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Abstract

Robotic Bin picking is a valuable task in manufacturing, aiming to automate the
assembly process by utilizing robots to pick necessary objects from disorganized bins.
This task eliminates the need for human workers to arrange the objects or the usage
of a large amount of part feeders. Previous studies have addressed various challenges
related to bin picking, such as processing visual information in heavily occluded scenes
and planning grasps under rich physical interaction for dense clutter. However, when
objects with complex shapes or deformable properties are randomly placed in a bin,
they tend to get entangled, making it difficult for the robot to pick up individual items.
This poses challenges in perception, as the robot must be capable of distinguishing
between isolated objects and potentially tangled ones in a cluttered environment.
Manipulation is also difficult in planning effective and general disentangling motions

due to the complexity of estimating entanglement and executing real-world actions.

This dissertation introduces methods to develop unified, dexterous, and robust
bin picking systems for entangled objects. The target objects include both rigid
(e.g., U-bolts, S-hooks) and deformable objects (wire harnesses). My research enables
the robot to flexibly perform appropriate actions based on the current observation:
(1) picking objects while avoiding entanglement and (2) performing disentangling
manipulation when the bin does not contain any isolated objects. The goal is to
equip the robot with these two capabilities for handling cluttered, complex-properties
objects that are prone to entanglement, all without relying on their models. I discuss
how to design effective and dexterous motion primitives for separating entangled
objects. I also investigate how to infer the implicit and explicit representations for

mapping these actions to visual or haptic perception. By leveraging both analytic and



data-driven approaches, I study how to efficiently learn from real-world and simulated
environments under a set of criteria.

In this dissertation, I first provide a review of the progress in robot bin picking over
the decades and analyze the remaining challenges. Then, to address the problem of
robotic bin picking for entangled objects, I propose methods for visually abstracting
entanglement, planning skillful disentangling motions, automatically selecting picking
strategies, and utilizing multiple sensory modalities. Finally, I conclude by discussing

the directions for future work in this research topic.

vi
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Chapter 1

Introduction, Background and

Motivation

1.1 Background of Robotic Bin Picking

Robotic bin picking is a vital task in manufacturing industry that enables a robot
to pick objects individually from an unstructured bin. If we try to automate an
assembly process without using bin picking, we need to prepare a large amount of
parts feeders according to the number of assembly parts. In this thesis, I describe the
task of robotic bin picking as the process of picking objects individually from a bin
and dropping them to another bin regardless of aligning their poses.

A high-performance bin picking system relies on several subproblems such as
accurate scene processing, robust grasp and motion planner, and practical system
integration. Researches for robotic bin picking can be divided into analytic and
learning-based. Analytic approach recognizes the scene and plans grasps and mo-
tion based on rigid criteria without verifying the criteria using existing experiences.
Learning-based approaches accomplish this task in an empirical way by utilizing
data. For industrial bin picking, a classical solution is to match the cluttered scene
with the known object model or shape to confirm the locations or poses of each ob-
ject, and plan grasps considering some constraints such as collision. On the other

hand, the categorization can also be described as model-based and model-free based
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Vision Input
Model-Based Model-Free
Object Detection Object Detection
v
Pose Estimation
1 '
Grasp Planning —  Grasp Planning

Motion Planning

l I— Tactile Input
Execution

Figure 1.1: Rough workflow of bin picking categorized as model-based and model-
free approaches. The subproblems in bin picking systems are also presented.

on whether they employ prior object knowledge or not. I roughly illustrate these
two categories and the necessary subproblems in Fig. 1.1. These modules have been
independently or collaboratively studies in decades using analytic or learning-based
approaches. The ultimate challenge in bin picking is always handling clutter scenes

while the ultimate goal is always efficiency.

1.1.1 Brief History of Analytic Bin Picking

The development of robotic bin picking is almost equivalent to the evolution of com-
puter vision, especially in at the beginning. In the 1970s, researchers put a lot of
effort to make a computer system to see objects even for occluded objects. Studies
have addressed the problem of recognizing objects from the scenes containing multiple
industrial parts [4, 5]. Tkeuchi and Horn [6] proposed an initial but classic bin-picking
workflow, including a vision system for object localization, grasp configuration and
planning and hand-eye calibration. They also provide a set of promising discussion
on developing bin picking systems [7, 8, 9]. In the 1980s, computer system can now
see an object at the top of a bin of mixed parts and direct a mechanical arm to pick

it up. After classic algorithms for 3D object detection were born [10, 11], bin picking



1.1. BACKGROUND OF ROBOTIC BIN PICKING 3

method concentrated on 3D object localization for objects with simple shapes and

surfaces by matching a 3D model of an object to the input scenes [12, 13, 14].

Up to the year 1990, robotic bin picking started to become mature and gradually
produced some standards that can deal with more complex scenarios. During this
time, bin picking methodologies have gradually diverged into three branches, image
segmentation, pose estimation and picking method. In the 1990s and early 2000s,
Range images were widely used so that a set of vision algorithms utilizing the height
information [15, 16] .3D object detection algorithms using segmentation and pose
estimation mainly focused on the level of shapes by simple features such as edges,
surfaces and corners [17, 18]. With the development of shape matching algorithms
that are invariant of scales or template shapes [19, 20, 21, 15|, object detection in
bin picking started to use high-level features and the systems became more and more
robust and integrated [22, 23, 16, 24, 25]. In the 2010s, bin picking methods have
been rapidly developed in various field from vision to motion [26, 27, 28, 29, 30, 31].
Studies on 6D pose estimation became more popular. Voting-based pose estimation
using global features were proven to be robust and efficient for bin picking performance
(32, 33]. In the practical bin picking systems, modern 6D pose estimation methods
are widely used [34, 35, 36]. Motion planning algorithms were also rapidly developed
37].

For the researches in picking method, grasp planning for bin picking is always
popular in these decades. Some early works utlized the known object models and
knowledge and estimated the location or pose of the target by the aforementioned
object detection, or fitting simple shape primitives to plan grasps [24, 38, 39]. On the
contrary, another approach assumes that the object model is unknown so that it can
plan grasps to novel objects. Domae et al. [40] considered the relationship between
the input depth image and the gripper model and proposed a method of finding
collision-free grasps. For the motion planning in bin picking, classic path planning
algorithms coupled with expert experiences are used in practical systems. Recently,
several approaches propose more efficient and fast methods for planning trajectories
for industrial bin picking [38, 41].
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1.1.2 Development of Learning-Based Bin Picking

Up to the year 2010, classic bin picking solutions are widely applied in the industrial
production and contribute to factory automation. Many studies also have addressed
the challenging task of grasping from the clutter using daily objects. However, there
still exists some difficulties that must be overcome. Conventional model-based ap-
proaches heavily rely on the results of recognition that leads to cumulative errors.
There are also limited to be generalized to more complex environments considering
interactions between objects. These methods also has difficulties in handling complex-
shaped or deformable objects. Also, picking up novel objects is very essential but
challenging tasks for bin picking.

To tackle these challenges, learning-based methods help bin picking in almost
every such as pose estimation [42, 43, 44], grasp planning [45, 46, 47|, hand-eye
calibration [48] or task-oriented planning [49, 50]. Table 1.1 lists several bin picking
system, especially those with real world experiments. We can glance the evolution for
bin picking in these decades from analytic approaches to learning. Most works have
addressed the problem of vision in decades. Especially, vision and grasp planning tend
to be addressed as a whole issue using deep learning since the objective of bin picking is
to produce grasps with the highest accuracy and stability. Model-based methods rely
on accurate pose estimation to improve the grasp quality while deep learning learns
metrics of grasp planning that can be empirically verified [51, 46]. Partial information
of object such as shape primitives is also utilized for improve the system flexibility [39,
52]. On the other hand, the development of depth /range image acquisition contributes
to industrial bin picking in last century. Depth information is useful in either 3D
modelling or grasp planning for a cluttered environments. Most of the studies or
even practical bin picking system in the assembly line utilize depth images as the
main perception input. As the computer vision developed especially With the advent
of deep learning, using RGB image can also produce great performance in object
detection Especially when the target objects are daily objects, RGB images provide
more essential information other than height such as colors, textures or labels for
object recognition. Despite that, point cloud is useful for accurate pose estimation,

which is still important in many practical industries.
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Table 1.1: Approaches of Robotic Bin Picking

System Prior Hand Visual Learning | Simulation
Focus Knowledge Input Involved? | Involved?
iy
2] )
fi5flzdist
5 5 n
~ ;’% = £ R
Tkeuchi et al., 1983 [6] as v v Photometric Stereo
Al and Sood et al., 1990 [14] v v v Range Image
Zuo et al., 2004 [23] v v v Stereo Pair Images
Choi et al. 2012, [33] v v Point Cloud
Buchholz et al., 2013 [38] s v v Depth Image
Harada et al., 2013 [39] as v v Point Cloud
Domae et al., 2014 [40] v v v |V Depth Image
Harada et al., 2016 [44] s v v Point Cloud v
Mahler et al., 2017 [53] v v v v Depth Image v v
Zeng et al., 2017 [54] v v vV RGB-D Image v v
Levine et al., 2018 [48] s vV RGB-D Image v
Matsumura et al., 2018 [46] v v v v Vv Depth Image v v
Fujita et al. [55] v v v v'|  RGB-D Image v v
Ishige et al., 2020[56] v v v v v Vision-Less v
Tachikake and Watanabe, 2020 [57] | v v vV RGB Image v v
Song et al., 2020 [58] v vV RGB-D Image v
Ichnowski et al., 2020 [41] v v |V Depth Image
Tong et al., 2021 [59] aans v v RGB Image v
Moosmann et al., 2022 [60] v v VY v Point Cloud v v
Zhang et al., 2021 [61] v v v v Depth Image
Zhang et al., 2023 [3] v v v v |V Depth Image v
Zhang et al., 2023 [62] v v v v |V Depth Image v v
Zhang et al., 2023 [63] v v/ vV Depth Image v
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Learning method and various simulators are frequently used in bin picking re-
searches. Several approaches rely on the simulator to collect a a large scale of data
[49, 45, 57] while some studies learn from real world [3, 44, 48]. With the development
of simulators that can handle complex physical phenomenon or deformable objects, it
is promising of collecting large-scale datasets for complex scenarios or efficient online
training. A large amount of bin picking systems has focused on some specific tasks
or grasping specific challenging objects varying from manufacturing to food industry,
logistic and even daily life. For instance, when the objects near the bin wall cannot be
picked by top-down approaching, studies proposed non-prehensile manipulation to in-
crease grasp access [64] while industries solve it using extra machines for vibrating or
shaking. The primary robot hand used in bin picking is typically a two-finger parallel
gripper or a suction cup, due to their low cost, ease of control, and ability to handle a
wide range of objects. Recently, more studies develop their own robot hand to address
the challenges of complex objects [59, 65] or accuracy problem [66, 67]. Generalizing

specially designed robot hands to practical production is also very promising.

1.2 Research Focus in Robotic Bin Picking

In the last section, I introduced the background of robotic bin picking and reviewed
the studies of both analytic approaches and learning. Here, I provided a perspective
for surveying the details of bin picking systems over the last two decades as shown in
Table 1.1. Note that some studies lying in the related field of grasping from the clutter
are also mentioned. Bin picking methods in earlier years focus on analytic methods
applied in the production automation, mainly by detecting the geometric feature or
localization and pose of the object and then pick them. During this area, grasp
planning problem are rarely referred due to the number of the clutter and the shape
of the objects is quite simple. After that, several warehouse automation approaches
become popular by the increasing amount of learning algorithms. These approaches
assume object models are unknowns and directly predict grasp poses or even if motor
commands. A variety of gripper is also developed in order to handle different levels

of specific tasks. Finally, hybrid approaches including analytical planning with deep
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learning also can become a new trend.

After thoroughly reviewing the researches under the topic of robotic bin picking
and grasping from clutter, I categorize the research focus in robotic bin picking as
three groups: accurate state estimation, robust grasp planning and challeng-
ing objects.

1) Accurate State Estimation: State estimation is challenging due to such
cluttered and unstructured environments. Vision recognition suffers from heavy oc-
clusion, sensory noise and uncertainties during the bin picking process. Studies have
addressed on this challenges by improving the visual recognition results in a iterative
way or using end-to-end methods to skip over the certain visual processing. Suzuki
et al. [68] proposed an online self-supervised method to adjusts grasp poses via feed-
back to decrease the error and achieve more towards ground truth. Doumanoglou
et al. [42] refined the 6D object poses and predict next-best-view in heavy clutters.
Harada et al. [44] also proposed a method for better seeing the occlusions in the
container. The accuracy problems on manipulation or execution address on hand-eye
calibration, closed-loop manner or feedbacks. Levine et al. [48] directly overcomed
the difficulties in hand-eye calibration. By learning hand-eye calibration to servo the
robot to reach the objects under self-supervision, they aim at helping the circumvent
the accumulation of errors and leading to accurate results. They method significantly
improve the success rates in grasp from the clutter thanks to their robust closed-loop
control planner which gives the system the ability to interact with the environments.
These approaches can reduce the accumulated errors from the hierarchical system
and precisely lead to the final objectives for bin picking. Although analytic 6D pose
estimation provides robust performance in practical bin picking, learning can fur-
ther process the scenes with heavy occlusions and refine the poses to improve the
recognition accuracy. Dong et al. [69] estimated 6D pose from the point cloud in
the industrial setup. Zeng et al. [54] proposed a self-supervised method to estimate
the 6D pose of objects from RGB-D images for warehouse automation. All these
approaches significantly improve the recognition accuracy compared with analytic
methods.

In order to catch up with the development trend of deep learning especially in bin
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picking, several standard datasets and benchmarks need to be mentioned. It will be
very helpful if there exists several open-source datasets for the systems to reach more
reliable and generalized performance. Unlike other object or image datasets, they all
share one goal such as instance/semantic segmentation, 6D pose estimation or image
classification. Unfortuately, every bin picking datasets are designed for the special
problems. They can not gives a benchmark for the future researches. Periyasamy
et al. [70] proposed a synthetic dataset for understanding dynamic scenes where the
objects poses can be tracked. Yang et al. [71] proposed a multi-view dataset for the
reflective objects in bin picking. Kleeberger et al. [72] provided large-scale industrial
parts with 6D pose. Instead of directly using the existing datasets, general methods

of large-scale synthetic datasets will be useful.

2) Robust Grasp Planning: The essential techniques in bin picking is to grasp
from the clutter. Two-finger parallel jaw grippers or suction cups are usually used in
this tasks. Grasp detection faces the difficulties from rich contact and collision, fast
motion planning algorithm and the environmental uncertainties. Classic bin picking
methods samples force closure grasps with the object model and select the one without
causing collision. Studies focus on improving grasp quality metrics considering more
and more aspects. The underlying idea is to treat grasp perception analogously to
object detection in computer vision. Some approaches focus on using implicit features
instead of geometry primitives [73]. Some approaches focus on considering collisions

between fingers and objects [40, 38].

Development of deep learning in grasp synthesis fields inspires the bin picking
works [74, 75, 51, 48, 76]. Different grasp quality metrics can be learned based on
a large-scale of dataset for parallel grippers [77, 45, 46], suction cups [78] and more
generally, both [53]. On the other hand, in the case of heavily cluttered objects
or various constraints with the environments, approaching in a top-down orientation
may not be the optimal solution. High dimensional grasp configurations enable robots
to pick up object precisely and flexibly [58].

3) Challenging Objects: First, some objects are very difficult for a 3D cam-
era to capture, such as reflective or transparent parts. Dyrstad et al. [50] proposed

a method to pick up reflective steel parts by training the network using synthetic
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data. Tachikake and Watanabe [57] used RGB images as input and generate solu-
tions for semi-transparent objects. Others requires specified manipulation primitives
other than directly lifting to solve. As Sajjan et al. [79] proposed a method that
can recognize the transparent objects from 3D data, we believe that approaches for
grasping transparent objects in bin picking will soon be tackled. Second, if adapting
the top-down grasps with parallel jaw grippers as the picking method, some objects
can be very hard to find a grasp pose. To address this challenge, Le et al. [80] pro-
posed a learning-based method to grasp planar objects in bin picking. Tong et al.
[81] proposed a planner for picking up thin objects without suction gripper. They
only use learning-based method to detect the object locations and plan a manipula-
tion policy analytically to grasp the objects. Similarly, Tong et al. [59] proposed a
method to grasp go-stones due to its specially shape and challenges in the clutter and
He et al. [65] also proposed scooping manipulation to grasp thin objects. Although
these approaches only use learning for locating the objects, it is also meaningful
that the object detection stage can be easily done to serve for a better manipulation
policy. Tachikake and Watanabe [57] solved the problem existing in picking up geo-
metric variation objects and objects with a biased center of gravity. Finally, objects
involved with rich physical interactions, e.g., tangled-prone objects are challenging
since the robot has high possibilities to grasp entangled objects following a top-down
approaching-grasping-lifting strategy. I will explain more details about the challenges

in picking entangled-prone objects in next section.

1.3 Robotic Bin Picking for Entangled Objects

It is difficult yet important to automate the bin picking process for objects that tend
to get entangled when randomly placed in a bin, e.g., U-bolts, S-hooks or deformable
wire harnesses. The challenges come from high occlusion in the clutter, elusive en-
tanglement phenomena, and the need for skilled manipulation planning. For picking
simple shaped objects, the robot usually lifts the target in the vertical direction after

a successful grasp. Simply adapting the existing bin picking strategies for picking
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entangled-prone objects shows unsatisfied performance. For this reason, the manu-
facturing industry still relies on human workers to grasp and separate entangled-prone
objects. Therefore, developing intelligent systems to automate this process is highly
demanded. Here, I elaborate the challenges of realizing such systems by three aspects:

perception, manipulation planning and entanglement representation.

1) Perception: This task poses challenges in perception since the robot must be
able to distinguish isolated and potentially tangled objects in a cluttered environment.
Some studies uses the prior knowledge of the objects to better understand the scene
first. Studies address the segmentation problem on deformable linear objects [82, 83].
Leao et al. [52] proposed a method to pick up soft tubes by fitting shape primitives to
clutter. Moosmann et al. [84] proposed to estimate the 6D pose of the target and then
leverage reinforcement learning to plan separation motion. However,it is challenges
for state estimation without object models. Specifically, for deformalbe objects such
as wire harnesses, model-based bin picking polices may not suitable since it is difficult
to construct the 3D models. Instead of understanding the scene first, we can directly
obtain the task-relevant visual features. To avoid estimating the state of each object,
Matsumura et al. [49] evaluated the scores of a set of grasps based on if it will lead

the robot picking up entangled objects.
Multiple sensory is also used in difficult tasks for bin picking. Robotic bin pick-

ing relies on computer vision processing for object recognition and grasp planning.
However, the integration of other sensory inputs can enhance the robustness for han-
dling heavy occlusion and the intricate objects properties. Haptic feedback is widely
adopted in industrial robots for failure detection. Moreira et al. [85] utilized a force
sensor to assess the success of picking operations. Hegemann et al. [86] proposed
a failure detection algorithm for grasping based on both visual and haptic inputs.
Studies also use tactile information to guide the bin picking process instead of vision.
Ishige et al. [56] proposed a vision-less system that relied solely on tactile feedback
to pick small bulked objects. Multiple modalities of vision and haptic signals in a

closed-loop manner shows great promise in the field of smart manufacturing.

2) Manipulation Planning: Manipulation is challenging for planning effective

and general separation motions due to the complexity of entanglement estimation
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Figure 1.2: Manipulation planning for entangled objects. Skillful and specific manip-
ulation is required under different entangled and cluttered environments for various objects.
I consider quasi-static, dynamic or bimanual manipulation for disentangling the objects. Ac-
tion affordance is also used to encode the action with perception.

and real-world uncertainties. Some approaches focus on searching and grasping un-
tangled objects but are insufficient for cases where all the objects are entangled in
the bin. There usually exists scenes where no untangled or isolated objects exist.
The robot must be flexible enough to understand the current situation and plan the
corresponding actions. Thus, the challenges would be, different objects and differ-
ent entanglement patterns require different manipulation strategies. For examples,
Leao et al. [52] planned a escaping trajectory to drag the object from the clutter.

Moosmann et al. [84] proposed a multi-step escaping trajectory.

While considerable progress has been made with rigid tangled-prone objects [49,
61, 62], deformable objects with complex structures, such as wire harnesses, remain
relatively unexplored. For deformable object manipualtion, Grannen et al. [87] pro-
posed pin-and-pull to untangle the cable knots. Recently, dynamic manipulation is
also demonstrated effective for cable manipulation [88, 89]. On the other hand, ma-
nipulating multiple deformable objects poses unique challenges. The solutions must
simultaneously consider the heavy occlusion and rich contact formed by a large num-
ber of objects and also the entanglement issues. Viswanath et al. [90] proposed to
disentangle multi-cable knots by task-relevant keypoint prediction and knot graph

representation. Huang et al. [91] presented a method for untangling multiple cables
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Figure 1.3: Scene understanding and entanglement representation. To better under-
stand entanglement in an unstructured environment, I focus on extracting suitable features
from visual inputs. As the degree of entanglement increase, the entanglement representa-
tion evolves from region-based feature maps, pixel-wise spatial action maps, to complexities
of disentangling actions.

by tracing the topological representation. Other studies focus on scenes with higher
degrees of entanglement in food industry. Ray et al. [92] proposed a method using
a designed two-finger gripper to untangle herbs from a pile. Takahashi et al. [93]
developed a learning-based separation strategy for grasping a specified mass of small

food pieces.

3) Entanglement Representation: The entanglement representation can be
done by physical trials where the metric is binary based on the robot will successfully
grasp the objects or not. This method requires a large amount of experiments to verify
either in real world [93] or simulation [49]. However, executing picking attempts in
real world is time-consuming and simulated training always suffers from sim-to-real
gap. Building a simulator with the real dynamics effects is also extremely challenging
for complex-shaped objects or even deformable objects. Another method comes from
the knot theory. Lui et al. [94] represented a knot as a graph and annotated each
intersections. Sundaresan et al. [95] extended this representation to non-planar knots.
Huang et al. [91] proposed a topological representation space to estimate the state
for multiple cables. However, the full state is requires for applying knot states. In the
real-world experiments, it is difficult to access the true state visually. Some studies
proposed to use task-relevant visual features in deformable object manipulation [96,

97]. Thus, there seem lack a general representation of entanglement for bin picking
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using cluttered and entangled objects.

In this thesis, I formulate the problem of picking entangled objects as a vision,
motion/sequence planning problem. The proposed bin picking systems do not require
any prior knowledge to flexibly pick isolated objects and separate entangled objects.
Picking entangled objects requires specific strategies in both state estimation and
manipulation. First, to avoid grasping the entangled objects, visually distinguishing
if an object is entangled or not is important. It is challenging since the clutter scenes
often contain heavy occlusions or self-occlusions of the objects themselves. Locat-
ing the objects using object models is difficult while it becomes more challenging for
approaches without using models. They’re also cases where the vision information
might not be sufficient, requiring coupling with other sensory data, such as haptic
feedback. Fig. 1.3 shows our effort of understanding the entanglement using visual
features. After processing the entanglement scenes, it is natural that a reasonable
picking sequence is planned: first select the isolated objects to grasp, then disen-
tangle the rest objects. Therefore, disentangling motions are required to effectively
separation the entangled objects as Fig. 1.2 shows. These motion should be well
designed and planned, precisely predicted and robustly executed without relying on
object models. The strategies of avoiding entanglement and disentangling should be
flexibly combined in designing bin picking policies with excellent efficiency, robust-
ness and generalization. Building on a hybrid approach combined both analytic and
deep learning, my research can handle entangled objects with different difficulties and

realize high efficiency in real-world environments.

1.4 Organization of the Thesis

This dissertation is organized as follows.

Chapter 2 addresses the problem of picking rigid objects by avoiding the entangled
regions from visual inputs. The core technique is the entanglement map, which is a
topology-based feature map to measure the entanglement possibilities of each region
from the input image. The entanglement map is then used to select probable regions

containing graspable objects.
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Chapter 3 aims to solve the difficult case that the last chapter leaves when the
bin contains no isolated objects. A learned policy enables the robot to dexterously
pick or disentangle the objects based on the current observation. Two disentangling
strategies: quasi-static motion pulling and dynamic motion dropping, are used to
effectively separate the objects. To efficiently collect data for training, I leverage
the self-supervised learning paradigm using an algorithmic supervisor in a physics
simulator.

Chapter 4 tackles the problem of picking entangled deformable objects. The
target objects are wire harnesses - essential connecting components in manufacturing
industry, but long, flexible and tend to get entangled when randomly placed in a
bin. A learning framework is trained using real-world data to infer the suitable
disentangling actions based on the level of entanglement.

Chapter 5 keeps increasing the success rates of picking entangled wire harnesses
the same as the last chapter. A dual-arm robot is deployed to grasp, extract and
disentangle wire harnesses from heavy clutter using dynamic manipulation. This
closed-loop system with multi-sensory inputs can significantly improve the accuracy,
robustness and generalization of picking wire harnesses.

Finally, in Chapter 6, the achievements of the proposed methods presented in this

dissertation and future work ideas are discussed.



Chapter 2

Topological Visual Representation
for Entangled Objects

2.1 Introduction

This chapter addresses the problem of picking rigid, tangled-prone objects while avoid-
ing any entanglement in bin picking. The core technique is the entanglement map,
which is a feature map used to measure the possibilities of entanglement obtained
from the input image. Topological knowledge can be used to generate the entan-
glement map from a single depth image. The grasp positions are detected by select
probable regions containing isolated objects from the entanglement map, taking into
consideration the collision between the robot hand and the objects.

Several studies focus on visually recognizing the entangled objects using prior
knowledge [52, 98] or without any object model[49]. Matsumura et al. [49] first
tackle the problem of picking only one object from a stacked pile without causing
entanglement [49]. A Convolutional Neural Network (CNN) is proposed to predict
whether if the robot can pick up a single object among several pre-computed grasp
candidates. They also use a physics simulator to collect training data by simulating
bin-picking processes. However, we found some limitations in this research as follows.
On one hand, data-driven method requires a large amount of training data and time-

consuming training procedure. On the other hand, since CNN only makes predictions

15
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Tangled |
Not
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Figure 2.1: A failed grasp and a successful grasp for picking up a single object.
Grasp marked as green shows the failure example of picking up multiple objects. Grasp
marked as blue is successfully generated avoiding the region containing tangled objects. We
also present the entanglement map using the proposed method, demonstrating our method
can recognize the location of the entangled or isolated objects.

on cropped regions from the image, it cannot observe all the entangled objects from
the whole input scene. Especially when the objects are heavily entangled, CNN may
predict that all pre-computed grasp candidates share high possibilities of potential

entanglement.

Motivated by the previous work, this research proposes an analytic approach to
solve the entanglement issue in bin-picking using topological knowledge. Topological
representation has been studied for decades and it is widely used for analyzing the
relationship of characters. Ho and Komura firstly present the definition of topology
coordinates to analyze the whole-body behaviors between two humanoid robots [99],
[1], [2]. They calculate the topological relationship between two robot characters
applying for different scenes. The most significant representation of entanglement
would be Gaussian Link Integral (GLI) developed from knot theory [100]. It de-
scribes a mathematical relationship between two tangled strands as Fig. 2.2 shows.
Moreover, topological representation plays an important role in robotic manipulation
for deformable objects, such as tubes or ropes [101], [102], [103], [91]. This research
is the first one to use topological knowledge in robotic bin-picking. The topological
solution provides a more comprehensive measurements for dense clutters than the

previous learning-based method.
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In particular, this research introduces topology coordinates to obtain a series
of metrics which can describe entanglement situation from a single depth image.
Besides, the input depth image is scanned in a sliding window manner to generate a
feature map called entanglement map, which indicates the possibilities of containing
entangled objects for each region. As Fig. 2.1 shows, the entanglement map is able to
discriminate which regions may contain tangled objects and which regions may not
from a depth map. The regions marked as blue has high possibilities of containing
graspable objects. Once the entanglement map is obtained, we can select non-tangle
regions and detect collision-free grasp candidates using Graspability measure [40]
respectively on selected regions. The output is a set of ranked grasp configurations
of avoiding all entanglement and collisions.

The main contributions are as follows.

e A topology-based approach that can detect optimal grasps avoiding entangle-
ment, which is a challenging problem in robotic bin-picking. We fix the problems
existing in previous work. Besides, this method only requires simple parameter

tuning instead of time-consuming training and data collection.

e A feature map that provides a complete observation and intuitive measurement
of entanglement so that the bin-picking performance is improved dealing with

complex-shaped parts.

Code, video illustrations can be found on our project website: https://github.

com/xinyiz0931/bin-picking-robot.

2.2 Topology Coordinates

The original theory of topology coordinates is proposed by Ho and Komura [1, 2].
The topology coordinate has three attributes: writhe, density and center. Writhe
explains how much the two curves are twisting around each other. For instance,
entangled objects get a higher score than separated objects. Writhe between two

objects is calculated by Gaussian Link Integral (GLI) using Equation 2.1. If we have
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Figure 2.2: GLI identifies whether two strands are tangled or not [1, 2.

two curves 7; and v, which are point sets in Cartesian Coordinate, writhe can be
calculated by GLI as follows. The second attribute is density, which describes how
much the twisted area is concentrated on two curves. The third attribute is center,

which is a location that explains the center location of the twisted area.

dyp X d’YQ ’72)
GLI(v1,72) / / T = 72“3 (2.1)
2

2.2.1 Definition

Given a single depth image of a cluttered scene, the topology coordinate can be
constructed to measure the entanglement (Fig. 2.3). Writhe is a scalar attribute
that indicates how much the objects are tangled together. A depth map containing
tangled objects has higher writhe than the one with objects just overlapped together.
Density is also a scalar attribute that indicates the distribution of the entanglement
is evenly or intensively on the depth map. Center indicates the center position of

entanglement on the depth map.

Original topology coordinates [1] can only be applied for two characters and as-
sume the exact position of characters are known. Different from the definition and
calculation, we construct topology coordinates only using a single depth image con-
taining multiple objects so that the position of each object remains unknown. Instead
of computing the relationship between two objects, we extract the line segments of
edge from the depth map and calculate the topology coordinates using the relation-
ship between each pair of line segments. Edge contains all the information we need

to describe the shape and position of objects. Even though the line segments of
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Figure 2.3: Topology coordinate illustrated by rigid industrial parts. We revise this defini-
tion originated in [1, 2].

edges may not indicate the complete contours of all parts, the topological relation-
ship calculated by line segments can still reflect how and where the entanglement

occurs.

2.2.2 Calculation

We use a depth map [ to compute topology coordinates G = (w, ¢,d). In order to
calculate these three attributes, we need to generate a matrix called writhe matrix
T firstly. Taken I as input, we detect the edges and transfer them to a collection of
3-dimensional vectors L = (ly,ls, ..., 1,,). Writhe matrix T" is a n X n matrix that stores
GLI of each segment pair in L. Particularly, instead of using Eq.(1), GLI between
two 3-dimensional line segments is computed using the algorithm proposed by Klenin
and Langowski [104]. For instance, T; ; in the writhe matrix between i-th segment [;

and j-th segment [; can be calculated by
T;; = GLI(l;,1;) (2.2)

It can be seen that the writhe matrix 7" is an upper-triangle-like matrix where half
of the elements in 7" are zero. We can compute the writhe w, density d and center ¢

using writhe matrix T'. First, writhe w is the sum of all values in T" divided by the
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number of line segments as follows.

n n

w=13"3"m, (23)

i=1 j=1

Then, density d is calculated by the ratio of the pairs that have higher values in
writhe matrix 7. We extract the non-zero elements from 7" and compute d using
the number of elements higher than some threshold divided by the total number of
non-zero elements. Here, we define the threshold as the mean of extracted non-zero
elements. Finally, center ¢ is simply obtained by the center of mass for matrix 7,
which is a segment pair that contributes the most to the entanglement. Moreover,
we introduce a mask called center mask which has the same size as the input depth
image (Fig. 2.5). A center mask is a binary matrix with an area consisting of both

center segments.

2.2.3 Explanations

Firstly, writhe is a quantitative measure that denotes how much the entanglement is
on the depth image, while density and center denote the position information for the
entanglement. Therefore, we present the visualization of the writhe matrix and the
center mask to elaborate the density and center more intuitively. Fig. 2.5 presents
which region is the entanglement center from the input depth image while Fig. 2.4
shows four different clutters with various writhe and density values by presenting
the corresponding input depth images, detected edge segments, and visualized writhe
matrices. This visualized matrix derives from 7T since it only remains the larger
elements and is resized to a certain size. We can observe which pairs of edge segments
share the larger writhe value and what is the distribution of the segment pairs from
the matrix. If the edge segments are tangled with those near them, the brighter values
are concentrated around the axis of the matrix. On the contrary, if the edge segments
share rather larger writhe values with those all over the image, the distribution in the
writhe matrix is rather even. Therefore, the more concentrated around the axis in the

writhe matrix, the higher the corresponding density is. The details are elaborated as
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Figure 2.4: Input depth images, detected edge segments, and visualized writhe
matrices for 4 different clutter patterns. (a-b) Scenes with different writhe and similar
density. Overlapped objects in (b) has lower writhe. Writhe value w and density d is also
written. (c-d) Scenes with different density and similar writhe. Visualized writhe matrix
show that for the sparse clutter such as (b), density would be lower. Writhe value w and
density d is also written.

follows.

Writhe. Fig. 2.4(a) is the situation where two objects are twisting together while
Fig. 2.4(b) refers to two simply overlapped objects. They have similar density d but
differ from writhe w. The writhe of twisted objects is larger than overlapped ones. If
the robot wants to pick objects from these scenes, Fig. 2.4(b) with lower writhe has
s higher possibility of a successful picking.

Density. From Fig. 2.4(c-d) we can tell by the human observation that Fig.
2.4(d) would be a better choice for robot simply by taking a look. Visualized writhe
matrix and density value can also explain the scene numerically. The visualized

matrix in Fig. 2.4(d) has an even distribution of brighter pixels since every line
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Depth Map Detected Lines Center Center Mask

Figure 2.5: Illustration of the center in a depth map.

segment tends to tangle with more segments. Because as the number of segment
pairs with larger GLI increases, the number of bright pixels in the visualized matrix
also increases. Thus, these brighter pixels distribute more evenly, in other words,
the density becomes smaller. On the contrary, every object in Fig. 2.4(c) is twisted
with the other objects, thus, the entanglement is distributed intensely on the depth
map. For the visualized matrix, the pixels with larger writhe are concentrated around
the axis. Therefore, when writhe values are similar, density can also contribute to

entanglement analysis.

Center. The center is computed by the center of mass of the writhe matrix,
which is a pair of line segments that contributes the most to the entanglement. We
present how the center affects the entanglement by presenting a mask that has the
same size as the input depth image (Fig. 2.5). The center mask indicates the position
information of the entanglement but not as much as writhe and density do.

To summarize, by focusing on the metrics of the entanglement regardless of the
number of objects, situations with lower writhe and lower density is preferred. There-
fore, the topology coordinate proposed in this section can be used to determine where

a non-tangle grasp should be located.

2.3 Grasping Avoiding Entanglement

This section elaborates grasp detection method for picking up only one object by

measuring the entanglement metrics using the proposed topology coordinates.
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Figure 2.6: Entanglement map generation.

2.3.1 Entanglement Representation: Entanglement map

We explain how to compute an entanglement map by a given depth map I. First, we
compute the line segments for edges on input depth map I, and generate topology
coordinate G = (w,¢,d) along with center mask Ci,qs for I . Then, we use a
pre-defined sliding window function for I to obtain expanding information. For each
window, we calculate its own writhe and density. This sliding window function returns
two matrices Wy, D,, which respectively store writhe and density of each region.
The combination of two matrices refers to the rough entanglement information on
each regions from I. However, we would like to precisely evaluate the entanglement
situation upon the whole image. We use calculated topology coordinate G to evaluate
the weights for these matrices and center mask. The initial weights are manually
defined as oy = 0.8, op = 0.15, op = 0.05 respetively for Wy, Dy and C,,44: Since
writhe affect more on predicting potential tangled regions. If d, average of D, is
larger than d of the coordinate G, it means that density may affect the result of

entanglement map generation. Therefore, the weights are modified as,

o= (d/d)op; oy, =1—0} —o0c (2.4)
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Figure 2.7: Generating optimal grasps avoiding any entanglement and collision..

The center mask is independent of the sliding window algorithm so that the weight
oc remains the same. Finally, entanglement map FE is obtained by the addition of

weighted metrics as Eq.(2.5) shows following a bi-linear interpolation.

E =ow"Ws+ 05,Ds + 0.Crask (2.5)

2.3.2 Grasp Detection

We select a parallel jaw gripper and use a single depth map as input to compute grasp
hypotheses. The overview of the proposed grasp detection method is illustrated in
Fig. 2.8. First, a depth map is captured and used to construct the topology coor-
dinate. Then, we use the writhe in topology coordinates to determine if the objects
in the bin are tangled. If not, grasp is detected only considering the collision. If the
entanglement exists, we calculate the entanglement map which evaluates where the
potential tangled parts are in the box. We crop several regions with high possibilities
of containing graspable objects from the entanglement map. Finally, grasp is detected
and ranked in each selected region using graspability measure [40]. Graspability is an
index for detecting a grasping point by convoluting a template of contact areas and
collision areas for a robot hand. To put it more precisely, it is based on the idea that

the object should be in the trajectory of hand closing, and there should be no object
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Figure 2.8: Proposed grasp detection method avoiding the entangled objects.

in the position to lower the robot hand. We use a parallel jaw gripper and rotate
the gripper template along for 4 orientations. For the detected grasp candidates in
each region, we rank them simply by pixel values in the entanglement map of the
corresponding positions combined with the graspability score. Finally, the best grasp

position is selected as the top of ranked grasp candidates.

2.4 Experiments and Results

2.4.1 Experiment Setup

We perform several real-world robot experiments to evaluate our method in bin-
picking. We use NEXTAGE from Kawada Robotics and set a fixed 3D camera
YCAMS3D-II one meter straight above from the bin. We use Choreonoid and grasp-
Plugin to simulate and execute the movement of the robot. The execution time was
recorded on a PC running Ubuntu 16.04 with a 2.7 GHz Intel Core i5-6400 CPU.
Our experiment system is set as Fig. 2.9 shows. As Fig. 2.10 shows, two types
of industrial parts with complex shapes are selected. We prepare three patterns of
clutter state by only C-shaped objects, only S-shaped objects, and mixed objects. In
particular, three picking trials are performed for each clutter. Each trial contains 20
times of picking to record the success rate of only picking one object.

As Fig. 2.10 shows, two types of industrial parts with complex shapes are selected.

We prepare three patterns of clutter state by only C-shaped objects, only S-shaped
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Figure 2.10: Types of objects and pile patterns used in the experiment.

objects, and mixed objects. In particular, three picking trials are performed for each
clutter. Each trial contains 20 times of picking to record the success rate of only
picking one object.

The purpose of the experiment is to compare our method with two baselines.

e Graspability: A general grasp detection algorithm [40] only using a hand

template. It outputs several grasp candidates ranked by graspability measure.

e CNN: our previous work [49] which is the first approach to predict potential
tangled objects in bin-picking. It takes the same grasp candidates as Graspa-

bilty, but ranks them with a prediction network.
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Table 2.1: Success rates of picking one single object

Graspability [40] CNN [49] Ours

C-shaped object 11/20 14/20 15/20

S-shaped object 6/20 8/20 10/20
Success Tate  ypod objects 8/20 10/20 1420

Total 25/60 32/60  39/60
Time cost (s) 2.1 2.7 7.8

2.4.2 Bin-picking Performance

First, we evaluate the success rates and time costs for bin-picking experiments (Table
2.1). The number after slash denotes to the total picking times of one trial, and the
one before the slash is the number of times when the robot picks up only one object.
As a baseline, Graspability struggles in success rates since it can not discriminate
whether the target is entangled with others or not. Our method and CNN both reach
relatively higher success rates for picking a single object. Particularly, our method
improves the performance of picking from S-shaped objects by a success rate of 50%.

The reason why CNN struggles with an S-shaped object is that it uses quarters
of depth map to make predictions. Even if the cropped image contains the com-
plete shape of target objects, it still lacks information of entangling with others. Our
method directly evaluates entanglement for a complete depth map to solve the prob-
lem bothering CNN. For the mixed objects, our method reaches a high success rate of
70% since our model-free method only focuses on the information of edges in the depth
map. The superior performance of our method indicates that our hand-engineered
approach can analyze the relationship between these objects directly and efficiently.
CNN may require more evaluation for generalization while our method can be utilized

without training.

2.4.3 Qualitative Analysis

From the examples presented in Fig. 2.12, we validate how our method selects gras-

pable objects qualitatively. For the same depth map as input, we use baselines and
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(a) Input depth map
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Figure 2.11: Input depth map and corresponding entanglement map. Yellows
stands for entangled region. Blue area is the region where has low possibility of entangle-
ment.

our method to detect optimal grasp positions, and the top-ranked grasp is marked
using green dots. It is observed that our method can directly find the objects that
are not tangled with others in the bin, while Graspability and CNN always focus on
objects at the top of the clutter. Especially in the fifth column when all five grasp
candidates are classified as tangled, both existing approaches predict poorly while
our method successfully finds the graspable objects without any entanglement in the
bin. Graspable objects selected by the proposed method are similar to the human
observations. The reason is that our method uses edge and topological knowledge
to explain the entanglement relationship more intuitively, which guarantees a com-
plete observation of all potential entanglement in the bin. Some more entanglement
maps are presented in Fig. 2.11. In our perspective, the entanglement map is the
visualization that indicates possibilities of entanglement in every region for the whole
depth map. We can observe those areas where objects are heavily tangled with each
other are marked as yellow, while blue areas refer to non-tangled regions. We prefer

to generate grasps on blue areas.

In addition, the average time costs of Graspability, CNN, and our method are
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2.1s, 2.7s, 7.8s. The time cost of our method depends on how many line segments are
detected from the depth map. For our experiment setting of 10 objects placed in the

bin, the time cost per trial is limited to 8s.

2.4.4 Discussion and Limitation

Let us consider other kinds of industrial parts like Fig. 2.13 shows. This type of
object provides too much edge information for topology coordinates, which may cause
some misunderstandings. In this case, a learning-based approach would be necessary.
However, since our method prefers objects with the shape of pure edges such as
rigid linear objects with a smooth edge, it is possible to develop our method on

manipulation of deformable linear objects such as tubes or ropes in future work.

Figure 2.13: Our method can not apply to this type of object.

Common failures that result from our method are caused by the situation where
the selected region does not contain any graspable positions. Even if the entanglement
map can be generated correctly, grasps can not be detected due to the collisions in the
selected region. In the future, it may be possible to add more collision information

during generating the entanglement map to improve the performance.

2.5 Summary

This paper presents a topology-based solution for a robot to only pick only one object
in robotic bin-picking. We present a topological feature map called entanglement map
to describe the entanglement situation of cluttered objects in a bin. A grasp synthesis

method is proposed to search for the optimal grasp without picking up entangled
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objects from the whole input image. Our method reach fine success rates on real-
world experiments. Our method is dependable upon its generalization capability even
if for mixed objects in bin-picking. Particularly, we do not need large training data to
make predictions since the proposed method can obtain the topological relationship

of entangled objects even for complex-shaped objects.
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(a) Graspability

Figure 2.12: Experiment results using the same depth maps. Best grasps are em-
phasized using green dot. (a) Results of Graspability. Grasps marked as red denote to
the best grasp. Yellow refers to grasps with the ranked order of 2nd, 3rd, 4th, and 5th. (b)
Results of CNN. The grasp candidates are the same as (a) while CNN predicts the best
grasps marked as green. (c) Result of proposed method. Both depth maps and entangle-
ment maps are presented. Red denotes to the best grasp. Yellow refers to grasps with the
ranked order of 2nd and 3rd.



Chapter 3

Learning Action Affordance for
Entangled Rigid Objects

3.1 Introduction

The previous chapter (Chapter 2) introduces a bin picking method just by avoiding
grasping the entangled objects. By visually constructing a feature map representing
the entangled areas, the robot can find and grasp the untangled objects. However, we
have to consider the cases where there is no isolated objects to grasp and the robot
must separate the entangled objects. Synergies between visual representation and
action selection are required to solve this problem. This framework poses challenges
in perception since the robot must be able to distinguish the isolated and potentially
tangled objects in a cluttered environment. Our prior works [49, 61] uses partial vi-
sual observation or simple geometrical features such as edges, making it challenging
to be adopted in dense clutter. Model-based paradigm relies on the full knowledge of
the objects and may suffer from cumulative perception errors due to heavy occlusion
or self-occlusion of an individual complex-shaped object. Manipulation is also chal-
lenging for planning effective and general separation motions due to the complexity
of entanglement estimation and real-world executions. Studies have proposed tilting
the gripper to discard the entangled objects [52] or dragging the entangled object out

of the clutter [84]. However, these object-specific strategies require prior knowledge

32
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of objects and may be insufficient for objects with different geometries. Additionally,
the aforementioned learning-based approaches rely on simulated supervision [84] or
verifying the entanglement by simulated execution [49]. They do not provide any
general criteria for entanglement in cluttered environments.

Specific strategies for separating an individual object in cluttered environments
require visually reasoning the actions. Zeng et al. [105] proposed to learn the synergies
between pushing and grasping to create enough space for grasping in the clutter.
Danielczuk et al. [106] proposed to learn pushing policies to singulate the target
object for future grasping in bin picking. Although pushing is useful for singulating
daily objects or simple-shaped objects, some industrial objects face another challenge
where they tend to get entangled. Studies address this problem by utilizing specifically
crafted singulation strategies [84]. Action affordance can be used for encoding the
action with perception. For instance, grasp affordance can be learned by predicting
a pixel-wise heatmap mapped with the observation where each pixel indicates the
possibilities of the grasp success [76]. Other studies also leverage action affordance
for various tasks such as perceiving the 3D spatial structure of visual input for pick-
and-place task [107], predicting the keypoints associated with visual input for cable
untangling [96] or inferring both position and direction for manipulating articulated
objects [108]. The direction of the applied action can be encoded by rotating the
input image for the inference [105, 108].

To address these challenges, a novel bin-picking system is developed by leveraging
self-supervised learning to flexibly and efficiently pick or separate various complex-

shaped objects:

e PickNet learns to map the visual observations of the unstructured bin to af-
fordance maps that indicate the pixel-wise possibilities of potential actions: to
pick isolated objects or separate entangled objects. Our policy then selects
the corresponding action with the highest action possibility. The network is
trained with the idea that the untangled objects tend to present a complete
contour in clutter, making it more interpretable than black-box classifiers or

using insufficient object features.
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Tangled Parts

Figure 3.1: Our policy learns to flexibly pick or separate tangled-prone objects
for bin picking. The robot can search the untangled objects in the bin and pick them
up. If all objects are entangled, the robot can drop them into another bin to separate them
dynamically. It can also perform pulling actions to disentangle the objects.

e Two efficient separation motion primitives are proposed to cope with different
entanglement levels. The first motion is to drop the tangled objects into a buffer
bin after grasping. Dropping can dynamically untangle the objects by utilizing
the interactions with the environments instead of directly performing motions
in dense clutter. It acts as an initial separation strategy to reduce the degree of
entanglement and is suitable for a wide range of objects. The second motion is
to pull the target object out of the entanglement. The robot can simultaneously
pull and transport the objects when the degree of the entanglement is rather
lower, increasing the action efficiency compared with dropping. PullNet is used

to infer the position and direction for pulling from visual observations.

e PickNet and PullNet are trained using synthetic data collected in a self-supervised
manner. An algorithmic supervisor is used to estimate the entanglement state

and increase the efficiency of the collection process.
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Experimental results suggest the effectiveness of our method using both simulated
and real-world experiments with an average success rate of 90%. Our method can
also be adopted on unseen objects and shows impressive results. Fig. 3.1 shows the

proposed actions in our system. The contributions of this work are five-fold.

e A bin-picking system for tangled-prone objects that enlarges the accuracy, effi-

ciency, flexibility and generalization.

PickNet for distinguishing untangled or tangled objects in clutter and inferring

the appropriate actions for them.

Two novel and efficient motion primitives for separating entangled objects:

dropping and pulling.

PullNet inferring the pulling actions without object models.

An algorithm for simulated self-supervised data collection.

Code, videos illustrations and supplemental material can be found at https:

//xinyiz0931.github.io/tangle.

3.2 Problem Statement

Let o denote the depth image of the clutter, (¢, 6) denote a grasp with 4 degrees of
freedom, where ¢ € R3,0 € R is the position and orientation of the gripper about
the vertical axis to the workspace. The grasp pixel p € R? is inferred by our policy
from the depth image o and then transformed to a 3-D location ¢ for execution. We
then leverage the method in [40] to compute the collision-free grasp orientation 6 by
convoluting the depth image o with the gripper model. We parameterize the action

a with three motion behaviors:

e Picking: apix = (¢,6). The robot executes a grasp centered at g oriented 6, lifts

in a vertically upward direction, and transports the objects to the goal bin
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e Dropping: agqop = (¢,0). The robot grasps at ¢ with an orientation of § and
drop the objects into the buffer bin.

e Pulling: apm = (¢,6,u). The robot executes a grasp at (¢,6), pulls along
u € R3, and transports it to the goal bin. Our policy produces a 2-D pulling
direction v € R? from the depth image o. For the physical execution, we
transform v to a 3-D vector u = (u,, u,, u,) where the gripper pulls in the z-y
plane along (u,,u,) while slightly lift along the z axis about u, = 0.2 [cm]. The
pulling action ends before the gripper collides with the bin walls. The robot
also performs a wiggling motion during pulling to reduce the effects of friction

with the bin plane.

The goal is to learn a policy g that maps the input depth image o to the action a €
{@pick, Gdrops @pun } Where the trained networks PickNet and PullNet are parameterized

as ®: a « 7g(0).

3.3 Learning to Pick Entangled Objects

3.3.1 Method Overview

To efficiently pick up tangled-prone objects, the robot prioritizes grasping isolated
objects in the clutter. If the bin contains no such objects, we leverage a buffer bin
to reduce the degree of entanglement and help to perform the disentangling motions.
The overview of our system is shown in Fig. 3.2. We first use a neural network
PickNet to detect the untangled objects in the main bin. If such objects exist, the
robot grasps them and transports them to the goal bin. Otherwise, the robot drops
the entangled objects in a buffer bin to separate them. Then, the robot uses PickNet
again to examine the buffer bin. If the objects are not successfully untangled, we use
a neural network PullNet to perform a pulling action and transport the untangled
objects to the goal bin. The buffer bin helps to create an environment with few
collisions for pulling, and effectively disentangle the objects by the dropping motion.

This process proceeds in iterations.
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Figure 3.2: Overview of the proposed policy. The robot first uses PickNet to search
untangled objects in the main bin and transport them to the goal bin. If such objects do not
exist, the robot grasps the entangled objects, drops them in a buffer bin and uses PickNet
to check if the separation succeeds. The robot then transports the isolated objects to the
goal bin or separates the entanglement by pulling, which is inferred by PullNet.

3.3.2 PickNet: Learning to Pick or Separate

PickNet fpix is trained to (1) classify if the bin contains untangled objects for pick-
ing or if the robot should perform separation motions (dropping for the main bin
and pulling for the buffer bin) and (2) predict the pixel-wise grasp affordance for

R512><512><3

picking and dropping actions. Given a depth image o € with triplicated

depth values across three channels, the output is two heatmaps fiq(0) € RO12X512x2;
PickMap and SepMap. PickMap predicts the pixel-wise possibilities of picking untan-
gled objects while SepMap calculates the possibilities of containing entangled objects.
To infer the actions in the main bin, we select the heatmap with the highest values
between PickMap and SepMap to perform either picking or dropping action. In
this case, the grasp position p is selected at the highest pixel on the corresponding

heatmap. For the buffer bin, if the maximum pixel on the PickMap is higher than



38 CHAPTER 3. LEARNING ACTION AFFORDANCE

Depth Map Action

PullNet
‘CN with

o fpull (0) X 8 Gpull

Figure 3.3: Inference details of PicklNet and PullNet. Given a depth image as input,
PickNet predicts two affordance maps representing the pixel-wise possibilities of picking
and separating. We rotate the depth image by eight orientations denoting eight pulling
directions and feed it to PullNet. The pulling action is determined by the affordance map
that yields the highest score.

that on the SepMap, the robot picks the objects to the goal bin. Otherwise, the robot
performs the pulling motion, as inferred by our proposed PullNet. Fig. 3.3 illustrates
the inference process of PickNet. We use a ResNet50 [109] with U-Net [110] skip
connections for PickNet pre-trained on ImageNet [111]. We use an MSE loss during

training.

3.3.3 PullNet: Learning to Pull for Separation

We learn PullNet f,un to infer the pulling action including position p and direction
v. PullNet takes a depth image o € R?2¥°12X3 a5 input and generates a heatmap
called PullMap foun(0) € R?2*512 as output. Each pixel located in the PullMap
represents the success possibility of pulling to the right of the image. We encode
the pulling directions by rotating the input depth image for wi/4,(i = 0,1,---,7)
[rad]. PullNet can reason about pulling to the right for each rotated image. Then,
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the pulling direction v and position p are selected at the highest pixel value among
eight PullMaps. Fig. 3.3 shows how the inference process using PullNet. We use a
ResNet18 [109] as the encoder followed by a bi-linear upsampling layer in PullNet
pre-trained on ImageNet [111]. We use a binary cross-entropy loss for training. The

pulling position is encoded as a 2D Gaussian.

3.4 Self-Supervised Data Generation

We develop a physics simulator using the NVIDIA PhysX library to collect synthetic
data for PickNet and PullNet. We randomly drop 3D object models in a bin and use
a simulated parallel gripper to execute consecutive pickings repeatedly. The picking
process is executed under physical constraints. Instead of randomly exploring actions
in the simulator, an algorithmic supervisor containing a set of representations for
entangled objects is used to efficiently control the collection process and adjust the
dataset.

3.4.1 Algorithmic Supervisor

To distinguish if the object is entangled, we leverage the method for skeletonization
and crossing annotation in [94] using the object model and poses. Takes the full state
of objects in the bin as input, our algorithm can (1) classify if the objects are tangled
or not, (2) plan effective pulling actions for disentangling objects and (3) determine
the order for picking demonstrations.

1) Tangle Recognition: To distinguish if the object is entangled, we leverage
the method for skeletonization and crossing annotation in [94] using the object model
and poses. Fig. 3.4 shows the detail of this function RecogTangle(). We first
skeletonize each object into an undirected graph of nodes and edges. We project
all objects onto the bin plane to obtain a collection of undirected graphs. We then
calculate the crossings where the objects intersect with others and add them as nodes
to the corresponding graph. We annotate the crossings that each object forms with

others with +1 or —1. If the edge intersects above the edge of other objects, +1 is
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Figure 3.4: Process of distinguishing untangled /tangled objects in our algorithm.
Given the full state of all objects as input, our algorithm skeletonizes the objects and obtains
a graph collection by projecting along the vertical angle to the bin plane. For each object,
we annotate the under-crossings it formed with others as —1 and otherwise as +1. The
untangled objects (pink) are determined when the annotations of the crossings are +1 or
without any crossings. The tangled objects (blue) have both +1 and —1 annotations.

annotated for the corresponding object. Otherwise, —1 is annotated. From the graph
collection using vertical projection, untangled objects have only +1 or no annotation

while tangled objects have annotations of both +1 and —1.

After computing the annotated graphs, we define four conditions that lead to
different output action a: (a) If there exists an empty annotation list, the gripper
lift the corresponding object; (b) Otherwise, ff there exists an annotation list where
all elements equal +1, the gripper lift the corresponding object; (c¢) Otherwise, it
means that the bin only contains the entangled objects, if the bin contains less than
three objects, we plan pulling actions to disentangling them; (d) Otherwise, if the bin
contains more than three entangled objects, the gripper lift the one with the least
number of —1. Finally, we detect the grasp using the depth image and the mask of
the target object using the modified algorithm from [40].

2) Pulling Planning: To plan to pull, we project objects from multiple angles
to find feasible pulling directions (see Fig. 3.5). If the graph collection of a pro-
jection angle contains untangled objects, it is possible to separate the entanglement
by pulling this object along the corresponding projection angle. Thus, the feasible
pulling direction u is equivalent to the projection angle when the collection of pro-
jected graphs contains untangled objects. From a set of feasible pulling directions
and pulling objects, our algorithm selects the object with the least number of —1

annotations in the graph collection using vertical projection. The entanglement level
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Figure 3.5: Process of calculating feasible directions and corresponding objects
for pulling in our algorithm. By projecting and labeling the crossing from multiple
angles, the feasible pulling direction is determined as the vector along the projection angle
where the corresponding graph collection contains untangled (pink) objects.
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Figure 3.6: Demonstrations in simulation and data examples.

of this object is expected to be lower than others. The grasp ¢, 6 for pulling is selected
by considering the non-collision grasps as in [40]. Specifically, we uniformly sample
48 projection angles as candidates in SO(3) space and define that the sampled angles
about the vertical axis should be in the range from 7 /4 [rad] to 7/2 [rad] to reduce

the search cost.

3) Sequential Demonstration: Our algorithm first randomly drops the objects
in the bin and selects untangled objects to grasp (Fig. 3.6). If the bin contains no
untangled objects but more than three entangled objects, the gripper picks the object
with the least number of —1 annotations. If the bin only has less than three tangled
objects, pulling motions is planned and performed. Note that our algorithm resets
and drops the objects when the bin is empty or the gripper takes no objects out of

the bin five times consecutively.
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Algorithm 1: Algorithmic Supervisor

1 while True do

2 Drop objects in the bin;
3 Nrait < 0;
4 while bin contains objects do
5 a < RecogTangle ();
6 Execute a;
7 if only one object is out of the bin then
8 if apun is executed then
9 ‘ Record for PickNet (masked SepMap) and PullNet;
10 else
11 ‘ Record for PickNet (masked PickMap);
12 else if more than one object is out of the bin then
13 ‘ Record for PickNet (masked SepMap);
14 else
15 | Npait + Nail + 1;
16 if Ny > 5 then
17 ‘ Continue;
18 end
19 end

Algorithm 1 shows the detailed process of data collection during simulated de-
montrations. First, objects are randomly dropped in to the bin (line 2). Line 5-6
denote the function RecogTangle of this algorithm, which returns the picking or
pulling actions a for the execution. After detecting the grasping object and executing
the corresponding action (line 5-6), one attempt is terminated when the gripper is
out of the bin. Then, we count the number of objects in the bin before and after
the attempt. If only one object is taken out of the bin, we record the data including
the depth image, mask and corresponding action (line 7-13). Otherwise, the count
of failure attempts adds one and the simulator tries again to find the grasp and ac-
tion (line 14-15). If the number of failed attempts exceeds five (line 16-17), the bin
is reloaded by randomly dropping the objects (line 2) and resetting the number of
failed attempts (line 3).
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Figure 3.7: Ground truth labels for PickNet and PullNet.
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Figure 3.8: Augmented data for PickNet and PullNet.

3.4.2 Training Detalils

We use six models of tangled-prone objects including four planar objects and two
non-planar objects. Each sample for PickNet contains a depth image and two masks
PickMap and SepMap. After each attempt, if only one object is lifted without pulling,
PickMap is masked with the target shape while SepMap is set to all zeros. Otherwise,
if multiple objects are lifted, SepMap is masked with the target shape and PickMap
is set to all zeros. On the other hand, if the gripper pulls and lifts only one object,
the depth image and pulling action are recorded for training PullNet. Each sample
for PullNet contains a depth image and a Gaussian 2D encoding of the pulling point
the same size as the depth image. The depth image is rotated so that the pulling

direction points to the right in the image. The ground truth labels are shown in Fig.

3.7.
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Table 3.1: PickNet/PullNet Data Augmentations

Amount

Augmentation Parameters

PickNet PullNet
Additive Gaussian Noise (0.0, 0.01*255) (0.0, 0.01*255)
Gamma Contrast (0.5, 2.0) (0.5, 2.0)
Elastic Transformation (1,1) (1,1)
Scale (0.9,1.1) (0.9,1.1)
Shear (-10,10) (-10,10)
Rotate (-180,180) -

Here are the detils of two networks. PickNet we use a ResNet50 [109] pre-trained
on Imagenet with U-Net [110] skip connections. For the input, we triplicate depth
values across three channels to match with the default input size of the pretrained
backbone ResNet50. We use the mean square error (MSE) as loss function. We train
PickNet with a batch size of 2 using the stochastic gradient descent (SGD) optimizer
with a learning rate of 0.001 and a weight decay of 0.0001 on a Nvidia GeForce RTX
3080 GPU. We finally select the weights from the 8-th epoch since it achieve the best
performance. We also present the training loss curve. textitTraining Details: For the
network architecture of PullNet, we use a ResNet18 [109] as the encoder, followed by
a bi-linear upsampling layer pre-trained on ImageNet [111]. We use the binary cross
entropy Loss (BCE) as loss function. We train PullNet with a batch size of 2 using
the Adam optimizer with a learning rate of 0.001 on a Nvidia GeForce RTX 3080
GPU. We finally select the weights from the 11-th epoch since it achieve the best

performance.

We augmented the datasets by image-based transformations as Table 3.1 shows.
Since we encodes the direction of pulling by rotating the image so that the pulling
direction points to the right, we didn’t apply rotations on PullNet dataset. We
provide some examples of the data augmentation in Fig. 3.8. Finally, we augmented
the PickNet dataset 2X to 85,921 samples and the PullNet data 4X to 22,208.
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Figure 3.9: Overview of objects and picking scenes in simulation.

3.4.3 Physics Simulator Details

We use NVIDIA’s PhysX physics engine to collect synthetic data. We approximate
the objects as a set of rigid-body cuboids to (1) balance the trade-off between the
simulation accuracy and calculation time and (2) decrease the effects of unreal phys-
ical phenomenon when calculating collisions in clutter. We model the parallel jaw
gripper as two parallel cuboids and the bin as five rigid-body planes. We manually
adjust the size and physical parameters of the fitted rigid bodies to achieve the simi-
lar interaction behaviors as that of the real-world. Table 3.2 shows these parameters.
We also present the origin model, the approximated model, the clutter scene and the
moment of grasping of each object used in the data generation process in Fig 3.9.
Since we only use depth maps as dataset, we do not consider the visual appearance
of the objects such as textures. Moreover, the shapes of the objects are designed and

selected based on the real-world experiments in previous works of bin picking.

Meanwhile, we explain how the grasp is executed in the simulator under physical

constraints. The policy includes three parameters: (a) v<1°: Velocity of moving the

close:
fingers for closing. (b) vy'": Velocity of the fingers for lifting. (c) d,y: Distance between

two fingers.

First, the gripper approaches the target object using a 3D position and an ori-

entation angle calculated by our grasp detection algorithm. Then, to let the gripper

close

5 ¢ acted as grasping force. If

contact with the object, we set a closing speed v
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Table 3.2: Physics Simulator Parameters

Parameters Value

Bin Static Friction 0.40

Bin Dynamic Friction 0.35

Bin coefficient of restitution 0.05

Bin Size (22.5,22.5,22.5) cm
Object Static Friction 0.30

Object Dynamic Friction 0.25

Object coefficient of restitution 0.40

Object Density 1 g/cm?

vglose — 0,d, > 0, the target is grasped. Next, the gripper lifts with the grasped

lift
g

;lose. U;lose is cal-
culated based on the force where two fingers act on the object. During lifting, if

lift
g

while U;lose = 0. Finally, the grasping process is terminated if the gripper is outside
the bin.

We also controls the pulling process similar as the grasping or lifting process. All

object by a fixed lifting speed v, and an adjusted closing speed v

d, = 0, which means the object is slipped from the gripper, v, remains the same

actions are perform in the simulated physical environment.

3.5 Experiments and Results

3.5.1 Experimental Setup

We use a NEXTAGE robot from Kawada Industries Inc. It operates over a workspace
captured as a top-down depth image by a Photoneo PhoXi 3D scanner M. A parallel
jaw gripper is attached at the tip of the left arm. In physical experiments, we use a
PC with an Intel Core i7-CPU and 16GB memory with an Nvidia GeForce 1080 GPU.
We use three seen objects and three unseen objects including a non-planar object for
testing. When physically implementing the pulling action, we add a wiggling motion
during pulling by rotating the wrist joint eight times by 0.1 [rad] with a velocity of
0.35 [rad/s]. The robot stops pulling before the gripper collides with the bin. When

transforming the detected 2D pulling vector v to the execution 3D vector u, the robot
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slightly raises its arm during pulling.

We compare the performance using two baselines and two versions of our policy.
FGE is a model-free grasp detection algorithm using a depth image [40]. EMap
takes a depth image as input and produces a map evaluating where contains entangled
objects using edge information [61]. PickNet is used in simulation to evaluate the
ability to seek untangled objects. PD uses PickNet to detect graspable objects in the
objects bin and dropping bin. The tangled objects are transported to the dropping
bin for separation. If the dropping action is performed three times continuously
without solving the entanglement, the robot picks up the objects to the goal bin.
PDP denotes our complete workflow with both PickNet and PullNet and all three
motion primitives.

We define four metrics to evaluate the performance of bin picking. Firstly, let “#
Goal attempts” denote the times the robot transports one or multiple objects into the
goal bin (# apick + # apun), “# Success attempts” denote the times the robot trans-

ports only one object into the goal bin. “# Total attempts” means the total times

# Success attempts>

of executing all actions (# apick + # Adrop + # Apun). Success rate ( T Goal sttompts
evaluates the ability to grasp and transport the untangled objects. Completion

( # Success attempts
# Objects in main bin

) evaluates the ability to accomplish the task of emptying the bin

# Success attempts
# Total attempts

by picking up objects individually. Action efficiency ( ) evaluates
how efficient our policy is of utilizing picking, pulling and dropping actions to com-
plete the task. Mean Picks Per Hour (MPPH) evaluates the computation and

execution speed of the system.

3.5.2 Simulated Experiments

In the simulation, we conduct a bin-picking task to evaluate the ability to seek un-
tangled objects using FGE, EMap and PickNet. Our simulator locates the grasping
target at the output grasp position from the methods and automatically lifts it with-
out grippers, excluding the irregular simulated physics phenomena in grasping or
dynamical actions. The bin contains 30 objects and is replenished with the same

objects after each attempt. We run 50 picking attempts for each object and 300 for
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Table 3.3: Results of Simulated Experiments

‘ Seen ‘ Unseen

US T U8

| Success Rate (%)

FGE 60.0 50.0 44.0 51.3 30.0 60.0 46.0 48.7
EMap 58.0 52.0 54.0 04.7 26.0 52.0 42.0 40.0
PickNet 92.0 86.0 82.0 86.7 60.0 88.0 57.0 68.3

each method. We evaluate the performance using the success rate only. Note that
the success rate in the simulated experiments is equivalent to action efficiency in all
methods.

Table 3.3 shows the results of the simulated experiments. PickNet outperforms
both baseline methods in success rates. FGE struggles with success rates as it can
not discriminate whether the target is entangled. EMap also becomes inefficient in
dense clutter. Our policy significantly improves the success rates since the learned
affordance map can seek untangled objects for such heavy occlusion. We also ob-
serve that unseen objects have success rates lower than objects in the training data
for PickNet. However, even if the bin contains no isolated objects, not performing
separation motions leads to lower success rates. It demonstrates the necessity of

separation strategies to handle unsolvable cases using only PickNet.

3.5.3 Real-World Experiments

Different from the simulated experiments where the robot is required to pick from a
bin containing 30 objects every time, the goal of the real-world task is to empty the
bin filled with 20 objects. We run three tests for each object using each method.

1) Comparison with Baselines: The results of bin picking in the real world are
shown in Table 3.4. PD and PDP outperform baselines FGE and EMap in all metrics.
Our policies can perform the task with a success rate of around 90%, almost as high as
the success rates of picking simple-shaped objects. Compared with FGE, our policies

can detect potentially entangled objects. The affordance map learned by PickNet
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can also indicate the state of the entanglement more explicitly than EMap. The
proposed separation strategies are useful to improve the performance when picking
such entangled objects. The results of completion suggest that our policy outperforms
the baselines and doubles their success rates in emptying the bin. Action efficiency
suggests our policy PDP performs the best among all methods including PD. PD
requires extra actions to separate the entangled objects from the buffer bin while
PDP can disentangle and transport by only one action using PullNet. Finally, we
compare the speed of each system using the metric MPPH. Our policy can achieve
more than 200 mean picks per hour. Specifically, PDP with both networks achieves
the highest MPPH than PD since PD requires more actions to complete the task.

2) Does Dropping Help? We investigate the efficiency of dropping as a sepa-
ration strategy. As Table 3.4 shows, PD uses dropping action as the only separation
strategy and achieves a similar success rate and task completion as PDP, which uses
two separate actions for both seen and unseen objects. Dropping actions can (1)
effectively disentangle the grasped objects and (2) reduce the degree of entanglement
from a heavily cluttered environment to a light entangled environment for skillful
disentangling manipulation. Both PD and PDP benefit from this action. However,
the action efficiency of PD is significantly lower than PDP. The dropping action is
an intermediate action that does not contribute to the final object placing stage, re-
quiring the robot to grasp again for placing in the goal bin. Unlike dropping, pulling
can separate and place the objects simultaneously. Table 3.5 shows the number of
dropping and pulling actions in real-world experiments. PD costs more dropping ac-
tions than PDP. If the objects are still entangled after the first time of dropping in
the buffer bin, PD repeatedly performs dropping until the objects are untangled. We
also observe that dropping cannot solve some difficult entanglement cases, unlike the
well-planned skillful motion such as pulling. For these reasons, the robot transports

multiple objects to the goal bin, which leads to lower action efficiency.

3) Does Pulling Help? We can observe that PDP, equipped with the two pro-
posed separation strategies dropping and pulling, achieves the best performance espe-
cially in action efficiency and MPPH. Unlike dropping actions, pulling requires motion

planning from visual observation, which is more interpretable for skillful tasks such as
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Table 3.4: Results of Real-World Experiments

Seen ‘ Unseen

usS/l ..iUs ¢ .

Success Rate (%)

FGE 67.5 60.0 67.6 65.0 67.4 68.4 42.3 59.0
EMap 71.4 61.5 73.0 70.6 74.9 68.9 42.3 62.0

PD 95.2 85.3 86.9 89.2 89.2 89.2 83.3 87.2
PDP 95.1 85.2 91.7 90.7 88.2 93.3 84.5 88.7

Completion (%)

FGE 54.0 30.0 38.3 40.8 48.3 45.0 41.7 44.4
EMap 50.0 45.0 45.0 47.0 58.3 50.0 41.7 50.0

PD 96.7 78.3 88.3 87.8 86.7 93.3 76.7 85.6
PDP 96.7 78.3 93.3 89.4 86.7 93.3 73.3 84.4

Action Efficiency (%)

FGE 67.5 60.0 67.6 65.0 67.4 68.4 42.3 59.0
EMap 71.4 67.5 73.0 70.6 74.9 68.9 42.3 62.0

PD 73.4 64.2 73.6 70.4 70.1 63.8 61.8 65.2
PDP 84.0 72.2 75.8 77.3 73.2 72.0 68.2 71.1

Mean Picks Per Hour (MPPH)

FGE 171
EMap 150

PD 203
PDP 220

disentangling objects. We observe that dropping is still insufficient for some entangle-
ment patterns while the success rates are relatively higher using pulling as Table 3.5
shows. Pulling contributes to the efficiency of completing the task. Moreover, PDP
follows a hierarchical strategy that first drops the objects to create a relatively simple
entanglement state and then plans pull actions to further disentangle them. Since
the dropping actions decrease the degrees of entanglement in the buffer bin, pulling
can effectively disentangle the target and transport it to the goal bin using only one

attempt. Pulling and dropping in our policy PDP can be orchestrated together to
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Table 3.5: Distribution of Actions in Real-World Experiments

u&?Usa

Dropping Rate (

PD 19.0 25.7 24.7 21.6 26.1 28.4
PDP 10.1 12.3 16.2 15.5 17.9 15.4

Pulling Rate (%)
PDP | 145 462 270 | 141 256  7.69
Successful Pulling Rate (%)
PDP | 145 3.08 270 | 141 256  6.15

achieve the best performance for picking tangled-prone objects.

4) Generalization to Unseen Objects: Finally, we evaluate the performance of
our policies using unseen objects. Table 3.4 demonstrates that our policies can be
generalized to novel objects. Both PD and PDP can recognize untangled objects
even if the geometries are not unknown or the self-occlusion for an individual non-
planar object (the last column in Table 3.4). Thanks to efficiently collecting a large-
scale of synthetic data for training, our networks are capable of handling unknown
object geometries and various entanglement scenarios. However, all metrics for unseen
objects are slightly lower than seen objects in both PD and PDP. We can assume by
the performance of the model-free method FGE that the unseen objects are more
challenging. Due to unknown geometries and heavy occlusion, especially for the non-
planar object, PickNet might recognize some isolated objects as the entangled objects
and performs redundant separation actions. Additionally, the visualized results using
PickNet and PullNet are presented in Fig. 3.10 in Fig. 3.11. We also visualize the
results from FGE and EMap using the same observation as our policy. It demonstrates
that our policy can accurately extract the geometrical information for untangled

objects and infer the potentially tangled regions compared with the baselines.
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3.5.4 Failure Modes and Limitations

We divide the unsuccessful picking attempts as two types as follows:

(A) The robot transports nothing to the goal bin. The situation happens when
the grasp poses are not correctly computed. PickNet produce a pixel location
for our grasp detection algorithm to compute a 4-DoF grasp. Grasp failure
occurs when each grasp orientation around the grasp location collided with the
neighbor objects or the visual noise causes miscalculation in transforming 2D
pixel locations to 3D locations, leading the gripper collides with the target, the

neighbor objects or the bin walls.

(B) The robot transports multiple objects into the goal bin. Sometimes
due to the sensory noise, the correct locations of each object can not be pre-
sented from the depth map, e.g., parts of the objects are missing. Also, PickNet
or PullNet sometimes make wrong predictions under some elusive entanglement
situation or heavy occlusion. This may comes from the reality differ since the
collision modelling of entanglement contact in the simulation still has difference
with the real world. The physical execution of pulling sometimes cannot disen-

tangle the objects due to insufficient pulling distance within the bin collisions.

Table 3.6 present a total number of unsuccessful picking attempts through all seen
and unseen objects for our policy PD and PDP. The frequency is calculated by the
number of unsuccessful picking attempts divided by the total number of attempts.
Failure (A) occurs evenly in both policies. Our policy PDP with the entire workflow
can significantly decrease the frequency of failure (B), showing the capabilities of
disentangling objects.

In the future, this work can be extended to address the following problems: (1)
Grasp Failure: The average grasp failure of our policy (PD and PDP) is 4.8%. Grasp
fails when there is no collision-free orientation around the predicted grasp point,
making the gripper collide with the objects or the environment. We also observe
some common failure modes of bin picking, such as objects against walls, providing

no space for grasping. (2) Challenging Entanglement Patterns: The proposed PickNet
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Table 3.6: Frequency of Unsuccessful Picking Attempts

Method Explanation Frequency
PD (A) Grasps nothing 4.7% (22/462)
(B) Transport multiple objects 8.8% (41/462)
PDP (A) Grasps nothing 5.0% (21/422)
(B) Transport multiple objects 5.9% (25/422)

and PullNet have limitations. First, when the target object forms an endless chain
with others, the robot cannot entirely lift the whole chain to drop in the buffer bin. It
is also difficult to visually predict how many objects will be grasped based on a top-
down depth map. On the other hand, the proposed separation strategies (dropping
and pulling) cannot handle several entanglement cases where the objects are tightly
wedged together, requiring multi-step actions to solve. (3) Unsuitable Object Shapes:
Some object shapes are unsuitable for our policy, such as a tree-like shape since our
dataset only includes linear shapes. In the future, we will extend our policy to add
objects with various shapes to the training data. It will be interesting to collect data
only using a minimal amount of objects based on the entanglement representation of

their geometries to efficiently increase the generalization of our policy.

3.6 Summary

This chapter proposes a bin-picking system for efficiently picking tangled-prone ob-
jects. We learn a hierarchy bin picking policy from self-supervised simulated data that
engages the robot to perform picking or separation actions dexterously based on the
observation. Experimental results show the effectiveness of the proposed separation
strategies. Our policy outperforms baseline methods in completing the challenging
task of emptying the bin with tangled-prone objects with higher success rates and
efficiency. We further demonstrate the generalization of our policy using novel ob-
jects. In the future, we will expand our policies by leveraging various sensing or more

skillful motion primitives for more complex-shaped or deformable objects.
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o4

Execution

Seen

Unseen

S

Figure 3.10: Qualitative results using PickNet and the corresponding physical executions. Using the same
depth map as input, we also present the detected grasps using FGE, the grasps and the entanglement map using EMap
(red regions show high possibilities of containing entangled objects). PickNet outputs PickMap and SepMap with their
maximum pixel value as the affordance of picking or dropping.
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SepMap Action apick
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Figure 3.12: More visualized results using PickNet.
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PickMap SepMap PullMaps Action apun

Figure 3.13: More visualized results where the bin contains only entangled objects using
both PickNet and PullNet.



Chapter 4

Learning Efficient Policy for

Entangled Wire Harnesses

4.1 Introduction

Chapter 2 and 3 tackle the problem of picking entangled rigid objects. However,
using deformable objects in bin picking is very important but is still an open prob-
lem. For example, a wire harness is an indispensable component used in almost every
electric drive product. Fig. 4.1(a) shows its appearance. It comprises a group of bun-
dled wires and multi-conducted connectors and is used for transmitting signals and
power. The structure of a wire harness also poses challenges in robotic bin picking:
(1) The existence of both deformable and rigid components makes them easily form
an entangled clutter in the bin; (2) The complex geometries and deformable nature
cause difficulties in 3D modeling; (3) The length of a wire harness often exceeds the
operation range of a robot, making it difficult to extract one from the bin. To suc-
cessfully perform bin picking using wire harnesses, the robot must be equipped with
the capability of effectively isolating each from the entanglement. For this reason, the
manufacturing industry still relies on human workers to grasp and separate entangled
wire harnesses. Therefore, developing an intelligent system to automate this process
is highly demanded.

Existing works on industrial bin picking have primarily focused on rigid parts.

o8
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! 's

Figure 4.1: (a-b) Wire harnesses are composed of both deformable and rigid components.
They get entangled easily in clutter and their length may exceed the robot arm’s reach
areas. (c) Directly lifting a wire harness causes entanglement. (d) We learn a bin picking
policy to efficiently extract an entangled wire harness from an unstructured bin.

These methods grasp objects by avoiding collisions in highly cluttered environments
40, 44, 46, 57, 24, 112]. For picking simple shaped objects, the robot usually lifts
the target in the vertical direction after a successful grasp. Different from those
objects, wire harnesses involve complex entanglement when randomly placed in a
bin. Besides, they are much longer than the rigid parts already automated in bin
picking. The physical reach range of the robot in a bin picking working cell is limited
for completely lifting them. Simply adapting the existing bin picking strategies shows
unsatisfied performance (see Fig. 4.1(c)). Previously, some studies have addressed the
entanglement problems but for picking curved rigid parts by avoiding the potentially
tangled parts [49, 61]. However, there remain problems for densely cluttered wire

harnesses where the bin often contains no isolated objects as Fig. 4.1(b) shows.

Deformable object manipulation has primarily focused on two object classes: 1D
(cable, rope) and 2D (fabric, cloth). Several studies adopt specially designed motion
primitives to accomplish various manipulation tasks such as knot tying/untying [113,
94, 87|, spreading cloth [97] or whipping ropes [114]. Using deformable and long
objects in industrial bin picking poses new challenges. The cluttered scenes are more
complex due to the entanglement issues caused by their deformable nature. Ray et

al. [92] proposed to untangle herbs from a pile using a two-finger gripper. Takahashi
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et al. [93] proposed a learning-based separation strategy for grasping a specified
mass of small food pieces. Motivated by modeling and manipulating deformable
linear objects, studies on visually processing wire harnesses start with segmenting
or generating synthetic data for wire harnesses with pure linear shapes. Although
some works have addressed the factory automation problems for wire harnesses [115,
116, 117], robotic wire harnesses picking is less studied. This work proposes a novel
and efficient bin picking strategy to deal with wire harnesses. For wire harnesses
with complex geometries, obtaining precise models or training in simulation remains
difficult. Alternatively, employing a real robot to collect large-scale data is time-
consuming. Annotating ground truth labels is also challenging due to the lack of
entanglement metrics.

This chapter tackles these challenge by (1) designing an effective motion to untan-
gle wire harnesses in clutter and (2) learning a policy to perform bin picking tasks with
higher success rates and lower execution time. The key components of our system

are:

e A post-grasping action to untangle wire harnesses. Instead of lifting in the
vertical direction, the robot separates the entangled objects in the horizontal
direction. The action continuously follows a circle-like trajectory to extract the

target within the limited robot’s reach range. Fig. 4.1(d) shows this process.

e A bin picking policy to infer an optimal grasp and a post-grasping action from
a depth image. Our policy can prioritize grasping the untangled objects, avoid
grasping at the bad positions (e.g., the ends of the object) and reason the
extracting distance to reduce the execution time for a successful picking. Addi-
tionally, we train the policy with real-world data by leveraging active learning

for satisfying convergence.

Real-world experiments suggest our policy can significantly improve the average
success rates and reduce operation time compared with baselines. Our contributions
are three-fold.

e We develop a unique bin picking system that can disentangle wire harnesses

from dense clutter.
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e Instead of lifting the target in the vertical direction after grasping, our policy
proposes to simultaneously lift and move in the horizontal direction for sepa-

rating wire harnesses.

e We learn a policy using real-world data to infer the optimal actions, which

further improves bin picking efficiency.

Code, videos and datasets can be found at https://xinyiz0931.github.io/

aspnet.

4.2 Motion Primitives for Disentangling

When a robot tries to isolate small and rigid objects from a bin, it can lift them in a
vertical direction after a successful grasp. However, this movement is insufficient for
isolating long and flexible objects like a wire harness, whose length exceeds the bin
picking workspace. To extract such objects, the required motion primitives must be
designed to (1) provide enough space for effectively disentangling long objects and (2)
handle various tangle patterns. Instead of directly lifting, the horizontal movement of
the gripper can help pull the target object out. The possible positions of the gripper
should also remain in the outer part of the parts bin during disentangling. In the end,
two motion primitives are proposed for effectively disentangling a long and flexible
object:

Helix motion: ¢y = (H,0y) where H denotes the helix trajectory represented
by (cu, 7,7y, ho, h) and 6 denotes the execution angle following the trajectory (see
Fig. 4.2(a)). cy denotes the base center of H and r,,r, constrain the smallest and
largest radius from the center. h denotes the height of H. The helix starts after the
gripper lifts the target and reaches hg. The stop point of the helix is determined by the
execution angle 0. It is a post-grasping motion where the gripper simultaneously
lifts and pulls following a helix-like trajectory. Let the gripper move around the
bin while holding an entangled object. Part of this object is also moving outside
the bin. When the gripper continuously moves like drawing circles, the grasped

object can be disentangled softly along a side angle. Fig. 4.3(a) shows that this
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Ty =

(a) Helix

‘---,...-.N."--n ot 95
Motion (b) Spinning Motion

Figure 4.2: Formulation of motion primitives. (a) Helix motion primitive ¢y = (H, 0p)
where the helix trajectory is defined as H = (cy, 74,7y, ho, k). (b) Spinning motion primitive
Ys = (0s,cs).

movement provides adequate space to pull the target (green) out of the entangled
objects (yellow). Meanwhile, we also observe that other entangled objects remain in

the bin during or after this process, making the workspace clean for the next picking.

Spinning motion: g = (cg,0s) where cg denotes the position of the gripper
tip and fg denotes the one-way rotation angle of the spinning (see Fig. 4.2(b)).
The robot performs a two-way spinning about the axis that is vertical to the robot
workspace. The gripper spins to handle the entanglement that may be occluded from
the observation. As Fig. 4.3(b) shows, when the rigid components of the wire harness
still slightly hang on the others after the helix motion, an extra spinning can help
separate them with less execution time. It can also handle the length of a wire harness

by extracting it inside a limited working cell.

4.3 Learning Bin Picking Policies

The goal of our bin picking policy is to pick up a single wire harness at a time by
inferring the optimal grasp and action from current entanglement situation. If the
scene contains isolated objects, the robot prefers directly lifting them after grasping.
Otherwise, the robot can infer disentangling actions and grasp poses to extract the
target from the bin. Given a top-down depth image o as observation, we formulate

our bin picking policy m with a trained model parameterized by 7 using:

a*,g" = m.(0) (4.1)
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(b) Spinning Motion

Figure 4.3: The proposed motion primitives can handle two properties of wire
harnesses: tangle-prone and length. (a) The robot separates an entangled wire harness
from a gentle angle following a helix trajectory. (b) A spinning motion is performed when
the target’s connectors slightly hang on the other objects.

where the outputs are an action a* and a grasp ¢* with the maximal task effectiveness.
The action a comprises the proposed motion primitives. Fig. 4.4 shows the three

essential modules in our policy:

Module I. Model-Free Grasp Detection: A grasp detection algorithm using
a depth image without object models.

Module II. Action Success Prediction (ASP): A trained model using real-

world data that predicts the success possibilities of the disentangling actions.

Module III. Action-Grasp Inference: A method to infer the action-grasp pair
with the highest effectiveness using the trained ASP model.
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Figure 4.4: Overview of our policy. Given a depth image of an unstructured bin, Model-
Free Grasp Detection module samples a set of non-collision grasp candidates. Then, Action
Success Prediction module takes a depth image, grasp candidates and action candidates as
input and evaluates the success possibility for each action-grasp pair. Finally, Action-Grasp
Inference module ranks these pairs and outputs the optimal action and grasp.

4.3.1 Model-Free Grasp Detection

We select Fast Graspability Evaluation (FGE) [40] - a model-free approach to detect
collision-free grasps. FGE calculates pixel-wise graspability scores by convoluting a
gripper’s template of contact and collision areas with the input depth map. A grasp
composes a pixel location g = (u, v) on the depth map and a rotation angle ¢ indicat-
ing the gripper’s orientation. We transform (u, v, ¢) to the grasp with four degrees of
freedom (g, gy, 92, g») denoting the grasp point and the gripper’s orientation at the
robot coordinate frame. This module outputs a set of grasps ordered by their FGE

scores.

4.3.2 Action Success Prediction (ASP)

1) Action Formulation: We formulate each disentangling action a with a motion

scheme v and two parameters as follows:

a= (1,0m,0s) | Y = {¢u} or {Ym, s} (4.2)
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Table 4.1: Action Parameters and Execution Details

%) ap, Qps af Qfs ay f Qtfs

Y=

0 - Wat {Ym,v¥st {v¥w} {Ym,v¥s}t {vu} {Ym,vs}
O T T 2w 27 47 47

s 0 0 /2 0 /2 0 /2
Time (s) 1.2 2.3 2.8 5 5.5 8.2 8.7
SR 31/80 47/80  60/80  65/80  66/80  70/80  72/80
A 0 1 2 3 4 5 6

* Time (s) - Execution time of performing the action trajectory.
* SR - Success Rate of picking a single object.
* A - Action complexity.

where the robot only performs the helix motion ¢y or performs the spinning motion
Vg after ¢y. Note that directly executing g after grasping may not be effective
since the extracting displacement of the target object is small. Six separation actions
ap, Qps, Qf, Gfs, Qi f, Qs are crafted using two motion primitives and a direct lifting
action ag. Table 4.1 shows their notations and illustrations. We use M to represent

the collection of these seven actions.

2) Action Parameter Determination: To determine the parameters of each
action and search for the best action, we define a numerical metric action com-
plexity for exploring the trade-off between success rates and execution time. Let
A(a) denote the action complexity of the action a € {aq, an, ans, ar, ayrs, arp, arss . It
is defined by assuming that actions with larger 6y or 65 involve higher complexity.
To reduce the search cost during exploration, we assume that the action complexity
linearly scales with the success rate of each action. We find this linear relationship
by executing 80 physical attempts for each action as Table 4.1 presents. Then, we
use this hypothesis to determine the action parameters experimentally. Specifically,
we predefine a set of possible values of 0y, 65 experimentally for our policy to select.
0y can be selected from {0, 7, 27,47} and g can be selected between {0, 7/2}. Note
that the other parameters of the motion primitives H = (cy, ry, 7y, ho, h) and cg are

fixed in our policy. Finally, we assign integers 0 to 6 as the action complexity for
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the discrete actions from ag to a;s. The action parameters and execution details are
included in Table 4.1.

Our policy can explore the optimal action by minimizing the action complexity
as much as possible. Let us consider a case when the robot performs a;y to extract
an entangled object. Suppose the target object is entirely disentangled after a full
circle (ay) while the robot still needs to perform the second circle. Thus, the current
observation only requires ay as the optimal action to ensure a successful separation
with less execution time, while a;y is a redundant action which can also solve the
entanglement but costs more time. We can observe that an optimal action has lower
action complexity than a redundant action. Thus, the optimal action is required to

untangle the target with minimal action complexity.

3) Prediction Model: The inference of the optimal action without object models
should be conditioned on the grasp locations. Action Success Prediction (ASP) is
trained to predict if the action-grasp pair can successfully separate the target. ASP

learns a function parameterized by 7:

p= fT(ngva) (43)

where the input is a depth image o € R?24%224X3 with triplicated depth values across
three channels to match with the default input size of the image encoder’s backbone,
a pixel-wise grasp pose g = (u,v) € R?, a categorical action a € R” and the output
is a success possibility in the range of [0, 1]. We encode the image using a ResNet-50
backbone [109], the grasp point using a single fully-connected layer with 256 units,
and the categorical action using a fully-connected layer with 14 units. Then we
concatenate the output from all three branches and feed it to a fully-connected layer

with 256 units and produce an action success possibility.

4) Training via Active Learning: The dataset for training ASP is entirely col-
lected from real-world experiments. Each sample has a depth image o, a grasp location
g, a labeled action a and a binary success metric S = {0,1}. We execute each action
for the clusters with 6, 10, 12 and 18 objects. We label each attempt with success
(S =1) or failure (S = 0) depending on if the robot picks a single wire harness. Due
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Figure 4.5: Overview of our proposed active learning.

to this data collection manner, some samples in the dataset are labeled with redun-
dant actions instead of optimal actions. To deal with this problem, we leverage active
learning to train the ASP model, making it possible to predict optimal actions using
this dataset. Fig. 4.5(a) shows how the active learning works. Generally, we first
select several samples manually as training data to train the model, use the trained
model to predict the remaining samples, query and transfer samples for training and
fine-tune the model repeatedly. Specifically, we manually select the initial training
data with approximately optimal actions. Note the number of samples for each action
is roughly equal. Let data pool denote the left samples except for the training data.
After training, we query the samples in the data pool and transfer the logical samples
to the training data. Here, a sample (o, g, a, S) can be determined as success-logical
or failure-logical using the trained model 7 and our proposed Action-Grasp Infer-
ence module (Section IV.C). Let a, = ActionGraspInference(o, g, M, ) denote the

predicted action:

e Success-logical: A(a,) < A(a). For samples labeled with S = 1, the labeled
action @ is a redundant action compared with the predicted action a, (Fig.
4.5(b.1)).
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Algorithm 2: Active Learning Algorithm

input: Data pool, transfer ratio r, actions M
output: ASP model 7

1 Select training data from data pool
2 Train ASP model 7 using training data
3 while data pool is not empty do

4

© 0w I O O

10
11

12

13

N < number of samples in data pool
140

while i <r x N do

Randomly select {o, g, a, S} from data pool
a, <—ActionGraspInference(o, g, M, T)
if S =1 and A(a,) < A(a) then

// Success-logical

Move to training data, i =17+ 1
else if S =0 and A(a,) > A(a) then
// Failure-logical

Move to training data, ¢ = ¢ + 1

| Fine-tune ASP model 7 using training data

e Failure-logical: A(a,) > A(a). For samples labeled with action a and failure

S =0, the predicted action a, has higher action complexity (Fig. 4.5(b.2)).

During each iteration, as the number of logical samples increases, the model per-

formance of predicting the optimal actions also improves. We define a transfer ratio

r representing the ratio of the number of samples that would be transferred in each

iteration to the number of samples in the current data pool. The iteration stops when

the data pool is empty or early stops before overfitting. Algorithm 2 shows the detail

of training ASP via active learning.

4.3.3 Action-Grasp Inference

At this point, we’'ve obtained a set of grasp candidates, action candidates and the

scores of each action-grasp pair. Our policy then needs to determine which action-

grasp pair can be executed. This module infers all possible action-grasp pairs to
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guarantee a successful picking with minimal action complexity:
a*,g" = ActionGraspInference(o, G, M, T) (4.4)

where the inputs are a depth image o, a collection of actions M, grasp candidates
G with FGE scores from the Model-Free Grasp Detection module and ASP model
7. This module first predicts the action success possibilities of all action-grasp pairs
P = f.(o,G,M). If all possibilities in P are lower than the threshold p;q, which
means all action-grasp pairs cannot solve the entanglement, we select the grasp with
the highest FGE score and the most complex action a;¢,. Otherwise, the best solution
is determined by the action-grasp pair with the lowest action complexity. If multiple
grasps share the same action complexity, we select the pair with the highest FGE

score.

4.4 Experiments and Results

We conduct several real-world experiments to answer the following three questions:
(1) How does the learned ASP model perform using active learning? (Section 4.4.1)
(2) Does our bin picking policy perform more accurately and effectively than base-
lines? (Section 4.4.2) (3) How does our method qualitatively improve the performance

of picking wire harnesses? (Section 4.4.3)

4.4.1 ASP Model Performance

Our dataset contains 722 samples. We set the ratio of active learning r = 0.4 and use
a simple decision threshold of p;,;q = 0.5 over the softmax of each action’s success
possibility to classify success (1) or failure (0). We train the network using binary
cross-entropy loss function and the Adam optimizer. We stop training after three
times of fine-tuning as it achieves the best performance. Fig. 4.6 shows the accuracy
and loss during active learning. The gray curve refers to the Initial Model (IM)
trained using manually determined samples, which would be potentially accurate but
lack robustness due to fewer data. The green line indicates the Final Model (FM),
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Table 4.2: Details and Validation Results of Active Learning

M gnd grd FM

# Samples in Training Data 282 453 558 618
# Samples in Data pool 428 257 152 92

Ratio of Success-Logical (%) 78.5 85.7 87.8 88.9
Ratio of Failure-Logical (%) 85.1 80.1 90.1 91.7

Table 4.3: Average Predicted Scores using Validation Samples

%) ap, Qps af Qfs agf At fs

S=1 10352 0489 0.702 0.750 0.783 0.730 0.787
S=0 0257 0375 0581 0.636 0.678 0.606 0.685

which performs the best as the fine-tuning goes on since it converges to IM but with
higher data-driven accuracy.

Moreover, Table 4.2 shows the details of each iteration in active learning. Row
1-2 shows the number of samples used as the training data and left in the data pool.
Particularly, 92 samples left in the data pool after the final fine-tuning are used
to validate all models by checking the number of logical samples. Row 3-4 shows
the ratios of logical samples increase with the fine-tuning process. Finally, Table
III validates our hypothesis that more complex actions correspond to higher success
rates. We respectively present the average scores predicted by FM for each action.
FM can correctly predict an ascending order of possibilities as the action complexity
increases. We can observe that ays, a;r, a; s share similar scores since the validation
samples contain 18 objects at most. a;rs does not show a significantly high score
due to the accumulated low scores when all predictions fail and a;ss is forced to be

selected.

4.4.2 Bin Picking Performance

1) Physical Experiment Setup: We use a NEXTAGE robot from Kawada Indus-
tries Inc. The robot is required to grasp objects from the parts bin lying in front of

it and transport them to another bin located on its left side. The robot’s left arm
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Figure 4.6: Accuracy and loss of each model during action learning.
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Figure 4.7: Physical experiment setup for bin picking.

operates over a workspace captured as a top-down depth image by a Photoneo PhoXi
3D scanner M. A two-fingered parallel gripper is attached at the arm tip. The setup
is shown in Fig. 4.7(a). The length of the wire harness used in this work is 74cm.
After performing the analysis and physical experiments, we fix the parameters of the
proposed trajectory as cg = (0.525,0.065)[m], r, = 0.1m, 7, = 0.225m, hy = 0.32m,
h = 0.14m as well as the speed of the action since they yield high task effectiveness.
We sample several waypoints on the trajectory and plan motions with a uniform ve-
locity. We use a PC with an Intel Core i7-CPU and 16GB memory without GPU
for real-world experiments and a PC with an Intel Core i5-6400 CPU, 16GB memory
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and an Nvidia GeForce 1080 GPU for learning.

Three baselines are presented. DL (directly lifting) uses FGE to detect the grasp
point and executes by directly lifting (ag). RAND executes a random action and the
grasp with the highest FGE score. TFS only executes the most complex action ays
and the grasp of the highest FGE score. We also present three versions of our policy.
Ours-IM is our policy using the initial model in active learning while Ours-FM uses
the final model. Ours-FM-R denotes Ours-FM with a recovery module using force
feedback. After performing the predicted action, we record the force from an F/T
sensor mounted on the robot’s wrist to determine if the grasped wire harness is still
entangled. If there exists a sudden increase of force, the target is not disentangled

and the robot places it back to the parts bin.

We leverage two metrics to evaluate the bin picking performance. Success rate
refers to the number of successful attempts of picking up a single object divided by
the number of attempts of placing. PPH (Pickings Per Hour) is the number
of successful attempts the robot can execute in one hour. Additionally, Avg. A
(Average action complexity) is evaluated how the action complexity predicted by

our policy varies under different entanglement scenarios.

2) Task Design: We prepare two real-world bin picking tasks. Consecutive
picking aims to empty the bin filled with respectively 5, 10, or 15 objects. The
robot picks up objects one by one until the bin is empty. Randomized picking
refers to picking up objects from the bin filled with respectively 18-20, 20-22 and
22-25 objects. After each picking, we reload the bin and shuffie the wire harnesses to
provide randomness during the task. It can encourage the robot to confront different
patterns of entanglement as much as possible. Fig. 4.7(b) shows the bins filled with

different numbers of wire harnesses.

3) Comparisons with Baselines: Table 4.4 compares the performance of the
three versions of our policy and three baselines in success rate and PPH. For consecu-
tive picking where the goal is to empty the bin, Ours-FM and Ours-FM-R significantly
increase the average success rate from 56.7% to 87.3% and 88.1% compared to DL.
TF'S achieves higher success rates than Ours-FM but has lower PPH since TFS only
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executes the time-consuming action a;r,. Especially in the latter half of a continu-
ous picking task when fewer objects remain in the bin, our policy can shorten the
execution time by inferring adequate actions. Ours-FM-R also has lower PPH since
this policy needs extra actions to place the entangled objects back in the parts bin.
Furthermore, the average action complexities for the predicted actions using RAND,
Ours-IM, Ours-FM and Ours-FM-R are also presented in Table 4.4. The average
action complexity for 5 objects is significantly lower than that for 10 and 15 objects.
As the number of objects in the bin increases, the action complexity of the predicted
action increases. It demonstrates that entanglement frequently occurs when the bin
contains more objects and requires more complex actions. We also observe that the
failed attempts by baselines always drag objects outside the workspace, requiring hu-
man workers to rearrange after each attempt. Our policy helps maintain a relatively
clean workspace during the consecutive picking thanks to the horizontal separation

and our action-grasp inference algorithm.

For randomized picking, we compare the performance of Ours-FM and Ours-FM-
R with a DL baseline as Table 4.4 shows. More objects are involved in this task than
consecutive picking. Thus, the possibilities of encountering complex entanglement
patterns become higher. Ours-FM completes the task with 80% accuracy and 109
PPH, almost twice higher than DL. The results suggest that our policy can grasp the
tightly intertwined objects in dense clutter. All three proposed modules collabora-
tively contribute to efficient bin picking from perception to manipulation planning.
However, as the number of objects increases, both metrics of Ours-FM decrease. Due
to heavier occlusions and visual noise, the detected grasp candidates become fewer
and some entanglement patterns can hardly be recognized from the depth image.
Despite this, the most complex action a;ss can still strive for success. Addition-
ally, Ours-FM-R outperforms Our-FM in success rate especially when the number of
objects increases thanks to the recovery module but has lower PPH. When the bin
contains more than 22 objects, Ours-FM-R shows a higher success rate and PPH than
Ours-FM, indicating the feedback module can help further improve the bin picking

performance.
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Figure 4.8: Qualitative results. (a) Ours-FM predicts the optimal action-grasp pairs for
each action. (b) Ours-FM predicts the best action and grasp marked using red in real-world
experiments. All action-grasp pairs are presented using the same colors.

4.4.3 Qualitative Analysis

1) Visualized Results: Visualized results of picking attempts with grasps, actions
and input depth images are presented. First, Fig. 4.8(a) shows the predicted action-
grasp pairs of each action. It demonstrates that our policy infers the actions not
only by analyzing the object number in the scene but also by reasoning about the
occlusions around the input grasp point. Additionally, if the robot grasps close to the
wire harness’s end, our policy tends to predict more complex actions since this case
may require the gripper to handle the length by moving a larger distance. Then, Fig.
4.8(b) shows a set of successful pickings with the reasoned action-grasp candidates
ranked by descending prediction scores. The optimal action-grasp pairs inferred by
our policy are marked as red. Our policy can recognize the objects barely entangled
with others that only require ag. As for the scenes that do not contain such objects,
our policy can reason the entanglement situation and predict the proper actions.
When the predicted scores of all action-grasp pairs are lower than py4, our policy
executes a5 and grasp with the highest FGE score, where the target is likely on the
top of the pile.

2) Novel Wire Harnesses: To demonstrate the breadth of our method, we uti-
lize Ours-FM for two unseen wire harnesses. They differ from those used for training

in lengths and structures but have similar components (e.g., deformable cables and
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Figure 4.9: Novel types of wire harnesses and the predicted action-grasp pairs
by our policy. (a) Short wire harnesses. (b) Long wire harnesses.

Table 4.5: Predicted Average Action Complexity (Avg. A) for Two Types of Unseen Wire
Harnesses

Type Length (cm) 5 Objects 10 Objects 15 Objects

Short 45 0.7 1.3 1.7
Long 115 4.8 4.6 -

rigid connectors). Fig. 4.9 shows two novel wire harnesses and the corresponding
action-grasp pairs predicted by our policy. Table 4.5 shows their length and the av-
erage action complexity of prediction with different object numbers. In the case of
shorter objects (see Fig. 4.9(a)), our model does not predict actions with too higher
complexity. The robot tends to select ag and a, to pick up objects. Since this type
of wire harness is less tangle-prone, the accuracy of picking them primarily relies on
the grasp detection module while our policy can handle the potential entanglement.
On the other hand, for long wire harnesses (Fig. 4.9(b)) whose length exceeds our bin
picking working cell, Table 4.5 suggests that our policy tends to output more com-
plex actions. However, even a;y, is still insufficient to separate each. More complex

manipulation strategies are needed for such objects.
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4.4.4 Haptic Feedback Evaluation

In Ours-FM, we determined both the manipulation policy and grasping pose from
the obtained depth image of the pile. After a robot grasps the target wire harness, a
robot just replays the predetermined manipulation policy. However, to increase the
success rate of picking, we should obtain some sensor information after a robot grasps
the target wire harnesses and modify the manipulation policy according to the sensor
information. Therefore, we have implemented a new method Ours-FM-R. utilized
force feedback with our policy to evaluate the performance.

Specifically, Ours-FM-R combines our policy (Ours-FM) and a recovery module.
Fig. 4.10 shows the workflow of this module. Ours-FM-R computes the best grasp
and action the same as Ours-FM. After the robot completes the predicted action at
qs, we set a waypoint g. before the robot moves to the parts bin for placing. During
the gripper moves from ¢, to ¢., we record the force F, in the z-axis every 10ms.
Then, F, is used to determine if the grasped wire harnesses are still entangled when
F, contains a sudden increase over a threshold Fjj;4. If both conditions are satisfied,
the robot places the entangled objects back in the parts bin for the next picking.

Fig. 4.11 shows the three examples of recorded force, the coordinate of the force
sensor and the start/end positions of force recording. Red blocks denote the period
of the force recording. Note that we set the threshold Fj,;; = 0.2N based on the
weight of a single wire harness. We only evaluate the force along the z axis (blue
line) since the force change on the x or y axis is not significant and may be affected
by other phenomena rather than entanglement. Fig. 4.11(a) shows no significant
change in force when picking and placing untangled wire harnesses. Fig. 4.11(b)
shows the process of picking and successfully separating entangled wire harnesses.
We can also observe the force change during the separation process in the yellow
block. The recorded force in the red block indicates the entanglement is solved. Fig.
4.11(c) shows the case where the separation cannot disentangle the wire harnesses.
Then, the recovery module detects the entanglement and places the wire harnesses
back in the parts bin. F, has a sudden increase over Fjj;4 in the red block. The robot
returns the grasped wire harnesses to the parts bin as recovery. Fig. 4.11(c) also

presents the robot grasping wire harnesses at the start point ¢ and endpoint ¢. of
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Figure 4.10: Overview of the added recovery module for the method Ours-FM-R.

force recording and the coordinates of the force sensor.

We evaluated Ours-FM-R in success Rate, PPH and Avg. A as the red blocks
show in Table 4.4. We also present the detailed version of Table 4.4. It presents four
numbers respectively denoting (1) # Success: number for attempts that successfully
place a single object, (2) # Grasp Success: number of attempts successfully grasp an
object, (3) # Place Attempts: number of attempts that the robot tries to place objects
and (4) # Total Attempts: number of total attempts. Note that #Place Attempts
equals # Total Attempts without recovery actions. The success rates presented in
Table 4.4 is defined as %. Moreover, to conveniently go through the

evaluation results, here, we compare two metrics: success rate and action efficiency

(defined as +=22%=__) Note the success rate and action efficiency are the same
# Total Attempts

for Ours-FM.

In the consecutive picking, the success rates of Ours-FM and Ours-FM-R are sim-
ilar since the predicted actions by our policy can solve most cases of entanglement.
The recovery module of Ours-FM-R successfully recovered from the entanglement
seven times in 150 attempts. In the randomized picking, the success rates of Ours-
FM-R significantly increase when the number of objects increases. Among 90 picking
attempts, the robot recovered from the entanglement 13 times. The entanglement de-
tection we craft is more adaptive to the scenario where the bin contains more objects.
Additionally, Ours-FM-R has a low average PPH and action efficiency than Ours-
FM since extra picking attempts are needed to place the objects back in the parts
bin. For the clutter containing 22-25 objects, Ours-FM-R outperforms Ours-FM in

all metrics, indicating that the recovery module could help improve the performance
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Figure 4.11: Recorded force for three cases using Ours-FM-R.

further. However, this method cannot detect other entanglement patterns that are
difficult to notice from force signals. We also observe that the force during the sepa-
ration is somewhat irregular. Thus, it is challenging to determine if the entanglement
exists during the separation action only based on heuristics such as the one used in
Ours-FM-R. More sophisticated entanglement detection methods should be explored
in the future, maybe with the help of visual feedback.

4.4.5 Failure Modes and Limitations

We observe four failure modes in the physical experiments.

e Objects outside of the bin: The input image of the ASP model does not include
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the complete objects.

e Grasp failure: The grasp failure rate is 2.1% (24/1170). A grasp fails when the
robot grasps multiple objects in hand or grasps nothing. It mainly comes from

vision sensor’s noise and heavy occlusion.

e Tightly wedged objects: The target tightly inserts another one’s cable bundles

or rigid components, making it extremely difficult to be disentangled.

e Action prediction failure: Our policy sometimes predicts the wrong actions for

separation due to visual noise or heavily occluded objects.

Our policy also has limitations. First, for long wire harnesses, the robot fails to
extract them from the entanglement since their length exceeds the robot’s reachable
areas. Second, the training phase is unique and conditioned on the structure of the
objects in the dataset. It would be difficult to adopt our current policy to wire
harnesses with completely different geometries.

We divide the reasons causing failure modes and limitations into two categories
and provide future extensions. (1) Poor visual prediction for heavily occluded clutter:
We will extend our policy by using multi-sensory inputs other than vision-only prede-
termined policy and force-only feedback control. We will also consider online closed-
loop learning and more effective recovery methods to further improve the robustness
of our policy. (2) Insufficient motion primitives: the proposed motion primitives can-
not solve some complex cases and the reach range of a single robot manipulator is
limited. We will consider more effective motion primitives using dual-arm or involv-
ing dynamics. It would also be interesting to design more general motion primitives

to utilize our policy on various wire harnesses with different geometries.

4.5 Summary

This chapter presents a novel bin picking system for grasping and separating entangled
wire harnesses. We design an efficient post-grasping action for disentangling the

target in clutter, learn a policy from real-world data to reason the extracting distance
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and produce the optimal action and grasp from a single depth image. Real-world
experiments suggest that our policy can successfully untangle the intertwined wire
harnesses from different cluttered scenes and pick them up one at a time with high

accuracy.



Chapter 5

Dynamic Manipulation with
Haptic Feedback for Entangled

Wire Harnesses

5.1 Introduction

This chapter addresses the problem of picking entangled wire harnesses and extend
the work in Chapter 4. In Chapter 4, we observe some failure cases and we want to
solve these failure and further improve the success rates in this work. We consider
the challenges for developing a robust and efficient bin picking system for wire har-
nesses. Object recognition and grasp detection becomes challenging in such complex
scenarios involving with rich contact and environmental uncertainties. In the case of
the robot grasping the end of the objects, executing disentangling motions becomes
insufficient. Simulated training or obtaining models for wire harnesses still remains
an open problem while training in the real world is time-consuming. Additionally,
the manipulable range of the robot in a standard bin picking cell has limited the
maximum length of wire harnesses that can be handled. These difficulties led man-
ufacturing industries to rely on human workers to manually separate entangled wire
harnesses in the assembly processes.

In the previous work [3] (Chapter 4), a sequential policy is learned to perform a

82
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circle-drawing trajectory to disentangle the wire harnesses. However, as the number of
objects in a bin increases or when adapting to unseen objects types, the patterns of en-
tanglement become unpredictable, making visual recognition and the circling motion
insufficient. Moreover, wire harnesses often exceed the robot’s reachable range, fur-
ther diminishing the performance of quasi-static motion primitives for disentangling
them. Therefore, more effective motion primitives and multiple sensing capabilities
are highly demanded to ensure a robust, accurate and versatile bin picking system
for wire harnesses.

Other studies on deformable object manipulation have successfully accomplished
challenging manipulation tasks [94, 96, 89, 118, 119, 114, 113, 120, 97, 121]. Grannen
et al. [96] proposed a method to untangle knots based on learned keypoints and
bimanual manipulation. Seita et al. [122] learned a sequential policy that utilizes
pick-and-place actions to smooth cloth. However, quasi-static manipulation have dif-
ficulties in dealing with heavy self-occlusion in 1D deformable objects and higher
dimensions in cloth or fabric. Dynamic manipulation, which involves higher veloci-
ties and considers inertia effects, has shown effectiveness in manipulating deformable
objects [113, 114, 97, 120, 121]. Chi et al. [114] developed an iterative policy for goal-
conditional manipulation using visual feedback. Chen et al. [123] proposed a learning
framework that enables a single arm to dynamically smooth cloth. Yamakawa et al.
[113, 120] introduced an analytic control algorithm for performing high-speed ma-
nipulation tasks. Viswanath et al. [88] proposed a shaking motion to dynamically
reduce loops and reveal knots in entangled cables. Building upon the advantages of
these manipulation strategies, we have focuses on manipulation multiple deformable
objects.

This chapter proposes a bin picking system for entangled wire harnesses with the

following key components:

e Two motion primitives: swing and regrasping, specifically designed for disen-
tangling of long wire harnesses. The swing motion with a high velocity can
dynamically extract the target from the clutter. On the other hand, regrasping
enables the robot to grasp the target at its middle section, creating sufficient

space for disentangling process.
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Figure 5.1: Overall process of picking entangled wire harnesses.

e A closed-loop system that utilizes haptic feedback to detect entanglement in
real-time and tunes the system parameters online. Unlike open-loop policies
without error recovery, our system closes the loop by incorporating force feed-
back, enhancing the robustness and efficiency for picking entangled wire har-

nesses.

The primary contribution of this work is a unique bin picking system for wire
harnesses that leverages dynamic and bimanual manipulation as disentangling strate-
gies.A haptic-guided closed-loop algorithm is proposed with failure detection and
recovery in real-time. Real-world experiments suggest the proposed method can sig-

nificantly improve the average success rates compared with our priors work.

5.2 A Closed-Loop System with Dynamic and Bi-

manual Manipulation

The goal of this study is to grasp wire harnesses individually from dense clutter.
This section presents the manipulation planning of two disentangling motion prim-

itives, the closed-loop workflow with force monitoring and online parameter tuning
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process. These modules collaborate together to ensure the robustness, effectiveness

and generalization of wire harnesses picking.

5.2.1 Dynamic Manipulation for Disentangling

We design two motion primitives. Swing, which involves high speed and acceleration,
can effectively separate the entangled wire harnesses. Regrasping motion enables
the robot to adjust the grasp pose from the end of the objects to the middle, making
it effective for subsequent actions.

1) Swing: We use a parametric action primitive to describe the movement of the
robot. The action space for the swing primitive is a = (6,w, n), where 6 = (05,04, 05)
is the moving angles for the ¢-th joint in one robot arm. w denotes the permissible
angular velocity across all joints while n indicates the number of times the swing
motion is repeated. Specifically, 65 denotes the angle for the yaw rotation for the
last joint of the robot arm, which can be seen as a “spinning” motion. Meanwhile,

14

04,05 are roll and pitch angles for the last arm joint and can perform a “whipping”
motion. Three joints of the robot arm moves simultaneously and dynamically extract
the objects from the clutter. Note that we initially set the values of # and they can
be tuned during the execution. The swing motion is illustrated in Fig. 5.2(a-b).
Regrasping: Regrasp can switch the grasp pose to the middle of the target after
the robot grasps the end of the object. Regrasping relies on force feedback rather
than vision. The process is illustrated in Fig. 5.2(c-d). Let the right arm of the
robot, equipped with a force sensor, acts as the main arm while the left arm is the
support arm. The main arm first grasps a wire harness and move to a pre-determine
pose. Next, to determine the correct end of the object, the main arm’s wrist spins
by 7 [rad] and we record the torque signals of both poses. The correct object end is
determined by the minimal torque. Then, the support arm move to the pose where
its gripper is below the main arm’s gripper, moves downward and ensures the object
is securely held in the gripper. It then closes the gripper and pulls the object upward.
Finally, the main arm moves to the pose where its gripper is below the support arm’s

gripper and grasp the objects. After the support arm returns to its the initial pose,
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36

Figure 5.2: Disentangling motion primitives. (a-b) Swing motions using different parameters for two types of wire
harnesses. The robot’s movements can rapidly separate the target from entanglement. (c-d) Regrasping motions for two
types of wire harnesses.
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Algorithm 3: Workflow of A Picking Attempt
input: Depth map, Fiop, Fail

1 Detect grasp pose from input depth map;

2 Niransport <— 0, L <= empty list;

3 while True do

4 Lift with force monitoring;
5 | if FO, F! .. F! < Fy,, then
6 Stop;
7 Swing(0,w,n);
8 else if FZ — 0 or Nyansport > 2 then
9 ‘ Regrasp;
10 Swing((0,0,05),&,2);
11 Transport with force monitoring;

12 Ntransport < Ntransport + 17

13 if FO F}, ..., F! < Fyop or F! < Fp; then
14 ‘ Finish;

15 L.append(F});

16 Update(Fstopa Ffaila L)v

17 0 < 0+ 60,

the regrasping attempt is completed and the main arm successfully adjusts the grasp

pose.

5.2.2 Closed-Loop System Workflow

The workflow of our proposed system is shown in Fig. 5.1 and Algorithm 3. First,
we obtain the depth image of the bin filled with wire harnesses and detect a set of
collision-free grasp [40, 3]. The robot then grasps the target and lifts it while moni-
toring the force F, in z axis vertically to the workspace. If F, exceeds the threshold
Fitop, the robot immediately stops and performs the swing motion to disentangle
the target. Otherwise, If the haptic feedback does not provide an stopping point,
meaning either the robot grasps a single wire harness or the regrasping motion is
needed. Thus, to determine if the robot should execute the regrasping motion, we
use F, = {F°, F! ...F'} over a time series t recorded during the lifting process.

We apply a median filter to F, and calculate the gradient F,. If F, approximates
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Algorithm 4: Online Parameter Tuning

1 Function Update (Fyop, Fail, L)

2 if not stop when 1lift and transport then
// Minimizes the gradient of L

3 Froy < argming L
4 if not stop when 1ift and stop when transport then
‘ Fstop<_Fstop_5F;

zero, indicating that the target is too long to exert any forces on the gripper, the
robot leverages regrasping to change the grasp position to the middle. Then, the
robot tries to transport the wire harness to the goal bin while monitoring the force.
However, if F, does not exceed Fy., during transporting and also does not exceed
Ft.y before dropping into the goal bin, the robot performs a successful attempt of
picking a single wire harness. Otherwise, we increase the swing parameters 6, adjust
the force threshold Fiop, Ftan and restart from the beginning (lifting while monitoring
F.). Additionally, if the robot fails to disentangle the objects after two transporting

attempts, it executes the regrasping motion.

5.2.3 Online Parameter Tuning

In Line 15-17 of Algorithm 3, we introduce an online parameter adjustment algorithm
to improve the robustness of the robot. The initial force thresholds are manually
set: Fyop represents the minimal force where the entanglement occurs, while Fgy;
approximates the weight of grasping a single object. Algorithm 4 outlines our online
parameter tuning process.

First, before the robot drops objects into the goal bin, we monitor the force FT.
If the robot successfully transports only one object without any stops during both
lifting and transportation (F! < Fp;), we adjust the value of Fp;. After each attempt
in this scenario, we obtain a list L of F!. F,; is updated by minimizing the gradient
of L towards zero. The value of Fi,; gradually converges to a value and the updating
process is stopped when the gradient no longer changes. Next, if the robot does not

stop during lifting (F! < Fp,;) but encounters a stop during transporting (F¥ < Fyop),
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Figure 5.3: Our experimental setup.

it indicates that the threshold for detecting entanglement is not sensitive enough and
should be tuned to a lower value. In this case, we set a residual force parameter § F'
and adjust the threshold as follows: Fiop = Fitop — 0F.

In addition to the force thresholds, our algorithm also adjusts the swing parame-
ters during each attempt. When the transporting process is unsuccessful, the robot
will disentangle the grasped objects using increased swing angles. We increase the 6
by a predefined residual angle 6, while ensuring that the adjustments remain within
the velocity limits of the robot’s arm. We also implement an additional motion
Swing((0,0,65), &, 2) before the transporting process. This two-way spinning motion

with pre-defined 05, can can provide additional assurance.

5.3 Experiments and Results

5.3.1 Experiment Setup

We conduct real-world experiments using two types of wire harnesses measuring 74
cm and 120 c¢m in length, shown in Fig. 5.4. The bin used in the experiments is filled

with a maximum of 8 and 40 objects of each one. We design two specific bin picking
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Figure 5.4: Wire harnesses used in the experiments. (a) A wire harness that also
used to train ASPNet in [3]. (b) A challenging wire harness.

tasks for evaluation:

e Emptying: The goal is to completely empty the bin filled with entangled wire

harnesses.

e Standard: After each successful picking, we reload the bin with the same
number of wire harnesses and randomly shuffle them. This ensures that the

robot encounters different entanglement patterns throughout the task.

Our experimental setup is shown in Fig. 5.3. We use a NEXTAGE robot from
Kawada Industries Inc. The robot’s arms operate within a workspace that is captured
as a top-down depth image using a Photoneo PhoXi 3D scanner M. Each arm is
equipped with a parallel jaw gripper at its tip. A force sensor DynPick WEF-6A200-
4-RCD is mounted at the wrist of the robot’s right arm. We use a PC equipped
with an Intel Core i7 CPU, 16GB of memory and an Nvidia GeForce 1080 GPU for
the physical experiments. We fix the parameters empirically for the experiments.
The incremental angles for the swing motion is fixed at 60 = 7/18 [rad], while the
incremental forces for online parameter tuning are set to F = 0.1 [N]. The initial
parameters for swing motion is 03,0405 = 7/4,7/3,7/3 [rad], w = /2 [rad/s], n = 2.
The initial force thresholds are Fyop = 3 [N], Fran = 1 [N].

We present two baselines and two ablated version of our method:
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Table 5.1: Success Rate Comparison

# Attempts
Object Task Method # Objects  Success Rate (%)
Lift Circle Swing Regrasp
Lift-G 15 53.6% (15/28) 15 - - -
. Circle-A 15 83.3% (15/18) 1 14 -
Emptying
Ours-G 40 94.7% (36/38) 10 - 29 7
Ours-A 40 97.4% (38/39) 17 - 22 5
O Lift-G 25 23.3% (7/30) 7 - - -
Standard Circle-A 25 73.3% (22/30) - 22 - -
Ours-G 40 83.3% (25/30) 2 - 28 5
Ours-A 40 86.7% (26/30) 5 - 19 9
VS . Circle-A 8 0.0% (0/20) - - - -
7 ~ Emptying
{ ] Ours-A 8 80.0% (16/20) - - 5 12
Circle-A 8 0.0% (0/20) - - - -
Standard
Ours-A 8 65.0% (13/20) - - 9 10

e Lift-G: This open-loop method uses Fast Graspability Evaluation (FGE) [40]
to detect collision-free grasps and directly lifts the target after grasping, without

incorporating haptic feedback.

e Circle-A: This open-loop method, described in [3], leverages ASPNet to infer
the lowest action complexity of each grasp and execute a circling motion to

disentangle the wire harnesses.

e Ours-G: Our closed-loop policy incorporates dynamic and bimanual manip-
ulation with haptic feedback for real-time adjustments. It utilizes the FGE
algorithm [40] for grasp detection.

e Ours-A: Our closed-loop policy optimizes the grasp pose using ASPNet [3].
Instead of simply selecting the top rank from FGE, ASPNet evaluates the action

complexity of each grasp and selects the lowest one.

5.3.2 Comparisons with Baselines

Table 5.1 presents the performance comparison among our methods and the baselines.

In the emptying task, both Ours-G and Ours-A demonstrate significant improvements
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Figure 5.5: Results of the online tuning procedure.

in success rates compared to the baselines. The average success rates of emptying task
achieve 96.1% and 80% respectvely for two types of wire harnesses. Since Lift-G and
Circle-A without haptic feedback are unable to handle dense clutter, we evaluate their
performance using less objects instead. Notably, our policy outperforms the other
methods, even under a higher degree of entanglement due to effective disentangling
motion primitives. Especially, for wire harnesses with a length of 120 cm, our policy
improves the success rate from 0% to 80%. The swing motion plays a crucial role in
separating the objects, and the regrasping motion leads to a remarkable success rate
increase for longer wire harnesses.

For the standard task where the robot must confront more complex entanglement
patterns, our policy demonstrates a significant improvement in success rates for both
types of objects. Different from the emptying task, where fewer objects remain in the
bin at the later half of the task, the standard task keeps a higher degree of entan-
glement throughout the picking process. The real-time haptic feedback mechanism
facilitates the recovery from failed disentangling actions. Every module in our pro-
posed closed-loop system works collaboratively to achieve efficient bin picking from
perception to manipulation planning. Additionally, Ours-A outperforms Ours-G in
success rates overall since Ours-A can avoid grasping the ends of the objects, leading

to more sufficient disentangling actions.

5.3.3 Benefits of Closed-Loop System with Haptic Feedback

Fig. 5.5 provides the adjustment of force thresholds throughout the consecutive pick-

ing process. The force threshold F,, gradually decreases over time and eventually
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Figure 5.6: Visualized outputs from the force sensor during different scenarios. (a)
The robot successfully grasps and lifts an isolated object without entanglement, as indicated
by the smooth increase in F, (blue line). (b) When grasping at the end of an object,
F, remains near zero without a significant increase. (c¢) The robot detects entanglement
(marked in yellow) while lifting the target and immediately stops, as F, shows a sharp
increase exceeding the threshold Fgtop. (d) During transportation of the target to the goal
bin, the robot stops after detecting entanglement, again indicated by F, exceeding the
threshold Fiiop.-

stabilizes at a certain value. This value represents the minimum force at which en-
tanglement occurs. On the other hand, the distribution of Fg,; is more scattered, and
we optimize it by minimizing the gradient to zero. The optimization process leads
to the convergence of the threshold to a stable value, which closely approximates the
weight of a single ob. The online parameter tuning acts as a valuable supervisor,
enhancing the overall performance and generalization of our system when adapting

to previously unseen objects.

We also visualize the force monitoring process during execution. In Fig. 5.6, we
illustrate the robot’s actions and the corresponding force readings. The robot utilizes
force signals to detect whether the entanglement occurs (Fig. 5.6(c-d) or not (Fig.

5.6(a-b)). By incorporating force feedback, we effectively mitigate errors and mistakes
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Figure 5.7: Force comparison between swing and circling motions. Swing motion
exerts a moderate force on the wire harnesses, thereby preventing damage to them during
the picking process.

that may arise when relying solely on visual predictions.

5.3.4 Benefits of Dynamic Motion Primitives

Table 5.1 also includes the attempt numbers for performing each disentangling motion
primitive in the baselines and our methods. The results demonstrate that incorpo-
rating swing and regrasping achieves higher success rates compared to the circling
motion. The swing motion effectively disentangles the target and loosens dense en-
tanglements, particularly for longer wire harnesses. Additionally, regrasping enhances
the accuracy of the swing motion by switching to a more suitable grasping position
on the target. We can also observe that the longer wire harness has more regrasping
attempts. This dual-arm manipulation can effectively addresses the issue of length
and also allows for directly pulling the target from the entanglement.

In addition, we evaluate the force applied to the objects during the circling motion
and our proposed dynamic motion primitives. The force readings show that the
proposed motion primitives can successfully complete a picking attempt with a force
of only 5 [N], which almost the same as the quasi-static circling motion. Applying
less force to the objects reduces the potential damage to the wire harnesses, thereby

minimizing wear and tear during the assembly process.

5.3.5 Benefits of ASPNet

Table 5.2 shows the normalized action complexity predicted by ASPNet [3]. ASPNet

effectively predicts that longer objects require more complex actions. The result
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Table 5.2: Normalized Action Complexity Predicted by ASPNet

Action Complexity

1/\
# Objects O u,'l

5 0.133 0.800
10 0.467 0.767
15 0.483 0.800

Figure 5.8: Grasps computed from FGE (yellow) and ASPNet (green). ASPNet
tends to find objects located at the top of the heap and aims to grasp them at their middle
part.

demonstrates that ASPNet can effectively predict the complexity of the entanglment
from observation. Although we did not specifically match the action complexity with
each action in this study, we leverage this learned vision model to assist in choosing
more suitable grasps. In table 5.1, Ours-A completes the task with more lifting
attempts and fewer swing attempts than Ours-G. This demonstrates ASPNet can
seek objects of a lower level of the entanglement, making the picking efficiency higher
than using FGE.

Figure 5.8 illustrates the grasp poses detected from the same depth image using
the FGE (-G) [40] and ASPNet (-A) [3]. Grasp poses marked in green are detected
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using ASPNet, which always find the objects located at the top of the clutter and
grasps them at the middle. On the other hand, FGE detects grasp poses marked in
yellow, which have a high score for avoiding collisions with the gripper but does not

consider the entanglement issue, resulting in lower picking efficiency.

5.4 Failure Modes and Discussion

Table 5.3 presents the four failure modes and their corresponding frequencies when

using our methods, Ours-G and Our-A.
(A) The robot transports nothing to the goal bin due to grasp failure.

(B) The robot transports nothing to the goal bin due to swing failure. Swing
motion sometimes makes the other objects sprung out of the bin. Additionally,
there are cases where the objects slipped from the gripper during high-speed

swing motions.

(C) The robot transports nothing to the goal bin due to regrasping failure. After
the main arm of the robot moves to the initial pose, in cases where the target
is not aligned vertically with the workspace, the support arm cannot accurately

locate the pose of the target.

(D) The robot transports multiple objects into the goal bin due to recovery error.

Force monitoring fails to detect the entanglement.

Table 5.3 shows the frequency of each failure case. For long objects, the occurrence
of regrasping failure and recovery failure is significantly higher compared to another
type. It suggests that achieving robust and successful regrasping solely relying on

force feedback without visual feedback is challenging.

5.5 Summary

This chapter presents a novel bin picking system specifically for grasping and separat-

ing entangled wire harnesses. Our closed-loop system utilizes dynamic manipulation
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Table 5.3: Failure Cases in Ours-G/Ours-A and Their Frequencies

Frequency

Failure Mode @

(A) Grasp failure 2/127
(B) Swing Failure 1/127
(C) Regrasping failure 4/127
(D) Recovery Failure 5/127

1/40
2/40
4/40
4/40

with haptic feedback, enabling successful handling of complex entanglement scenar-
ios. Through real-world experiments, we demonstrate the effectiveness of our policy

in disentangling various wire harnesses with high success rates. In future work, we
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will address failure cases by incorporating vision-guided regrasping motion or vision-

haptic fusion policies. Additionally, we will enhance the perception module to obtain

more precise and interpretable visual representations of the entangled deformable

objects. Moreover, we will focus on optimizing the parameters of dynamic motion

primitives to ensure both accuracy and safety in bin picking.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation has addressed the challenges of bin picking for entangled rigid and
deformable objects for manufacturing processes. I have proposed unified and ro-
bust bin picking systems that incorporate dexterous manipulation and multi-modal
perception, including (1) a topology-based method for generating non-tangle grasp
positions, (2) a learned policy by predicting action affordances for flexible picking or
separating, (3) an efficient policy using a circle-like trajectory to disentangling wire
harnesses, and (4) the deployment of a dual-arm robot using bimanual and dynamic
manipulation. I have studied the perception problems of vision and haptic signals to
represent the entanglement and the manipulation problems of crafting effective dis-
entangling motions that can be associated with the abstracted visual cues. Through
experiments in both simulated and real-world scenarios, I have demonstrated the ef-
fectiveness of the proposed method by impressive success rates and reduced execution
time. Overall, this dissertation contributes to the automation of assembly processes
by providing effective solutions for picking both rigid and deformable tangled-prone
objects. Taking the advantages of the analytic approaches and deep learning, the
proposed methods leverage state-of-the-art techniques to improve the performance

for such practical problems of manufacturing.

98
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6.2 Future Work

Complex-shaped objects and deformable objects still pose challenges in bin picking.
In the future, bin picking systems should strive to enhance their performance, adapt-
ability, and ability to address more complex physical phenomena. In addition to
linear-shaped objects, there is a need to further study non-linear or non-planar ob-
jects and wire harnesses with more complex structures to achieve full automation in
the manufacturing industry. To achieve this objective, I will discuss several future

work ideas that can expand on my research and address open problems in this field.

Fusion of Multiple Visual and Haptic Modalities. A precise perception
recognition module is always vital for robotic bin picking. The robot should have
a more comprehensive understanding of the objects and their interactions with the
environments as we humans do. By extending the methods in the haptic-guided bin
picking system, entanglement patterns can be further analyzed and abstracted in a
higher-dimensional action space. It can lead to more accurate and robust motion exe-
cution. Investigating novel fusion techniques and developing learning algorithms that

leverage multiple vision and haptic modalities will be a valuable research direction.

Tracing State of Cluttered Wire Harnesses. Prior works have abstracted
away inferring the full state of the bulked objects from visual input, as tracing every
object in dense clutter is challenging due to occlusion caused by adjacent objects or
the objects themselves. While these methods have demonstrated effectiveness in bin
picking, obtaining more precise visual recognition is always desirable. One idea is
to first decrease the degree of entanglement and then trace the poses of wire har-
nesses, such as when the robot grasps and lifts objects. Additionally, exploring shape
restoration techniques for occluded objects with multiple interrupted segments would
be intriguing. A shape restoration for occluded objects with multiple interrupted

segments would be interesting.

Simulated Training Using Deformable Multi-Material Objects. To fur-
ther enhance the system’s capabilities and generalize to unseen scenarios, simulated
training using deformable multi-material objects is a promising idea. Leveraging re-

search in the field of deformable object manipulation, a physics-based simulator can be
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developed to handle deformable multi-material objects like wire harnesses. However,
simulating the complex physical phenomena and real-world effects of multi-stiffness,
multi-density, and cluttered objects poses significant challenges. It is also worth con-
sidering the possibility of initially learning bin picking policies in mixed simulated
and real-world environments.

More Skillful Manipulation. Manipulation for separating entangled objects
can be further developed. Specifically, more skillful bimanual manipulation can be
implemented on robots, taking inspiration from how humans use two hands to com-
plete such tasks. One arm can grasp the entangled object while the other arm ap-
proaches the tangled objects to remove them from the grasp. However, this presents
the challenge of handling dynamic environments where the grasped object may not be
static. Manipulation planning can be integrated with the aforementioned perception
modules to reduce environmental uncertainties and improve execution robustness.
Additionally, for extremely difficult cases, it may not be necessary to fully disentan-
gle objects in a single movement; loosening entanglements in a multi-step approach
shows promise.

In summary, future work should focus on advancing the field of bin picking for
objects with complex shapes or properties. Let me summarize the main ideas to
extend the methods in this dissertation: (1) Decreasing the degrees of entanglement
by some motion primitives is useful. (2) Dynamic and bimanual manipulation with
multiple steps is effective but it should be able to handle the non-static environments.
(3) Developing simulators for such difficult objects are useful. These directions and
ideas will contribute to the development of more robust and versatile systems capable

of handling complex manipulation tasks in manufacturing and other domains.
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