alongside pitch and heave, due to the increased 

complexity of the filtering process in this case. Strain data is known for its ability to detect 

responses at higher frequencies. The investigation also explores the combination of 

observation data locations and their impact on filter accuracy. In total, there are 11 case studies 

examined, as outlined in Table 3.3. The measurement locations listed in the third column of 

the table correspond to the numbers shown in Figure 3.1(a). Additionally, for the bidirectional 

case, the ISSC spectrum is used as well. Since there are two headings of origin, two wave spectra 

are specified. In Trial-1 to Trial-4 (both NW and AD cases), the significant wave heights (Hs) 

for head sea and beam sea are respectively 4.0 m and 2.5 m, with peak periods (Tp) described 

as 12 s and 9.5 s, respectively. In Trial-5AD, the Hs and Tp values for head sea are assumed to 

be 3.0 m and 12 s, while for beam sea, they are described as 4.0 m and 9.5 s. All bidirectional 

cases assume combination of two different measurement data for the filtering. 

 

Table 3. 3 Case study variations description assuming total linearity for Semisub-A only 

 

Spectrum type Observation data 
Measured 

location 
Case name 

Unidirectional 

spectrum 
Pitch motion 22 

Trial-NW* 

Trial-AD** 

Bidirectional 

spectrum 

Heave 1 Trial-1NW 

Strain around y-axis 
12 Trial-1AD 

22 Trial-2NW 

Heave 1 Trial-2AD 

Strain around y-axis 

10 and 22 
Trial-3NW 

Trial-3AD 

10 and 12 
Trial-4NW 

Trial-4AD 

10 
Trial-5AD 

Pitch motion 22 

*NW: having only hydrodynamic load (no wind) 

**AD: having both hydrodynamic and aerodynamic loads 

 

 

The second type of data assumes the presence of nonlinearity as all data are based on NK-

UTWind simulation. These include the response, wave, and TFs. In this part, a unidirectional 

wave spectrum in the form of a head sea is used for all assumed cases. The ISSC spectrum is 

employed in the simulations for each design, with a significant wave height (Hs) of 1.0 m and 

a mean period (Tmean) of 12.0 s for Semisub-A. The angular frequency range for Semisub-A 

is from 0.27 to 1.27 rad/s. On the other hand, Semisub-B assumes Hs and Tmean values of 
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0.846 m and 7.352 s, respectively, with a frequency range from 0.16 to 1.2 rad/s. These values 

are assigned to two load cases: one considering only hydrodynamic load and the other 

accounting for a combined load from waves and wind. These two variations are indexed as NW 

and AD, respectively. The inclusion of these two different load cases aims to examine the 

adaptability of the filter when considering a more complex nonlinearity problem caused by the 

coupling effect (Inoue, Adilah, Iijima, Oh, & Suzuki, 2020; Adilah & Iijima, 2021). The wind 

itself is simulated as a steady wind with a velocity of 10.0 m/s for both designs. A summary of 

the case variations and the details of their measurement data can be found in Table 3.4. 

 

 

Table 3. 4 Case study variations fully based on NK-UTWind data 

 

Design type Observation data 
Measured 

location 
Case name 

Semisub-A Heave motion 1 A-1NW* 

A-1AD** 

Strain around y-axis 10 A-2NW 

A-2AD 

12 A-3NW 

A-3AD 

Pitch motion 22 A-4NW 

A-4AD 

Acceleration 1 (of heave) A-5NW 

22 (of pitch) A-6NW 

Semisub-B Strain around y-axis 8 B-1NW 

B-1AD 

20 B-2NW 

B-2AD 

8 
B-3NW 

Pitch motion 1 

*NW: having only hydrodynamic load (no wind) 

**AD: having both hydrodynamic and aerodynamic loads 

 

 

Initially, in the early stages of the research, the response data included in the observation model 

mainly consisted of strain and nodal displacements. However, as the study progressed, it was 

discovered that acceleration responses would be more dependable, particularly in cases where 

the associated rigid body displacements were not entirely reliable across all frequency ranges 

due to the very high steepness of the RAO functions in the lower frequency region. This makes 
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the relative values of the RAO functions “appear” to be zero in the higher frequency domain. 

Furthermore, the possibility of combining two types of measurement data to improve 

prediction accuracy was explored, leading to the inclusion of case B-3NW in Table 3.4. A more 

comprehensive discussion regarding these matters can be found in Sec. 3.5. 

 

Lastly, a fully experiment based data are incorporated to the filter. These include the responses 

for the input, wave for the reference, and TFs for the observation matrix. The experiment is 

carried out in a towing tank, Osaka university based on the design of Semisub-A with 1/50 

scaling factor. Due to the data availability, the variation in cases based on experimental data is 

limited to a specific type of wave spectrum (ITTC spectrum, Hs=40 mm; T01 =1.56 s) 

representing a head sea, with the presence of aerodynamic damping introduced as a constant 

thrust generated by a fan. The load exerted by this fan is 5.0 N, which corresponds to the 

maximum thrust at the rated speed. The filtering outcomes obtained from two different 

observation points (point 11 and point 12, as indicated in Figure 3.1) will be compared. The 

transfer function specific to a certain wave height will then be tested with input waves of 

significant heights different from the prescribed wave height in order to assess its sensitivity. 

Additionally, the experimental model includes additional attachments of a cylindrical plate and 

a half ellipsoid at the substructure's bottom (see Figure 3.4(a)). 

 

3.3  Wave prediction results (simulation based) 

 

In this section, we present the results obtained from the filtering process when numerical data 

are introduced. The prediction using data assuming fully linear relationship between wave and 

response is first discussed in Sec. 3.3.1. This step is important mostly as the first check on the 

filter algorithm workability. In this part, the transfer functions are obtained using NK-UTWind, 

however, the wave and response data are generated separately based on the Equation (2.11) 

and (2.13). The filter ability to accurately predict different level of wave directional complexity 

(unidirectional and bidirectional waves) is discussed in this section. Subsequently, we delve 

into the estimation results using the more realistic external forces and response relationship in 

the context of FOWT. In this part the prediction is carried out fully based on NK-UTWind 

data in Sec. 3.3.2. 

 

3.3.1 Prediction results assuming fully linear wave-response relationship 

 

Firstly, prediction results assuming unidirectional wave is discussed. When a structure is 

exposed to a unidirectional wave, it means that the incoming waves are irregular but have a 

consistent direction of travel. In this case, the wave is assumed to move in the direction of head 

sea. Consequently, the number of heading directions (𝑛𝛽) is one for the unidirectional wave 

scenario. However, the discussion in this first part focuses on the number of angular 
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frequencies that constitute the waves, as it holds more significance. 

 

Other than that, in order to simplify the interpretation of results, the correlation coefficient 

(𝑟𝑥𝑦) is introduced. This is done to facilitate the analysis process, as relying solely on visual 

images can be misleading when numerous figures are presented. By using the correlation 

coefficient, a more accurate and comprehensive conclusion can be drawn. The correlation 

coefficient (𝑟𝑥𝑦 ) is selected because it directly quantifies the extent of linear correlation 

between two sets of data. In this scenario, the two sets of data are the reference wave and the 

predicted wave. The formula for calculating the correlation coefficient (𝑟𝑥𝑦) can be found in 

Equation (3.1) below, where X is the wave reference data and Y is the wave prediction data. 

 

 

𝑟𝑥𝑦 =
XY̅̅ ̅̅ −X̅.Y̅

sqrt((X2̅̅̅̅ −X̅2).(Y2̅̅̅̅ −Y̅2))
 ······································································································ (3.1) 

 

 

From a mathematical perspective, ocean wave spectra are typically modeled as continuous 

functions of frequencies. However, for the filtering process employed in this study, it is 

necessary to discretize these frequencies. This allows us to determine the number of 

elementary waves present in the spectrum. The challenge lies in obtaining the exact values of 

these frequencies, which is practically impossible. To overcome this issue, a series of trial and 

error operations is conducted. The objective is to identify the minimum number of frequency 

discretization (𝑛𝜔) that ensures both efficient and accurate algorithm execution. The chosen 

value for 𝑛𝜔 significantly impacts the size of the observation matrix (𝐌). A higher 𝑛𝜔 leads to 

a larger observation matrix and consequently increases computation time. Additionally, the 

effective minimum number of observation data (𝑛𝑆) is also explored, and it is determined that 

500 s of observation data with a sampling rate of 0.5 s (1000 data points) is suitable for this 

case. 

 

After multiple attempts, it is observed, through visual inspection, that discretizing the 

unidirectional spectrum into 80 frequencies combined with 1000 observation data points yields 

predictions that closely align with the reference data (Figure 3.5), with its 𝑟𝑥𝑦 is found to be 

around 0.9. Discretizing the spectrum into 80 frequencies indicates that 160 state variables are 

introduced (2𝑛𝜔𝑛𝛽) for this specific prediction. However, even though the accuracy is found 

to be significant, it is expected that the prediction results should fit the reference almost, if not 

perfectly since in this part, it is assumed that the wave and response have a total linear 

relationship and the wave is simply the long crested type. Hence, an attempt to achieve a 

perfect fit is carried out by increasing the number of the elementary waves. When the number 

of elementary wave frequencies is slightly increased to 100, it is found that the results are closer 

to the expected outcome (see Figure 3.6), with its 𝑟𝑥𝑦 is found to be 0.99. Based on this, this 
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number of elementary waves frequency and observation data (𝑛𝜔 = 100 and 𝑛𝑆 = 1000) are 

reckoned as a guidance when applying the Kalman filter in the bidirectional spectrum case. 

 

Next, the findings based on the bidirectional wave data are discussed. A total of nine cases are 

examined for the prediction of bidirectional waves. Four out of the nine cases pertain to 

hydrodynamic loads only, while the remaining five cases represent combined load conditions. 

Each case involves different transfer functions based on the chosen measurement location. The 

accuracy of the Kalman filter in these predictions is influenced by the transfer functions used, 

which are known to be a sensitive factor. 

 

Initially, the accuracy of the filter is assessed by considering the frequency discretization and 

the number of observation data. Based on the findings from the unidirectional wave case, a 

combination of 𝑛𝜔 = 100 and 𝑛𝑆 = 1000 is first explored. Similar to the previous case, 1000 

observation data points correspond to a measuring period of 500 s. However, based on the 

direct observation, the results show inadequate agreement between the prediction and 

reference data considering the case are assumed to be linear in the context of its wave and 

response relationship. The correlation coefficient is found to be only as big as 0.70 (see Figure 

3.7). Therefore, the number of observation data and frequency discretization are increased in 

order to find a better combination. 

 

 

 
 

Figure 3. 5 Real-time comparison results of wave elevation from Trial-NW case for Semisub-

A, unidirectional wave, assuming total linearity (𝑛𝜔 = 80, 𝑛𝑆 = 1000)  
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Figure 3. 6 Real-time comparison results of wave elevation from Trial-NW case for Semisub-

A, unidirectional wave, assuming total linearity (𝑛𝜔 = 100, 𝑛𝑆 = 1000) 

 

In the case of bidirectional wave spectra, the state variables and observation matrix are doubled 

due to the inclusion of two directional waves for the heading angles. Consequently, increasing 

the number of discretized frequencies and measurement data leads to longer computation 

times. Thus, finding the combination with the minimum values of 𝑛𝜔 and 𝑛𝑆 becomes crucial 

to reduce the computation time, especially when the system is further developed to handle 

more complex waves resembling real ocean surfaces with multiple heading angles. 

 

Table 3. 5 Correlation coefficient values assuming fully linear wave-response relationship 

 

Spectrum type Observation data 
Measured 

location 
Case name 𝒓𝒙𝒚 

Bidirectional 

spectrum 

Heave 1 Trial-1NW 0.890 

Strain around y-

axis 

12 Trial-1AD 0.884 

22 Trial-2NW 0.891 

Heave 1 Trial-2AD 0.926 

Strain around y-

axis 

10 and 22 
Trial-3NW 0.910 

Trial-3AD 0.873 

10 and 12 
Trial-4NW 0.954 

Trial-4AD 0.962 

10 
Trial-5AD 0.940 

Pitch motion 22 

*NW: having only hydrodynamic load (no wind) 

**AD: having both hydrodynamic and aerodynamic loads 
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Figure 3.8 presents the prediction results from Trial-1NW assuming the combination of 𝑛𝜔 =

120 and 𝑛𝑆 = 1200. The correlation coefficient of this specific case is found to be 0.89. Based 

on this finding, the subsequent analysis for other cases will utilize 120 discretized frequencies 

(𝑛𝜔) and a dataset of 1200 observation data points, equivalent to a 600 s of measurement. 

Moreover, a correlation coefficient with the value around 0.9 is targeted for the bidirectional 

cases, since the wave is now more complex than the fully linear long crested (unidirectional) 

wave previously discussed. The prediction results (represented in the form of its corresponding 

𝑟𝑥𝑦) for all the adopted bidirectional cases are presented in Table 3.5. Based on the value in 

this table, it is confirmed that the filter consistently gives the desirable accuracy level for 

bidirectional wave case given different combination of TFs trends. In the next section, the 

discussion assuming the more realistic external loads and response relationship based on the 

NK-UTWind simulation data is given. 

 

 
 

Figure 3. 7 Real-time comparison results of wave elevation from Trial-1NW case for Semisub-

A, bidirectional wave, assuming total linearity (𝑛𝜔 = 100, 𝑛𝑆 = 1000) 

 
 

Figure 3. 8 Real-time comparison results of wave elevation from Trial-1NW case for Semisub-

A, bidirectional wave, assuming total linearity (𝑛𝜔 = 120, 𝑛𝑆 = 1200) 
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3.3.2 Prediction results fully based on NK-UTWind data 

 

Real-time predictions of incoming wave values fully based on NK-UTWind data (see Sec. 2.4) 

have been conducted for two distinct designs of FOWT. Unlike ships, modeling an offshore 

wind turbine, particularly a floating type, is more complex due to its unique shape and 

functionality. The presence of coupling effects between wind and waves also contributes to 

nonlinearity when predicting waves based on the structure's responses. The outcomes of the 

filtering prediction are presented in this section of the report. A more detailed discussion of 

coupling effects will be further expounded upon in Sec. 3.6. 

 

As explained in Sec. 3.2, the incoming wave for these cases is assumed to follow the ISSC 

spectrum for both the Semisub-A and Semisub-B designs. The wave approaches as a head sea 

along the positive-𝑥 axis. To determine the optimal number of elementary waves, a series of 

trial and error iterations were conducted. Through this process, it was discovered that the 

optimal number of elementary waves for Semisub-A is 80, while for Semisub-B, it is 55. These 

values are significant as they are closely linked to the discretization of the frequency spectrum. 

The discretization directly corresponds to the number of state variables determined by 

Equation (2.15), and it impacts the size of the matrix, thereby influencing computation time. 

Additionally, these values remain consistent throughout the entire analysis. Furthermore, the 

Kalman filter algorithm is applied to 1400 s of measurement data for the Semisub-A cases and 

7200 s of measurement data with a sampling rate of 0.1 s for both designs. 

 

Similar with the previous section, correlation coefficient (𝑟𝑥𝑦) is introduced to ease the data 

interpretation process, as relying solely on visual images can be misleading when numerous 

figures are presented. Table 3.6 presents the prediction results in terms of the correlation 

coefficient (𝑟𝑥𝑦) for each case study. The correlation coefficient value ranges from -1 to 1, 

where a value closer to 1 indicates higher accuracy. A value of 1 signifies a perfect match 

between the reference and predicted waves at every time step. To provide additional context, 

Figure 3.9 is included. Figure 3.9(a) illustrates the comparison results between the reference 

and predicted waves for case study A-1AD, which has the lowest correlation coefficient (𝑟𝑥𝑦). 

On the other hand, Figure 3.9(b) displays the comparison results for case study B-3NW, which 

has the highest accuracy among all the cases. Therefore, it can be observed that the time history 

comparison results for the other cases will fall somewhere between the patterns seen in Figure 

3.9(a) and Figure 3.9(b). 

 

In general, the wave prediction results using the Kalman filter for the Semisub-A design cases 

show less favorable outcomes compared to predictions for the other design. Further analysis 

reveals a distinct behavior where the accuracy of predictions varies when the Kalman filter is 

provided with different measurement data from different sensor locations. Upon closer 
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examination, it is concluded that the applied transfer functions, which are specific to each 

measurement data and location, have a more significant impact on the prediction results than 

the measurement data itself. In other words, the accuracy of wave predictions is highly 

dependent on the choice of transfer function used to relate the state variables and observation 

data, as seen in Equation (2.5). Therefore, specific criteria for selecting response transfer 

functions are necessary to achieve higher accuracy. This aspect will be further discussed in Sec. 

3.5. 

 

 

Table 3. 6 Correlation coefficient values for cases fully based on NK-UTWind data 

 

Design type Measured location Case name 𝑟𝑥𝑦 

Semisub-A 1 (heave) A-1NW* 

A-1AD** 

0.470 

0.459 

10 (strain) A-2NW 

A-2AD 

0.875 

0.607 

12 (strain) A-3NW 

A-3AD 

0.535 

0.536 

22 (pitch) A-4NW 

A-4AD 

0.663 

0.624 

1 (acceleration) A-5NW 0.618 

22 (acceleration) A-6NW 0.751 

Semisub-B 8 (strain) B-1NW 

B-1AD 

0.859 

0.829 

20 (strain) B-2NW 

B-2AD 

0.854 

0.800 

1 (pitch) and 8 (strain) B-3NW 0.968 

*NW: having only hydrodynamic load (no wind) 

**AD: having both hydrodynamic and aerodynamic loads 
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(a) 

 

 
 

(b) 

 

Figure 3. 9 Comparison between prediction and reference in real-time based on nonlinear 

simulation data (a) Case A-1AD (b) Case B-3NW 

 

3.4  Wave prediction results (experiment based) 

 

The experiment takes place in a towing tank, and its setup is illustrated in Figure 3.4. In order 

to predict the real-time wave elevation, the strain measured is utilized as the observed data. 

The observed wave is positioned 4.6 meters ahead of the FOWT to avoid any influence from 

wave diffraction and radiation effects. For this specific calculation, 120 elementary waves are 

assumed, and the strain data input consists of 90 s of data with a sampling rate of 100 samples 

per second. In this instance, two prediction cases are conducted based on the experimental data 

obtained. The strain data from two locations along the y-axis are used as input measurements, 
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and their respective transfer functions are incorporated into the filter as part of the observation 

matrix. These locations are identified as number 11 and number 12 in Figure 3.1(a). For 

simplicity, these cases are referred to as case A and case B, respectively. 

 

Overall, the accuracy of predictions based on the experimental data is quite poor. The 

correlation coefficient (𝑟𝑥𝑦) values for case A and B are respectively found to be 0.49 and 0.44. 

To provide more clarity, the prediction results based on the strain data from location 11 (case 

A) are shown in Figure 3.10. Several factors could potentially contribute to the overall 

inaccuracy of the filter. Firstly, the experimental transfer functions are limited to a narrower 

frequency range compared to the range of wave frequencies encountered, primarily due to data 

availability. Secondly, these transfer functions were derived from responses under regular 

waves with a wave height of 36 mm, while this particular test was conducted using irregular 

waves with a significant wave height of 40 mm. The nonlinearity of hydrodynamic forces leads 

to transfer functions being specific to each wave height. Not only from combined loads, heave 

plates are also present in this experiment, hence causing a higher degree of nonlinearity in the 

system. Thirdly, it is possible that a longer period of time was required for the system to reach 

a steady state, since it has been found that some time is needed for the filter to reach steady 

state. 

 

 
 

Figure 3. 10 Wave prediction results based on experiment data of Semisub-A adopting strain 

measurement from node 11 (case A) 

 

As mentioned, a significant source of uncertainty comes from the nonlinearity of the response 

due to combined loads. Previous studies by Inoue et al. (2020) and Adilah & Iijima (2021) have 

examined the coupling effect of wind and wave and nonlinear loads in FOWT with respect to 

its response characteristics. For the semi-submersible type of FOWT, it has been observed that 

a combination of wind and wave loads leads to a reduction in amplitude response around 

resonance. In other words, the amplitude transfer function of a semi-submersible FOWT 
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subjected to both wind and wave loads is lower compared to when it is subjected to only wave 

loads. In cases where the transfer function is smaller than the "correct" transfer function, as in 

this situation, the predicted waves will be overestimated. It is crucial to incorporate transfer 

functions that consider the aerodynamic coupling effects. 

 

3.5  Remarks on the filter dependency towards TFs 

 

In this section, a discussion on the filter dependency towards the TFs is further elaborated. 

However, it is necessary to clarify that the discussion in this section will be mainly based on the 

simulation results fully based on the NK-UTWind data (Sec. 3.3.2). This is due to the fact that 

prediction results given in Sec. 3.3.1 is deemed to be not realistic enough due to the assumption 

of fully linearity between wave and response, while the experiment data only discussed cases 

containing combined loads (this will be mainly discussed in the next section). 

 

The correlation coefficients in Table 3.6 suggest that a particular factor influences the filtering 

process in the Kalman filter algorithm. Upon closer examination of the algorithm, it becomes 

apparent that the Kalman gain found in Equation (2.8) is primarily responsible for improving 

the accuracy of estimation results during the correction step. This step is mathematically 

expressed in the Equation (2.8) to (2.10). Essentially, the Kalman gain determines how much 

the prediction results should be adjusted when provided with measurement inputs. Prediction 

steps can be found in Equation (2.6) and (2.7). Additionally, the response transfer functions 

play a crucial role in the algorithm. Not only do they directly link the state variables (𝐱) with 

the measurement data (𝐲), but they are also integral to the calculation of the Kalman gain. 

Further analysis in this study confirms the importance of response transfer functions in 

achieving desirable wave prediction results using the Kalman filter. This section of the report 

explores the dependence and preferred types of transfer functions for wave prediction using 

the prescribed filtering model. 

 

By examining the 𝑟𝑥𝑦 values in Table 3.6, it is evident that Semisub-B generally outperforms 

Semisub-A in wave prediction. Further comparison of the transfer functions associated with 

the two designs reveals that the magnitude of the transfer function in the amplitude domain 

(also known as the response amplitude operator or RAO) for each frequency is a factor that 

influences the performance of the filter algorithm. When the RAO remains significantly 

nonzero across all frequency ranges, the filter produces more accurate wave elevation 

predictions. 

 

To provide clarification, Figure 3.11 presents a case study comparing two different transfer 

functions. The transfer functions in the amplitude domain for heave (node 1) and strain (node 

10), used to make predictions for case A-1NW and A-2NW, respectively, are shown. The 



38 

 

magnitude at each point is normalized by the mean value of the function. Based on the 𝑟𝑥𝑦 

values in Table 3.6, it is observed that case A-2NW achieves almost twice the prediction 

accuracy compared to A-1NW. This is because the RAO for case A-2NW maintains nonzero 

magnitudes when normalized. In contrast, the RAO for case A-1NW approaches zero when 

normalized within the frequency range of 0.8 rad/s to 1.2 rad/s, as depicted in Figure 3.11. To 

provide a visual representation of the accuracy of the filtering results, Figure 3.12 illustrates 

the prediction results for case A-2NW. This figure can be compared with Figure 3.9(a), which 

represents A-1AD, and has a similar correlation coefficient value to the prediction result from 

case A-1NW. 

 

 

 
 

Figure 3. 11 Normalized RAO of heave at node 1 and strain at node 10 for Semisub-A 

 
 

 
 

Figure 3. 12 Prediction results of Semisub-A case A-2NW based on nonlinear simulation data 
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The objective of any prediction endeavor is to achieve the highest possible accuracy within the 

limitations of the system and model employed. Consequently, it is suggested that incorporating 

acceleration responses may enhance the prediction results in this case, as their magnitudes are 

proportional to the square of the corresponding frequency. Based on this rationale, cases A-

5NW and A-6NW are introduced. Analysis reveals that the 𝑟𝑥𝑦 values for these cases are indeed 

higher than those using nodal displacement. Therefore, it is recommended to include 

acceleration responses in future studies. Additionally, combining two types of measurements 

is also advised, as it further improves accuracy. This finding is deduced from the comparison 

between case B-1NW and B-3NW. 

 

3.6  Remarks on the nonlinearity effects from combined loads 

 

This section of the chapter discusses the interaction between wind and waves and how they 

affect the filtering ability to accurately predict wave elevation. Results from 3.3.2 and 3.4 will 

be mainly discussed. Previous studies by Adilah & Iijima (2021) and Inoue et al. (2020) have 

highlighted that the combined load on floating offshore wind turbines (FOWTs) does not 

follow a linear relationship. Therefore, it is necessary to perform prediction analysis that 

considers the nonlinearity of the system, especially for FOWT structures, as they are typically 

subjected to combined loads due to their functional nature. 

 

The results of the filtering, assuming the presence of nonlinearity, are available in Table 3.6 as 

correlation coefficient values. Comparing these results with the cases without nonlinearity, it 

can be concluded that most of the cases with combined loads have slightly lower accuracy, 

except for the A-2s cases. Further examination reveals that the cause of the accuracy 

discrepancy lies in the amplitude response transfer function associated with each measurement. 

For example, the correlation coefficient values between case A-1NW and A-1AD are quite 

similar, indicating that the response transfer functions in the amplitude domain are comparable 

between the combined loads case and the wave load only case. This is illustrated in Figure 3.13. 

On the other hand, the coupling effect has a greater impact on the strain response at node 10 

in the Semisub-A design, particularly around the resonance frequency, as depicted in Figure 

3.14. Due to this coupling effect, the measured response used in the Kalman filter algorithm 

becomes more contaminated, resulting in less accurate prediction results. This finding is 

further proven based on the experiment-based prediction results given in the Sec. 3.4. When 

experiment data are used to estimate the waves, it is found that the prediction accuracy is 

generally low. Though several factors could cause this inaccuracy as discussed in Sec. 3.4, it is 

fair to deduce that especially in the context if case A, nonlinearity from combined loads plays a 

significant role to the filter ability to find accurate wave prediction. 

 

Based on these findings, it can be concluded that understanding the nonlinearity effect on 
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FOWT responses is crucial for determining the appropriate location and type of response to 

be used when predicting incoming waves using the Kalman filter algorithm. Additionally, 

comprehensive experimental data is needed to further examine the nonlinearity effect in detail. 

 

 

 
 

Figure 3. 13 Heave RAO comparison (node 1) between case A-1NW and A-1AD 

 

 
 

Figure 3. 14 Strain RAO comparison (node 10) between A-2NW and A-2AD 

 

3.7  Summary 

 

In this chapter, the real-time prediction results using Kalman filter based on two different 

designs of FOWTs (Semisub-A with peaky RAO and Semisub-B with less peaky RAO) are 

compared. In general, the prediction results for Semisub-A exhibit lower accuracy compared 
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to Semisub-B. This discrepancy can be attributed to the response characteristics of the 

respective designs. Specifically, Semisub-B displays less pronounced peaks in its response, 

leading to more accurate predictions. Combining measurement data from different sensors can 

be done to improve the prediction accuracy. Additionally, the impact of nonlinearity from 

coupling effects of wind and wave on the filtering results is discussed. Certain cases are found 

to be less affected by nonlinearity compared to others, depending on the structural response 

under combined loads. The findings on the nonlinearity effects towards the filtering results is 

further solidified after analyzing the prediction results based on experimental data of Semisub-

A. However, further validation through additional experiment data points is needed, especially 

since the available experiment data is limited only for cases where combined loads, and heave 

plates (which caused further nonlinearity on the overall response) are present. Another 

experiment considering cases without aerodynamic load from the fan is needed to be carried 

out as well to provide a more accurate understanding on the Kalman filter’s dependence on 

TFs. 

 

In summary, 

 Prediction results for Semisub-A generally have lower accuracy compared to Semisub-B 

due to response characteristics. 

 Semisub-B has less pronounced response peaks, leading to more accurate predictions. 

 Combining measurement data from different sensors can enhance prediction accuracy. 

 Nonlinearity from wind-wave coupling affects filtering results, with some cases being less 

impacted than others depending on structural response. 
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Chapter 4 

Future predictions and causality effects 

 

 

 

 

 

4.1  Causality effects 

 

Throughout the decades, there have been several methods introduced to cope with the 

deterministic water waves prediction. Some examples of these methods are predictions based 

on nonlinear dynamics (Klein, et al., 2020; Huchet, Babarit, Ducrozet, Gilloteaux, & Ferrant, 

2021; Hlophe, et al., 2021), predictions based on machine learning (Tanaka, Hamamichi, Wada, 

Takagi, & Imamura, 2018; Duan, Ma, Huang, Liu, & Duan, 2020), and predictions based on 

linear time-invariant (LTI) system (Naaijen, Van Oosten, Roozen, & Van 't Veer, 2018; Al-

Ani, Belmont, & Christmas, 2020; Iida & Minoura, 2022). Out of these methods, LTI-based 

water waves prediction offers the more robust and faster computational time compared with 

the rest of the methods, with the Fourier coefficients estimation technique being the most 

successful (Iida & Minoura, 2022). This method is essentially the water waves prediction 

technique adopted in this study, as seen in the formulation elaborated in Sec. 2.3. The wave 

prediction method using the Kalman filter algorithm is extended to find the future wave and 

response predictions. This will be further explained in the next section. This section discusses 

the non-causality that arises when a water wave prediction is carried out in real-time. Firstly, 

another technique for LTI-based water waves prediction by calculating the convolution integral 

between the impulse response function and an input signal is discussed. The link between this 

method, future predictions based on Kalman filter, and the zero-approaching state of the non-

causality phenomenon is discussed by the end of this chapter. 

 

The convolution integral is a mathematical operation that combines two functions to produce 

a third function, which represents the merging or interaction of the original functions. It is a 

fundamental concept in calculus and is widely used in various fields, including signal processing, 

image processing, and physics. Mathematically, the convolution of two functions referred as 

𝑓𝑐(𝑡) and 𝑔𝑐(𝑡) is denoted by (𝑓𝑐 ∗ 𝑔𝑐)(𝑡) and is defined as: 

 

(𝑓𝑐 ∗ 𝑔𝑐)(𝑡) = ∫𝑓𝑐(𝜏) ∗ 𝑔𝑐(𝑡 − 𝜏) 𝑑𝜏 ····················································································· (4.1) 

 

where ∫ represents the integral sign, 𝑓𝑐(𝜏) and 𝑔𝑐(𝑡 − 𝜏) are the functions being convolved, 

and 𝑑𝜏 is the differential element used for integration. 
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To understand the intuition behind the convolution integral, consider 𝑓𝑐(𝑡) as an input signal 

or function and 𝑔𝑐(𝑡) as a response or kernel function. The convolution operation determines 

the output signal or resulting function at each point in time by calculating the weighted sum of 

the products of the input signal and the kernel function, shifted and scaled appropriately. 

 

The convolution integral involves the following steps: 

 

1. Reversing the kernel function: The kernel function 𝑔𝑐(𝑡) is reversed or flipped along the 

time axis, which is necessary to align the corresponding values of 𝑓𝑐(𝑡)  and 𝑔𝑐(𝑡)  for 

multiplication during integration. 

 

2. Shifting and scaling: The reversed kernel function 𝑔𝑐(−𝜏) is shifted to the right by an 

amount of 𝑡, aligning it with the current point in the integration. Additionally, the function 

may be scaled by a factor depending on the specific convolution equation being used. 

 

3. Multiplying and integrating: At each point in time, the values of 𝑓𝑐(𝜏) and 𝑔𝑐(𝑡 − 𝜏) are 

multiplied together, and the products are summed up over the entire range of integration, 

represented by the integral sign. This multiplication and summation process is performed 

for every value of 𝑡. 

 

4. Obtaining the resulting function: The outcome of the convolution integral is a new 

function (𝑓𝑐 ∗ 𝑔𝑐)(𝑡), which represents the combined effect of the original functions 𝑓𝑐(𝑡) 

and 𝑔𝑐(𝑡). It describes how the input signal is transformed or modified by the kernel 

function over time. 

 

The convolution integral possesses important properties, including commutativity (𝑓𝑐 ∗ 𝑔𝑐) =

(𝑔𝑐 ∗ 𝑓𝑐) , associativity, linearity, and time-shifting. These properties make convolution a 

powerful tool for analyzing signals, systems, and understanding the interactions between 

different functions. 

 

In the 1960s, Davis & Zarnick derived the analytical solution of the impulse response function 

under the deep water assumption (Davis & Zarnick, 1966). However, it was found that this 

impulse response function is non-causal. In mathematics, causality refers to the concept that 

the cause of an event or phenomenon must precede its effect in time. It is a fundamental 

principle that governs the relationship between cause and effect and is widely used in various 

branches of mathematics, such as calculus, differential equations, and signal processing. 

Causality can be understood through the concept of time ordering. If there is a causal 

relationship between two events, it means that the cause event must occur before the effect 
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event. In the context of mathematical models or systems, causality plays an important role in 

determining the behavior and validity of the model. For example, in the study of differential 

equations, a causal system is one in which the output at any given time depends only on the 

input values at earlier times, not on future inputs. This ensures that the system's response is 

consistent with the principle of causality, as the output is determined solely by the past inputs. 

Causality is also closely related to the concept of time delay. If a system exhibits causality, it 

means that any changes or perturbations in the input will only affect the system's output after 

a certain time delay. This time delay is essential for maintaining the cause-effect relationship 

and ensuring that the system behaves in a physically meaningful way. 

 

In summary, causality in mathematics refers to the principle that the cause of an event must 

precede its effect in time. It is a fundamental concept used to establish relationships between 

variables, validate mathematical models, and ensure the consistency of mathematical systems 

with the laws of cause and effect. Causality is often associated with the notion of predictability. 

In a causal system, the future behavior can be predicted based on the past and present inputs. 

This property is particularly important in areas such as signal processing, control systems, and 

differential equations, where understanding causality allows for the analysis and prediction of 

system behavior. It is worth noting that not all mathematical functions or systems are causal. 

Some systems may exhibit non-causal behavior, where the output depends on future values of 

the input. However, causality is a fundamental assumption in many mathematical models and 

is often desired in practical applications to ensure logical and predictable behavior. Causality 

implies that a signal can be physically realized in real time (Tan, 2008), hence it is important 

to ensure that the impulse response function is causal as water waves prediction is time-

dependent.  

 

While it was found that the water waves non-causality is caused by the waves dispersion (Falnes 

J. , 1995; Falnes & Kurniawan, 2020), adopting window function and shifting the phase can be 

done to cope with the non-causality problem (Belmont, Horwood, Thurley, & Baker, 2006). 

However, the method then is only valid for deep water waves, while most offshore structures—

including FOWTs, are usually installed in finite-depth water. Iida & Minoura have analytically 

derived the impulse response function for finite-depth water between two points and found 

that the distance between the two points highly influences the causality of the impulse response 

solution (Iida & Minoura, 2022). To give a further explanation, Figure 4.1 is given. Noted that 

for the discussions from here onwards (to the end of this sub-chapter), every variable 

corresponds to length is non-dimensionalized by the water-depth (𝑑) and variables correlated 

to time is non-dimensionalized by the square-root of the water depth divided by the gravity 

acceleration (√𝑑/𝑔 ). 
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Figure 4. 1 Point locations assumed for the convolution integral 

 

Supposed that there are two points on the water surface (points A and B) with non-

dimensionalized distance of X  (X = 𝑥/𝑑)  and the waves is propagating towards 𝑥 -positive 

direction. The time history of wave elevation at point B (𝜂𝐵) then can be found based on 

convolution integral of the impulse response function (ℎ) and wave elevation history at point 

A (𝜂𝐴). This can be mathematically written as Equation (4.2). In the case of finite-water depth 

water, it has been analytically calculated that the impulse response function is as shown in 

Equation (4.3), where the extensive derivation of this function can be found in Iida & 

Minoura’s article (Iida & Minoura, 2022). 

 

 

𝜂𝐵(𝑡) = ∫ ℎ(𝜏)𝜂𝐴(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
 ······························································································· (4.2)  

ℎ(𝑡) =

{
  
 

  
 (

2

X
)

1

3
𝐴𝑖(𝛼)                                                          on   𝑡 ≤ 𝑡0

(
2

𝑡
)

1

3
𝐴𝑖(𝛽)                                                          on   𝑡0 ≤ 𝑡 < 𝑡1

𝑅𝑒 [
1

𝜋
𝑐𝑔(𝑘0)√

2𝜋

𝑡|𝜔′′(𝑘0)|
𝑒𝑖
(𝜔(𝑘0)𝑡−𝑘0X−

𝜋

4
)
]    on   𝑡 ≥ 𝑡1

 ········································ (4.3) 

where 𝛼 = (X − 𝑡)(2/X)1/3 and 𝛽 = (X − 𝑡)(2/𝑡)1/3 

 

where 𝐴𝑖(−) is the first kind of Airy function, 𝑡0 = X, and  𝑡1 is the intersection between the 

middle and the last function in the Equation (4.3) when the two are plotted and compared. 

Moreover, 𝑘0 indicates the stationary phase points of wave number 𝑘 and they are used to 

calculate the angular frequency (𝜔) and its first (also denoted as group velocity, 𝑐𝑔) and second 

derivative used in the last function in Equation (4.3). They are further expressed as Equation 

(4.4), (4.5), and (4.6), respectively. 
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𝜔(𝑘) = √𝑘 tanh 𝑘  ··············································································································· (4.4) 

𝜔′(𝑘) =
𝑑𝜔

𝑑𝑘
=

1

2
√
tanh𝑘

𝑘
(1 +

2𝑘

sinh2𝑘
)  ····················································································· (4.5) 

𝜔′′(𝑘) =
𝑑2𝜔

𝑑𝑘2
=

1

4𝑘
√
tanh𝑘

𝑘
(

4𝑘2

sinh2 2𝑘
− 1) +

1

2
√
tanh𝑘

𝑘
(

2

sinh2𝑘
−

4𝑘

sinh2𝑘 tanh2𝑘
)  ·························· (4.6) 

 

 

As it has been discussed, causality criteria are necessary to be fulfilled for the time domain 

water waves prediction, and it is found that for the case of finite-depth water, the non-causality 

phenomenon for the impulse response function solution changes for different X value. To give 

further understanding, Figure 4.2 is presented. Here, two different plots of the impulse 

response functions for different X values are shown. Based on this figure, it can be visually 

understood that the bigger the value of X, the “beginning” of the impulse response function is 

more “shifted” to the right, hence indicating causality. This is plausible since mathematically 

speaking, a non-causal system is indicated by 𝑓(𝑡) ≠ 0 when 𝑡 ≤ 0, which in this case will be 

bound to happen if the value of X is smaller than three, roughly. In other words, it can be 

concluded that the non-causality effects ought to be practically negligible if two different points 

are introduced, and only if the distance between the two points is far enough. This distance 

should be at least equal to three when non-dimensionalized with the water-depth (𝑥/𝑑 ≥ 3), 

as mentioned prior. 

 

 

 
 

Figure 4. 2 Impulse response function plots of different 𝑋, all values are non-dimensionalized 
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4.2  Future wave and response prediction based on the Kalman filter 

 

In this part, the method utilized to obtain the future predictions is described. Identical with the 

convolution integral-based prediction, the future predictions are carried out after introducing 

spatial distance relative to the reference point where the waves are first identified using the 

Kalman filter algorithm (see Figure 1.3). The causality criteria discussed previously is 

implemented. The causality criteria are applicable here as well due to the fact that the water 

wave prediction based on the convolution integral is principally the same as the Fourier 

coefficients prediction based (which are the state variables of the Kalman filter algorithm). 

Given the same problem definition, the two methods are principally the comparable as either 

method provides the time domain solution to Equation (2.11). The main difference is that 

convolution integral provides an analytical solution while the Kalman filter approaches the 

problem numerically. 

 

To further elaborate, Equation (4.7) is presented. This equation is the basis of the future 

prediction calculation after spatial distance is introduced. In other words, after Fourier 

coefficients (𝑎 and 𝑏) are found via the Kalman filtering, the wave profile at 𝑥-meter away from 

a point of reference (in this case, where the first model is located) can be found using Equation 

(4.7), where 𝑘 is the wave number and 𝑥 is the relative distance to the point of reference. 

Further, given 𝑛𝛽 = 1 and 𝑦 = 0, Equation (4.7) is then just another form of Equation (4.2) 

which proves the point that causality criteria applicable for wave prediction via convolution 

integral should also be applicable for the Kalman filter based prediction. As explained in the 

previous sub-chapter, when spatial distance is introduced, causality should be practically 

achieved when the ratio between two points distance and the water-depth equals to at least 

three (𝑥/𝑑 ≥ 3). Hence, this ratio limitation is incorporated to this study and dictates the tank 

and model set-up in general to ensure the non-causality phenomenon is avoided. Further 

technical details on these matters are described in the next chapter. Another thing worthy to 

mention is that the convolution integral could only be utilized if the input wave is defined as 

long-crested. Theoretically, the ocean waves may be described as an addition of multiple long-

crested waves. Due to this reason, wave prediction via the Kalman filter algorithm is more 

realistic as it accounts for wave directionality decomposition. 

 

 

𝜂𝑥𝑦(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑎𝑝,𝑞  
𝑛𝜔
𝑝=1

𝑛𝛽
𝑞=1 cos(𝜔𝑝𝑡 + 𝜙) + ∑ ∑ 𝑏𝑝,𝑞

𝑛𝜔
𝑝=1  

𝑛𝛽
𝑞=1 sin(𝜔𝑝𝑡 + 𝜙) ························· (4.7) 

where 𝜙 = −𝑘𝑝𝑥 cos𝛽𝑞 − 𝑘𝑝𝑦 sin𝛽𝑞 
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Since the future wave prediction is carried out in 𝑥-meter away from a point of reference where 

structure responses are not part of the input data. Hence, those responses then may be 

prescribed as another unknown variable that can be determined based on the predicted future 

waves due to the existed theoretical dependency between input wave, response, and transfer 

functions. Mathematically, this can be further expressed as shown in the Equation (4.8). 

 

 

𝑌𝑥𝑦(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑎𝑝,𝑞 𝐺(𝜔𝑝, 𝛽𝑞)
𝑛𝜔
𝑞=1

𝑛𝛽
𝑝=1 cos𝜃𝑝𝑞 +∑ ∑ 𝑏𝑝,𝑞  𝐺(𝜔𝑝, 𝛽𝑞)

𝑛𝜔
𝑝=1

𝑛𝛽
𝑞=1 sin 𝜃𝑝𝑞  ·············· (4.8) 

where 𝜃 = (𝜔𝑝𝑡 + 𝜑(𝜔𝑝, 𝛽𝑞) − 𝑘𝑝𝑥 cos 𝛽𝑞 − 𝑘𝑝𝑦 sin 𝛽𝑞) 

 

4.3  Possible offshore wind farm arrangement 

 

This section explores a possible offshore wind farm arrangement considering wake effects, a 

phenomenon that will significantly reduce the wind velocity and increase the turbulence 

intensity of downstream wind turbines. The explanation on the realistic application of the 

proposed future predictions based on the Kalman filter in the wind farm is also discussed. 

 

 
 

Figure 4. 3 Wind direction, downwind, and crosswind 

 

When studies on the performance of an individual wind turbine are carried out, the calculations 

typically yield results based on the highest-rated power, leading to significant errors in the 

calculation of the levelized cost of energy (LCOE). Additionally, relying solely on the 

performance of a single wind turbine can result in inaccurate estimations of downwind and 

crosswind distances (see Figure 4.3), leading to incorrect calculations of the number of 

turbines required for a specific production (Hassania, Helgadóttir, & Riedel, 2023). 

Ragnarsson et al. (Ragnarsson, Oddsson, Unnthorsson, & Hrafnkelsson, 2015) provided LCOE 

calculations for the Búrfell site, an onshore wind site in Iceland, based on assumptions of seven 

rotor diameters (7D) downwind and four rotor diameters (4D) crosswind. However, they did 
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not account for the wake loss effect, which significantly impacts both the LCOE and the 

financial aspects of the project. Hence, it is important to consider the wake loss effect when 

designing a wind farm, not only for the onshore farm but also the offshore ones.  

 

In wind farm layout analysis, six well-known wake loss models are commonly used. These 

models are Jenson-Katic, Larsen, Frandsen, Gaussian-Bastankah, Porté-Agel (BPA), and 

Gaussian—in which further divided into Xia and Archer (XA), and Geometric (Cristina, et al., 

2018).  The literature extensively discusses the Jensen-Katic and XA models as recommended 

options among the various wake loss models due to their consistent performance across 

different directions and wind farms. The Jensen-Katic model is particularly suitable for layout 

optimization involving annual energy production, as it exhibits satisfactory performance in 

terms of the correlation coefficient. On the other hand, the XA model is well-suited for aligning 

the wake loss model with the desired direction. 

 

According to previous literature (Manwell, McGowan, & Rogers, 2004), wind farms that adopt 

a configuration with 8-10 rotor diameters (D) in the downwind direction and 5 rotor diameters 

in the crosswind direction experience array losses below 10%. Recent study conducted by 

Hassania et al. (Hassania, Helgadóttir, & Riedel, 2023) revealed that opting for a downwind 

distance of 10 times the rotor diameter (10D) will yield significantly improved power output. 

These findings are used as guidelines to describe the possible FOWTs arrangement in the wind 

farm proposed in this section. 

 

As explained, when designing a wind farm, wake loss effect should be considered as it 

influences the total windfarm power generation. A variable that effects the recommended 

distance between wind turbines would be the rotor diameter (D). Until this report is being 

written, offshore wind turbines commonly had capacities ranging from 6 to 12 megawatts 

(MW). These larger turbines have rotor diameters typically exceeding 150 meters and are 

designed to capture more energy from the wind, thereby improving the overall cost-

effectiveness of offshore wind farms. It's worth noting that the offshore wind industry is rapidly 

evolving, and larger capacity turbines are being developed and deployed. Newer turbine models 

with capacities of 14 MW or even higher have been introduced. Typically, as the capacity of a 

wind turbine increases, so does the rotor diameter. In the range of 12 to 14 MW, which was the 

highest commonly available capacity at that time, the rotor diameters ranged from 

approximately 200 to 230 meters. If it is assumed that the FOWT in the wind farm has 200 m 

rotor diameters, then the downwind distance should be 10 times larger than D, that is 2 km 

apart from one another, while the crosswind spacing would be as long as 5D, or 1 km. To give 

more concrete example, a fully commissioned offshore wind farm from The Hornsea Project is 

discussed. 
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The Hornsea Project (Ørsted, 2023), located off the coast of Yorkshire, England, is one of the 

largest offshore wind farms in the world in which primarily utilizes fixed-bottom wind turbines 

since the site is considered shallow water. The project consists of multiple phases. These phases 

are referred as Hornsea Project 1, Hornsea Project 2, Horsea Project 3, and Hornsea Project 

4, with Hornsea Project 1 being fully commissioned in December 2019 in which the total 

capacity is 1.2 GW, while Hornsea Project 2 is fully commissioned in August 2022 with total 

capacity of 1.4 GW. With its completion, Hornsea Project 2 surpassed Hornsea Project 1 as 

the largest offshore wind farm globally currently. Figure 4.4 presents the layout of the wind 

turbines indicated by blue dots in Hornsea Project 1 and 2 (4C Offshore, 2023). For Hornsea 

Project 1, the average distance between wind turbines is approximately 1.2 kilometers, using 7 

MW turbines with 154 m rotor diameters. 

 

 

 
 

Figure 4. 4 Wind turbine layout in Hornsea Project 1 and 2 

 

Floating offshore wind turbines—which are the targeted structure, on the other hand, are 

designed for deeper waters where fixed-bottom foundations are not feasible or economically 

viable. As discussed in Sec. 4.1, in order to ensure the causality for future predictions, the ratio 

of spacing and water depth should be at least equal to three (𝑥/𝑑 ≥ 3). Since the turbines is 

targeted to be floating, deeper water assumption should be adopted to find the ratio. As a rule 

of thumb, sites with at least 200 m of water depth can be considered appropriate for FOWTs 

installation. Reiterating the prediction arrangement presented based on Figure 1.3(a), it can 

be agreed upon that the “main” filtering is carried out in the black dots, where the Fourier 

coefficients are first being estimated. After incorporating the spatial distance as explained in 

Sec. 4.2, the future predictions at gray dots can be determined. Based on this, it becomes 

apparent that the spatial distance is varied depending on the location of the gray dots relative 
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to the black dots. However, the smallest 𝑥/𝑑 is found to be 5 if it is assumed that the spacing 

between each turbines is around 1 km. This means that in any case the causality limitation is 

fulfilled for the case of deeper water wind farm. Moreover, it is expected that the spatial 

distance between turbines will become bigger and bigger due to the larger turbine expected to 

take over the market as explained previously. Therefore, it is expected that the findings of the 

study can be feasibly applied to both current and upcoming floating wind farm projects. 
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Chapter 5 

Future predictions results on multiple floating bodies 

 

 

 

 

 

5.1  Subject structure and tank set-up 

 

The experiment takes place at Osaka University in a two-dimensional tank. Based on the TFs 

of the model, the tank test can be separated into two phase. Phase 1 accounts for the 

experiment considering resonance free models, while phase 2 is the test that utilizes models 

with resonance. Figure 5.1(a) and (b) present resonance free model, while Figure 5.1(c) and 

(d) show the model with resonance. The drafts of the model are 12 and 59 mm for the 

resonance free model and model with resonance, respectively. The primary component of both 

floating models is a rectangular box made of 3 mm thick acrylic plate. 

 

For the resonance free models, the dimensions of the box are as follows: length (L) of 500 mm, 

width (W) of 280 mm, and height (h) of 40 mm. The model's draft is set at 12 mm using lead 

(Pb) as ballast. A vertical tower, made of cylindrical acrylic with an outer diameter of 30 mm 

and an inner diameter of 26 mm, is positioned at the center of the model. Atop the tower, a 50 

mm rectangle made of 3 mm acrylic plate is attached. The tower and rectangle plate are 

important for ensuring the accuracy of optical tracking measurements, which will be discussed 

further in the subsequent section. The overall height of the model from keel to top measures 

311.3 mm. 

 

For the models with resonance, the main box is in general shorter in x direction and taller in z 

direction. To be exact, the length (L), width (W), and height (h) of the main floater for this 

model are respectively 200 mm, 280 mm, and 80 mm. Similar to the resonance free model, a 

vertical tower, made of cylindrical acrylic with an outer diameter of 30 mm and an inner 

diameter of 26 mm, is positioned at the center of the model. A 50 mm × 50 mm plate with 

thickness of 3 mm is also placed on top of the cylindrical tower. The total height from keel to 

tower top for this model is 317 mm. Steel is used as ballast to reach draft of 59 mm. 

 

A total of three models, all having the same design, are taken into consideration for each phase 

of the experiment. These models are placed approximately 3 m apart from each other within 

the two-dimensional tank. For experiment considering resonance free models (or phase 1), 

first model is positioned at a distance of 2 m from the wave-maker. To distinguish them based 



54 

 

on their proximity to the wave generator, they are named Model 1, Model 2, and Model 3 

respectively, starting from the nearest one. The water depth (𝑑) is set at 0.4 m. In relation to 

Model 1 (which serves as the reference point), the 𝑥/𝑑 ratios for Model 2 and Model 3 are 

roughly 7.5 and 16 respectively, meeting the criteria for causality (see Chapter 4). The tank 

has a breadth of 0.3 m and a length of 14 m. 

 

The next experiment considering the models with resonance (phase 2) is carried out in the 

same 2D tank assuming the same water depth (0.4 m). For this phase, the distance between 

Model 1 and Model 2 is around 3.5 m, while the space between Model 2 and Model 3 is 

approximately 3.8 m in the tank. Model 1 is located around 2 m from the wave maker. The 𝑥/𝑑 

ratios for Model 2 and Model 3 from Model 1 are about 8.7 and 18 respectively. 

 

 

 
 

(a) (b) 

 

  

 

 (c) (d) 

 

Figure 5. 1 Model visualizations (a) Design visualization of the resonance free model (b) A 

resonance free model on the 2D tank (c) Design visualization of the model with resonance 

(d) A model with resonance on the 2D tank 
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A schematic diagram of the tank setup is provided in Figure 5.2, which also depicts the 

measurement system. This set-up applies for both phase 1 and 2 of the experiment, especially 

in the context of wave gages placement. The specifics of the measurement system will be 

explained in the subsequent section. The experiment involves gathering data for both regular 

waves and irregular waves. The regular wave data is utilized to be compared with the 

numerically calculated transfer functions (TFs). The method used to calculate the simulation 

TFs can be found in Sec. 5.4. Meanwhile, the irregular wave data is used for the Kalman filter 

and future wave prediction. 

 

For the case of phase 1, fifteen different periods of regular waves are considered, ranging from 

0.6 to 1.3 s (corresponding to 4.83 to 10.47 rad/s), with an increment of 0.05 s between each 

wave period. Meanwhile, even though phase 2 considers the same wave period range (0.6 to 

1.3 s) for its regular wave test, a total of 77 regular wave tests are conducted to help finding the 

definite peak of the resonance. Moreover, various cases of irregular waves assuming the 

JONSWAP spectrum are also examined. For more detailed information regarding the wave 

conditions, refer to Sec. 5.3. 

 

 

 
 

(a) 

 

 
(b) 

 

Figure 5. 2 Experiment set-up (a) Side-view (b) Top-view 
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5.2  Measurement system 

 

This section describes the measurement system and sensors arrangement used during the test 

in the 2D tank. Firstly, it is needed to declare that the measurement system described in this 

section is applied in the same manner during phase 1 and 2 of the experiment unless mentioned 

otherwise. The purpose of the tank test is to retrieve the TFs and compare them with the 

simulated transfer functions (TFs), validate the Kalman filter algorithm, and prove the 

feasibility of future predictions using the spatial distance between two objects. In order to 

achieve these, it is crucial to accurately capture the responses of the structures and the time 

histories of the waves. The wave time histories are measured using wave gauges, with a total of 

three wave gauges being utilized. These wave gauges are positioned in front of each model, 

indicated by black circles in Figure 5.2. For the case of phase 1, the wave gauges corresponding 

to Model 1, Model 2, and Model 3 are respectively placed at distances of 0.15 m, 0.13 m, and 

0.1 m in front of the model. For phase 2, the wave gauges are located 0.3 m, 0.27 m, and 0.47 

m in front of Model 1, Model 2, and Model 3, respectively. Throughout the experiment, efforts 

are made to maintain these distances constant. 

 

Regarding the mooring system, only Model 1 is moored using a soft rubber band, while Model 

2 and Model 3 are left unmoored due to minimal drifting. The rubber band is selected for its 

low stiffness, minimizing interference with the rigid body movement. One end of the rubber 

band is attached to the base of the tower, while the other end is connected to a lever holding 

the wave gauge situated in the negative-𝑥 direction of the model. 

 

The measured responses of the structure include the displacement and accelerations of the 

rigid body. An optical motion tracking system called OptiTrack is used as the primary 

measurement system to capture the rigid body displacement, particularly focusing on heave 

and pitch. Four high-speed cameras are employed to assist the OptiTrack system. These 

cameras track the movement of track markers placed on the top of the tower to ensure visibility. 

Each model is equipped with three markers. Initially, the goal is to capture the displacement of 

all models. For this purpose, the four cameras are set up as depicted in Figure 5.2 (represented 

by green boxes). A real depiction of this high-speed camera can be found in Figure 5.3. 

However, after analyzing the data obtained in a preliminary test, it was discovered that the 

high-speed cameras were not reliably detecting the rigid body movement due to the narrow 

space compared to its length. Therefore, the camera setup is modified to the configuration 

shown in Figure 5.4 to ensure data quality for the remainder of the experiment. The revised 

setup focuses on capturing the rigid body motion of Model 1 and Model 2. 

 

In addition to the optical tracking for motion measurement, Model 2 and Model 3 are each 

equipped with a single-axis accelerometer to capture their vertical acceleration. The 
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accelerometer data serves as a backup since it is known to be quite noisy, whereas the optical 

tracking measurement signal is more reliable in this aspect. The signals from both sensors are 

synchronized in the time domain, and a sampling rate of 100 Hz is used for all the sensors 

involved. To eliminate high-frequency noise from the measurement data, a Butterworth filter 

is applied. The filter order is set to five, and its cut-off frequency is determined to be 5 Hz. 

This filtering process helps to refine the data by removing unwanted noise. 

 

 
 

Figure 5. 3 A high-speed camera in the optical tracking system 

 

 

Figure 5. 4 Altered cameras set-up illustrated (top-view) 

 

5.3  Test matrix 

 

The wave test is conducted to examine both regular and irregular waves. Data from the regular 

wave test is utilized to validate the transfer functions (TFs) obtained from simulations. These 

TFs are particularly important for wave prediction at Model 1, where the wave is predicted 

using the Kalman filter algorithm. The wave time series generated by the Kalman filter 

x 

y 
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algorithm are then used to predict future waves on Model 2 and Model 3, taking into account 

their spatial distances relative to Model 1. More details regarding the regular wave cases for 

resonance free model can be found in Table 5.1. Meanwhile, regular wave cases for model with 

resonance is given in Appendix due to the longer list and to avoid redundancy as the frequency 

range is the same as phase 1 anyway. 

 

 

Table 5. 1 Regular wave cases of resonance free model 

 

Case 

no. 

Wave circular 

frequency (rad/s) 

Wave 

period (s) 

Measured wave 

amplitude at 

Model 1 (mm) 

1 4.83 1.30 4.79 

2 5.03 1.25 4.45 

3 5.24 1.20 4.93 

4 5.46 1.15 5.09 

5 5.71 1.10 5.57 

6 5.98 1.05 5.18 

7 6.28 1.00 4.61 

8 6.61 0.95 5.26 

9 6.98 0.90 4.22 

10 7.39 0.85 4.00 

11 7.85 0.80 3.09 

12 8.38 0.75 4.98 

13 8.98 0.70 5.57 

14 9.67 0.65 6.23 

15 10.47 0.60 8.02 

 

 

In addition to regular waves, data retrieval for irregular waves is also performed to serve as 

input and reference for the wave predictions. Table 5.2 provides specific information about the 

environmental conditions and the cases considered. Here, the same index number in “case 

name” column indicates the same wave conditions. Six JONSWAP spectra (long-crested 

waves) with varying significant heights (Hs) and periods (Ts) are adopted. The spectrum 

ranges from 3.77 to 17.58 rad/s. In this table, the index number corresponds to a specific 

combination of Hs and Ts for the wave, while the model condition indicates whether the 

experiment and subsequent prediction involve the presence of a model or not. Two types of 

model conditions are utilized: no model (NM) and with model condition, in which it is further 

divided into RF (resonance free) and WR (with resonance) cases. For RF cases, the data being 
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analyzed and discussed are coming from the experiment that uses resonance free models. 

Meanwhile, WR cases discuss prediction based on data obtained on the 2D experiment that 

utilizes models with resonance. 

 

The no model condition is considered to represent the purest form of linearity between input 

(wave) and output (typically responses) for the Kalman filter algorithm. According to Equation 

(2.14), the relationship between input and output signals can be described using the response 

amplitude operator (RAO, 𝐺) and phase (𝜑) functions. Under ideal conditions, where the 

input and output signals are identical, the RAO and phase functions are typically represented 

as 1 and 0, respectively, across all elementary wave components. The NM conditions are 

justified based on this premise. 

 

Table 5. 2 Irregular wave cases, its index description, and cases name 

 

Wave 

spectrum 

Significant 

height (mm) 

Significant 

period (s) 

Index 

number 

Model 

condition 
Case name 

JONSWAP 

30 

0.95 1 
NM* NM_1 

RF* RF_1 

0.87 2 
NM NM_2 

RF RF_2 

15 

0.95 3 

NM NM_3 

RF RF_3 

WR* WR_3 

0.87 4 

NM NM_4 

RF RF_4 

WR WR_4 

20 
0.95 5 

WR 
WR_5 

0.87 6 WR_6 

*NM: no model, RF: resonance free, WR: with resonance 

  
 

5.4  Boundary Element Method (BEM) solver 

 

Before discussing the main results from experiment, a simulation intended to validate and 

compare with the data obtained from experiment is needed to be carried out. For this purpose, 

simulation code developed based on the boundary integral equations is adopted. Boundary 

integral equations are a traditional approach used to analyze boundary value problems 

associated with partial differential equations. The term "boundary element method", or BEM 
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Figure 5. 5 Potential models in boundary element method (Papillon, Castello, & Ringwood, 

2020) 



61 

 

encompasses any technique used to numerically approximate the solutions to these boundary 

integral equations. The distinctive characteristic of the BEM's approximate solution to the 

boundary value problem is that it precisely satisfies the differential equation within the domain 

and is represented by a finite set of parameters located on the boundary. 

 

In the field of potential flow theory for water wave–body interaction problems, different 

numerical models have emerged over the last 50 years or so, thanks to advances in numerical 

computation (Papillon, Castello, & Ringwood, 2020). The biggest issues in solving potential 

flow problems lie in the computation of the nonlinear free-surface boundary condition 

equations, and in the treatment of the body boundary condition (in the case of freely moving 

bodies) which takes into account the relative motion between the moving body and the 

unsteady free-surface elevation. Different levels of assumption are made in the treatment of 

those conditions, which lead to more or less complex models. Figure 5.5 summarizes the 

“mathematical assumption routes” that may be taken when boundary element method is 

adopted to solve the partial differential equations in potential flow theory. Technically 

speaking, both the free-surface Green function and Rankine singularity serve as Green 

functions. However, for the sake of convenience, the "free-surface Green function" will be 

simply referred as the "Green function" in this study. 

 

When tackling potential flow problems involving a body, two separate tasks must be addressed: 

solving the equation governing the motion of the body and solving the equation governing the 

fluid (potential flow problem). These two aspects are interconnected through the 

hydrodynamic forces exerted on the body. The approach taken to solve the problem can vary 

depending on whether a Green function method or Rankine sources are employed. Under the 

assumption of small wave steepness and small body, the hydrodynamic forces acting on a body 

can be found using the Green function formulation, which will be adopted in this study. This 

formulation enables the analysis performed in either the time-domain or frequency domain 

analysis. For the purpose of validating the TFs retrieved from the experiment, the frequency 

domain analysis is considered. The coordinate system and notations related to this section is 

shown in the Figure 5.6. 

 

Let ψ and 𝜓 be the total potential and total complex velocity potential for wave with angular 

frequency of 𝜔. Based on the Green function theorem, the total potential is given in Equation 

(5.1), where the total velocity potential can be expressed as Equation (5.2). Here, 𝜓0,  𝜓𝐷 and 

𝜓𝑅 are the complex incident, diffraction, and radiation velocity potential, respectively. Further, 

the complex incident velocity potential can be described as Equation (5.3), where 𝑎𝑤 is the 

wave amplitude, 𝑔  is gravitational constant, 𝑑  is water depth, and is the 𝑘  wave number. 

Meanwhile, the complex generalized hydrodynamic forces can be found by integrating the 
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pressure acting on the wetted surface (𝑆𝑤). This may be expressed as Equation (5.4), where 𝑛 

is the generalized unit normal vector. 

 

 
 

Figure 5. 6 Coordinate system and notations 

 

ψ = Re (𝜓𝑒−𝑖𝜔𝑡) ·················································································································· (5.1) 

𝜓 = 𝜓0 +𝜓𝐷 + 𝜓𝑅 ··············································································································· (5.2) 

𝜓0 = −
𝑎𝑤𝑔

𝜔

cosh𝑘0(𝑧+𝑑)

cosh𝑘0𝑑
𝑒𝑖𝑘0𝑥  ································································································· (5.3) 

𝐹ℎ𝑖 = ∬ Re (𝑖𝜌𝜔𝜓𝑖𝑒
−𝑖𝜔𝑡)𝑛0𝑖  𝑑𝑠𝑆𝑤

= Re (𝑭𝒉𝑖𝑒
−𝑖𝜔𝑡) ······························································ (5.4) 

where, 

𝑭𝒉𝑖 = 𝑖𝜌𝜔∬ (𝜓0 + 𝜓𝐷)𝑛𝑖  𝑑𝑠𝑆𝑤
+ ∑ 𝑖𝜌𝜔𝑉𝑗

3
𝑗=1 ∬ 𝜓𝑅𝑗𝑛𝑖  𝑑𝑠𝑆𝑤

 ···················································· (5.5) 

 

The first and second terms on left-hand side of Equation (5.5) may respectively be further 

referred as excitation forces (𝑭𝑖
𝑒𝑥) and radiation forces (𝑭𝑖

𝑅) as seen in the Equation (5.6). The 

difference between 𝑭𝑖
𝑒𝑥 and 𝑭𝑖

𝑅 lies in the situation of the body itself, with 𝑭𝑖
𝑒𝑥 are the forces 

exerted on the stationary body, while 𝑭𝑖
𝑅 are the present forces when the body is in motion, 

without the existence of the incident wave.  

 

𝑭𝒉𝑖 = 𝑭𝑖
𝑒𝑥 + 𝑭𝑖

𝑅 ···················································································································· (5.6) 

 

For the case of 𝑭𝑖
𝑒𝑥, it can be further decomposed into forces caused by the pressure of the 

incident wave (further referred as Froude-Krylov forces, or 𝑭𝑖
𝐹𝐾) and diffraction forces (𝑭𝑖

𝐷). 

This can be expressed mathematically as Equation (5.7). Another mathematical definition of 

the excitation forces can also be found in Equation (5.8). 
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𝑭𝑖
𝑒𝑥 = 𝑭𝑖

𝐹𝐾 + 𝑭𝑖
𝐷 = 𝑖𝜌𝜔∬ 𝜓0𝑛𝑖  𝑑𝑠𝑆𝑤

+ 𝑖𝜌𝜔∬ 𝜓𝐷𝑛𝑖 𝑑𝑠𝑆𝑤
 ························································ (5.7) 

𝐹𝑒𝑥𝑖(𝑡) = Im ((𝑭𝑖
𝐹𝐾 +𝑭𝑖

𝐷)𝑒−𝑖𝜔𝑡) ··························································································· (5.8) 

 

Meanwhile, the radiation forces can be described as shown in the Equation (5.9). Here, 𝒇𝑖𝑗 

represents the force applied in the 𝑖 direction as a result of a unit velocity motion in the 𝑗th 

degree of freedom and V is the velocity of the moving body. Then the total radiation load can 

be described as shown in the Equation (5.10) and (5.11). 

 

𝑭𝑖
𝑅 = ∑ 𝑖𝜌𝜔V𝑗

3
𝑗=1 ∬ 𝜓𝑅𝑗𝑛𝑖  𝑑𝑠𝑆𝑤

= ∑ 𝒇𝑖𝑗V𝑗
3
𝑗=1  ··········································································· (5.9) 

𝐹𝑅𝑖(𝑡) = Re (𝒇𝑖𝑗V𝑗𝑒
−𝑖𝜔𝑡) = Re [(Re 𝒇𝑖𝑗 +  Im 𝒇𝑖𝑗) V𝑗𝑒

−𝑖𝜔𝑡] ·················································· (5.10) 

or, 

𝐹𝑅𝑖(𝑡) = −(𝜌∬ Re (𝜓𝑅𝑗)𝑛𝑖  𝑑𝑠𝑆𝑤
) �̈�𝑗 − (𝜌∬ Im (𝜓𝑅𝑗)𝑛𝑖  𝑑𝑠𝑆𝑤

)𝑋�̇� ······································ (5.11) 

where 𝑋�̇� = V and �̈�𝑗 = −𝑖𝜔V 

As seen in the Equation (5.11), the radiation forces consist of two components: one that is 

proportional to the acceleration of the body and another that is proportional to the velocity of 

the body. Based on this understanding, the added mass and damping term arisen from radiation 

forces can be defined and shown respectively in the Equation (5.12) and (5.13). These terms 

are adopted to the equation of motion, and after incorporating the excitation forces, the 

equation of motion to be solved is shown in the Equation (5.14) and (5.15). 

 

𝐴𝑅𝑖𝑗 = 𝜌∬ Re (𝜓𝑅𝑗)𝑛𝑖  𝑑𝑠𝑆𝑤
=

1

𝜔
Im (𝒇𝑖𝑗) ············································································ (5.12) 

𝐵𝑅𝑖𝑗 = 𝜌∬ Im (𝜓𝑅𝑗)𝑛𝑖  𝑑𝑠𝑆𝑤
= − Re (𝒇𝑖𝑗)············································································ (5.13) 

(𝑴𝑗𝑖 + 𝐴𝑅𝑗𝑖) �̈�𝑖(𝑡) + 𝐵𝑅𝑗𝑖𝑋𝑖
̇ (𝑡) + 𝐾𝐻𝑗𝑖𝑋𝑖(𝑡) =  𝑭𝑗

𝑒𝑥𝑒−𝑖𝜔𝑡 ······················································ (5.14) 

substituting 𝑋(𝑡) = 𝑅𝑒(𝑿𝑒−𝑖𝜔𝑡), 

[−𝜔2 (𝑴𝑗𝑖 + 𝐴𝑅𝑗𝑖) − 𝑖𝜔𝐵𝑅𝑗𝑖 + 𝐾𝐻𝑗𝑖]𝑿𝑖 = 𝑭𝑗
𝑒𝑥····································································· (5.15) 

 

5.5  Transfer functions comparison 

 

The simulated transfer functions (TFs) obtained based on the description mentioned above 

are compared with the experimental TFs, focusing on heave and pitch responses in terms of 

both amplitude (RAO) and phase. The experimental RAO and phase functions are obtained 
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from the regular wave experiments by applying Fast Fourier Transform (FFT) to the data. The 

phase TFs play a crucial role in the Kalman filtering process, as this study focuses on time 

domain data. The phase TFs can be effectively obtained by calculating the phase difference 

between the wave and the response. The RAOs are always normalized by dividing the response 

amplitude by the wave amplitude measured at Model 1. Ideally, the undisturbed wave data 

should be used to capture the hydrodynamic effects between the models. However, due to data 

limitations, the wave measured at Model 1 is utilized instead. This is applicable for data 

involving resonance free model and model with resonance. Figure 5.7 displays the TFs for the 

pitch and heave response belong to resonance free model, while Figure 5.9 shows the TFs for 

pitch and heave of model with resonance. 

 

Firstly, TFs from resonance free model is discussed. The BEM simulations are carried out two-

dimensionally using in-house code assuming three degrees of freedom (surge, heave, and 

pitch). In Figure 5.7, the dark grey lines represent the simulation results, the black dots 

represent the experimental results for Model 1, and the grey dots represent the experimental 

results for Model 2. When directly examining the retrieved time domain data, it can be 

observed that the wave amplitude for long waves at Model 1 remains consistent with a 

sinusoidal shape, whereas shorter waves exhibit the opposite trend. This indicates that 

nonlinearity effects are less prominent in longer waves compared to shorter waves, resulting in 

more noticeable differences in RAO between Model 1 and Model 2 in the higher frequency 

domain. 

 

The comparison between the retrieved TFs from the experiment and simulation also reveals 

differences in terms of their curve regularity as seen in Figure 5.7(a) and (c). The plot 

generated from simulation appears smoother, while the experimental-based plot exhibits more 

waviness, particularly in the lower frequency range. This irregularity in the experimental data 

can be attributed to hydrodynamic interactions among the three floats and reflections from the 

end wall, which may have affected the consistency of the data. When extracting the TFs from 

the experimental data, it was ensured that the sinusoidal data used for calculations were among 

the first ten perfectly developed sinusoidal waves, aiming to minimize the influence of 

reflection waves. However, for lower frequency waves, which correspond to longer periods, the 

wave reaches the end of the tank more quickly, resulting in faster arrival of reflection waves. 

Furthermore, wave interactions between floating bodies are expected to be more significant in 

the lower frequency range due to the relatively closer distance between the models when the 

wavelength is longer. Despite these encountered problems, the simulation and experimental 

TFs generally exhibit acceptable values in comparison to each other. To enable filtering for RF 

cases, the retrieved TFs from the experiment are combined with the simulated TFs to achieve 

a wider spectrum range. The spectrum assumed for the irregular wave test covers a range from 

3 to 16 rad/s. 
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Next, discussion on the TFs of model with resonance is given. Unlike the resonance free model, 

the simulations for model with resonance are carried out three-dimensionally using a BEM 

solver tool called Nemoh. The mesh of this model can be found in Figure 5.8. The results of 

simulated TFs and experiment TFs are given in Figure 5.9. Similarly, pitch and heave TFs are 

compared in this figure. Results from simulation are indicated with grey lines, while results 

based on experiment are indicated by black dots. Looking at the presented results, it is pretty 

clear that the experiment vs simulation results are not as congruent as TFs results comparison 

of resonance free model. 

 

Firstly, the RAO results are discussed. For pitch, the results can be seen in Figure 5.9(a). Initial 

simulation results (grey lines) indicate a poor match with the experiment data (black dots). A 

better fit is found after center of gravity to metacenter distance (GM) and damping coefficient 

in the simulation is tuned. The result from simulation after tuning is indicated by grey dots in 

Figure 5.9(a). However, these tunings need to be proven practically, especially when it comes 

to GM since the value of GM is initially found mathematically at 6.7 cm and recheck has been 

done to ensure the value is correct. To further ensure the value of GM, a subsequent 

experiment was conducted. In this experiment, heeling angles were measured using optitrack 

by adding a small weight of 𝑚 gr at a distance of 𝑥 centimeters from the center of the structure. 

The experiment allowed for the calculation of GM using Equation (5.16), where 𝑀0 represents 

the mass of the structure and ϵ denotes the heeling angle. Four different weights (100, 200, 

250, and 300 gr) were employed, while 𝑥  remained constant at 8.8 cm. Interestingly, the 

experimentally obtained GM was found to be 7 mm shorter than the analytical values. Figure 

5.9(a) illustrates the pitch RAO functions assuming the experimentally obtained GM, 

represented by disconnected grey lines. From these findings, it can be concluded that the 

simulated pitch resonance peak approaches closer to the experimental results, but does not 

precisely match. The observed difference could be attributed to the oversight of the limitations 

on the heeling angle values during the follow-up experiment conducted to determine GM. 

Theoretically, Equation (5.16) is applicable only for small angles, and the heeling angle of the 

scaled model during the experiment should have been limited to a maximum of 2 degrees (池

田, 梅田, 慎, & 内藤, 2013). However, the heeling angle from the experiment ranges from 2.4 

to 7.4 degrees. It is also advised that instead of keeping the 𝑥 distance constant, the same 

weight should be used while the 𝑥 distance is shifted. Therefore, it is recommended to conduct 

another experiment to determine the corrected value of GM based on the aforementioned 

recommendations. 

 

𝐺𝑀 =
𝑚𝑥

(𝑀0+𝑚) tan𝜖
 ............................................................................................................ (5.16) 

 

For the case of heave RAO, it can be concluded that simulation and experiment data generally 

give a much better match when compared as seen in Figure 5.9(c). The most noticeable 



66 

 

discrepancy is found to be the trend of RAO data within the frequency range of around 6 to 

8.5 rad/s. Upon further investigation, it is discovered that coupled motions with roll are 

substantial in this frequency range, hence affecting the RAO of heave. 

 

Lastly, the phase functions of the model with resonance are examined. Figure 5.9(b) and (d) 

illustrate the pitch phase functions and heave phase functions, respectively. The heave phase 

functions demonstrate a stronger agreement between the simulation and experiment compared 

to the pitch phase functions, similar to the RAO functions. As seen in Figure 5.9(d), the heave 

experimental phase functions cluster around the same values as the simulated phase functions. 

 

To analyze the pitch phase functions, simulation data based on tuning is utilized due to the 

closely matched trends observed between the simulation and experiment in the amplitude 

domain TFs. In Figure 5.9(b), the simulated pitch phase functions based on tuning are 

represented by grey dots. Comparing them with the experimental phase functions, it is noted 

that the results align closely in the lower frequency range, up to approximately 8 rad/s. 

However, this correspondence is expected, as the discrepancy in the RAO between the 

simulation considering tuning and the experiment increases beyond the frequency of 

approximately 8 rad/s. Hence, a similar phenomenon is anticipated in the phase functions. To 

address the discrepancy in the phase functions, it is necessary to achieve better agreement in 

the amplitude domain functions as well. As mentioned earlier, conducting another careful 

experiment to determine a corrected value of GM might be the most logical initial step in 

identifying the cause of the issue. Meanwhile, for the time being, predictions related to the 

model with resonance (WR cases) are performed solely using data unrelated to pitch. Unlike 

the free resonance model filtering (RF cases), the simulated TFs will be considered assuming 

a frequency range from 3 to 16 rad/s.  
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(b) 

 

(c) 

 

(d) 

 

Figure 5. 7 TFs comparison between experiment and simulation of resonance free model (a) 

RAO pitch (b) Phase function pitch (c) RAO heave (d) Phase function heave 
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Figure 5. 8 Mesh discretization of model with resonance in Nemoh 
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(c) 

 

(d) 

 

Figure 5. 9 TFs comparison between experiment and simulation of model with resonance (a) 

RAO pitch (b) Phase function pitch (c) RAO heave (d) Phase function heave 

 

5.6  Wave profile identification 

 

This section focuses on the outcomes of identifying the wave profile using the Kalman filter in 

Model 1. In this case, the wave profile is determined by incorporating the response data (heave 

in this case) obtained from an experiment as input in the Kalman filter algorithm. The 

predicted wave profile is then compared to the wave gauge data. Just like results in Chapter 3, 

in order to simplify the analysis, the accuracy is measured using the correlation coefficient (𝑟𝑥𝑦) 

from this point forward. The correlation coefficient values range from -1 to 1, with a value of 

1 indicating a perfect match between the predicted and measured signals. Equation (3.1) can 

be used to calculate the correlation coefficient (𝑟𝑥𝑦), with X representing the wave reference 

data and Y representing the wave prediction data. 
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The assumed elementary waves for all Kalman filter (KF) predictions are 80. Based on 

explanation in Sec. 2.3, the state variables then can be determined as 160, with 𝑛𝜔 being 80 

and 𝑛𝛽 being 1. Table 5.3 provides the correlation coefficients (𝑟𝑥𝑦) for all the assumed cases. 

The numbers listed alongside the 𝑟𝑥𝑦 values represent the assumed KF filtering time (referred 

to as 𝑇), which is varied at 25, 40, and 55 s. Generally, a minimum 𝑟𝑥𝑦value of approximately 

0.8 is considered indicative of "good results". Figure 5.10 provides additional visual context by 

comparing the predicted and reference waves for three specific cases: NM_3 with 𝑟𝑥𝑦_25 ≈ 1.0, 

RF_3 with 𝑟𝑥𝑦_25 ≈ 0.8  and WR_3 with 𝑟𝑥𝑦_25 ≈ 0.78 . Here, the subscript value of 25 

corresponds to the assumed KF filtering time 𝑇 done in the unit of seconds. 

 

Table 5. 3 Correlation coefficient of KF results at Model 1 

 

Case name 𝑟𝑥𝑦_25 𝑟𝑥𝑦_40 𝑟𝑥𝑦_55  

NM_1 0.979 0.950 0.937 

NM_2 0.966 0.954 0.962 

NM_3 0.975 0.940 0.926 

NM_4 0.970 0.955 0.952 

RF_1 0.799 0.507 0.432 

RF_2 0.801 0.633 0.501 

RF_3 0.813 0.718 0.649 

RF_4 0.836 0.706 0.636 

WR_3 0.782 0.703 0.662 

WR_4 0.793 0.660 0.612 

WR_5 0.815 0.670 0.633 

WR_6 0.804 0.717 0.697 

 

 

According to the defined "good results standard," it can be observed from Table 5.3 that the 

NM cases exhibits different tendencies compared to RF and WR cases. NM cases consistently 

yield high-accuracy results for all assumed filtering times, while the accuracy of RF and WR 

cases decreases as the filtering time increases. This disparity is natural due to the presence of 

hydrodynamic effects and reflection waves (especially for RF cases), which impact the high-

frequency wave region. The simulation, as discussed in the previous section, only considers 

linear waves, resulting in greater difficulty for the filter to accurately predict waves in the higher 

frequency range that occur later. 
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(a) 

 

(b) 

 

(c) 

Figure 5. 10 Experimental vs KF wave time histories at Model 1; KF 𝑇: 25 s (a) Case NM_3 

(b) Case RF_3 (c) Case WR_3 
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5.7  Future wave prediction results 

 

This section focuses on discussing future wave predictions carried out in Model 2 and Model 

3. With the knowledge of elementary wave coefficients from the Kalman filter in Model 1, the 

wave profile in Model 2 and Model 3 can be determined using Equation (4.8). The spatial 

distances (𝑥) for RF cases between Model 2 and Model 1, and between Model 3 and Model 1, 

are 2.98 m and 6.55 m, respectively. Meanwhile, for WR cases, the spatial distance of Model 2 

and Model 1 is 3.47 m, and the distance between Model 3 and Model 1 is 7.27 m. Since the 

water depth (𝑑) is 0.4 m, it satisfies the condition 𝑥/𝑑 ≥ 3 for all cases, fulfilling the causality 

criteria explained in Chapter 4 and justifying the future wave analysis. 

 

 

 

(a) 

 

 

(b) 

 

Figure 5. 11 Experimental vs KF-based wave histories (a) Wave at Model 2; case RF_3; KF 

T:25 s (b) Wave at Model 3; case RF_3; KF 𝑇: 25 s 
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(a) 

 

 
(b) 

 

Figure 5. 12 Experimental vs KF-based wave histories (a) Wave at Model 2; case WR_3; KF 

T:25 s (b) Wave at Model 3; case WR_3; KF 𝑇: 25 s 

Given that the input wave at the reference point has been decomposed using the Kalman filter 

algorithm in the previous step, the wave time series at a distance 𝑥 away from the reference 

point can be plotted for 0 < 𝑡 < 𝑇 + ∆𝑡 using Equation (4.7), where ∆𝑡 represents the future 

time. Consequently, the wave profiles in Model 2 and Model 3 can be calculated using the 

elementary wave coefficients for 𝑇 = 25 s in Model 1. 

 

Figure 5.11(a) and (b) illustrate the wave time histories at Model 2 and Model 3, respectively, 

obtained using the aforementioned method for the RF_3 case with KF 𝑇 = 25 s. The same 

results for case WR_3 is given in Figure 5.12(a) and (b). From these particular examples, it can 

be observed that Model 3, which has a greater distance (𝑥) from Model 1, exhibits a longer 

predictable future time. The correlation coefficients (𝑟𝑥𝑦)   consistently hover around 0.8, 
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especially for RF cases, when the assumed future predictable times at Model 2 and Model 3 are 

3 and 8 s, respectively. For WR cases, the future predictable time are found to be longer, that 

is as long as 5 and 10 s at Model 2 and Model 3, respectively. This is found to be reasonable as 

it has been stated in the beginning of this section, the distance between Model 2 and Model 1, 

and Model 3 and Model 1 of WR cases are slightly longer compared to the RF cases. Hence, 

the aforementioned finding of “a longer spatial distance will result in a longer predictable future 

time as well, assuming the water depth remains the same” is further proven. Table 5.4 provides 

complete data on 𝑟𝑥𝑦 during the future predictable time for Model 2, while Table 5.5 presents 

the same data for Model 3 for both RF and WR cases. 

 

In the following comparison, future wave predictions at Model 2 are examined using two 

different methods. Initially, when utilizing the previously mentioned method, the future 

predictable time at Model 2 is consistently determined to be only 3 s ahead for RF cases. 

Therefore, a direct comparison is made by assuming Kalman filter (KF) prediction directly at 

Model 2. In this scenario, the 𝜙 term in Equation (4.7) can be disregarded, and the output 

vector of the system in Equation (2.5) represents the response of Model 2, specifically the 

heave motion. Consistently, it is observed that adopting the spatial distance method is more 

favorable due to the existence of the spatial distance, resulting in a longer predictable future 

time. Moreover, this method yields higher accuracy. To provide further context, Figure 5.13 is 

presented, illustrating three types of data. The dark grey line represents the reference wave 

obtained from measurements, the grey line represents wave predictions obtained by adopting 

the spatial distance and calculated using Equation (4.7), and the discontinued black lines 

represent wave predictions assuming KF is directly applied at Model 2, utilizing Equations 

(2.4) to (2.10) with the heave response of Model 2 instead of Model 1 for 𝐲 in Equation (2.5). 

It can be observed that the accuracy deteriorates more rapidly in the future time for the 

discontinued black lines scenario. 

 

 

Figure 5. 13 Experimental vs spatial distance based wave prediction vs direct KF wave 

prediction at Model 2; case RF_3; KF 𝑇: 25 s 
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Table 5. 4 Correlation coefficient of future wave at Model 2 (based on KF 𝑇: 25 s) 

 

Case name 
𝑟𝑥𝑦_25 

3 s ahead 8 s ahead 15 s ahead 

NM_1 0.932 0.886 0.554 

NM_2 0.945 0.820 0.493 

NM_3 0.945 0.842 0.477 

NM_4 0.893 0.796 0.541 

RF_1 0.858 0.584 0.400 

RF_2 0.810 0.584 0.408 

RF_3 0.762 0.605 0.417 

RF_4 0.764 0.585 0.426 

Case name 
𝑟𝑥𝑦_25 

5 s ahead 10 s ahead 15 s ahead 

WR_3 0.780 0.622 0.442 

WR_4 0.751 0.509 0.413 

WR_5 0.864 0.571 0.463 

WR_6 0.759 0.535 0.441 

 

Table 5. 5 Correlation coefficient of future wave at Model 3 (based on KF 𝑇: 25 s) 

 

Case name 
𝑟𝑥𝑦_25 

3 s ahead 8 s ahead 15 s ahead 

NM_1 1.000 1.000 0.899 

NM_2 0.905 0.966 0.617 

NM_3 1.000 0.911 0.772 

NM_4 1.000 1.000 0.888 

RF_1 0.900 0.858 0.567 

RF_2 0.772 0.755 0.626 

RF_3 0.936 0.861 0.504 

RF_4 0.822 0.815 0.461 

Case name 
𝑟𝑥𝑦_25 

5 s ahead 10 s ahead 15 s ahead 

WR_3 0.897 0.830 0.676 

WR_4 0.823 0.778 0.554 

WR_5 0.902 0.797 0.665 

WR_6 0.911 0.828 0.626 



76 

 

 

The future predictable time window can be explained by examining the correlation functions 

of the signals involved. When considering the future predictable time based on direct Kalman 

filter (KF) results, the auto-correlation function of the wave at Model 2 is considered. On the 

other hand, the cross-correlation function between the wave at Model 1 and the wave at Model 

2 or Model 3 is used to explain the future predictable time in predictions based on the spatial 

distance. Equation (5.17) is utilized to calculate the cross-correlation of the signal 𝑓𝑐(𝑡) and 

the signal 𝑔𝑐(𝑡)  over a time lag of 𝜏 s. In this case, 𝑓𝑐(𝑡)  represents the time series of wave 

elevation at Model 2 or Model 3, and 𝑔𝑐(𝑡) represents the time series of wave at Model 1 for 

𝑡 = 𝑇, which is 25 s in this case. The bar symbol indicates the complex conjugates for complex-

valued signals. 

 

(𝑓𝑐 ⋆ 𝑔𝑐)(𝜏) = ∫ 𝑓𝑐(𝑡)
+∞

−∞
𝑔𝑐(𝑡 + 𝜏) 𝑑𝑡 ·················································································· (5.17) 

 

Cross-correlation measures the similarity between two signals as a function of their 

displacement relative to each other. A value close to zero at a time lag indicates that the two 

signals are uncorrelated or perfectly random at that particular time lag, suggesting non-

predictability between the signals. A value close to one indicates strong correlation between 

the signals. The same interpretation can be applied to the auto-correlation function, which can 

be calculated using Equation (5.17) assuming 𝑓𝑐(𝑡) = 𝑔𝑐(𝑡), where  𝑓𝑐(𝑡)represents the wave 

time histories at Model 2 for 𝑡 = 𝑇 (25 s in this case). 

 

Figure 5.14 provides further illustration of this explanation. Figures 5.14 (a), (b), and (c) 

depict the auto-correlation function of the wave at Model 2, the cross-correlation function 

between the wave at Model 1 and Model 2 (referred to as Ω2), and the cross-correlation 

function between the wave at Model 1 and Model 3 (referred to as Ω3) for RF cases considering 

KF 𝑇 = 25 s. In the case of auto-correlation, the signals exhibit strong correlation when the 

time difference is zero, indicating an extremely short future predictable time if the spatial 

distance is not taken into account. For Ω2, the densest correlation is found at around 4 s. This 

means that the signal at Model 1 at 𝑡 = 0 s has the most influence on the signal at Model 2 at 

𝑡 = 4 s. Similarly, the signal at Model 1 at 𝑡 = −4 s has the most influence on the signal at 

Model 2 at 𝑡 = 0  s. Thus, all the information at Model 1 before 𝑡 = 25  s propagates 

(convoluted) to Model 2 up to 𝑡 = 25 + 4 s or slightly beyond. The same applies to the wave at 

Model 3, but in this case, the highest correlation is found at 𝑡 ≈ 25 s seconds instead of 4 s. 
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(a) 

 

 
 

(b) 

 

 
(c) 

Figure 5. 14 Correlation functions for RF cases (a) Autocorrelation functions of wave at 

Model 2 (b) Cross-correlation functions between wave at Model 1 and Model 2 (c) Cross-

correlation functions between wave at Model 1 and Model 3 
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5.8  Future response prediction results 

 

In theory, the responses of structures can be calculated if the input wave and transfer functions 

(TFs) of the structures are known, as described in Equation (2.13) and Equation (2.14). The 

wave data obtained and discussed in the previous section are utilized as the input to predict 

the response of Model 2 and Model 3. Similar to the prediction of wave time series in Sec. 5.7, 

the predictions of time response histories can be obtained using Equation (4.8). Since 

satisfactory results are only achieved when 𝑇 = 25  s for RF and WR cases, the response 

predictions are focused on these cases. The obtained results are then compared to the response 

data obtained from experiments. Given the availability of reference data, the pitch and heave 

predictions are performed for Model 2, while the response predicted for Model 3 is its vertical 

acceleration. 

 

Table 5.6 presents the values 𝑟𝑥𝑦_25 during the future predictable time for Model 2, and Table 

5.7 displays the corresponding values for Model 3. From these tables, it can be observed that 

the prediction of responses has been successfully carried out, except for the pitch response 

prediction on Model 2 of WR cases. Figure 5.15 provides a set of examples illustrating the 

future responses of heave at Model 2 and vertical acceleration at Model 3 for case RF_1; KF 

𝑇: 25 s, while the same responses for case WR_3 can be found in Figure 5.16(a) and (b). Note 

that the amplitude of heave acceleration at Model 3 for WR_3 case is generally over predicted. 

This is caused by the decision of assuming that the heave acceleration RAO at Model 3 equals 

to the heave acceleration RAO at Model 1, without taking into accounts the hydrodynamic 

interactions among the three floats. Nonetheless, the trend of the predicted heave acceleration 

response is found to reasonably fit the experiment data. 

 

Table 5. 6 Correlation coefficient of future responses (based on KF 𝑇: 25 s) at Model 2 

 

Case 

name 

Pitch (𝑟𝑥𝑦_25) Heave (𝑟𝑥𝑦_25) 

3 s ahead 8 s ahead 15 s ahead 3 s ahead 8 s ahead 15 s ahead 

RF_1 0.958 0.788 0.619 0.975 0.820 0.580 

RF_2 0.952 0.821 0.579 0.956 0.792 0.492 

RF_3 0.918 0.723 0.558 0.945 0.811 0.587 

RF_4 0.951 0.808 0.592 0.964 0.821 0.542 

WR_3 

Unavailable (see the explanation 

provided in Sec.5.5) 

0.976 0.760 0.602 

WR_4 0.985 0.733 0.501 

WR_5 0.960 0.751 0.557 

WR_6 0.972 0.753 0.561 
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Table 5. 7 Correlation coefficient of future responses (based on KF 𝑇: 25 s) at Model 3 

 

Case 

name 

Vertical acceleration (𝑟𝑥𝑦_25) 

3 s ahead 8 s ahead 12 s ahead 15 s ahead 

RF_1 0.988 0.938 0.825 0.764 

RF_2 0.867 0.849 0.751 0.613 

RF_3 0.917 0.883 0.788 0.681 

RF_4 0.978 0.949 0.871 0.824 

WR_3 0.951 0.880 0.768 0.667 

WR_4 0.881 0.798 0.766 0.635 

WR_5 0.934 0.829 0.751 0.647 

WR_6 0947 0.858 0.783 0.675 

 

Generally, it can be observed that the future predictable time for responses is found to be 

longer than the future predictable time for the associated wave. Specifically, the responses at 

Model 2 and Model 3 can be predicted up to 8 s and 12 s ahead, respectively, for both RF and 

WR cases. In the previous section, it has been established that the predictable future time at 

Model 2 for RF and WR are respectively 3 and 5 s. With the same predictable future time of 

response at Model 2 that is as long as 8 s, the excess duration of predictable future time for the 

response of RF and WR cases is respectively 5 s and 3 s. Hence, it can be observed that the 

excess duration for the predictable future time of WR cases is shorter than RF cases. Based on 

this, it can be concluded the properties of the TFs might be the factor that determine the 

predictable future time duration of the response, as they are the only additional factor in 

Equation (5.6) to obtain the response. A longer future response prediction time (compared to 

the future predictable time of the associated wave) can be achieved if the response amplitude 

operators (RAO) functions are more significant in the longer wave region. However, if the 

response characteristics of the models include resonance in the shorter wave region, it is 

expected that the future predictable time for the response would not increase as much. 

Nevertheless, this hypothesis needs further verification especially conclusions derived based 

on the WR cases as for the time being, simulation TFs are incorporated in the Kalman filter 

algorithm for this model rather than its experiment TFs. 
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(a) 

 

  
(b) 

 

Figure 5. 15 Experimental vs KF-based response time series for case RF_3; KF 𝑇: 25 s (a) 

Heave at Model 2 (b) Vertical acceleration at Model 3 
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(b) 

Figure 5. 16 Experimental vs KF-based response time series for case WR_3; KF 𝑇: 25 s (a) 

Heave at Model 2 (b) Vertical acceleration at Model 3 

 

5.9  Summary 

 

This chapter discusses the results of future wave and response predictions of models located 

away from a reference point, based on the results of the Kalman filter applied at the reference 

point. A series of experiments using scaled models in a 2D tank was conducted to validate this 

method. The experiment is carried out under two different phase, namely phase 1 and phase 2. 

In phase 1, three identical models with no resonance in their TFs are adopted, while in phase 

2, three models with resonance are used. The proposed Kalman filter algorithm accurately 

identifies the wave profile around a model by analyzing the measured time series of the model's 

response, both for resonance free model and model with resonance cases. However, accuracy 

decreases when significant hydrodynamic interactions and reflection waves are present. 

Moreover, the study confirms that accurate future wave predictions at a specific point can be 

achieved by extending the identified wave from the reference point when considering spatial 

distances. It is observed that longer spatial distances result in longer predictable future time. 

This can be explained by examining the cross-correlation function between waves at the 

reference point and waves away from it. The slope of maximum values of the impulse response 

functions may also be used to explain the future predictable time. Future response predictions 

are also performed based on the previously mentioned future wave predictions. The study 

reveals that the predictable time for responses exceeds the predictable time for the associated 

wave input, with its excess duration depends on the response characteristics of the models. 

However, additional confirmation is required for the findings drawn from phase 2 results. This 

is due to the decision of utilizing simulation TFs in the Kalman filter algorithm instead of 

experimental TFs, for the time being. 
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In summary, 

 The proposed Kalman filter accurately identifies the wave profile around the model for 

both resonance-free and resonance-included cases based on 2D tank experiment data. 

 Extending the identified wave from the reference point allows for accurate future wave 

predictions at specific points, considering spatial distances. 

 Longer spatial distances result in longer predictable future time due to the cross-

correlation function between waves at the reference point and distant waves. 

 Future response predictions are performed based on the future wave predictions, and the 

predictable time for responses exceeds that of the associated wave input, where the excess 

duration depends on the response characteristics of the models. 
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Chapter 6 

Conclusions and future works 

 

 

 

 

 

6.1  Conclusions 

 

This study investigates the feasibility of using the Kalman filter algorithm to predict the future 

waves and responses using measurement data on multiple floating bodies targeted to be 

implemented in digital twin system of a wind farm. The prediction is based on the coefficients 

of elementary waves that constitute the overall wave spectrum. Firstly, the real-time prediction 

results using Kalman filter based on two different designs of FOWTs are compared, where the 

main difference lies on the corresponding TFs. Shortly, the first structure has steeper and 

peakier RAO compared to the second one. The next part of the study proposes a method for 

predicting future waves and responses of models located away from a reference point, based 

on the results of the Kalman filter applied at the reference point. Experiment on 2D tank using 

simplified floating models is conducted to prove the proposed method feasibility. The 2D tank 

experiments can be further broken down into two phase. In phase 1, resonance free models are 

adopted, while in phase 2, models with resonance are utilized. 

 

 For the case of wave prediction carried out using FOWT designs, it is consistently found 

that structure with steeper and pronounced peak in the RAO function gives less accurate 

wave estimation results. The finding is further solidified when results from 2D tank 

experiment are considered. Overall, resonance free model exhibit higher accuracy 

compared to the model with resonance due to the absence of nonlinearity effects in 

resonance free model. 

 

 Prediction accuracy can be improved by combining different measurement data. However, 

this should be done with caution as combining different responses to the filter affects 

observation matrix size that influences the computational time. 

 

 Filtering results based on the simulation and experiment using two FOWT designs point 

out that nonlinearity from combined loads plays a big role on the prediction results. If the 

nonlinearity caused by the combined loads is high, the prediction accuracy will be highly 

affected as well. This finding is valid the other way around. Still, it is foreseen that wave 

prediction based on Kalman filter should be effective for FOWT. One of the design 



84 

 

introduced in this study is indeed characterized by its peaky resonance and high degree of 

nonlinearity from combined load. Nevertheless, this is rather an odd design specially 

crafted for research purpose. The other design, which consistently demonstrates 

satisfactory accuracy across all case studies, aligns more closely with the commonly 

preferred response characteristics when designing FOWT. 

 

 The experiments conducted at the 2D tank confirm that accurate future wave predictions 

at a specific point can be achieved by extending the identified wave from the reference 

point when considering spatial distances. 

 

 It is observed that longer spatial distances result in longer predictable future time. This can 

be explained by examining the cross-correlation function between waves at the reference 

point and waves away from it. 

 

 Lastly, it is found that the predictable time for responses exceeds the predictable time for 

the associated wave input. This applies to both resonance free models and model with 

resonance. However, it is observed that the excess duration of the predictable future time 

of responses on the model with resonance is shorter than the free resonance model.  

 

 

6.2  Future scopes 

 

The study demonstrates the effectiveness of real-time wave identification around a model using 

the Kalman filter algorithm. It also successfully predicts future waves and responses for 

different models located away from the reference model. The findings suggest that 

implementing this system in a wind farm could optimize the operation and maintenance 

processes, potentially reducing maintenance costs. Further research is recommended to 

revalidate the future predictability of responses by considering models with resonance in higher 

frequency regions. Additionally, improvements in the algorithm, particularly regarding floating 

body interactions and reflection waves, are necessary to validate the effectiveness of the 

proposed method. Conducting experiments in a longer tank, such as a towing tank, using less 

simplified models is suggested to thoroughly examine the interaction between floating bodies, 

reflection waves, and their impact on prediction results. When it all has been done, then a real 

scale test at sea is needed, especially to check the assumption that dispersion relations remain 

constant at all point would still hold true. 

 

Moreover, for practical applications on FOWTs, a thorough analysis is required to determine 

the appropriate measurement data and location. It is essential to carefully consider these factors 

when applying the Kalman filter algorithm in real-world scenarios. Short-crested wave cases 
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should also be investigated since the present investigations basically covers only long-crested 

wave cases. To achieve this, NK-UTWind needs to be improved. It is noted that Komoriyama 

(2023) has validated and extended the currently used Kalman filter algorithm to predict short-

crested wave using a ship model as the subject structure. However, there is still a need for a 

dedicated study to assess the feasibility and effectiveness of the Kalman filter algorithm in 

predicting short-crested waves specifically for FOWT. 

 

Last but not least, it has been proven that Kalman filter is heavily relied on the assumed TFs. 

Hence, extending the algorithm in a way that it is able to automatically update the TFs based 

on the input response is proposed. For cases with high nonlinearity, it is suggested to combine 

Kalman filter—that is light in algorithm, with Neural Network (NN). NN is known to have the 

ability to handle nonlinear prediction. However, the effectivity is highly dependent on the 

training data provided. 
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Appendix 1 

Table of regular wave cases for model with resonance 

 

 

 

 

 

Case 

no. 

Wave circular 

frequency (rad/s) 

Wave 

period (s) 

Measured wave 

height at Model 1 

(mm) 

1 4.83 1.30 3.14 

2 4.83 1.30 7.47 

3 5.03 1.25 6.41 

4 5.24 1.20 10.28 

5 5.24 1.20 12.16 

6 5.46 1.15 8.33 

7 5.46 1.15 10.34 

8 5.46 1.15 12.11 

9 5.71 1.10 8.73 

10 5.71 1.10 8.89 

11 5.71 1.10 11.25 

12 5.71 1.10 13.38 

13 5.98 1.05 8.83 

14 5.98 1.05 10.88 

15 6.04 1.04 8.04 

16 6.04 1.04 9.98 

17 6.10 1.03 6.31 

18 6.10 1.03 8.10 

19 6.22 1.01 6.74 

20 6.22 1.01 8.33 

21 6.28 1.00 9.47 

22 6.41 0.98 8.97 

23 6.41 0.98 11.24 

24 6.61 0.95 8.52 

25 6.61 0.95 8.41 

26 6.61 0.95 10.37 

27 6.76 0.93 7.16 

28 6.76 0.93 9.05 
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29 6.83 0.92 6.92 

30 6.83 0.92 9.57 

31 6.83 0.92 12.02 

32 6.98 0.90 9.03 

33 6.98 0.90 12.60 

34 7.06 0.89 9.74 

35 7.06 0.89 13.41 

36 7.22 0.87 8.26 

37 7.22 0.87 11.55 

38 7.31 0.86 6.94 

39 7.31 0.86 9.24 

40 7.39 0.85 6.98 

41 7.39 0.85 9.95 

42 7.57 0.83 9.88 

43 7.57 0.83 14.67 

44 7.66 0.82 11.95 

45 7.66 0.82 16.17 

46 7.85 0.80 6.03 

47 7.85 0.80 7.58 

48 7.85 0.80 11.51 

49 7.85 0.80 14.77 

50 8.06 0.78 8.58 

51 8.06 0.78 11.04 

52 8.06 0.78 13.02 

53 8.16 0.77 8.19 

54 8.16 0.77 9.96 

55 8.16 0.77 11.41 

56 8.16 0.77 14.04 

57 8.38 0.75 6.54 

58 8.38 0.75 8.22 

59 8.38 0.75 9.65 

60 8.49 0.74 6.83 

61 8.49 0.74 7.57 

62 8.49 0.74 10.16 

63 8.61 0.73 5.96 

64 8.61 0.73 7.00 

65 8.61 0.73 12.35 

66 8.85 0.71 5.21 
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67 8.85 0.71 6.42 

68 8.85 0.71 6.76 

69 8.85 0.71 11.39 

70 8.98 0.70 5.33 

71 8.98 0.70 6.38 

72 8.98 0.70 7.77 

73 9.24 0.68 3.64 

74 9.24 0.68 14.03 

75 9.24 0.68 19.27 

76 9.67 0.65 5.56 

77 10.47 0.60 16.92 
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Appendix 2 

Transfer functions 

 

 

 

 

 

Semisub-A 

All TFs are calculated based on 1 m wave amplitude, and 10 m/s steady wind for AD cases 

 

 
 

 

Table 1. Heave node 1 

No wind condition (A-1NW) Combined load condition (A-1AD) 

Frequency 

(rad/s) 

RAO 

(m/m) 

Phase 

(rad) 

Frequency 

(rad/s) 

RAO 

(m/m) 

Phase 

(rad) 

1.26933 0.002988 0.8219 1.26933 0.006245 0.3054 

0.987301 0.016522 0.4076 0.987301 0.021111 -3.0299 

0.807815 0.031488 0.1998 0.807815 0.036076 -1.83498 

0.683549 0.14089 -2.18246 0.683549 0.069212 -1.2074 

0.592362 0.11531 0.2673 0.592362 0.12377 -0.7666 

0.522684 0.44965 -3.9465 0.522684 0.47677 -4.9795 

0.467673 0.21069 3.1895 0.467673 0.21436 2.20648 

0.444293 0.35373 -3.0761 0.444293 0.35288 -3.9484 
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0.423139 0.59795 3.22778 0.423139 0.59639 2.47655 

0.386348 1.8637 3.4431 0.386348 1.8429 2.8972 

0.355424 4.0506 -1.06781 0.355424 4.1965 -1.26533 

0.3291 1.7013 -0.1204 0.3291 1.6986 -0.60101 

0.306407 1.1674 -0.0438 0.306407 1.1546 -0.42 

0.296195 1.283 -0.035 0.296195 1.2828 -0.38826 

0.26926 1.1195 -0.0223 0.26926 1.1169 -0.3072 

 

Table 2. Strain node 10 

No wind condition (A-2NW) Combined load condition (A-2AD) 

Frequency 

(rad/s) 

RAO 

(μ/m) 

Phase 

(rad) 

Frequency 

(rad/s) 

RAO 

(μ/m) 

Phase 

(rad) 

1.2693 12.674 -0.60963 1.2693 13.321 -0.22861 

0.9873 4.519 0.6924 0.9873 5.4503 0.22579 

0.80782 5.8621 -4.7279 0.80782 6.0941 2.267 

0.68355 11.572 -4.3989 0.68355 7.4901 0.051246 

0.59236 9.1226 -5.0559 0.59236 9.2908 -0.09139 

0.52268 10.812 -4.7451 0.52268 10.594 0.48533 

0.46767 9.7704 1.6086 0.46767 9.7427 -2.3237 

0.44429 11.745 -4.6722 0.44429 11.813 0.94181 

0.42314 13.093 1.6475 0.42314 13.109 -2.0404 

0.38635 15.204 1.6901 0.38635 14.355 1.8085 

0.35542 54.566 -3.7056 0.35542 37.285 -1.8212 

0.3291 19.85 -1.8768 0.3291 18.384 0.19377 

0.30641 7.44 4.6308 0.30641 7.3551 -2.4843 

0.2962 6.7404 -1.5989 0.2962 6.5043 -2.3615 

0.26926 3.3666 -1.5589 0.26926 3.2842 0.95545 

 

Table 3. Strain node 12 

No wind condition (A-3NW) Combined load condition (A-3AD) 

Frequency 

(rad/s) 

RAO 

(μ/m) 

Phase 

(rad) 

Frequency 

(rad/s) 

RAO 

(μ/m) 

Phase 

(rad) 

1.2693 10.865 -2.2429 1.2693 10.533 -1.88 

0.9873 52.831 -2.6127 0.9873 52.831 0.159 

0.80782 84.397 0.34783 0.80782 85.061 1.21 

0.68355 220.63 0.32799 0.68355 223.95 1.86 

0.59236 230.93 -0.31619 0.59236 242.23 1.57 
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0.52268 551.57 -0.7209 0.52268 548.25 1.45 

0.46767 109.98 0.16217 0.46767 111.31 -0.629 

0.44429 87.055 0.25209 0.44429 86.39 2.68 

0.42314 67.451 0.35419 0.42314 65.79 -0.273 

0.38635 39.208 0.721 0.38635 24.854 0.368 

0.35542 73.764 -0.57988 0.35542 62.467 -2.09 

0.3291 32.928 1.7121 0.3291 27.778 0.602 

0.30641 15.451 -0.92578 0.30641 15.451 -0.656 

0.2962 15.484 -0.83424 0.2962 14.022 -1.54 

0.26926 9.4697 2.4695 0.26926 9.2039 1.88 

 

Table 4. Pitch node 22 

No wind condition (A-3NW) Combined load condition (A-3AD) 

Frequency 

(rad/s) 

RAO 

(deg/m) 

Phase 

(rad) 

Frequency 

(rad/s) 

RAO 

(deg/m) 

Phase 

(rad) 

1.26933 0.209351 -0.33884 1.26933 0.224314 0.064821 

0.987301 0.379869 -2.56664 0.987301 0.416914 0.187386 

0.807815 0.538244 0.776101 0.807815 0.572535 1.602956 

0.683549 2.141435 1.896905 0.683549 1.21612 2.198914 

0.592362 1.222211 -0.93349 0.592362 1.263884 0.95918 

0.522684 3.605939 2.199538 0.522684 3.554351 1.226273 

0.467673 1.169565 -1.01543 0.467673 1.20246 -1.75012 

0.444293 1.414313 1.945494 0.444293 1.469441 1.331117 

0.423139 1.688346 -1.27239 0.423139 1.741781 -1.75282 

0.386348 2.287782 1.793195 0.386348 2.27304 1.975879 

0.355424 9.716926 -0.49503 0.355424 6.453521 -1.70238 

0.3291 4.021192 1.28165 0.3291 3.701391 0.290011 

0.306407 1.721911 -1.66308 0.306407 1.694273 -2.40487 

0.296195 1.657377 -1.61619 0.296195 1.599113 -2.28408 

0.26926 0.981864 1.555734 0.26926 0.958489 1.017632 

 

Table 5. Heave acceleration node 1 

No wind condition (A-5NW) 

Frequency 

(rad/s) 

RAO 

(m.rad2/s2.m) 

Phase 

(rad) 

1.2693 0.004843 -2.319 

0.9873 0.016093 -2.7338 
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0.80782 0.020547 0.19989 

0.68355 0.029314 0.13604 

0.59236 0.040455 0.2674 

0.52268 0.12284 -0.80496 

0.46767 0.046084 0.04824 

0.44429 0.069826 0.065193 

0.42314 0.10709 0.086249 

0.38635 0.27818 0.30162 

0.35542 0.51173 -1.0678 

0.3291 0.18424 -0.12077 

0.30641 0.10961 -0.04428 

0.2962 0.11253 -0.03504 

0.26926 0.08117 -0.02276 

 

Table 6. Pitch acceleration node 22 

No wind condition (A-6NW) 

Frequency 

(rad/s) 

RAO 

(deg.rad2/s2.m) 

Phase 

(rad) 

1.2693 0.3288 -0.31182 

0.9873 0.37036 -2.5665 

0.80782 0.35124 0.77576 

0.68355 0.54728 0.68595 

0.59236 0.42879 -0.93343 

0.52268 0.98529 2.1996 

0.46767 0.25574 -1.015 

0.44429 0.27934 1.9457 

0.42314 0.30246 -1.2722 

0.38635 0.34174 1.7928 

0.35542 1.2279 -0.49527 

0.3291 0.43609 1.2795 

0.30641 0.16208 -1.6651 

0.2962 0.14548 -1.6161 

0.26926 0.071103 1.5562 
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Semisub-B 

All TFs are calculated based on 1 m wave amplitude, and 10 m/s steady wind for AD cases 

 

 
 

Table 7. Strain node 8 

No wind condition (B-1NW) Combined load condition (B-1AD) 

Frequency 

(rad/s) 
RAO (μ/m) Phase (rad) 

Frequency 

(rad/s) 
RAO (μ/m) Phase (rad) 

0.16 3.328580553 -0.60455 0.16 9.772101 -0.65932 

0.17 4.308732603 -0.52595 0.17 10.93868 -0.44039 

0.18 5.405438063 -0.44736 0.18 12.51782 -0.22146 

0.19 6.724209653 -0.39763 0.19 14.36825 -0.03724 

0.2 8.370560096 -0.34791 0.2 16.34869 0.146983 

0.21 10.45285492 -0.2768 0.21 18.35868 0.281644 

0.22 13.09087091 -0.20569 0.22 20.46091 0.416306 

0.23 16.38006307 -0.10737 0.23 22.69569 0.542329 

0.24 20.30718809 -0.00905 0.24 24.85048 0.668353 

0.25 24.71005857 0.156204 0.25 26.76462 0.802251 

0.26 28.93940905 0.321454 0.26 28.73779 0.93615 

0.27 32.29265703 0.489879 0.27 30.99501 1.021756 

0.28 34.34103018 0.658304 0.28 33.00233 1.107362 

0.29 34.88476654 0.79073 0.29 34.19514 1.180891 

0.3 34.36633584 0.923155 0.3 34.64519 1.25442 

0.3225 31.63930125 1.031642 0.3225 34.03442 1.320304 

0.345 28.65366427 1.140129 0.345 32.8417 1.386188 
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0.3675 26.9087242 1.169527 0.3675 32.38411 1.515702 

0.39 25.63781288 1.198925 0.39 31.20813 1.645217 

0.4125 23.80480153 1.134421 0.4125 27.79629 1.621665 

0.435 21.56168618 1.069917 0.435 23.14587 1.598114 

0.4575 19.26212879 1.051813 0.4575 18.55095 1.675285 

0.48 16.87833001 1.033709 0.48 13.97787 1.752455 

0.5025 14.29701475 0.977801 0.5025 9.284421 1.795824 

0.525 11.44446608 0.921893 0.525 5.221754 1.839192 

0.5475 8.326916064 0.684444 0.5475 2.758481 -0.04679 

0.57 5.23083454 0.446996 0.57 2.839632 -1.93277 

0.5925 2.750917213 -0.67666 0.5925 5.868939 -1.72521 

0.615 2.434525493 -1.80032 0.615 10.10854 -1.51765 

0.6375 5.376060242 -2.1931 0.6375 13.76751 -1.7132 

0.66 9.90541444 -2.58588 0.66 16.9844 -1.90875 

0.6825 14.13422112 -2.78646 0.6825 20.24422 -2.1089 

0.705 18.06558141 -2.98704 0.705 23.48863 -2.30905 

0.7275 22.07443129 -2.97777 0.7275 26.55955 -2.18471 

0.75 26.13157797 -2.9685 0.75 29.44347 -2.06037 

0.7725 30.11229512 -0.16012 0.7725 32.17152 -2.49762 

0.795 33.91385101 2.648253 0.795 34.80884 -2.93487 

0.8175 37.45471615 2.621219 0.8175 37.39238 -2.86146 

0.84 40.7161756 2.594185 0.84 39.81238 -2.78805 

0.8625 43.67495201 2.445795 0.8625 41.91531 -2.89663 

0.885 46.22670391 2.297404 0.885 43.51936 -3.0052 

0.9075 48.27558998 2.290004 0.9075 44.49239 -2.86588 

0.93 49.84083364 2.282603 0.93 44.92918 -2.72657 

0.9525 50.96001764 1.657506 0.9525 45.01748 -0.43036 

0.975 51.62909745 1.032409 0.975 45.0901 1.865842 

0.9975 51.84259259 1.028211 0.9975 45.32087 2.060939 

1.02 51.63090609 1.024013 1.02 45.1026 2.256036 

1.0425 51.05830405 0.768363 1.0425 43.86235 2.068775 

1.065 50.28862134 0.512712 1.065 41.94493 1.881513 

1.0875 49.53864894 0.136321 1.0875 39.88268 1.52098 

1.11 49.13743363 -0.24007 1.11 38.04029 1.160447 

1.1325 49.39549551 -0.56377 1.1325 36.69097 0.886645 

1.155 50.43699237 -0.88746 1.155 35.90985 0.612843 

1.1775 52.3394914 -0.93528 1.1775 35.72252 0.773023 

1.2 55.18055979 -0.98309 1.2 36.15458 0.933202 
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Table 8. Strain node 20 

No wind condition (B-2NW) Combined load condition (B-2AD) 

Frequency 

(rad/s) 
RAO (μ/m) Phase (rad) 

Frequency 

(rad/s) 
RAO (μ/m) Phase (rad) 

0.16 0.161363 -1.69197 0.16 0.981092 3.077901 

0.17 0.174034 -1.50527 0.17 0.936422 3.055319 

0.18 0.19489 -1.31856 0.18 0.886374 3.032738 

0.19 0.22607 -1.14078 0.19 0.834884 2.992742 

0.2 0.269712 -0.963 0.2 0.785888 2.952746 

0.21 0.329315 -0.81555 0.21 0.741951 2.894588 

0.22 0.413823 -0.6681 0.22 0.700155 2.83643 

0.23 0.536504 -0.54132 0.23 0.655803 2.841179 

0.24 0.722474 -0.41453 0.24 0.602568 2.845929 

0.25 0.981703 -0.22354 0.25 0.535315 2.915757 

0.26 1.251751 -0.03254 0.26 0.455311 2.985585 

0.27 1.461028 0.194644 0.27 0.372652 2.913348 

0.28 1.573789 0.421828 0.28 0.326347 2.84111 

0.29 1.577806 0.558099 0.29 0.343494 2.614644 

0.3 1.519087 0.69437 0.3 0.37465 2.388178 

0.3225 1.370831 0.699805 0.3225 0.337143 0.817982 

0.345 1.298653 0.70524 0.345 0.420579 -0.75221 

0.3675 1.353133 0.712472 0.3675 0.875324 -0.00915 

0.39 1.438919 0.719704 0.39 1.364362 0.733914 

0.4125 1.456732 0.5983 0.4125 1.530113 0.795828 

0.435 1.437524 0.476895 0.435 1.520101 0.857742 

0.4575 1.43125 0.435602 0.4575 1.546219 0.906015 

0.48 1.433633 0.39431 0.48 1.572718 0.954288 

0.5025 1.43121 0.294847 0.5025 1.528363 0.835916 

0.525 1.427996 0.195385 0.525 1.447623 0.717544 

0.5475 1.430104 -0.13813 0.5475 1.380607 0.262852 

0.57 1.434548 -0.47164 0.57 1.334293 -0.19184 

0.5925 1.439441 -0.48201 0.5925 1.306137 -0.18251 

0.615 1.456379 -0.49239 0.615 1.298648 -0.17318 

0.6375 1.497521 -0.86893 0.6375 1.315558 -0.53784 

0.66 1.563775 -1.24547 0.66 1.36042 -0.90251 

0.6825 1.653574 -1.62593 0.6825 1.43723 -1.26812 

0.705 1.766684 -2.00639 0.705 1.551937 -1.63372 
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0.7275 1.903685 -2.03516 0.7275 1.70775 -1.64258 

0.75 2.067065 -2.06394 0.75 1.894964 -1.65144 

0.7725 2.257932 0.508743 0.7725 2.103849 -2.19211 

0.795 2.469959 3.081423 0.795 2.337502 -2.73278 

0.8175 2.696066 3.040987 0.8175 2.598142 -2.73564 

0.84 2.933586 3.000551 0.84 2.871654 -2.73851 

0.8625 3.174236 2.792784 0.8625 3.139432 -2.9083 

0.885 3.382857 2.585016 0.885 3.381242 -3.07809 

0.9075 3.534291 2.63588 0.9075 3.580951 -2.98895 

0.93 3.670259 2.686745 0.93 3.740466 -2.89981 

0.9525 3.832693 1.760532 0.9525 3.871372 -0.64798 

0.975 3.99751 0.834319 0.975 4.005916 1.603863 

0.9975 4.12783 0.955712 0.9975 4.161898 1.764009 

1.02 4.201613 1.077106 1.02 4.278653 1.924154 

1.0425 4.208004 0.825505 1.0425 4.297957 1.710771 

1.065 4.166055 0.573904 1.065 4.249816 1.497387 

1.0875 4.100426 0.168563 1.0875 4.180971 1.129087 

1.11 4.0283 -0.23678 1.11 4.116875 0.760787 

1.1325 3.958347 -0.53128 1.1325 4.072187 0.500836 

1.155 3.872666 -0.82579 1.155 4.03969 0.240886 

1.1775 3.746712 -0.69149 1.1775 4.006698 0.420806 

1.2 3.555944 -0.55718 1.2 3.960525 0.600727 

 

 

Table 9. Pitch node 22 

No wind condition (B-3NW) 

Frequency 

(rad/s) 
RAO (deg/m) Phase (rad) 

0.16 0.266901 -1.47727 

0.17 0.292592 -1.42379 

0.18 0.323297 -1.3703 

0.19 0.358642 -1.31143 

0.2 0.398251 -1.25255 

0.21 0.442319 -1.17658 

0.22 0.493329 -1.10062 

0.23 0.553005 -0.97749 

0.24 0.617732 -0.85436 

0.25 0.680198 -0.66533 
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0.26 0.723621 -0.4763 

0.27 0.732712 -0.28375 

0.28 0.707612 -0.09119 

0.29 0.654447 0.067349 

0.3 0.587853 0.225891 

0.3225 0.446233 0.383078 

0.345 0.335447 0.540264 

0.3675 0.263199 0.689351 

0.39 0.212107 0.838438 

0.4125 0.163854 0.965207 

0.435 0.121482 1.091977 

0.4575 0.09191 1.425666 

0.48 0.076224 1.759354 

0.5025 0.073357 2.116126 

0.525 0.079476 2.472898 

0.5475 0.090318 2.52285 

0.57 0.102677 2.572801 

0.5925 0.114132 2.73513 

0.615 0.124353 2.897458 

0.6375 0.133404 2.804615 

0.66 0.140838 2.711771 

0.6825 0.146306 2.603773 

0.705 0.150354 2.495775 

0.7275 0.153556 2.571342 

0.75 0.155687 2.646908 

0.7725 0.156486 2.369058 

0.795 0.156334 2.091208 

0.8175 0.155671 2.109186 

0.84 0.154534 2.127165 

0.8625 0.152844 2.012826 

0.885 0.15048 1.898487 

0.9075 0.1474 1.911937 

0.93 0.143925 1.925387 

0.9525 0.140433 1.308163 

0.975 0.137174 0.690938 

0.9975 0.134335 0.680281 

1.02 0.131988 0.669623 

1.0425 0.130275 0.40839 
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1.065 0.129731 0.147157 

1.0875 0.130862 -0.21925 

1.11 0.133662 -0.58565 

1.1325 0.137936 -0.87134 

1.155 0.143248 -1.15703 

1.1775 0.149098 -1.15409 

1.2 0.15499 -1.15114 

 

 

Resonance free model (RF model) 

TFs are combined between simulation and experiment. The experiment TFs are given in the 

range of 4.83 until 10.47 rad/s.  

 

Table 10. TFs at Model 1 

Frequency 

(rad/s) 

Wave number 

(rad/s) 

RAO Pitch 

(rad/kA) 

Phase Pitch 

(rad) 

RAO Heave 

(mm/mm) 

Phase Heave 

(rad) 

3 1.615 1.03 1.568842 0.9762 -0.00061 

3.2 1.715 1.03 1.568423 0.9732 -0.00073 

3.4 1.865 1.029 1.567708 0.9682 -0.00094 

3.6 1.995 1.029 1.566975 0.9635 -0.00115 

3.8 2.129 1.028 1.566085 0.9582 -0.00138 

4 2.269 1.027 1.565037 0.9524 -0.00161 

4.2 2.412 1.026 1.563781 0.946 -0.00185 

4.4 2.56 1.025 1.562315 0.9389 -0.00208 

4.6 2.715 1.024 1.560569 0.9309 -0.00229 

4.8 2.875 1.022 1.558527 0.9222 -0.00244 

4.833219 2.902 1.187024 1.359693 1.152726 -0.12659 

5.026548 3.064 1.104104 1.164803 1.041987 -0.2585 

5.235988 3.247 1.053946 1.101703 0.961179 -0.21605 

5.463639 3.456 0.914222 1.534093 0.828377 0.16311 

5.711987 3.695 0.955919 1.000543 0.862631 -0.38509 

5.983986 3.972 1.114268 1.208443 0.997798 -0.2181 

6.283185 4.296 1.253377 1.121643 1.134591 -0.33498 

6.613879 4.68 1.122564 1.377693 0.994205 -0.26841 

6.981317 5.139 1.000368 1.281173 0.844097 -0.35956 

7.391983 5.694 0.979204 1.377913 0.74671 -0.28609 

7.853982 6.372 1.006539 2.219316 0.860647 0.244424 
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8.37758 7.206 0.961928 2.015943 0.659462 0.05017 

8.975979 8.244 0.741425 2.494013 0.547764 0.3891 

9.666439 9.544 0.511229 2.427578 0.394922 0.194985 

10.47198 11.194 0.288657 2.738093 0.232289 0.1594 

10.6 11.468 0.3713 1.462447 0.2863 0.682284 

10.8 11.904 0.3396 1.499483 0.2687 0.756007 

11 12.35 0.3102 1.542208 0.2522 0.833413 

11.2 12.801 0.283 1.590606 0.2368 0.91457 

11.4 13.262 0.2581 1.644415 0.2223 0.999219 

11.6 13.731 0.2353 1.70346 0.2088 1.087306 

11.8 14.208 0.2146 1.767548 0.1962 1.178709 

12 14.699 0.1954 1.837379 0.1842 1.27458 

13 17.2449 0.124 2.249364 0.136 1.794601 

14 20 0.07984 2.761915 0.1015 2.389217 

15 22.95918 0.06394 3.063613 0.08756 2.725944 

16 26.12245 0.03496 -2.24676 0.05845 -2.5057 

 

 

Table 11. TFs at Model 2 

Frequency 

(rad/s) 

Wave number 

(rad/m) 

RAO Pitch 

(rad/kA) 

Phase Pitch 

(rad) 

RAO Heave 

(mm/mm) 

Phase Heave 

(rad) 

3 1.615 1.03 1.568842 0.9762 -0.00061 

3.2 1.715 1.03 1.568423 0.9732 -0.00073 

3.4 1.865 1.029 1.567708 0.9682 -0.00094 

3.6 1.995 1.029 1.566975 0.9635 -0.00115 

3.8 2.129 1.028 1.566085 0.9582 -0.00138 

4 2.269 1.027 1.565037 0.9524 -0.00161 

4.2 2.412 1.026 1.563781 0.946 -0.00185 

4.4 2.56 1.025 1.562315 0.9389 -0.00208 

4.6 2.715 1.024 1.560569 0.9309 -0.00229 

4.8 2.875 1.022 1.558527 0.9222 -0.00244 

4.833219 2.902 1.28E+00 1.57E+00 1.09E+00 5.16E-01 

5.026548 3.064 8.39E-01 1.37E+00 1.15E+00 -7.12E-01 

5.235988 3.247 9.05E-01 1.42E+00 9.72E-01 5.88E-02 

5.463639 3.456 8.98E-01 1.93E+00 7.10E-01 2.73E-01 

5.711987 3.695 9.07E-01 1.60E+00 8.01E-01 1.15E-01 

5.983986 3.972 1.01E+00 1.73E+00 9.32E-01 8.60E-02 

6.283185 4.296 1.15E+00 1.56E+00 1.02E+00 -3.18E-02 
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6.613879 4.68 1.05E+00 1.66E+00 9.25E-01 6.41E-02 

6.981317 5.139 8.79E-01 1.64E+00 7.26E-01 4.25E-02 

7.391983 5.694 8.18E-01 2.08E+00 6.67E-01 3.76E-01 

7.853982 6.372 9.79E-01 2.44E+00 6.90E-01 6.26E-01 

8.37758 7.206 7.11E-01 2.07E+00 5.19E-01 2.23E-01 

8.975979 8.244 5.28E-01 2.34E+00 3.65E-01 3.26E-01 

9.666439 9.544 2.67E-01 2.43E+00 1.92E-01 2.21E-01 

10.47198 11.194 2.00E-01 2.09E+00 1.60E-01 -2.79E-01 

10.6 11.468 0.3713 1.462447 0.2863 0.682284 

10.8 11.904 0.3396 1.499483 0.2687 0.756007 

11 12.35 0.3102 1.542208 0.2522 0.833413 

11.2 12.801 0.283 1.590606 0.2368 0.91457 

11.4 13.262 0.2581 1.644415 0.2223 0.999219 

11.6 13.731 0.2353 1.70346 0.2088 1.087306 

11.8 14.208 0.2146 1.767548 0.1962 1.178709 

12 14.699 0.1954 1.837379 0.1842 1.27458 

13 17.2449 0.124 2.249364 0.136 1.794601 

14 20 0.07984 2.761915 0.1015 2.389217 

15 22.95918 0.06394 3.063613 0.08756 2.725944 

16 26.12245 0.03496 -2.24676 0.05845 -2.5057 

 

Table 12. TFs at Model 3 

Frequency 

(rad/s) 

Wave number 

(rad/m) 

RAO Heave acc 

(mm.rad2/mm.s2) 

Phase Heave 

acc (rad) 

3 1.615 8.7858 -0.00061 

3.2 1.715 9.965568 -0.00073 

3.4 1.865 11.19239 -0.00094 

3.6 1.995 12.48696 -0.00115 

3.8 2.129 13.83641 -0.00138 

4 2.269 15.2384 -0.00161 

4.2 2.412 16.68744 -0.00185 

4.4 2.56 18.1771 -0.00208 

4.6 2.715 19.69784 -0.00229 

4.8 2.875 21.24749 -0.00244 

4.833219 2.902 3.54E+01 0.5162 

5.026548 3.064 2.47E+01 -0.71197 

5.235988 3.247 1.67E+01 0.05876 
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5.463639 3.456 3.00E+01 0.2732 

5.711987 3.695 2.71E+01 0.11505 

5.983986 3.972 2.19E+01 0.08598 

6.283185 4.296 4.59E+01 -0.03181 

6.613879 4.68 3.10E+01 0.06408 

6.981317 5.139 3.16E+01 0.042535 

7.391983 5.694 3.15E+01 0.37601 

7.853982 6.372 3.28E+01 0.625985 

8.37758 7.206 2.70E+01 0.22322 

8.975979 8.244 2.04E+01 0.325785 

9.666439 9.544 1.10E+01 0.2211 

10.47198 11.194 7.55E+00 -0.2785 

10.6 11.468 32.16867 0.682284 

10.8 11.904 31.34117 0.756007 

11 12.35 30.5162 0.833413 

11.2 12.801 29.70419 0.91457 

11.4 13.262 28.89011 0.999219 

11.6 13.731 28.09613 1.087306 

11.8 14.208 27.31889 1.178709 

12 14.699 26.5248 1.27458 

13 17.2449 22.984 1.794601 

14 20 19.894 2.389217 

15 22.95918 19.701 2.725944 

16 26.12245 14.9632 -2.5057 

 

 

Model with resonance (WR model) 

Simulated TFs are assumed. 

 

Table 13. TFs at Model 1 and Model 2 

Frequency 

(rad/s) 

RAO Heave 

(mm/mm) 

Phase Heave 

(rad) 

3 1.01 -0.0722 

3.2 1.01 -0.0834 

3.4 1.01 -0.0956 

3.6 1.01 -0.109 

3.8 1.02 -0.125 
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4 1.02 -0.141 

4.2 1.02 -0.159 

4.4 1.03 -0.178 

4.6 1.03 -0.2 

4.8 1.04 -0.225 

5 1.04 -0.251 

5.2 1.05 -0.278 

5.4 1.06 -0.308 

5.6 1.07 -0.342 

5.8 1.08 -0.381 

6 1.09 -0.425 

6.2 1.11 -0.466 

6.4 1.13 -0.513 

6.6 1.15 -0.565 

6.8 1.18 -0.625 

7 1.21 -0.697 

7.2 1.26 -0.771 

7.4 1.31 -0.846 

7.6 1.37 -0.934 

7.8 1.44 -1.04 

8 1.53 -1.16 

8.2 1.61 -1.32 

8.4 1.72 -1.49 

8.6 1.84 -1.69 

8.8 1.92 -1.94 

9 1.91 -2.22 

9.2 1.8 -2.51 

9.4 1.61 -2.77 

9.6 1.39 -3 

9.8 1.18 3.06 

10 0.99 2.89 

10.2 0.839 2.75 

10.4 0.709 2.62 

10.6 0.608 2.52 

10.8 0.527 2.43 

11 0.46 2.35 

11.2 0.4 2.28 

11.4 0.347 2.22 
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11.6 0.304 2.16 

11.8 0.266 2.1 

12 0.232 2.05 

 

 

Table 14. TFs at Model 3 

Frequency 

(rad/s) 

RAO Heave acc 

(mm.rad2/mm.s2) 

Phase Heave 

acc (rad) 

3 9.09 -0.0722 

3.2 10.3424 -0.0834 

3.4 11.6756 -0.0956 

3.6 13.0896 -0.109 

3.8 14.7288 -0.125 

4 16.32 -0.141 

4.2 17.9928 -0.159 

4.4 19.9408 -0.178 

4.6 21.7948 -0.2 

4.8 23.9616 -0.225 

5 26 -0.251 

5.2 28.392 -0.278 

5.4 30.9096 -0.308 

5.6 33.5552 -0.342 

5.8 36.3312 -0.381 

6 39.24 -0.425 

6.2 42.6684 -0.466 

6.4 46.2848 -0.513 

6.6 50.094 -0.565 

6.8 54.5632 -0.625 

7 59.29 -0.697 

7.2 65.3184 -0.771 

7.4 71.7356 -0.846 

7.6 79.1312 -0.934 

7.8 87.6096 -1.04 

8 97.92 -1.16 

8.2 108.2564 -1.32 

8.4 121.3632 -1.49 

8.6 136.0864 -1.69 
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8.8 148.6848 -1.94 

9 154.71 -2.22 

9.2 152.352 -2.51 

9.4 142.2596 -2.77 

9.6 128.1024 -3 

9.8 113.3272 3.06 

10 99 2.89 

10.2 87.28956 2.75 

10.4 76.68544 2.62 

10.6 68.31488 2.52 

10.8 61.46928 2.43 

11 55.66 2.35 

11.2 50.176 2.28 

11.4 45.09612 2.22 

11.6 40.90624 2.16 

11.8 37.03784 2.1 

12 33.408 2.05 

 

 


