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Abstract

In this thesis, we consider statistical change point inference for ergodic diffusion processes using
high frequency data. Our aim is to provide the adaptive inference for changes in the diffusion and
drift parameters in ergodic diffusion processes, and the procedure of our inference is as follows. We
first consider the change detection of the diffusion parameter regardless of the presence or absence of
change in the drift parameter. If a change in the diffusion parameter is detected, we estimate the time
of the change. If no change is detected, we end the inference of the change in the diffusion parameter.
We then infer the change in the drift parameter considering the presence or absence of change in the
diffusion parameter. Furthermore, we reveal the asymptotic properties of the test statistics for change
detection and the change point estimators. We also give some examples and simulation results of our
test statistics and estimators to corroborate our results.
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Chapter 1

Introduction

We consider the change point problem for a d-dimensional diffusion process {X;},-o satisfying the
stochastic differential equation (SDE)

dX, = b(X,, p)dt + a(X,, @)dW,, X, = xo (1.1)

where the parameter space ® = ®4 X Op is a compact convex subset of R” X RY, 6 = (a,) € O is an
unknown parameter and {W,} > is an r-dimensional standard Wiener process. The diffusion coefficient
a:RIx0, —» R'@R’ and the drift coefficient b : R? x @5 — R? are known except for 6. We assume
that the solution of SDE (1.1) exists, and P, and E,4 denote the law of the solution and the expectation
with respect to Py, respectively. We use high frequency and long term discrete observations to infer
the change point of the diffusion and drift parameters. Let {X,}!  be high frequency data, where
t; = t! = ih, and {h,} is a positive sequence with h, — 0, T =1, = nh, — oo and nhﬁ — 0asn — oo.

The change point problem was originally addressed in the field of quality control and has been re-
cently developed in various fields where changes are of interest, such as economics, finance, genetics,
and medicine. For example, in finance, a diffusion process model is used as a stock price fluctuation
model to make forecasts of stock prices. The stock market records show that all stock prices fluctuate
on a daily basis. Most of them are normal fluctuations as expected in statistical models, but some
of them are abnormal fluctuations and caused by political or economic influences. This abnormal
fluctuations may have an effect on our assumed model. If one ignores this change, the stock price
forecast may be worthless. For this reason, we need to investigate the presence of changes that affect
the model, and if there are changes, when these changes occur. The change point problem plays a role
in identifying this abnormal change.

The change point problem for diffusion processes based on discrete observations has been devel-
oped by many researchers. For non-ergodic diffusion processes, see De Gregorio and Iacus (2008) and
Tacus and Yoshida (2012). Since it is impossible to estimate the drift parameter g for the non-ergodic
diffusion process model, one only deals with the change point inference for the diffusion parameter a.
De Gregorio and Iacus (2008) studied the change point estimation for the diffusion parameter based
on the least squares approach, and Iacus and Yoshida (2012) considered the quasi-maximum likeli-
hood estimator of the change point of the diffusion parameter. As for ergodic diffusion processes, see
Song and Lee (2009), Lee (2011), Negri and Nishiyama (2017) and Song (2020). Because it is pos-
sible to estimate the drift parameter in the ergodic diffusion process model, one can treat the change
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point inference for the diffusion and drift parameters. Song and Lee (2009) proposed the CUSUM
type test statistic for changes in the diffusion parameter based on the estimator proposed by Kessler
(1997) under the assumptions nk;, — 0 and nhl — oo (p > g > 4). Lee (2011) and Song (2020) con-
sidered the CUSUM type test statistic for changes in the diffusion parameter based on the residuals
and trimmed-residuals under nh?> — 0, respectively. Negri and Nishiyama (2017) treated the joint test
for changes in the diffusion and drift parameters based on the Z-process method.

T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

t

(a) @ changes from 1 to 1.5 at ¢ = 150, and (5,y) =
(1, 1) does not change.

T T T T T T
0 100 200 300 400 500

t

t

(b) (@,B,y) = (1.2,1,1.5) does not change.

T T T T T T
0 100 200 300 400 500

t

(c) @ = 1 does not change, and (5,y) changes from (d) @ changes from 1 to 1.5 at # = 350, and (8,7)
(1,1) to (0.5,0.5) at r = 250. changes from (1.3,0.5) to (1.3, 1) at ¢ = 200.

Figure 1: Sample paths of the Ornstein-Uhlenbeck process dX; = —B(X; — y)dt + adW,.

Our aim is to infer changes in the diffusion and drift parameters from given data. Therefore, this
thesis provides a statistical method for parameter changes in ergodic diffusion processes. Specifically,
we consider the detection of changes in the diffusion and drift parameters, and the estimation of the
time of the change. By using our method, we can infer the parameter changes of the paths as shown
in Figure 1. That is, we can infer that the diffusion parameter changes at t = 150 and ¢ = 350 for (a)
and (d), respectively, and that there is no change in the diffusion parameter for (b) and (c). Moreover,
for the drift parameter, it can be inferred that there is a change point at # = 250 and ¢ = 200 in (c) and
(d), respectively, while there is no change in (a) and (b).

For simplicity, we assume that there is at most one change point for each diffusion and drift
parameters throughout this thesis. That is, we consider the following four situations.
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I. Neither parameter changes.
! t
X, = Xo +f b(X, B )ds +f a(Xs,a")dW,, te[0,T].
0 0

II. Only drift parameter changes.

! !
Xo + f b(Xs,By)ds + f a(Xy, a")dW, t € [0,77),
X[: 0 t 0 t
X, + f b(X,,B)ds + f aX,,a)dW,, te [T, T].
* Ar Ar

III. Only diffusion parameter changes.

t !
Xo + f b(X;,B")ds + f a(X;, a))dWy, t€[0,7¢7),
X, = 0 0
t — ! !
Xpor + f b(X, B)ds + f a(Xs, a3)dW,, te[r¢T,T].

T T
IV. Both parameters change.

(i) Diffusion parameter changes after drift parameter does * < 7).

!

!
X, + f b(X,,B)ds + f a(X,, a})dW;, 1 €[0,7°T),
0

0
!

!
X, ={Xs, + f b(X,,B5)ds + f a(X,, )dW,, te [T, 1°T),
. Ar Ar

! !
X + f b(X;,B5)ds + f a(Xs, a3)dWy, te[t¢T,T].

x x
T ¢T

(i1) Drift parameter changes after diffusion parameter does (7¢ < 7 ).

! !
Xo + f b(X;,B))ds + f a(Xs, ay)dW, t€[0,7¢T),
0 0

! !
X, ={ Xpr + f b(X,,B7)ds + f a(X,, a)dW,, t e [t°T,7T),
T T

ar

! !
X, + f b(X,,B5)ds + f a(X,,a3)dW,, te[?iT,T].
: A1 1
(111) Both parameters change at the same time (7¢ = Tf ).

t t
Xo + f b(Xy,B7)ds + f a(Xy, a)dWs, 1€ [0,757),
X, = 0 0
t — ! !
Xpor + f b(X;,35)ds + f a(Xs, a)dWs, te[t¢T,T].
T T

" "
* T
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Here, we set Tff,Tf € (0,D), a", aj,a; € IntQy, a] # a3, B, 51,5, € Int®Op and B} # B;. Hence, we
will study the presence of parameter changes in each situation and consider the estimation of 7 or .

This thesis is organized as follows.

In Chapter 2, we treat the change point inference for the diffusion parameter. In Section 2.1, we
consider the hypothesis testing problem for detecting a change in the diffusion parameter and present
asymptotic properties of the proposed test statistic. Section 2.2 gives the estimation method of the
change point of the diffusion parameter in Situation III or IV, and shows the asymptotic properties of
the estimator.

In Chapter 3, we study the change point inference for the drift parameter. In Section 3.1, we deal
with the change point inference of the drift parameter in Situation I or II, that is, when there is no
change in the diffusion parameter. We discuss the detection of parameter change in Subsection 3.1.1
and the estimation of the time of change in Subsection 3.1.2, respectively. We also treat the change
point inference of the drift parameter when there is a change in the diffusion parameter in Section
3.2. Subsections 3.2.1 and 3.2.2 provide the change detection method and the change point estimation
method, respectively. Moreover, we consider the case where the diffusion and drift parameters change
at the same time in Subsection 3.2.3.

In Chapter 4, we consider two diffusion process models and conduct numerical simulations in
order to verify the asymptotic behavior of the proposed test statistics and estimators in the above four
situations.

In Appendix A, we provide some remarks on change point inference, such as the estimation
method of the nuisance parameters in change point estimation and models that satisfy the assumptions.

Appendix B is devoted to the proofs of our results.



Chapter 2

Change point inference for diffusion
parameter

In this chapter, we consider the change point detection and estimation for the diffusion parameter. We
first provide the test statistic for detecting a change in the diffusion parameter. We then show that
the null distribution of the test statistic is the supremum of the absolute value of a Brownian bridge
and the test is consistent. Next, we estimate the time of the change in the diffusion parameter when
a change in the diffusion parameter is detected. We treat two cases according to the level of change
in the diffusion parameter and give the asymptotic properties of the estimator. In particular, we show
that the asymptotic distribution of the estimator is the distribution given in Lemma 1.6.3 of Csorgod
and Horvith (1997) in the case where |a] — a5| — 0, see Case A, in Section 2.2 below.
We set the following notations.

1.

For a matrix M, M' denotes the transpose of M and let M®> = MM'. Let I, be the d-
dimensional identity matrix.

Let A(x, @) = a(x,a)®* and AX = X, — X,._,.

. For k € N, B, denotes a k-dimensional standard Brownian motion.

For k € N, Bg denotes a k-dimensional Brownian bridge on [0, 1], which is defined by Bg(s) =
Bi(s) — sBr(1). For € € (0, 1), let wy(e) be the upper-e point of sup,_,, |B2(s)|, that is,

P( sup [BY(s)| > wk(e)) s

0<s<1

. Let W be a two-sided standard Wiener process.

For x = (x!,...,x)) € R?and f : RY — R, we write
0
0. f(x) = @f (), 0uf(x) = B f(X), ..., 0 f(x), O2f(x) = (BuBuf (X)) ).
Let C’F’I(Rd X @) be the space of all functions f satisfying the following conditions.
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(1) f is continuously differentiable with respect to x € R up to order k for all § € O,

(2) f and all its x-derivatives up to order k are [ times continuously differentiable with respect
tof €0,

(3) f and all derivatives are of polynomial growth in x € R uniformly in 6 € ®, where g is of
polynomial growth in x € R? uniformly in 6 € ® if for some C > 0,

sup g(x, O) < C(1 + |x))°.
6c®

P d . .q- . e
8. Let — and — be the convergence in probability and the convergence in distribution, respec-
tively.

We make the following assumptions throughout this thesis.

[A1] There exists a constant C > 0 such that for any x,y € R?,

sup |a(x, @) — a(y, )| + sup |b(x, B) = b(y, Bl < Clx —yl.
(lG@A BGQB

[A2] sup, Eg[|X,[F] < oo forall k > 0 and 0 € O.
[A3] inf,, detA(x, ) > 0.
[Ad] a € C‘T"“(R‘l x@,)and b € C‘T"“(R‘l X @p).

[AS] There exists a unique invariant measure u, such that for any p,y-integrable f,

1 [ P
Tffmme F@)dug(x) asT = .
0 R

Moreover, for any polynomial growth function f and 6, — 6,
[ st > [ ot
Rd R4

Remark 1. [Al]-[A4] and the first part in [A5] are general assumptions in statistical inference for
ergodic diffusion processes. The second part in [AS5] is satisfied if the probability density dus(x)/dx
is continuous in 6.

2.1 Change point detection

We first investigate the presence of a change in the diffusion parameter a. To this end, we consider
the following hypothesis testing problem.



H{ : the diffusion parameter does not change over [0, T]

VS.
aj, te[0,7]T),

HY : there exists 77 € (0, 1) such that o* =
@, te[rT,T],

where a7, a; € IntQ4 and a] # a;.
We make the following assumptions.

[B1] Under Hg, there exists an estimator & such that Va(& — a*) = Op(1).

[C1] Under HY, there exist @’ € Int ®, and an estimator & such that & — a’ = op(1).
Let F(a,a’) = ‘[R ) Tr[A™ (x, @)A(x, @)]du ().

[C2] F(a],a’) # F (a5, a’) under HY.

[D1] Under HY, 9, = |a] — a;| depends on n, and ¢, — 0, m?i — 00 as n — oo,
[D2] Under HY, there exists an estimator & such that 9@ — ap) = Op(1).

[D3] Under H?, ( fRd(Tr (A0 A(x, @) ld,uao(x))T(c] — ¢3) # 0, where ¢; = lim,_, 9" (@} — o).

Remark 2. For the construction of the estimators that appear in this thesis, see Kessler (1997),
Uchida and Yoshida (2011, 2012, 2014), Yoshida (2011), Kamatani and Uchida (2015), Kaino and
Uchida (2018) or Appendix A.

By setting
(AX)*

Fia)=Tr (A‘l(X,,,_l,a/) )+ logdetA(X,, @), Una)= Y Fi@)
i=1

n

as the contrast function of the diffusion parameter, n~'/29,U,(a*) has asymptotic normality. Notice
that

aa’ Un(a) = Z Tr [A_I(Xli1 s a’)awlA(Xtiq ) a’)(A_l(XIH s Cl’)

i=1

)

and

[12s] ®2
o BX)
o 2T )

where Y,(-) Sy (+) in DI[O, 1] denotes that Y,(-) weakly converges to Y(-) in the Skorohod space on
[0, 1]. Therefore, we define the test statistic to detect a change in the diffusion parameter by

- Id) N By(s) inD[0,1].

n

k

-3

i=1 i=1

1
v = max
2dn 1sksn

AX)®
’ ﬁi = Tr (A_] (Xl,'_] s &)( ) )'

n

The following theorem gives the asymptotic null distribution and the consistency of the test statistic
T



Theorem 1. Suppose that [Al]-[A5] hold.
(1) If [B1] is satisfied, then T} i) sup |B(1)(s)| under H.
0<s<1

(2) If either (a) [C1] and [C2] or (b) [DI1]-[D3] is satisfied, then for € € (0,1), lim P(7, >
wi(€)) = 1 under HY.

2.2 Change point estimation

If Hj is rejected, in other words, if a change of the diffusion parameter « is detected, then we estimate
the time of the change. In this section, we study the estimation problem of ¢ for the SDE in Situation
I or IV.

We consider the following two cases.
Case A,: 1, = |a] — ;| depends on n, and as n — oo,

3, — 0, m?i — 00, a] — @€ Int@,.

Case B,: |a] — a3 is fixed.
We make the following assumptions.

[E1] There exist estimators @; (k = 1,2) and a constant 7¢ € (0, 1) such that

aj, 1€[0,797),

a,, tel[rT,T].

Vi@ - @) = Op(1), a= {

[F1] hn/ﬁ(zy — ooand 79, — 0 as n — oo, and 1?‘1(011’; —ag) = 0(1).

a

Let

p

E(x, @) = |Tr(A™'0,, AA™' 9, A(x, a/))]l .
1,02=
I(x,a1,a,) = Tr (A7 (x, a)A(x, @2) — I;) — logdet A~ (x, a))A(x, @),
and O(x,0) = ngo(ylx)|y:x, o(ylx) = (y — x)®2, where the operator L, is defined as follows. For
R” x R’-valued C? functions f = (f; ;)} ,_, on R,

r

1
Lof(x) = (ax BB + TG (DA, a)])

ij=1
[F2] Let f(x) be the following three functions, (a) Z*(x, ay), (b) 0,2 (x, @), (c) 65111""()@ a, ). For
any 6 € (1,2) such that nh% — oo,

[nTd]+k

1
T2 0= [ s

i=[nt¢]+1

2o.

[n'/9]<k<n—[n1e]



[G1] infT*(x, @}, a5) > 0.
[G2] There exists a constant C > 0 such that

(@) sup(|0s, T (x, @1, )| V 100, T*(x, @1, 02)l) < C,

X,k

(b) sup

X,

(©) sug) |0(x,0)| < C.

[Tr (A (6, 1) = A (. a)lACx )L | < C.

Remark 3.
(1) If the diffusion coefficient is a(x, @) = a, then h, /9> — oo is not required in [F1].

(2) [F2] is the assumption that the convergence corresponding to Lemma 4.3 in Song and Lee

(2009) is valid for the three functions (a)-(c). This is the key convergence for the change point
problems for ergodic diffusion processes.

(3) Whend =1, Q in [G2] can be expressed as
Q(x.0) = (2b(x.B) + 0. A(x, @) )b(x. B) + (20.b(x. B) + FA(x, @) )A(x, @),

and thus if 8*A(x,a) (k = 0,1,2) and 8'b(x,B) (I = 0,1) are bounded with respect to x and
0 = (a,B), [G2](c) is fulfilled.

Let
[nT] n
O,(r: @) = Y Fila)+ Y Fi(a).
i=1 i=[nt]+1

We define the change point estimator for the diffusion parameter by

N : LA A
7, = argmin @, (7 : @1, @2).
€[0,1]

Remark 4. The change point estimator T requires the estimators &, and &, of the parameters | and
a, before and after the change. In order to construct these estimators, we need to find intervals with
a; and a;, respectively. We will discuss the method for finding these intervals in Appendix A.

In Case A,, we define

. — % % 1 —_
ee = lim 9, (@} —a3), Jo= Eel fd EY(x, ap)dpge, (X)eq,
n—o0 R

F(v) = =2J*W(v) + Jolv| forveR.

We get the following result on the asymptotic behavior of the estimator 7.



Theorem 2. Suppose that [Al]-[A5] and [E1] hold.

(1) Under [FI1] and [F2], n92(3® — 1) 5 argmin F(v) in Case A,.
veR

(2) Under [G1] and [G2], n(T} — 7¢) = Op(1) in Case B,,.
(3) Under [G1], [G2](a) and (b), n® (T} — 1) = op(1) for € € [0,1/2) in Case B,.

Remark 5. For v € R, let W(v) = W(v) — |V|/2 and # = inf{ € RIW() = sup,.. W(v)}. Since

F(v) d —ZW(jlv), the asymptotic distribution of (1) in Theorem 2 can be expressed as 1/ J . For the
probability density function of the distribution of 1}, see Lemma 1.6.3 of Csorgo and Horvdth (1997).
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Chapter 3

Change point inference for drift parameter

The aim of this chapter is to detect and estimate the change point of the drift parameter. First, we
propose the change detection method of the drift parameter when no change in the diffusion parameter
is detected and the change point estimation method when a change in the drift parameter is detected,
and present the asymptotic properties of the statistics. We also consider change point inference for
the drift parameter when a change in the diffusion parameter is detected. Moreover, we discuss the
case where the diffusion and drift parameters change at the same time.

3.1 Change point inference under no significant change in diffu-
sion parameter

In this section, we investigate the presence of a change in the drift parameter 8 when no change in the
diffusion parameter « is detected, and if there is the change, estimate the time of the change. For this
setting, we make the following assumption throughout this section.

[E2] a does not change over [0, T'], and there exists an estimator & such that Vn(& — a*) = Op(1).

3.1.1 Change point detection

In order to investigate a change in the drift parameter, we first consider the following hypothesis
testing problem.

H’g : the drift parameter does not change over [0, T']
Vs.

*’ t € O’ {T D)
H’ : there exists 72 € (0, 1) such that §* = P ! [ )
ﬁ;’ t € [TET, T],

where g7, 8; € Int®p and B} # £5.
We assume the following conditions.

[B2] Under HP | there exists an estimator /3’ such that VT (,@ - ) = Op(1).

11



[H1] Under H”, there exist B’ € ®p and an estimator 3 such that 8 — 8 = op(1).

For a € ®A,,Bl,,82 € Op, let

G(a.pr.B2) = f 1ga™" (x, @)(b(x, B1) = b(x, B2)) At py) (X)-

Rd
[H2] G(a*,B;.B) # G(a*, 85, 8’) under Hf

[11] Under H*, 95 = |B; — B3| depends on n, and 95 — 0, Tﬂé — 00 as n — oo,
[12] Under H”, there exists 8 € Int ®g such that for k = 1,2, ﬁ[;‘ B; = BY) - dyasn — .

[13] Under H”, there exist 8’ with 8’ — B = o(1) and an estimator 3 such that VT'(8 — ) = Op(1).
[14] fR ) 15a7 (x, @")dpb(x, ) du(q goy(X)(d) — do) # 0 under H..

Define

(AX = hyb(X;,_,, B))*
hﬂ

GiBla) = Tr (47 (X, ) [SRACOE S G
i=1

Since T7'205V,(B*|e*) is asymptotically normal and

OpValBla) = > 0pb(X;, ,,B)TA™ (X, AKX = hib(X,, ., B)),

i=1

we find that forr =d =1,

[ns]
1 AX = h,b(X; ., ") w .
E ! — B(s) inD[O,1]. 3.1
VT i=1 a(th;] ’ (Y*) ( ) ( )

Hence we consider the case r = d and define
& = 150" (X, &)(AX = h,b(X,_,. ),

which is a simple extension to multiple dimensions. The test statistic for detecting a change in the
drift parameter is as follows.

We then obtain the following theorem.

Theorem 3. Suppose that [Al]-[A5] and [E2] hold.

12



(1) If [B2] is satisfied, then ‘TB i) sup |B0(s)| under Hﬁ

0<s<1

(2) Ifeither(a) [HI] and [H2] or (b) [11 ]-[I4] is satisfied, then for € € (0, 1), lim P(‘Tfn > wi(e)) =
1 under Hf.

T lﬂ ., 1s a simple test statistic, but for the 1-dimensional Ornstein-Uhlenbeck process defined by
dX, :,—,B(X, —y)dt + adW, (a,8 > 0, y € R), if B changes and vy does not change, this test statistic
does not satisty the identifiability condition [H2] (see Appendix A). For this reason, we introduce
another test statistic. Let

Zi = a,Bb()(t,'_| 7B)TA_1 (Xt,'_] > &)(AIX - hnb(Xt,'_] ’B))’

1 © A A .
= 7_1 Z aﬁb(XtH ’ﬂ)TA I(Xti_l ) a’)aﬁb(X,i_l B,

loe-3e)

We additionally make the following assumptions.

7—2ﬁ , = —=max |1
i T 1<k<n

[B3] There exists an integer m; > 3 such that nA™/™ ™Y — co and b € C‘T"m‘”(R" X Op).

[H3] Under H”, there exist B € ©p and an estimator 3 such that VT'(8 — 8’) = Op(1).
For a € ®A,,Bl,,82 € Op, let

H(a,Br,B2) = fR ) Ab(x, B2) A7 (x, @)(b(x, B1) — b(x, £2))dpt(e (%)

[H4] H(a",B;.B) + H(a",B;,B") under HY.
[15] There exists an integer m, > 2 such that ;' "*95> — 0 and b € C7™" (R? X Op).

As in Theorem 3, we obtain the following result.

Theorem 4. Suppose that [Al]-[A5] and [E2] hold.

(1) If [B2] and [B3] are satisfied, then Tﬁ i> sup IBO(S)I under HB
0<s<1
(2) If either (a) [B3], [H3] and [H4] or (b) [11]-[I3] and [I5] is satisfied, then for € € (0, 1),
lim P(T3 > w(€)) = 1 under HY.

Remark 6. Since h, — 0, nh, — oo and nh?> — 0, if h, = O(n™°) for some § € (1/2,1), then there
exists an integer my > 1/(1 — 6) > 2 such that nh,,m‘/ m=D oo, Therefore, in [B3], we make the
assumption of the smoothness of the drift coefficient b with respect to B up to order m; + 1 (> 4) when
the drift coefficient b is general. In particular, if b € C‘T"W(Rd, ®p), then [B3] is satisfied. [15] is also
the assumption on the smoothness of b.
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3.1.2 Change point estimation

This subsection provides an estimator of the time of change of the drift parameter for the SDE such
as Situation II.
We consider the following two cases.

Case Ag: 94 = |B] — B3] depends on n, and as n — oo,
dp =0, T9;—>co, Bi— foentOp.
Case Bg: |B] — 55| is fixed.
We assume the following conditions.
[E3] There exist estimators ,@k (k =1,2) and a constant e (0, 1) such that

A o _ B, refo D),
VT (B - B;) = Op(D), ﬁ—{ﬁ; AT

[J1] Tﬁ;‘a — 0asn — coand 95 (B; - Bo) = O(1) for k = 1,2.

[J2] Let f(x) be the following three functions: (a) Z°(x, a*, Bo), (b) dsEP(x, a*, By), (¢) 6/331 IP(x, a*, Bo, Bo).
For any 6 € (1,2) such that nh% — oo,

1+ b
max LY ) = [P (0] 0.
(/9] <k<n—[n?] | K it RA

[J3] There exists m3 > 3 such that nh™/ ™™ - oo, h,;”zﬁgls—l —0andb € C?’m”l(Rd X @p).

Let

q

= (x,0.8) = [0 bx HTAT (1. bk B!, .
P(x, @, B1.62) = Tr[A™ (x, @)(b(x. 1) — b(x, 5))%2].
[K1] inf, IP(x, ", B}, B;) > O.
[K2] There exists a constant C > 0 such that

(a) sup (laarﬁ(x7 a’ﬁl’ﬁZ)l \ |6,81Fﬁ(x’ a’aﬁl’BZ)l 4 |6,82Fﬁ(x7 a’ﬁl’BZ)l) < C’

X,a,B

<C.

(b) sup

X,,B%

[9pb e, BT A (v, @) (b(x, B2) = b(x, 5]

14



We define

[n7] In

Vot : Bl l) = D GGl + Y GilBsle)

i=kp+1 i=[nt]+1

where 0 < k, < [nt] and [n7] < [, < n. Set

# = argmin ¥,(t : B1, 5.1, 0, n)
7€[0,1]

as an estimator of Tf .
In Case Ag, we set

ep = lim 3B} - 3).  Tpla) = e f 2 (x, @, Bo)dp(a sy (X)ep,

R4

G : @) = =293(@)'*Wv) + Js(@)|v| forveR.

Then, we have the following asymptotic properties of the estimator 2

Theorem 5. Suppose that [Al]-[AS5], [E2] and [E3] hold.

(1) Under [J1]-[J3], Tﬂé(f‘f - Tf) i) argrﬂréin G(v : a") in Case Ag.

(2) Under [K1] and [K2], T(34 —70) = Op(1) in Case By

3.2 Change point inference with a change in diffusion parameter

In this section, we infer the change point in the drift parameter S when there is a change point in the
diffusion parameter @. The estimator of the time of change of the diffusion parameter is already given
in Section 2.2, and thus we assume [E1] and the existence of the estimator throughout this section.

[E4] There exists € € (0, 1) such that n (7 — 7¢) = op(1).

Fork = 1,2, leta; — aﬁ{o) € Int®, as n — oo, where we note that @; may depend on n.

3.2.1 Change point detection

In this subsection, we treat the change detection for the drift parameter of the SDE in Situation III
or I'V. Since we can estimate the change point 707" according to Section 2.2, we divide the intervals
into two parts based on the estimated time of the change in diffusion parameters, and investigate the
change in the drift parameter in each interval. Therefore, we consider the following two hypothesis
testing problems.

15



H(()l) : the drift parameter does not change over [0, 7¢7]
Vs.

1 ] re 0, TET ’
Hil) : there exists 7> € (0, 7¢) such that 8* = P [ )
Bi, telET,7T],

H(()z) : the drift parameter does not change over [7¢7T, T]
Vs.

Hiz) : there exists 7> € (72, 1) such that 8* = { -
22>

t e [v°T,7T),
e [T, 11,

where 3, |, 8; , € Int@®p, B; | # B;, fork = 1,2.
Let k = 1,2. We make the following assumptions.

[B2’];, There exists an estimator ,@k such that VT (Bk — %) = Op(1) under H(()k).

[B4] Let f(x) be the following two functions: (a) 17a™'(x, @3)db(x, Bo), (b) d.(11a™" (x, @3))b(x, o).
For any 6 € (1,2) such that nh} — oo and M,, = [n(7¢ + 2n™)],

M, +k

Z f(Xt, 1) - ﬁd f(X)d,U(a;"gO)(x) : 0

1M+l

[nl/‘)]<k<n M,

[H1']; There exist 8, € ®p and an estimator ,[?k such that Bk — B, = op(1) under H ik).
[H2'), G@P.B;,.8) # 6@, B, ,.B,) under H.

[11']; ¥, = B;, — B;,| depends on n, and I, — 0, T9; — oo as n — oo under HP.
[12']x There exists ,B(ko) € Int ®3 such that ﬁ[;kl (,8,*@1 - ,8;(0)) —dyy€RTasn — ocoforl=1,2.

[I3']c There exist B, with 8, — ,(co) = o(1) and an estimator Bk such that VT (ﬁk —B;) = Op(1) under
HY.

[14']; f Lya™ ! (x, @)b(x. B )dpt 0 o (0)(dis = di2) # O under H,°”.
RY ’

~(m}+1)

[IS’]; There exists m), > 3 such that n™h,

4m2+l

= 0(1), h;”zﬁ — Oand b € C;"™" (R! X @p).
Remark 7. Since |a| — ;| depends on n and satisfies nla} — a/;|2 — oo in Case A, and |a] — a}| is
fixed in Case B,, it is obvious from Theorem 2 that there exists €, € (0, 1) such that [E4] holds. In
practice, since |a| — «;| is unknown, we obtain an estimator & of € satisfying [E4], for example, as
follows. Let &, &, be estimators of a, a5. If nla} — cvzl2 — oo, then n|&, — &|* — oo in probability,
in other words, the probability of n|&; — &|* < 1 converges to zero. According to Theorem 2, for a
sufficiently large n, we get & such that & = 0.45 A (0.91log(n|a, — &,|*)/ log n).
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Letr =17, —n"“and 7, = 7, + n . For r = d, we define the test statistics for detecting a change
in the drift parameter as follows.

1 « ko
S IR ¥
= — max &1i— Zfli ’
Ln dr T 1sk<int,] | 4= [nz,] =1
. [T, ] +k k -
2 3 :
= e | 2 BTy 2 B
d(1 =7,)T 1sksnmal |, 6= i

where &; = 1ja™' (X,.,, @)(AX — hub(X,,,, B)-
The following theorem provides the results on the asymptotic properties of 7, &) and 7 1(%1)

Theorem 6. Let k = 1,2. Suppose that [Al]-[AS5], [El] and [E4] hold.

(1) If [B2'], is satisfied, then Tl(’ln) S5 sup |B?(s)| under H(()l).

0<s<1

(2) If [B2'], and [B4] hold, then T % sup BS(s)| under H.

0<s<1

(3) If either (a) [HI' ], and [H2' |, or (b) [11’ ],-[15" ] is satisfied, then for € € (0,1), lim P(‘]'l(,kn) >
wi(€)) = 1 under Hgk).

Moreover, we consider other test statistics as follows.

(1):—1 max |7'/? iA _ K [HZL]Z
2.n [InT 1Sk§[i’lzn] 1,n < 1, [nzn] £ 1, ’
[n7,]+k n
1 A k A
Ve ———— max_|I,\? 2. Qi
T (1 =TT Isksnolnm] =T, +1 =t
where
Zk,i = 0ﬁb(Xt,‘_17ﬁk)TA_l(Xti_1’ &k)(AlX - hnb(Xti_laBk))a
1 [nz,]
Tin =5 ) (X BOTA™ (X, 0000 (X, o),
L8
1 C AT 4- X A
Donmomrm ), O BT AT (X, 620050, . B2

i=[nt,]+1
We additionally make the following assumptions.

[BS] Let f(x) be the following three functions:
(@) 33b(x, Bo)A™ (x, 3)b(x, Bo),  (b) Bb(x, Bo) A™" (x, @3)dpb(x, o),
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(¢) 0pb(x, Bo)A™" (x, @5)b(x, Bo).
For any 6 € (1,2) such that nh’ — oo and M,, = [n(7® + 2n"9)],

M,+k

2N ) - f SOt ()] 5

i=M,+1

max
[nV/8)<k<n—M,

For k = 1,2, we make the following assumptions.
[H3']; There exist 5, € ©p and an estimator Bk such that VT (,ék - ;) = Op(1) under HY‘).
[H4')e H(e.B;,.B) # H(e, . By;,.B,) under H{".
[16]; n“ds — oo.

We obtain the following theorem.

Theorem 7. Let k = 1,2. Suppose that [Al]-[AS5], [E1] and [E4] hold.

(1) If [B2'], and [B3] are satisfied, then T, <% sup [BY(s)| under H.

0<s<1

(2) If [B2'],, [B3] and [BS5] are satisfied, then T( ) —> sup |B (8)| under H( )
0<s<1
(3) If either (a) [B3], [H3' ], and [H4' ], or (b) [11' |i-[13' ], [15' ] and [16 ], is satisfied, then for
€€ (0,1), P(7,Y > w,(e)) - 1 under H".

Remark 8. When the drift parameter changes at the same time point as the diffusion parameter does,
these tests are unable to detect a change in the drift parameter. In other words, even if the null
hypotheses H(()l) and H(()2) are not rejected, it is possible that the drift parameter changes at the same
time point as the diffusion parameter does. We will discuss the change in the drift parameters when
neither H(()l) nor H(()z) is rejected in Subsection 3.2.3.

3.2.2 Change point estimation

In this subsection, we estimate the time of the change of the drift parameter for the SDE such as
Situation I'V-(i) or (i1). As in Subsection 3.1.2, we address two cases with different levels of change
in the parameter.

Let k = 1,2. We make the following assumptions.

[J2']x Let f(x) be the following three functions: (a) Z°(x, @, Bo), (b) dZF(x, @}, o), (¢) 33 TP (x, a;, Bo, Bo)-
For any 6 € (1,2) such that nh’ — oo,

[mﬁ]+m
max ) = [ )
Ll /®)smsn= [mﬁ] i=[n1+1

18



[K1'], inf, TP(x,a}”, 8}, 8;) > 0.
Consider Tf < 1¢. Define

f—f,n = argmin ¥,,(t : B1,3.1d1,0, [n7,])

7€[0,7,]

as an estimator of 7.
Then, we obtain the following result of the asymptotic properties of the estimator %f -

Theorem 8. Let 7° < 1°. Suppose that [Al]-[A5], [E1], [E3] and [E4] hold,

(1) Under [J1], [J2'], and [J3], T9A# ) 5 argmin G o) in Case Ag.

(2) Under [KI'], and [K2], T(#], - 1¥) = Op(1) in Case By.
Consider 7¢ < . Set

= argmin ¥, (7 : B, Baldta, [T, ), m)
T€[Ty,1]

as an estimator of Tf .
As in Theorem 8, we have the following result.

Theorem 9. Let ¢ < Tf Suppose that [Al]-[A5], [El], [E3] and [E4] hold.

(1) Under [J1], [J2'], and [J3], TO3; , — 0 5 argmin G a) in Case Ag.

(2) Under [K1'], and [K2], T(#,, — 10) = Op(1) in Case By.

Remark 9. We proposed the methods to detect changes in the drift parameter and to estimate the
change point of the drift parameter, which assume the existence of a change point estimator of the
diffusion parameter. This method is based on the fact that the tests utilizing normalization of errors
are distribution free under no change in the parameters. For this thesis, we employed the method
using the change point estimator of the diffusion parameter so that the asymptotic null distribution of
the test statistics for changes in the drift parameter is the distribution of the supremum of the norm
of a Brownian bridge by using the convergence in (3.1). For example, instead of ék,l- or &y, one could
consider a test statistic without a change point estimator of the diffusion parameter and the diffusion
term. In this case, however, the test generally dose not converge to the supremum of a Brownian
bridge under the null hypothesis that the drift parameter does not change. The discussion of methods
to detect changes in the drift parameter independent of the diffusion parameter and to estimate its
change point is a subject for future work.
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3.2.3 Change in diffusion and drift parameters at the same time

Since 7, 1(2 and 7'&) (or, 7. 2(1n) and 7’2(2,3) are tests for the change of the drift parameter in [0,7, T]
and [7,T,T], respectively, neither test can detect the change when the drift parameter changes in
[z, T,7.T], ie., Tf = 7¢. Therefore, in this subsection, we consider how to investigate whether the
drift parameter changes at the same time as the diffusion parameter. In other words, we consider a
method for detecting a change in the drift parameter for the SDE in Situation IV-(iii).

If neither H(()l) nor H(()Z) is rejected, we construct the estimators 3, and 3, for B} and B; with data
from the intervals [0,z T] and [7,,T,T], respectively. Notice that the estimators ﬁl and ,Bz can be

constructed to satisfy

VT@1 - ;) = Op(1). VT (B, = B3) = Op(1).
Since one then has

VTI8; - B3l < NTIBy = Bil + VTIB, - B + VT|B1 = Bal = Op(1) + NTIB) - 35|
and

VT3, - Bal < NTIBy = Bil + VTIB, - B3] + VTIB; = B3| = Op(1) + NT|B} - B3|,

\/Tl,b’l ﬁzl = Op(1) is equivalent to \/_|,81 = O(1). Note that if \/_I,Bl Bz| — o0, then
VTIB1 - Bal # Op(1), and if VT|B: - B3| is monotone, then VT|B; — Bl # O(1) is equivalent to
\NT |8 — B5| — oo. Hence, we have the following assertions.

If VT3, - Bl = Op(1), then VT|B; - B3| = O(1). (3.2)

If VT|3, — 2| — oo, then VT|B: - Bi| — co. (3.3)

The facts imply that if VT|3, — B, is sufficiently large, then we infer that the drift parameter changes
at 7¢T. Here we note that 7¢T is the same time at which the diffusion parameter changes.

Remark 10. The change in the drift parameter that satisfies the assumption [11’ ], can be detected by
the test 7'(1) or T, @ " if the change does not occur at the same time as the diffusion parameter, and can
also be detected by the above method based on (3.3) if the change occurs at the same time. As we saw
above, we can theoretically determine whether the drift parameter changes at the same time as the
diffusion parameter by investigating NT|By — Bal, but it would be difficult to determine whether the
drift parameter changes simultaneously with the diffusion parameter in practice. See the numerical
simulations in Chapter 4.
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Chapter 4

Numerical simulations

In this chapter, we consider the SDEs of the four situations in the introduction and verify our main
results by numerical simulations. The number of iterations is 1000 for all situations. In the hypothesis
testing problem, the significance level € is 0.05 or 0.10, and the corresponding critical values are
obtained from the following: the Brownian bridge is generated by taking 10* points on the interval
[0, 1], and the maximum value of its norm is recorded. This is repeated 10* times. As a result, we
have w;(0.05) = 1.3617, w,(0.05) = 1.5736, w1(0.10) = 1.2232 and w,(0.10) = 1.4437, where wy(¢€)
is the upper-€ point of sup_,, |B2(S)|.

4.1 Model 1 : Ornstein-Uhlenbeck process

We consider the one-dimensional Ornstein-Uhlenbeck process defined by

where a,8 > 0 and y € R.

4.1.1 Situation I : neither parameter changes

In order to verify Theorems 1, 3 and 4, we treat the following situation.

!
X, =Xy - f B(X; =y H)ds+a'W,, tel0,T],
0

where Xo = 1, " = 1, " = 1, ¥* = 1. In this simulation, we set that the sample size of the data
{X,)tyisn =10° or 10° h, = n™*", T = nh, = n*”*, nh’. = n™' and the significant level is € = 0.10.

We verified the performance of the test statistics 7, 7 lﬁ L and 77 2/3 ,- Table 4.1 and Figure 1 show
the empirical sizes, the histograms and the empirical distribution functions (EDFs) of 7., 7~ f , and
T f ,- We find from Table 4.1 and Figure 1 that the proportions of the test statistics that exceed the

critical values are close to € = 0.10 and the distribution of the test statistics almost corresponds with
the null distribution, which implies that the test statistics have good performance.
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Table 4.1: Proportions over the corresponding critical value in Situation I of Model 1.

n T h, T 77 frfn
103 100 1073 0.098  0.095 0.094
106 251.19 251x10* 0.118 0.104 0.091

1
=i

T ]

T T T T T T T T T T T T
00 05 10 15 20 25 00 05 10 15 20 25

(a) Histogram of 7,¢ with n = 109, (b) EDF of 7,2 with n = 10°.
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(d) EDF of 77 with n = 10°.
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(e) Histogram of 77 with n = 10°. (f) EDF of 77 with n = 10°.

Figure 1: Histogram (black line) versus theoretical density function (red line) and empirical distri-
bution function (black line) versus theoretical distribution function (red line) in Situation I of Model
l.
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4.1.2 Situation II : only drift parameter changes

We consider the following situation to support Theorems 3-5.

!
Xo - f B(Xs —yDds + a™W,, 1€ [0,7°T),
Xt = 0 t
Xpr+ [ B OG-y 40 W= Wy, 1€ 1T.T)
T

where Xo =5,a" =0.5,8" =25,y =5+1Us,7; =35, Tf = 0.5. In this simulation, we set the sample
size of the data {X, )", being n = 10%, h, = n™*7, T = n*"7, nh’ = n™'7, 95 = n~'/® and the significant
level € = 0.10.

We first verified the performance of the test statistics 7", 7 lﬁ ,and 7 zﬁ .- The simulation results of
the test statistics can be found in Table 4.2 and Figure 2. Table 4.2 shows that the proportion of 7"
that exceed the critical value is close to € = 0.10 and the change in the drift parameter is detected in
all iterations.

Table 4.2: Proportions over the corresponding critical value in Situation II of Model 1.

n T h, T Tfn Tfﬂ
105 37276 3.73x10°* 0.117 1.000 1.000

Next, we estimated the change point of the drift parameter. In all iterations, the change point
was detected in the intervals [T'/4,T] and [0, 37 /4]. Therefore, we estimated 8} and 35 from [0, T'/4]
and [37/4,T], respectively. The estimates of a*, §], 55 and Tf are reported in Table 4.3, and the
histogram and the EDF of the estimator 25 are illustrated in Figure 3. From Figure 3, we can see
that the distribution of the estimator almost corresponds with the asymptotic distribution in (1) of
Theorem 5 and the estimators have good performance.

Table 4.3: Mean and standard deviation of the estimators in Situation II of Model 1. True values:
a* =05, =25,y =5.1778,y; = 5,72 = 0.5.

n T hy a Bi Y1 B Y2 f'ﬁ
106 37276 3.73x10* 0.5001 2.5498 5.1773 2.5431 4.9998 0.4980
(0.0004) (0.2257) (0.0205) (0.2468) (0.0203) (0.0134)
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(f) EDF of 77 with n = 10°.

Figure 2: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation II of
Model 1.
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(a) Histogram of Tﬁg(fﬁ ) (b) EDF of Tﬁg(fﬁ -

Figure 3: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) with n = 107 in
Situation II of Model 1.

4.1.3 Situation III : only diffusion parameter changes

We deal with the following situation in support of Theorems 2, 6, 7 and (3.2).

!
Xo — f B Xy —y)ds + a1 W,, t €[0,75T),
X, = 0
= !
XTfT - f ﬁ*(XS - 7*)d5 + a’;(Wt - WTfT)a e [Tf:Ta T]a
T

where Xy = 2, 77 = 0.8, @] = 1, a5 = 1.2. We set the sample size of the data {X,,}!  being n = 10° or
107, h, = n” /% T = nh, = n'**, nh? = n~'/?> and the significant level € = 0.05.

We first tested for a change in the diffusion parameter in the interval [0, T]. As a result, the change
was detected in all 1000 iterations and Figure 4 shows the histogram and the EDF of the test statistic
7.r. In order to estimate the parameters before and after the change, we tested for the change in
the diffusion parameter in the interval [0.1257,0.875T]. Since the results indicated that the change
is detected in all 1000 iterations, we estimated a] and a; using the data obtained from the intervals
[0,0.125T] and [0.875T, T, respectively, and estimated 7¢ using the estimators &; and &,. Table 4.4
and Figure 5 show the simulation results of the estimates of aj, @; and 7. In this case, we chose
€; = 0.45 for all iterations. It seems from Figure 5 that n (7% — 7¢) = op(1) in this example.

Next, we tested for a change in the drift parameter in the intervals [0,z T'] and [7, T, T]. Table 4.5
and Figure 6 show the results of the tests for the change in the drift parameter. From Table 4.5 and
Figures 6, we can see that the proportions of the test statistics that exceed the critical values are close
to the significance level € = 0.05, and the distribution of the test statistics almost corresponds with
the null distribution, which implies that the test statistics have good performance.

Finally, we constructed estimators B1 = (Bl ,¥1) and ﬁz = (ﬁz, ¥») using the data obtained from the
intervals [0,z T] and [7,,T, T], respectively when the test statistics 7, 1(’1") and Tl(zn) did not exceed the

critical value, and investigate VT |B1 - ﬁzl. Table 4.6 and Figure 7 show the results of the estimates of
B and B;. It appears from Figure 7 that VT|B, — B,| is bounded in probability.
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(a) Histogram of 7,¢ with n = 10°. (b) EDF of 7,2 with n = 10°.

Figure 4: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation III of
Model 1.

Table 4.4: Mean and standard deviation of the estimators in Situation III of Model 1. True values:
a)=1,a;=12,77 =038.

n T hn C’i’l C’i’z f':f

10° 758.58 7.59 x 1074 1.0002 1.2002 0.7988
(0.0021)  (0.0024)  (0.0002)

107 2290.87 229x10™* 1.0001 1.2001 0.7996

(0.0006)  (0.0008)  (0.0001)

. mlm .

4 2 0 2 4 4 2 0 2 4

(a) n = 10°. (b)n = 107.

Figure 5: Histogram of n“ (74, — v¢) in Situation III of Model 1.
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Table 4.5: Proportions over the corresponding critical value in Situation III of Model 1.

n T h 7’(1) 7-'(1) 7’(2) 7-'(2)
n 1,n 2.n 1,n 2.n

108 758.58 7.59 %107 0.040 0.034 0.045 0.048

107  2290.87 229x10™* 0.048 0.053 0.040 0.046
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(b) EDF of 7 with n = 107.

(c) Histogram of 72 with n = 107. (d) EDF of 72 with n = 107.
Figure 6: Histogram (black line) versus theoretical density function (red line) and empirical dis-

tribution function (black line) versus theoretical distribution function (red line) in Situation III of
Model 1.

Table 4.6: Mean and standard deviation of the estimators in Situation III of Model 1. True values:
B=1,y =2

n T hy, Bi Y1 B> Y2
100 758.58 7.59 x 10~ 1.0070 1.9985 1.0270 1.9999
(0.0587) (0.0408) (0.1217)  (0.0959)
107 2290.87 229x10™* 1.0021 2.0002 1.0084 1.9980
(0.0332) (0.0242) (0.0654) (0.0544)
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(a) n = 10°. (b)n = 107.

Figure 7: Histogram of VT|B, — ,| in Situation IIT of Model 1.

4.1.4 Situation I'V-(i) : diffusion parameter changes after drift parameter does

In order to corroborate Theorems 6-8, we consider the following situation.

t
XO - f ﬁ*(XS - ’)/T)ds + QTWZ, re [O’ TET)’
0
!

X, =3 Xpr — LT,B*(XS —yds + ay(W, = Wpp), te€ [T, 7°T),

!
XTffT - f ﬁ*(XS - 7;)ds + a;(Wt - WTfT)a re [T(:T’ T]a
T

where X, = 2, 7¢ = 0.8, Tf =04,a]=1,a5=12,8"=1,y] =2 -1, y; = 2. We set the sample
size of the data {X,,}' ) being n = 10° or 107, h, = n™"*/* | T = nh, = n'¥*, nh’ = n'/%, 95 = n~/1°
and the significant level € = 0.05.

Table 4.7: Mean and standard deviation of the estimators in Situation IV-(i) of Model 1. True
values: ] = 1, a5 = 1.2, 7¢ = 0.8.

2

n T h,, & Qs T

108 758.58 7.59 x 1074 1.0002 1.2002 0.7988
(0.0021)  (0.0024)  (0.0002)

107  2290.87 229x107* 1.0001 1.2001 0.7996
(0.0006)  (0.0008)  (0.0001)

We first tested for a change in the diffusion parameter in the interval [0, T]. As a result, the change
was detected in all 1000 iterations. We estimated ], @; and 77 in the same way as in Subsection 4.1.3,
and investigated the change in the drift parameter. The results can be found in Tables 4.7 and 4.8 and
Figure 8. Here we chose €, = 0.45 for all iterations. We find from Table 4.8 and (a)-(d) of Figure 8
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that the proportions of the test statistics ‘7'1(1,1) and 7~ 2(2 that exceed the critical value approach 1.000 as
n increases, and the distribution of the test statistics diverges. We can also see from (e)-(f) of Figure
8 that the distribution of the test statistic Tl(zn) almost corresponds with the null distribution.

Table 4.8: Proportions over the corresponding critical value in Situation I'V-(i) of Model 1.

n T h T( 1)) 7~( 1) 7~(2) (]-(2)
n 1,n 2.n 1,n 2.n

108 758.58 7.59%x 107  0.784 0.704 0.045 0.046

107  2290.87 229x10* 0981 0944 0.040 0.045

We finally estimated the drift parameters before and after the change of the diffusion parameter,
and also estimated the change point of the drift parameter when the test statistic ‘7'1(1,1) exceeded the
critical value. Here, we constructed the estimators by looking for the intervals with no change point.
Specifically, we first tested for changes in the drift parameter in [0.257 T, 0.757, T]. When the change
was detected, we constructed 8, from [0,0.257, T'] and B, from [0.75z, T,z ,T]. If no change was
detected, we next expanded the test interval to [0.1257 T,0.875z T], [0.06257 T,0.93757 T], and
[0.017, 7,0.997 T and when the change was detected in the expanded interval, we estimated | and
B> using the data in the intervals that were not used in the test. The results of these estimates are
shown in Table 4.9 and Figure 9. We can see that the distribution of the estimator almost corresponds
with the asymptotic distribution and the estimator has good performance.

Table 4.9: Mean and standard deviation of the estimators in Situation IV-(i) of Model 1. True
values: B* = 1,y; =2, £ =04, ¥} ~ 1.7488 and 1.8005 for n = 10° and 107, respectively.

n T hy, Bi i B Y2 o
10° 758.58 7.59 x 1074 1.0932 1.7353 1.1195 2.0080 0.4079
(0.3319) (0.1493) (0.4638) (0.1718) (0.1237)
107 2290.87 229 x 10 1.0110 1.7984 1.0213 2.0002 0.4023
(0.0957) (0.0562) (0.0920) (0.0637) (0.0703)
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(c) Histogram of 7" with n = 107. (d) EDF of 7\ with n = 107.
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(e) Histogram of 72 with n = 107. (f) EDF of 72 with n = 107.

Figure 8: Histogram (black line) versus theoretical density function (red line) and empirical distri-
bution function (black line) versus theoretical distribution function (red line) in Situation IV-(i) of
Model 1.
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(a) Histogram of T93(#; | - %). (b) EDF of T93(#] , - ).

Figure 9: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) with n = 107 in
Situation IV-(i) of Model 1.

4.1.5 Situation I'V-(iii) : both parameters change at the same time

We treat the following situation in order to verify Theorems 6, 7 and (3.3).

!
Xo — f B (Xs —vypds + a1 W, te€[0,7¢T),
X, = 0
= !
Xar = | B0 =75+ 03, = Wer). 1€ [RT.T)
T

where Xo = 2,77 = 0.8, 0] = 1,05 = 1.2, 8 = 1,y] = 2 — g, y; = 2. We set the sample size of the
data {X,}", being n = 10° or 107, h, = n/®, T = nh, = n'*'* nh} = n'*, 95 = n!/1% and the
significant level € = 0.05.

We first tested for a change in the diffusion parameter in the interval [0, T']. As a result, the change
was detected in all 1000 iterations. In the same way as in Subsection 4.1.3, we estimated a7}, a5 and
72, and investigated the change in the drift parameter. The results are shown in Tables 4.10, 4.11 and
Figure 10. Here we chose €, = 0.45 for all iterations. It can be seen that the results are similar to
those of Subsection 4.1.3.

Table 4.10: Mean and standard deviation of the estimators in Situation IV-(iii) of Model 1. True
values: ] = 1,5 = 1.2, 77 = 0.8

paye

n T hn d’l d’z T,

10° 758.58 7.59 x 107* 1.0002 1.2002 0.7988
(0.0021)  (0.0024)  (0.0002)

107 2290.87 2.29x10™* 1.0001 1.2001 0.7996
(0.0006)  (0.0008)  (0.0001)
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Table 4.11: Proportions over the corresponding critical value in Situation IV-(iii) of Model 1.

n T hn 7-'1(1) Tz(l) 7'1(2) 7'2(2)
10° 75858 7.59x 10 0.040 0034 0046 0048
107 229087 229x 10 0048 0053 0040 0.046

T T T T T T T
25 0.0 05 10 15 20 25

(b) EDF of 7" with n = 107.

| o |

0.0 05 10 15 20 25 00 05 10 15 20 25

(c) Histogram of 72 with n = 107. (d) EDF of 72 with n = 107.

Figure 10: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation I'V-(iii)
of Model 1.
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Finally, we constructed the estimators Bl = (81, ¥1) and ,Bz = (B,,¥>) using the data obtained from
the intervals [0,7 T] and [7, T, T'], respectively when the test statistics 7'1(1,1) and ‘7’1(,2,1) did not exceed
the critical value, and investigated VT|B, — B,|. Table 4.12 and Figure 11 show the results of the
estimates of 8] and B;. It can be seen that \NT |B, — B,| tends to increase as n does.

Table 4.12: Mean and standard deviation of the estimators in Situation IV-(iii) of Model 1. True
values: B* = 1, v; = 2, ¥} ~ 1.7488 and 1.8005 for n = 10° and 107, respectively.

n T hy, Bi Yi B> Y2

106 758.58 7.59 x 1074 1.0071 1.7472 1.0273 1.9999
(0.0587) (0.0408) (0.1214) (0.0961)

107 2290.87 2.29x107* 1.0022 1.8007 1.0084 1.9980
(0.0333) (0.0242) (0.0654) (0.0543)

0.10 0.15 020 0.25
0.10 0.15 020 025

005
005

0.00
0.00

0 5 10 15 20 25 0 5 10 15 20 25

(a)n = 10°. (b)n = 107.

Figure 11: Histogram of \NT |B1 - ﬁzl in Situation I'V-(iii) of Model 1.
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4.2 Model 2 : hyperbolic diffusion model

We treat the hyperbolic diffusion model defined by

—_ —th
V1+X?

where @ > 0, 8 € R and |8| < .

dx, = (ﬁ )dt +adW, X, = xo,

4.2.1 Situation I : neither parameter changes

In order to corroborate Theorems 1, 3 and 4, we consider the following situation.

! *Xq
Xt:X0+f( *—y—‘)ds+a*W,, t € [0.T1,
0

where Xy = 0.5, " = 0.5, 8" = 0.5, y* = 1. We set the sample size of the data {X; }! , being n = 10°
or 108, h, = n”"12, T = n312, nh? = n~'/¢ and the significant level € = 0.10.

We investigated the presence of the change in the diffusion or drift parameter. Table 4.13 and
Figure 12 show the empirical sizes, the histograms and the EDFs of 7', 7 f , and ‘7'2ﬁ .- We see that the
proportions of the test statistics that exceed the critical values are close to € = 0.10 and the distribution
of the test statistics almost corresponds with the null distribution, which implies that the test statistics
have good performance.

Table 4.13: Proportions over the corresponding critical value in Situation of Model 2.

n T h, T 'rﬁn frfn

10°  121.15  1.21x107%  0.098  0.094 0.090
10° 31623 3.16x10™* 0.118 0.106  0.092
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(b) EDF of 7,2 with n = 10°.

00

(d) EDF of 77 with n = 10°.
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(e) Histogram of 77 with n = 10°. (f) EDF of 77 with n = 10°.

Figure 12: Histogram (black line) versus theoretical density function (red line) and empirical distri-
bution function (black line) versus theoretical distribution function (red line) in Situation I of Model
2.
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4.2.2 Situation II : only drift parameter changes

We consider the following situation and verify Theorems 3-5.

! *
* 7 XS
Xo + f(’Bl - —)ds +aW,, te [(),TfT),
X = 0 V1 +X?

t X ! . y*Xs . Tﬁ
ot | (B === ds +a" (W, - Wy,), te[“T,T],

&1 1+ X2

where X, = 0.25, " = 0.2, 8] = 0.25, 85 = —0.25, y* = 1.2, Tf = 0.5. We set the sample size of the
data {X,,}", being n = 10° or 107, h, = n~*7, T = n*/7, nh% = n~"/7 and the significant level € = 0.10.

First, we verified the performance of test statistics 7", 7 f ,and ‘7'5 .- The simulation results of the
test statistics can be found in Table 4.14 and Figure 13. Table 4.14 shows that the proportion of 7"
that exceed the critical value is close to € = 0.10 and the change in the drift parameter is detected in

all iterations.

Table 4.14: Proportions over the corresponding critical value in Situation II of Model 2.

n T h, T Tfn fﬁfﬂ
10 37276 3.73x10°* 0.119 1.000 1.000
107 103 1074 0.095 1.000 1.000

Next, we estimated the change point of the drift parameter. Since the change point was detected in
the intervals [7'/4, T] and [0, 3T /4], we estimated ] and 35 using the data obtained from the intervals
[0,T/4] and [3T'/4,T] in all iterations, respectively. The estimates of a*, 87, B; and Tff are reported in
Table 4.15. It seems from Figure 14 that T(%ﬁ - Tf) = Op(1).

Table 4.15: Mean and standard deviation of the estimators in Situation II of Model 2. True values:
a* =026 =025, =-025y =12, Tf =0.5.

n T hy, @ B Y1 B> Y2 f'ﬁ

10° 37276 3.73x107* 0.2000 0.2596 1.2485 -0.2600 1.2468 0.4988
(142 x 10™)  (0.0414) (0.1674) (0.0445) (0.1844) (0.0019)

107 10° 1074 0.2000 0.2522 1.2121 -0.2549 1.2216 0.5000
(4.44 x107) (0.0257) (0.1028) (0.0245) (0.0997) (0.0006)
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Figure 13: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation II of
Model 2.
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(a) Histogram of T(‘?ﬁ - T’f ). (b) Histogram of T(?’g - T/,f ).

Figure 14: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) with n = 107 in
Situation II of Model 2.

4.2.3 Situation III : only diffusion parameter changes

In order to verify Theorems 1, 2, 6, 7 and (3.2), we deal with the following situation.

! *Xg
X, + f (,8* - L)ds LW, 1 € [0,7°T),
0

- Jirx

! ,y*X

where Xo = 1, 7¢ =04, a0} = 1 +n?%, 5 = 1, 8 = 1, y* = 2. We set the sample size of the data
{X,}, being n = 10° or 107, h,, = n™>/8, T = n*’*, nh; = n~'/* and the significant level € = 0.05.

We tested for changes in the diffusion parameter in the interval [0, 7] in 1000 iterations. The
change was detected 990 times when n = 10° and 1000 times when n = 107. Figure 15 shows
the histograms and the EDFs of 7,". When the change in the diffusion parameter was detected, we
estimated the parameters @] and ; in the same way to estimate 8] and B, in Subsection 4.1.3, and
estimated 73 using the estimators &, and &,. The estimates of a7, @; and 77 are shown in Table 4.16.
We find from Figure 16 that the distribution of n92(#? — @) almost corresponds with the theoretical
distribution in Theorem 2-(1) and the estimators have good performance. In this case, we chose
€ = 0.9 + 1.8log|a; — @]/ logn for all iterations.

Next, we tested for changes in the drift parameter in the intervals [0,z T] and [7,,T, T]. Table 4.17
and Figure 17 show the simulation results of the tests for changes in the drift parameter. It can be
seen that the test statistics have good performance. Hence, we constructed B1 and [Viz using the data
obtained from the intervals [0,7,T] and [7,T, T], respectively when the test statistics 7, f}n) and 7, 1(,2n)

did not exceed the critical value, and investigated VT IB1 - ﬁzl. The result of the estimates of 8] and
B; can be found in Table 4.18 and Figure 18. It can be seen that VT|B, — B,] = Op(1).

38



0 1 2 3 4 5 0 1 2 3 4 5

(a) Histogram of 7¢ with n = 10°, (b) EDF of 7,2 with n = 10°.
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(c) Histogram of 7,¢ with n = 107. (d) EDF of 7,¢ with n = 10.

Figure 15: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation III of
Model 2.

Table 4.16: Mean and standard deviation of the estimators in Situation III of Model 2. True values:
@, = 1,7 =04, &} = 1.0069 and 1.0030 for n = 10° and 107, respectively

aYe4

n T h, @, @) Ty

10° 177.83 1.78 x 107* 1.0070 1.0000 0.3986
(0.0017) (0.0017) (0.0663)

107 421.70 422 x 1074 1.0030 1.0000 0.3986
(0.0005) (0.0005) (0.0258)

Table 4.17: Proportions over the corresponding critical value in Situation III of Model 2.

n T h, 7'1(1) Tz(l) (]-'1(2) T2(2)
10° 177.83 1.78x10* 0035 0043 0060 0051
107 42170  422x10°* 0038 0040 0038 0.031
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(a) Histogram of n2 (3¢ — 19). (b) EDF of n92(32 — 19).
Figure 16: Histogram (black line) versus theoretical density function (red line) and empirical dis-

tribution function (black line) versus theoretical distribution function (red line) with n = 107 in
Situation III of Model 2.
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Figure 17: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation III in
Model 2.
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Table 4.18: Mean and standard deviation of the estimators in Situation III of Model 2. True values:
B=1y =2

n T hy, Bi Y1 B> Y2

100 177.83 1.78 x 1074 1.0993 2.1873 1.0509 2.0980
(0.5332) (0.7292) (0.3476) (0.4881)

107 42170 422 x 107 1.0179 2.0413 1.0165 2.0323
0.1370)  (0.2114)  (0.1110)  (0.1722)

000 002 004 006 008 010 012
000 002 004 0.06 008 010 012

T T 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) n = 106. (b)n =107,

Figure 18: Histogram of VT I,Lv%1 - ﬁzl in Situation III in Model 2.

4.2.4 Situation IV-(ii) : drift parameter changes after diffusion parameter
does

In support of Theorems 6, 7 and 9, we consider the following situation.

! *
% y XS *
X0+f(,3 -2 ds+ oW, re[0.77),
oV V1 +X? v
! *
_ o y XS ) * _ Q
X, = { Xer + fT (ﬁ1 Nes e e ds + @3(W, = Wear), 1€ [1°T,7T),

! *Xs
Xor + f (ﬁZ - y—)ds +ays(W, = W), te[T,T],

where X, = 1, 7% = 0.4, 7% = 0.7, @ =1+n% a;=1,B;=1,B8; =0.5,y" = 2. We set the sample
size of the data {X,,}, being n = 10° or 107, h, = n™>/*, T = n’/®, nh2 = n~'/* and the significant level
€ =0.05.

We tested for changes in the diffusion parameter in the interval [0, 7] in 1000 iterations. The
change was detected 990 times when n = 10°% and 1000 times when n = 107. As in Subsection 4.2.3,
we estimated 77 using the estimators @; and &,. The estimates of o}, «; and 77 are shown in Table
4.19. In this case, we chose €, = 0.9 + 1.8log|@; — @»|/ logn for all iterations.
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Table 4.19: Mean and standard deviation of the estimators in Situation IV-(ii) of Model 2. True
values: a5 = 1, 7¢ = 0.4, a] = 1.0069 and 1.0030 for n = 10% and 107, respectively

L

n T h,, & s T
108 177.83 1.78 x 107# 1.0071 0.9999 0.3929
(0.0018) (0.0015) (0.0600)

107 421.70 4.22x10™* 1.0030 1.0000 0.3987
(0.0005)  (0.0005)  (0.0273)

Table 4.20: Proportions over the corresponding critical value in Situation IV-(ii) of Model 2.

n T h 7'(1) T(l) 7-'(2) 7'(2)
n 1,n 2.n 1,n 2.n

10° 177.83 1.78 x 1074 0.034 0.060 0.510 0414

107 421.70 422 %107 0.040 0.040 0.941 0.887

Table 4.21: Mean and standard deviation of the estimators in Situation IV-(ii) of Model 2. True
values: g7 = 1,8; = 0.5, 7" = 2, % =07.

n T hy, B Y1 B> Y2 %

10° 17783 1.78x10™* 1.7297 3.0951 0.5300 2.9141 0.7063
(1.8108) (2.1513) (0.8434) (1.8332) (0.1318)

107 42170 4.22x10™* 1.1436 2.2546 0.5143 2.1135 0.6987
(0.5965) (0.8216) (0.2102) (0.4559) (0.0698)
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Figure 19: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation I'V-(ii)
of Model 2.
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Next, we tested for changes in the drift parameter in the intervals [0, 7, T] and [7,,T, T]. From Table
4.20 and (a)-(b) of Figure 19, we see that the distribution of the test statistic T(l) almost corresponds
with the null distribution. Moreover, it can be seen from Table 4.20 and (c) (f) of Figure 19 that
the proportions of the test statistics 7, 1(?,2 and 7'2(2,3 that exceed the critical value approach 1.000 as

n increases, and the distribution of the test statistics 7. 2(2;1) diverges. Therefore, we estimated the drift
parameters before and after the change of the diffusion parameter, and also estimated the change point
when the test statistic T( ) exceeded the critical value. Here, we constructed the estimators ﬂl and ,82
in the same way as in Subsectlon 4.1.4. The results of these estimates are shown in Table 4.21 and
Figure 20. We can see that the distribution of the estimator does not diverge when n increases from
10 to 107, which implies that the estimator has good performance.
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(a)n = 10°. (b)n = 107.

Figure 20: Histogram of T(%g,n - Tff ) in Situation I'V-(ii) of Model 2.

4.2.5 Situation I'V-(iii) : both parameters change at the same time

We treat the following situation and corroborate Theorems 6, 7 and (3.3).

(o VX ) .
. Xy j;(t' 17*(;( ds + ] W, t € [0,7°T),

Xear — jr:fT(ﬁ2 - ﬁ)ds + (W, = W), 1€[tT,T],
where Xo = 1,79 = 04, ¢} = 1 +n"%,a; = 1,8, = 1, 8; = 0.5, y* = 2. We set the sample size
of the data {X,}", being n = 10° or 107, h, = n™>/%, T = n’/%, nh} = n~"/* and the significant level
€ =0.05.

We tested for changes in the diffusion parameter in the interval [0, 7] in 1000 iterations. The
change was detected 990 times when n = 10° and 1000 times when n = 107. When the change in the
diffusion parameter was detected, we estimated the parameters @] and o} in the same way to estimate
B and B; in Subsection 4.1.3, and estimated 7¢ using the estimators &, and &,. The estimates of
@, a; and 77 are shown in Table 4.16. We find from Figure 16 that the distribution of n?2(#? — 7¢)
almost corresponds with the theoretical distribution in (1) of Theorem 2 and the estimators have good
performance. In this case, we chose €, = 0.9 + 1.8log|&; — &;|/ logn for all iterations.
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Table 4.22: Mean and standard deviation of the estimators in Situation IV-(iii) of Model 2. True
values: @5 = 1, 7¢ = 0.4, a] = 1.0069 and 1.0030 for n = 10% and 107, respectively

n T hy & & 39

10° 177.83 1.78x 10  1.0070  1.0000  0.3992
(0.0017)  (0.0017)  (0.0677)

107 421,70 4.22x 107 1.0030  1.0000  0.3986

(0.0005)  (0.0005)  (0.0264)

Next, we tested for changes in the drift parameter in the intervals [0, 7, T'] and [7,,T, T]. Table 4.23
and Figure 21 show the simulation results of the tests for changes in the drift parameter. It can be
seen that the test statistics have good performance. Hence, we constructed Bl and Bz using the data
obtained from the intervals [0,7,T] and [7,T, T], respectively when the test statistics 7, 1(’1,3 and 7, fn)

did not exceed the critical value, and investigate VT IB1 - ,Z%Ql. The result of the estimates of 8] and 3,
is summarized in Table 4.24 and Figure 22. It can be inferred from Figure 22 that VT|B, — B,| tends
to increase as n does.

Table 4.23: Proportions over the corresponding critical value in Situation I'V-(ii1) of Model 2.

n T h 7-'(1) 7’(1) 7-'(2) 7-'(2)
n 1,n 2.n 1,n 2.n

108 177.83 1.78 x 107* 0.043 0.071 0.052 0.065

107 42170  4.22x10™ 0.043 0.049 0.044 0.048

Table 4.24: Mean and standard deviation of the estimators in Situation IV-(iii) of Model 2. True
values: 81 =1,B8] =0.5,y" = 2.

n T hy Bi Y1 B> Y2

10° 177.83 1.78 x 107# 1.0720 2.1524 0.5222 2.0737
(0.4282) (0.6173) (0.2731) (0.4723)

107 421.70 4.22x10™* 1.0142 2.0395 0.5064 2.0227
(0.1374) (0.2129) (0.0769) (0.1502)
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(b) EDF of 73" with n = 107

20

10

05
02

00

(c) Histogram of Tz(zn) with n = 107. (d) EDF of 7'2(2”) with n = 107.
Figure 21: Histogram (black line) versus theoretical density function (red line) and empirical dis-

tribution function (black line) versus theoretical distribution function (red line) in Situation I'V-(iii)
of Model 2.
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(a) n = 10°. (b)yn = 107.

Figure 22: Histogram of VT|B, — B,| in Situation IV-(iii) of Model 2.
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Appendix A

Estimation of the nuisance parameters

When one considers change point estimation, it is necessary to estimate the parameters a; and £;.
Here we discuss the estimation of nuisance parameters @, and £3;.
First, we need the following information to estimate a; or f3;:

[L1] There exist 7%, 7" € (0, 1) such that 7% € [7%,7"].
[L2] There exist 7,7 € (0, 1) such that 7% € [7%,7"].

If this information is obtained, one can see that there is no change point in interval [0, 7*T] nor
[7"T, T], and estimate «; from the data of [0, 7*T] and «; from the data of [7°T, T].

Next, we discuss how to find 7 and 7 that satisfy [L1] or [L2]. To find them, we use the test
statistics to detect a change in the diffusion or drift parameters. Specifically, one can detect a change
in the diffusion or drift parameters in the interval [7,7, 7,T] by the following test statistics.

1 [nT1]+k k [nT13]
T2 (r1,75) = max | N - > Ry,
V2d([nta] = [nmi]) 1sksbmnal-tonl | et 5 [n7o] = [nT] a4 |
1 [nT1]+k k [nT7]
T (T1,T2) = ——— L ax & - ol = ] Z &l
VAT (15 — 71) 1skslnmal=lnmi] i=[nt1]+1 nt; nty i=[nt1]+1
1 [nTi]+k k [n13]
e R PR S PSS B oo S S L
2, ’ ’ i ill»
" VT (15 — 11) 1sk<[nma]=[n71] " =[]+ [nT5] — [n74] i=[nry]+1
where
1 [n1>]
A T — A ~
L) = ————= > pb(X,  HTAT (X, 0)ph(X,, . ).

[nTZ] - [nTl] i=[nt]+1

Finally, we describe how to find 7 and 7. Assume that a change is detected in the interval [0, T].
U;) Choose T? € (0, 1), and investigate a change point in the interval [0, T? T].

(1) If a change is detected, set 7 = 7!/ and go to step L.
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(2) If not detected, go to step U,.

U,) Choose 7/ € (7 ,,1), and investigate a change point in the interval [0, 7} T'].

(1) If a change is detected, set 7 = 7, and go to step L.
(2) If not detected, go to step Uy,.

Assume that 77 is chosen as T in step Uy.

L;) Choose Tf € (0, Tg ), and investigate a change point in the interval [TfT, T].

(1) If a change is detected, set 7 = 7.

(2) If not detected, go to step L,.

L,) Choose 7t € (0,7L_)), and investigate a change point in the interval [75T, T1].

m—1
(1) If a change is detected, set 7 = 7.

(2) If not detected, go to step L.

We may also choose 7 and 7 at the same time, that is,
1) Choose 7; € (0, 1/2), and investigate a change point in the interval [7,7, (1 — 7{)T].

(1) If achangeis detected, set7 =71y and 7 =1 —1;.

(2) If not detected, go to step 2.
k) Choose 7, € (0, 7,—1), and investigate a change point in the interval [7; T, (1 — 7,)T].

(1) If achange is detected, set 7 =1 and 7 = 1 — 74.

(2) If not detected, go to step k + 1.

We can choose 7 and 7 in the above manner.

Sufficient condition of the assumptions

A process {X;};>0 with a change point can be expressed as follows. There exists a process {X,}1>0 such
that X" = X,(6), X" = 1", X = X,6), X7 = x”, X)) = X2 and

XY relo0,7T),
X; = X
., te[rT,T].
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If the process {X'?},s is stationary and 6; — 6, then one has the result that for f € C% (RY),

[nt]+k
max > )= [ wdun
[n!/"]<k<n—[nt] i=(mrl+1
1 [nT]+k
2
= omax | D) - f F()dug, (x)
[n!/"]<k<n—[nt] i=(mr)+1

d
= max
[n/r]<k<n—[nT]

Zf(x,(?).) [ reotua ] 5o
R4

and thus [F2], [J2], [B4] and [B5] hold. The same is true for [J2'];. In this case, one can remove
T¢, — 0in [F1] and Tﬁ/;1 — 0in [J1].

Model which satisfies [D2]

As an example of a model that satisfies [D2], we consider the d-dimensional diffusion process

! !
Xo + f b(X,,B)ds + f o(X,)o(a))dW,, te[0,7i7),
X, = 0 o
Xpor + f b(X,,B)ds + f o(X,)o(ay)dW,, telrT,T],
T T
where o : R —» RI@RY, 6(a) = diag(ay,...,an), @ = (1,...,a9)", @1,...,aq > 0. The true
values of the parameters are @] = (a/’[’l, .. ,ai d)T, a;, = (0/3’1, . ,a/;’ d)T, which converge to @y =
(@o.15---> ao,d)T # 0. We define the estimator & = arginf, U, (). Then, we have

9,1 — @) = Op(1). (A.1)

Proof of (A.1). & = (& j);?:] can be expressed as follows.

(AX)®2 )

1 n
a;= J p Z Tr ([O'(Xt,-_l)T]_l(s(ej)o_(xfi—l)_l h
i=1 "

where ¢; = (1,0,...,0)7,...,e;=1(0,...,0,1)". Define

[n7{] n
U @=) Fla), TUfa)= ) Fia),
i=1 i=[nt?]+1

&, = arginf, U (@) and &, = arginf, U,(@). We find that &, = (&, J')j{:l and &, = (@, j)?:l satisfy
Vn(@, — ;) = Op(1) and

1 [n7f] A X
&= J > Tl T e x, )1 )
i=1

[nT¢] h,
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| - A X)%2
&Zﬁj: J— Z Tr([O-(Xti_l)T]_lé(ej)o-(Xt[—l)_]( l ) )

_ @
n [I’l ]l [nT?]+1 hn

Noting that 97! (& — @) = Op(1) and

N [nTe] n—[nt?]
a,:\/ &+ ——— a2
’ n

n Lj 2.
we obtain
d d A
avy,; + ao,l |2, + ao,jl
916 = ol < )7 01— ol < Y (TR s = ol + SR - a )
- J I = A J >J oJ AN K
¢ — “ o & + ol ¢ l&; + ol
. P . P . PR
which together with &; — @y and & — « yields ¢, (& — @) = Op(1). O

From the above, the one-dimensional Ornstein-Uhlenbeck process and the hyperbolic diffusion
model satisfy [D2] because the diffusion coefficient is a(x, @) = @

Model which satisfies [D3]

First, as an example of a model that satisfies [D3], we consider the d-dimensional diffusion process
with the diffusion coefficient

a(x, @) = o(x)diag (@),

where o : RY - RY®RY, @ = (ay,...,a,)", a,...,a; > 0. The true values of the parameters
are @, = ag + 9,¢; and @ = g + Y,¢2, Where &g = (@p1,-..,@03)" # 0, ¢; = (cipy-..,C1a),
¢ =(cats--- ,cz,d)T. We have from Tr (A‘laajA(x, a)) = 2/a; the result that

d
f [Tr (A_laazA(x, 00))]1dﬂa0(x)((:1 —¢) = Z 21— J)
R4

Jj=1 @0.j
Therefore if
R
> =Lz, (A.2)
=i
then [D3] holds. In particular, we have (A.2) if any of the following cases:
l. cij—cyj>0foralll < j<d,andc;;—c;; > 0forsome 1 < j<d.
2. c1j—cj<0foralll < j<d,andc;;—c;; <Oforsomel < j<d.

This means that [D3] holds when only «; (I < j < d) changes. Therefore, the one-dimensional
Ornstein-Uhlenbeck process and the hyperbolic diffusion model satisfy [D3] because the diffusion
coeflicient is a(x, @) = a.
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Ornstein-Uhlenbeck process
We consider the one-dimensional Ornstein-Uhlenbeck process
dX, = -B(X; — y)dt + adW,, Xy = xo, (A.3)

where a,8 > 0, y € R.

First, consider the consistency of the test 7,". Since the invariant measure of the solution in (A.3)
is ug ~ N(y, %), 0 = (a,B,y), we have F(a,a’) = (a/a’)*. Therefore, it follows from a > 0 that
Fa),a') # F(a;,a) for a] # a;, and the test 7, has consistency according to Theorem 1 when
|} — a3 1s fixed. For the case where |a} — a}| shrinks, we have already discussed above.

Next, we investigate the consistency of the tests 7 f ,and ‘7"2/3,1 For the drift parameter 8, = (8], ),
we have

1 . ’
G = [ o(-6 =B+ G- B0 =01 - 7).
R a

where 6, = (o, B)). If B} # 3, and ¥} = v;, then

G B B) - G BB = 01 -9 =0,
and [H2] does not hold. If ¥} # 3, then
G BB - G B ) = ﬁ—o(ﬁ — ) £ 0,

and the test T;B , 18 consistent according to Theorem 3 when |8} — 55| is fixed. Consider the case where
|87 — B5| shrinks. Thus, we consider the SDE

t
Xo — f BiXs—yDds+a™W,, te [0, 7°T),
X, = O
Xpr — L Br(Xs —yy)ds + o (W, — Werp), te [T, T1,
B

where B, = (Bo,0)", di = (di1,di2)", Be = B ¥})" = By + Updy, which implies that [I2] holds.
Furthermore,

,30)(6111—0'21) Bo
1N B ).
dy - dos (dip—dro)

T

1
IE(_X + %0, Bo)dt(o- gy ()(d) — dy) = (0,

o a
Therefore, if y changes and 8 does not change, then [14] holds, and the test 7 lﬁ , 1s consistent. However,

when S changes and y does not change, [14] does not hold.
Since

1 _ A/
H@.B.B) = — fR ( (xﬁ,”)(—(ﬁ’r—ﬁ'>x+<ﬁ7yi‘—ﬁ'7'>)duef(x>
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_ 1 (1 =B1BD2 =By, - 7’)2)
a? B ;=7

and

H(a', B, B) — H(a', B B) = B (—(01*)2((,3*{)_l — B2 = =) s - 27’)) ,

(a)? B =7)
we find from g’ > 0 that H(e*, B, B") — H(a*,B5,8) # 0 under y; # ;. It also holds that under
By # B and y| =5,

* % / * %k / ﬁ, 1 1 1
7-{( ) s )—7‘{( N N ):———*——*()?50.
«.pp R 2(ﬁ1 ,82)0

Hence, the test 7 f , 1s consistent.

If a(x,@) = o(x)c(@) foro : R? - RI@R?, ¢ : R? —» RY @ R?, then [F2], [G1], [G2](a) and (b)
are satisfied because the functions which appear in them do not depend on x. Therefore, we find that
the Ornstein-Uhlenbeck process is an example of a model that satisfies the conditions in Case A,.

Hyperbolic diffusion model
We consider the hyperbolic diffusion model

.

]dl +adW,, Xy = xo, (A4)
V1+ X2

dX, = (:3

where o > 0, € R,y > |5].

We study the consistency of the tests 7,* and ‘T]ﬁ , When the change in the parameter is small. Let
b(x,B) =B —vyx/ V1 + x? and a(x, @) = a. From (A.2), the test 7, is consistent when |a} — &;| — 0.
Next, we investigate the consistency of the test ‘Tlﬁ , In Case Ag. That is, we consider the SDE

! *Xs
Xo+f(ﬁj—71—2st+a*W,, t € [0,7°T),
X, = 0 \/l+i(s

Xt [ By = Y

T e\ T xe

where By = (Bo. v0)", di = (di1,dk2)", Bi = B}, ¥;)" = By + 9pdy, which implies that [12] holds. The
invariant density of the solution in (A.4) is (x) = m(x)/M, where

m(x) = exp (% (,BX —yVI + xz)), M = Lm(x)dx.

We then have

st + &' (W, = W), te[dT,T],

f Opb(x, B)m(x)dx = 1, f 0,b(x, B)m(x)dx = —é.
R R Y
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Therefore

1 1
f —0gb(x, By)dpa gy (X)d1 — dy) = — ((dl,] —dyy) — ﬁ—o(dl,z - dz,z))- (A.5)
a a Yo

R

In the following cases, [14] holds because equation (A.5) does not equal O:
(1) B changes and vy does not change,
(2) Bo # 0, y changes and 8 does not change,
(3) Bo>0,d1 —dr1 <0 (resp. >0)and d,, — dp, > 0 (resp. < 0),
4) Bo<0,dy1 —dry <0 (resp. >0)and d;, — dr, < O (resp. > 0).

Finally, we confirm that the hyperbolic diffusion model is an example of a model that satisfies the
conditions in Cases B, and Bg. It was noted above that [G1], [G2](a) and (b) hold. Since b(x, B) and
0.b(x, B) are bounded, we see from Remark 3 that [G2](c) holds. Because of

1
I (x, a. By, ) = —((,81 —B2) - (1 = 72)

a?

X )2
I+ a2/

where B, = (B, )" and —1 < x/ V1 + x2 < 1 for x € R, we have sup, [[’(x,a*,8;,85) > 0 in the
following cases:

(M 7 =7
(2) ¥y #y;and By =5 < =(y] = 73),
3) i #rv,and B] =B, > ¥ =75
and then [K1] holds. Furthermore, we see from boundedness of x/ V1 + 22 that

sup (|0a(x, . B1. )| V 05, TP (x, . B By)| V |05, TP(x, . B, By)]) < C.

xX,.By

sup <C

x,a.B

1
— 3gb(x, B)(b(x, By) = b(x, B))
04

and thus [K2] holds. Therefore, we find that the hyperbolic diffusion model is an example of a model
that satisfies the conditions in Cases B, and Bg.
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Appendix B

This chapter provides the proofs of the results of Chapters 2 and 3.

We set the following notations.
1. gi] = U[{Wv}vgf_l]-

2. For a measurable set A and an integrable random variable X, we define
E[X :A] = fX(w)dP(w).
A

3. For a function f on R? x ®, we define f,_,(6) = fX, ,,0).
4. We define

A®x® = Z Al oyl forAe R @--- @R, x e RY,
Lo
I peosli=1 k

Proof of Theorem 1

We first prepare some auxiliary results. Afterwards, we show Theorem 1.

Lemma 1 (Kessler,1997). Suppose that [Al]-[A4] hold. Then for L,,...,l, € {1,...,d},
(1) Bol(AX)"9" 1 = hubl |(B) + Ri-y (),
(2) Bol(AX) (AX)2I9" ] = hy A2 (@) + Rizy (D),
(3) Bol[T1y(AX)19" 1 = RAALPA (@) + Al PAZ (@) + AP AR (@) + Riy ().

Let

&2
n =Tr (Ai__ll (CY*)(A)h(l) ), k(x,@) = 1Ja™ ' (x,@), & = k(@) AX = hybioy(B)),

& = Opbi (B AL (@) (AKX = hybisi(B)).

Lemma 2. Suppose that [Al]-[A4] hold. Then,
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(1) Bo[mil9,1 = d + Ri-1(hy),

(2) Bp[}19] ] = d® +2d + Ri-1(hy),

(3) B [&19] 1 = Ri-a (),

(4) Eg (19" ] = dhy + Ri-1(hy),

(5) B[4l 1 = Riea (),

(6) Eo[&i¢]19" 1 = hudpbi1 (BT AL ()bt (B*) + Rizi(hy).

Proof. (3) and (5) are obvious. We have from Lemma 1 the result that

Eo [:19",1 = b, Tr (A} (@")Ep [(AX)®*19] 1) = d + Ri_y(hy),

d 4
Eg* [nflglril] — h;Z Z (Ai—_ll)ll,lz (Ai—_ll)ls,l4 (a'*)Eg* [
j=1

ly,..,04=1

=d*+2d+Ri_\(h,),
Eo [£19 1] = ki (@")Eg [(AX = hybisi (B)AX = hubioi BTG 1k (@)
= ki1 (@) (hAi (@) + R (B))K] (@)
= dh, + Ri_{(h),
Eo [G4T197 1] = 8pbioi (B AL (@B [(AX = hubiy (B )19 VAL (@) Dpbiet (BY)
= Opbi1 (B) AL (@) (AL (@) + Ricy ()AL (@)Bpbit (B7)
= hyBbi1(B) A7 (@)0pbi1 (B) + Rii ().
O

Lemma 3 (Song and Lee, 2009). Suppose that [Al], [A2], [A5] hold and a function f on RY x ©
satisfies

(i) f is continuous in 6 € ® for all x € R,

(ii) O.f exists and f,0.f are of polynomial growth in x € R? uniformly 6 € ©.

Moreover, if nh;, — oo for some 1 < r < 2, then under Hg (or Hj and Hg) as nh? — 0,

Zf(x,, 0= [ ot 0] S

max sup|—
[nl/r]<ksn ge@

Lemma 4. Suppose that [Al], [A2], [AS5] hold and f satisfies the conditions (i), (ii) in Lemma 3.
Then, under Hy (or Hy and HB) as nhz — 0,

k n
- max sup Zf(X,[ pO) = Zf(Xt[_l,Q) = op(1).
i=1

n 1<ksn ge@
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Proof. Under nh, — oo and nhﬁ — 0, there exists 1 < r < 2 such that nh) — oco. Since it follows
from Lemma 3 that

max sup —

1<k<[n!/"] ge@ M Zf 10) - = Zfz 1(0)

1 [n'/] [nl/r] n
< - Z sup | fi—1(6)] + Z sup | fi-1(6)]

‘=] 0<O n = 06

1/r 1 (n'/"] n
- [nn ][[ 7 Z sup lfi1 (D) + = Z?&me 1(9)|] = op(1)

=1

and

max sup —
[n'/)<k<n ge® N

Zf (9)——213 10)
k

—Z 1(9)——Zf 1(6)
i=1

= max sup-—
[n!/r]<k<n ge@ N

=1

k

1 1 <&
k§ f1(0) - f £Cx,0)dug (x) — ;§ f1(0) + f £Cx, 0)duge (x)
Rd i=1 Rd

< max sup
[n'/r]<k<n ge®

i=1

k

Z fia(6) - fR G 0)dug ()

i=1

a.s.

<2 max sup|— -0

[n!/"1<k<n ge®

b

we obtain

— max sup
n 1<ksn geg

Zf 1(0)——Zf 1)
Zf 1(0)——212 1(0)

1
< — max sup + — max sup
N 1<k<(n'/"] ge@

N [nVr1<k<n 9@

Zf 1(9)——21‘ 1(6)

= op(1).

O

Lemma 5. Suppose that [Al]-[A5] hold and f satisfies the conditions (i), (ii) in Lemma 3. Then
under HY (or H and H’g) as nh? — 0,

1
T max Zf(Xz, LONAX) - = Zf(X,, LONAX)] = op(1), (B.6)

k
% max | > f(X,.,,6)(AX)" (AX)" - Z F X 0WAX)" (AX)2| = op(1). (B.7)
-7 =1
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Proof. We first show that

1 a AX AX)
s;”:;g%;ﬁme)( ) ZEQ[ 1<9>( Xl ]—OP(D (B.8)
Let
AiX)
e (B2 (B0 ) S

Because it follows from Lemma 1 that E,- [|Mi|2|€4i’i J=Ri_ (h;l, 6), we obtain from Theorem 2.11 of
Hall and Heyde (1980) the result that

1 1 1
By | max IMUP < —[Ee [Z B M9 + By | max (M) ]] =0,
which implies that SV = 7! max <jen Ml = 0p(1).
Next, we show that
1 £ AX)
S? = — max Z fi-1(6")Eg [( ) 74 1] —k f f(x, 096 (x, 85 dpg (x)| = op(1). (B.9)
n 1<k<n P Rd

We have from Lemmas 1-4 the result that

1 k
8P == max | > fii(@)bL,(B) + Rii () — k f F(x, 690 (x, B )dpe (1)
= R4

n 1<k<n p
1 . 1 .
< - max Z fir1 0D, (B") = k fR , f(x,6)b'(x, B")dug (x)| + , max ;Ri—l(hn)
1 £ k
< s D S @) = 2 ) S @b )
+ -~ max ;Zf OV B~k [ 085 () + 0nCD)
~ max Zf, (O, (B) ~ ~ Zf TCRLY)
+- Zﬁ_lw*)bf_](ﬁ*) = | £ 6 B dug ()| + 0r(1)
i=1 R?
= op(1).

Hence, we obtain from (B.8) and (B.9) the result that

1

Zf 1 )(AX)I——Zf 1O)AXY

sks
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< max Zf (@ E k[0 e 0

e e PO 0H ) ()= Zf S
< max Zﬁ_lw*)% k[ 7 e )

b [0 () - Zf, ol
< max Zf YEX [ s e o

This completes the proof of (B.6). In the same way, we have (B.7).

Proof of Theorem 1. (1) Let

X\ ¢ AX)(AX)"
= (4200 S = 3 ity CEEEES

h
h h,b=1 "

Since it follows from the Taylor expansion that
AT @) = (A7 (@D + 0,(AT (@)@ - ) + (@ — ) AL (@ - o),
where
1
AT = f (1 - wd (A7 (@ + u(@ — )12 du,
0

we have

< AX)T(AX)"
ho= D) ar e R EAT

I1,h=1 h”
1 < (AX) (AX)"
=0+ |— 8 (A7) (@)l 2 A2 5 —
n+(\/ﬁh;1 (A7 (@) > )«/ﬁw o)

15
+ V@ —a™) ( Z ﬂlllz(AX) (A:X) ]\/ﬁ(&—a)

l1,h=

m = V@ — a) + V(@ — ) o i@ - ).
\n n
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Therefore, it is enough to verify

1 STLASEE
max| » n7;——= » ;| = sup [B(s), (B.10)
2dn 1sksn Zl 1 n ; 7 | O<v£)l !
—{%Z%l——Z%, = op(1), (B.11)
3 max Z%l - Z%l = op(1) (B.12)

for the proof of the first statement of Theorem 1. Thereafter, we show (B.10)-(B.12).
Proof of (B.10). We just show

[ns]
o D i=d) > Bi(s) inD[O, 1] (B.13)
i=1

because it follows from the continuous mapping theorem that

1 <& k1 <
Z --Zm {2&’272(’7"“’)7%2@"—‘”‘

[ns]

_ gl L
- o0 | 2= 0= B Y- ‘

0<s<1

Un(s) =

max
2dn 1<k<n

= sup [U,(s) — @(L[ (1)‘

0<s<1

d
— sup [BY(s)|

0<s<1

when the convergence (B.13) holds true.
Let us prove (B.13). First, we obtain from Lemma 1 the result that

ZEa[m dig;,] ZRZ ) = x2S R (1) = o) (B.14)
i=1

We next show

[ns]
Z(n, d — By [n; — d|9", ])—>]EB1(s) in D[O, 1] (B.15)

V2dn “=

in order to complete the proof of (B.13). Since it follows from Lemma 1 that

Eo| (i — d) = Byl — dIF],1)°

G| =2d+ Ris(h),  Boln!197,1 = Ria(D),

[ns] [ns] 1 [ns]

n n . P
ZEH (1= ) = Bl = A D92 | = =25 ;@dml_](hn))ﬂ
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for all s € [0, 1], and

[ns] [ns]
— > Bo |0 —d =By lni - A9 D19 | < Z By [ +d* + R (BDIFL ]
i=1 i=1
1 [ns]
= — > Ria(1) = op(1),

i=1

we obtain (B.15) from Corollary 3.8 of McLeish (1974). This concludes the proof of (B.10).
Proof of (B.11). Noting that

d
AKX (AX)"
= 3 aua oy B R

l1,h=1

we have from Lemma 5 the result that

Z%,——Z%,

Z Bu(AT @D X A = 3 3,47 @) AX (40"
i=1

- max
n 1<k<n

Proof of (B.12). Because of a* € Int®,, there exists an open neighborhood O, of a* such that
O, C Oy4. Since it follows that on Q, = {& € O},

d d
(AiX)ll (AiX)lz ~ (Al'X)ll (A,‘X)lz
7_{ i = 1.1’12— < 82 Al ll’lz AX) (AX)"
™ ll’lZFlﬂl_l o - zl,lzm fél@gl (A (@) h,
and
1 n d B (AiX)ll (AiX)lz
Bo |5 D, D, Sup (A (@) AL
n i=1 I1,b=1 €0y .
/
1 n d 1/2 (AX)II(AX)IZ 2 1
o i=1 11; ’ [SSIN (A 1( o | ] ’ h, ~ pl2 -

we have from [B1] the result that for all € > 0,

1 n
Py [m Z |H>i| > 6)
i=1
1 < 1 <
< PH* ({m Z |7_[2,i| > 6} N Ql’l) + Pg* [{m Z |7'[27i| > 6} N Q;]
i=1 i=1
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(AX)"(AX)"

+ Py (Q
I o (€2,)

Ze}ﬂﬂn

IA
=~
%
—_—
—
—
=
U

=5 0. 2, Sup A @)

=1 I;.la=12€®a

n d
1 (AX)"(AX)"
<P,|— 62A b | 22222 777 1 s el + P (QF
R e G
1
S —5 +Pe() = 0

Hence we get n=>/2 37 |H,,| = op(1) and

Z%,——Z%,_ /zlrg%(Zmz,H Zwm]

< W D 1H,1 = op(1).
i=1

— max
n3/ 2 \<k<n

(2) (a) Notice that

n [nt’] 1 n -~
Ty = yr < fi — — il = = 7'{n
"“N2d |1 & ;" 24"
and
n [n74] n
1 . [nT,] 1 5 . n—|[nt)] 1 .
- Z ni = " ni + " ;.
oS nInti] n n-ntg] i=[nTy]+1
Hence it is enough to show
1 [nT}] P
] ; i = F(a}, @), (B.16)
: Z - Fas, ) (B.17)
—_— i = Flag, a .
n— [n7e] n 2

i=[nt}]+1

because it holds from (B.16), (B.17) and [C2] that
1 < P
_ Ai k *’ ’ + 1 _ k *’ ’
. Zln > (@) + (1 - T)F (@5, 2)

and

| = (1= )T (@f.) - F(a5.0) # 0,

Y
3
Il
5
-*
*
d
[E—
§>
|
S| =
M:

a] i=1 i=1

which implies that P(7," > w(¢€)) — 1 for e € (0, 1).
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Let us show (B.16). We find from the Taylor expansion that

AX & AX) (AX)?
fi = ( A o) BX)” ) + Z f Aa(A7 (@ + u(@ - o)y BX A oy
h =10 h,
=1 + M@ — ).
Since we have from Lemma 1 the result that
[nT}] [nT}]
*] Z Eo: [n1197,1 = *] Z Tr (A7 (@)Aii(@}) + Rii(hy))
E f Tr[A™ (x, @)A(x, @))lduo; (x) = F (@], @)
R{l
and
[nT}]
2 n
W Z Eo: 719241
[nt,]  d
1 . AX)"AX)2(AX)ANX"|
= e r 0 2 Z (AL @) AL (@) By, —~ gL,
i=1 L.Lh=11314=1 n
1 [nT}]
=— Ri_1(1) = 1),
T Z‘ 1(1) = op(1)
it holds from Lemma 9 of Genon-Catalot and Jacod (1993) that
1 [nT}] P
i = Faj, ). (B.18)

[nTs] ; 7

i 1" 1n2.: = Op(1) the result that , (& — @) =
op(1), which together with (B.18) yields (B. 16) In the same way, we have from @ = o under
[n7},] + 1 < i < n the result that (B.17), which completes the proof.

(b) Note that
n2 | 11 [nT%]
TI> 2 l— M — H,
" 2d |nd, ; I n m9 | :

By the Taylor expansion,

(AX)®
h

n

1
i = M3, + Mai(& — @) + f (1 - u)d;Tr (Ai_—ll (@ + u(@ - ap)) )d” ® (@ =)™,
0

where

( A X)®2

(A; X)®2 ))H‘

n

mi = Te(47 @) Jo i = (1 (4700447 00)

n
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Therefore we have from [D1], [D2] and E[/;'(A;X)®?] = O(1) the result that H, = Hs,; + Hy 95 (6 —
) + op(1), where

n [n7{] n
[nT¢]) 1 . [n7¢] 1
Hsi = iz =1 - o i~ is
3, Z C3,i1]3, ( " nd, ; 3, n nd, Z 3,

i=1 i=[nt?]+1
- e\ 1 1

Hai = Z Cailai =1 - ——| = Z Nai— - Z N4
. n Jné n o n.
i=1 i=1 i=[n7t?]+1

Because of Ey:[173,19" 1 = d + [Tr (A 0pAi1 (@) (@) — a0) + Ri-i (9, V hy), El3,;] < 1 and [D1],
we have

n [n7{]

N 1
Y extmig = (1- ) 2 DT 0, a7 =

i=1
[nT¢] 1

n

[Tr (A‘lﬁafAi_l(ao))]lﬁgl(ai —ap) + op(l)

i=[nt¢]+1

T
5w - e [ (T apac a0 b 9) (@1 - 2
R4

and )7, C;E[U%ﬂ%ﬁ N E) 0. Similarly, it follows from Ea; [74419" 1 = d +[Tr (A™'0,A,_1 ()] (g —
@) + Ri-1(8% V hy) and E[[na,*] < 1 that

n

P
Z c4, Elna 92,1 — 0,

i=1 i=1

P
Eln 19,1 = 0.

1

M=

2
From Lemma 9 of Genon-Catalot and Jacod (1993), we obtain
P 1 T P
Hs; — 75(1 - Tf)(f (Tr (A7 0, A(x, ao)))ledﬂao(x)) (c1—c2), Hii— 0.
Rd

Hence we find from [D3] that H, converges to a non-zero constant in probability, which implies
P(T" > wi(e)) — 1. O

Proof of Theorem 2

The following lemma presents a sufficient condition to specify the asymptotic distribution of the
proposed estimators, which can be identified if (a) and (b) of Lemma 6 are fulfilled.

Lemma 6. Let (1 : 0y, 6,) be a contrast function, and let 81, 0, be estimators of 0y, 6,, respectively,
and let T, = argmin, o ;00 (7 : 01, 92) be the estimator of T*, and let H,,(v) =Y, (" +v/r, : 0., @2) -
Y, (t* : 0y, 6,). If there exist a positive sequence {r,} with r, — oo and a random field H(v) that satisfy
the following conditions
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(a) r,(T, — 1) = Op(1),
(b) Forall L > 0, H,(v) - H(v) in D[-L, L],
then r,(3, — 7°) ~ argmin, . H(v).
Proof. Letv' = argmin H(v). For all x € R,
P(r, (3, — T) < x) < P(rn(%n T <x (b -t El-LLL inf 00> inf H,,(v))
FP(ry (e —7) ¢ [-L, L]) + P( inf B,(v) < inf Hn(v)). (B.19)
ve[-L,x] velx,L]
If r,,(t, — ) € [-L, L] and inf e, H,(v) > inf e, 1 H,(»), then x < r,(%, — 7*) < L. Therefore, we
find that
P(rn(%n ) <x -t e l-LLL inf B,0)> inf Hn(v)) -0
which together with (b) and (B.19) yields

Tim P(ru(n — ) < %) < sup P(ra(3n — 7°) & [-L, L]) + P( inf HE) < inf H(v)) (B.20)

neN €[-L,x]

Since

P(ve%anx]H(v) < 1nf H(v))<P( %an ]H(v) < 1nf H(v) viel[-L,L], v >x)

+ PO ¢ [-L, L)) + P(vT < x),

P( inf H) < inf HO), '€ [-LLL v >x)<P( L<vi<xvi>n=0
Ve X
we obtain from (a) and (B.20) the result that as L — oo,

lim P(r,(%, — ) < x) < POV < ).

In the same way, we have lim | P(r, (%, —7") < x) > P(v' < x) and thus the proof is complete. O

In Case A,, define DI (v) = I@‘n(v) — F,(v), where

B0 = @, (124 25 ) - 0, (2 0,
(07

() =@, (Tgf + : &1,&2) — @, (17 a1, a).

v
ng?
Lemma 7. Suppose that [Al]-[AS5], [El], [F1] and [F2] hold. Then, for all L > 0,

sup D) = 0

ve[-L,L]

asn — oo,
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Proof. We assume that v > 0. Since
1
Fi(@) = Filay) + 0o Fi(ap) (@ — ap) + f 0o F iy + u(@y — 0))du ® (& — )™,
0

[E1] and 92 — oo, we have

[nr‘f+v/19‘zy] [n‘ri’+v/19§]
D= Y (Fi@) - Fia)— . (Fiai) - Fi(a3)
i=[n72]+1 i=[ntd]+1
[n7d+v/82]
= Z (O Fila)) (@) — ) + 0, Fi(a3)(@: — @3)) + op(1), (B.21)

i=[nt¢]+1

where Y,(v) = op(1) denotes sup, o, |Y.(v)| = op(1). By Theorem 2.11 of Hall and Heyde (1980)
and E,: [0, Fi(@p)I’] < 1, we have

1 [VlT:-FV/ﬂg] 2
Eq; | = sup (00Fi(a’/t)—Eaz[aaF,'(a/ZNgi’i 1])
n yefo,L] i=[n]+1
1 [nt+L/9%] 1
< - Bo; [|6aFi(aZ) — Eos [0 F i1, ]| ] < ? 0.
i=[nt¢]+1

Moreover, we see from Eq; [0 Fi(@)I9" ] = EY | (ao)(a5 — ap) + R;_1(92 V h,) and [F2](a) that

[n7%+v/92]
sup Eo; [0 Fila)IG 1]l — ]
VEIOLT | 241
[m’ﬂf+v/z92 [nT? +L/1?2
2
< sup B (o) la — alllax — o] + op( Z 92V h )
vel0,L] i=[nt2]+1 i=[nt¢]+1

1 1 h,
=0 vV —V = op(1).
( NN wwz) o)
Therefore, we have

[n72+v/92]

D duFilap)an - ap) = oe(1),

i=[nt¢]+1

and we obtain from (B.21) the result that sup, (o ;; D5 (V)| 5 0. By a similar proof, we see sup,¢;_; o; |D;, (V)] 5
0 and this proof is complete. O

Lemma 8. Suppose that [Al]-[AS5], [El], [F1] and [F2] hold. Then, for all L > 0,
F,(v) — F(v) in D[-L, L]

asn — oo,
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Proof. We consider v > 0. Let

[n‘rf+v/19§] [n‘rff+v/19(2y]

1

Fi,(v) = 0 Fia3) (@) —a}), Fa,(v) == P Fi(a;) ® (a] — a3)®.
2

i=[nt¢]+1 i=[n7i]1+1
By the Taylor expansion and |o] — a5| = 9, we have

[nT‘*’+v/l9§]

Fa(v) = Z (Fi(@)) = Fi(@3)) = Fi,(v) + F2,u(v) + 0p(1).

i=[n7t?]+1
It follows from E(,; [0, F i(aé)%’.’i ] =Ri_(h,) and h, /¥, — O that

[n‘rﬁf+v/l9§]

D Bul0.Fi@)F 1) - a3) = oe(1).

i=[nt¥]+1

Let M; = 0, Fi(a}) — Eo; [0.Fi(a})I9" ). Because of
Eay [(Mi(e] - 03))’|9,] = 252, (0) @ (@} — 09)* + Ry 2),
By |(Mita; — 03))'|9, | = R (9

and [F2](a), we have

[nt2+v/92] .
* )2 T -
Eo; [(Mi(% - @) g,-’il] - 2eaf EY(x, @o)dpta, (X)eqv = 4T v
i=[nt]+1 R
[n7%+v/92] .
* w\\4
Eo; [(Mia; - ap)'|97,] > 0.
i=[nt?]+1

(B.22)

(B.23)

(B.24)

According to Corollary 3.8 of McLeish (1974), we obtain from (B.23) and (B.24) the result that

[n7d+v/92]
> M@ - a3) S -29)*W() in DI0, L],

i=[nt¢]+1

which together with (B.22) yields F ,(v) — —2J/*W(v) in D[O, L].
Since it follows from Theorem 2.11 of Hall and Heyde (1980),

Eo,[l0Fi(@)’1 s 1, Ba [0 Fia)l% ] = EF (@5) + Riy(92)

and [F2](a) that

[nT%+v/92] )
sup | ) (0}Fi(a3) - B[ Fiay)ld 1) ® (o) — a3)| = 0
vel0,L] i=[n7]+1
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and

[n‘r’j+v/19§]
2 5 5 #\R2 P
sup | Y Byl F(@Ig 1@ (@] - )™ - 27| 50,
VEIOLLT i1

we have sup,cio 11 [F2..(v) — TVl E) 0 and from the continuous mapping theorem,
F,(v) » =2F*W() + J,v in D[O, L].

In the same way, it can be shown that F,(v) 5 F(v) in D[-L, 0]. |

By Lemmas 7 and 8, we find that (b) of Lemma 6 is satisfied. It remains for us to confirm the
validity of (a) of Lemma 6 in Case A,.

Proof of Theorem 2. (1) Let M > 1. Since
Fi(a1) - Fi(az) = Fi(a1) — Fi(@) — Egy[Fi(a1) - Fi(a2)I9,]
+ Tr (A7 (@)A1 (@2) - 1) — logdet A7 (@)A1 (a2)
= Tr (A7 (1) — A7 (@2)) (Aici(@2) — h' B [(AX)P19)41)),
we see that for 7 > 7¢,

[n7]
O,(r 2 @1,0) = Ot s, a) = Y (File) - Fi(@)
i=[nt¢]+1

=M(T:a1,@2) + AT @y, @) +0,(T 1 @, ),

where

[n7]
M) = Y (Filen) = Fila) - By [Fi(@)) - Fia)l¥},]),
i=[nt?]+1
[n7]
A ana) = ) (Tr(Al @)Aii(@r) - L) - log det AT (@)A1 (a2),
i=[nt¥]+1
[n7]
girana) = > Tr((A (@) - A (@) (Aii(@) - By [(AX)PIF])).

i=[ntd]+1

Let DZ’M ={r €0, l]lnﬂi(r —71¢) > M}. For any 6 > 0, we have

P(ndi(2, —10) > M) < P( inf @,(7: &, G2) < Dy(r? &1,&2))
TeD?

nM

Mt : & , A . AT - & ’ N
<p| sup LT BN S pl g ST 00
repe,, Ua([nt] = [n7¢]) D, 2 ([nt] — [n7?])
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loy (7 = @y, @)
+P| sup — >
renz,, Do llnt] = [n72])
= Py, +P;, +P5,.

(i) Estimation of P{ . Let € > 0 be an arbitrary number. Let O, be an open neighborhood of a.
Because 9, F;(«) is continuous with respect to @ € ©,, we can choose @ € O,, such that

[n7]
Mi(T: @y, a,) = Z (@,F,-(d/) ~ Bo; [0uFi @) ]

i=[nt¢]+1

(@ - @)

a=a

If & € O,,, then

[n7]
(0uFi(@) - By [0, @), ])

i=[ntd]+1

IMS (T2 @y, a,)| < sup
a€®y

&y — @,

=: sup M} (7 : @)ll@; — @al.
aEGA

Hence we have

|Ma(T . &’1,@’2)|
PQHSP sup « > 0, |CAL’1—CAL’2| SZﬁa, @1,@’2600
b [TEDZM 92([n7] = [n7¢]) ’

2
+P(@) - ol > 20,) + D P(@x & Os,)
k=1
oy SPuc, M 6,
e, -l T2

2
+ P(l&) — @] > 29,) + Z P(a ¢ O,,). (B.26)

k=1

By the uniform version on the H4jek-Renyi inequality in Lemma 2 of Iacus and Yoshida (2012), we
obtain

sup,, Mj(t: a o, 1
P( s Paco, IM(r - )l )< = y,(M). (B.27)

e, InTl=[nt?] 2 )7 M

Note that {|&; — &»| > 29,} C U,le{|&k —a;| > 94/2}. Since P(|& — ;| > ¥,/2) < €/2 for sufficiently
large n because of 9, (&, — ;) = op(1), we find

P(l&, — @, > 29,) < €. (B.28)

Therefore, we have from [E1] and [F1] the result that P(&; ¢ O,,) < €/2 for large n, which together
with (B.26)-(B.28) yields Pl < ve(M) + 2€ for large n.
(ii) Estimation of P7 . If & € O,,, then

Tr (A7 (@)A1(@2) - 1) — log det A7 (@)A1 (é2)
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1 | )
(2 =1 (@) + 3050 (00) © (@ - ao)

1
+ SO (00,00 ® (@ - 62+ 02| @ (&1 - @)

1 A
2 (5/11[5?_1(00)] + rn,il) & — &,

where A;[M] denotes the minimum eigenvalue of a symmetric matrix M, and r,,;_; satisfies

1 [n7]
SUP el = e Z Fni-1| = op(1)
TGDZ,M nt nt i=[nt¥]+1

from [F1], [F2](b) and (c). We thus obtain

ﬂg(‘[’ . d’l, @2)
TeD“ w 02([nt] - [m’“])

U
Pgn < P( 20, |a1 CAL’2| > ?, Q € an)

I,
+ P(lafl - < —) ZP(CYk ¢ Oy,)

1 [nT]
< P[ inf ———— (541[57_ ()] +rn,i_1) < 86]

TEDZ,M [nT] - [ankl] i_[I’LT(Y]+1
?,
+ P(lal — | < —) Z P(ay ¢ Oy,).

Choose ¢ = % fRd A[EY(x, ap)]dpe,(x) > 0. It then follows from [F2](a) that for large n,

[n7]
1 1
P{ inf ——— — L [E ()] + Fpimt) < 85)
(TEDZ)M [nT] — [nT?] i:[anm 1(2 1 o 1)
1 [n7] 1 [n7]
<Pl inff —— = <185|+P _ nicl| =0
(relg;jM [n7] — [n72] Z Ail=i (@) ) (Tigy [nt] — [nT¢] 4 it )
’ i=[nt¢]+1 nM i=[nt¢]+1
1 i €
< P( sup |[——— A[EL (ap)] = 196 > 5) +—-<e
repe | 07] = [n7e] L 2

Noting that {|& — &;| < ¥,/2} C Ui Hag — apl > 9, /4} and P(|&y — | > 9, /4) < €/2 for large n, we
see P(|&; — @»| < ¥,/2) < €. Hence, we obtain P" < 3e for large n.
(ii1) Estimation of P"‘ If &, € O,,, then it holds from [E1] and &, — &, = Op(¥,) that

Tr (A7 @) = A7 (@2)) (Ai1(@2) - By Bas (A9 1))

ﬁ2
< BT (20) ® (@1 — &) ® (2 — @) + Ri_l(—“ v hnﬂa).
Vn
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We have from [F1] and [F2](a) the result that

o leriaa)
enr, B2([n] = [n77])

[n7]

1
) nt] =[] = 1~ @2l — 5] + Op(Vnd,, v T,
- ngfM [nt] — [nT?] i:[;;]ﬂ (@)l lay — @sllas — ;) p( V12 )
1
:0( Vv m?i\/Tﬁa):o 1,
g, " V" p(1)

which implies that P35, < 2e for large n.
(iv) From the estimations in Steps (i)-(iii), we have

lim P(n92(3% — %) > M) < y,(M) + Te

n—oo

forany M > 1 and € > 0. Hence

lim lim P(n92(3% — %) > M) < 7Te.

M— o0 n—oo

In the same way as above, we see

lim lim P(n#2(t? — %) > M) < 7Te,

M—o00 n—oo

and thus, /‘y_m lim P(n92|#* — % > M) < 14€, which shows

922 — %) = Op(1). (B.29)

From Lemmas 6-8 and (B.29), we obtain

n92 (29 — %) S argmin F(v).
veR
(2)Let Dy, = {7 € [0, l]in(r—7¢) > M}. Similarly, we have P(n(t; —-77) > M) < P{ +Pj +P5, .
where
IMp(z @ &, @)

ANT @ @y, a
P* =P| sup >o|, pro—p(inr TR0 g
’ e, [nT] = [n7¢] ’ Dy, [nt] = [nT¢]

P(;n - P sup |Qn(T . al,Q/Z)l >sl
il Wi e ey

Let € > 0. Since it follows from Lemma 2 of Iacus and Yoshida (2012) that

1 1
P[ sup ————— sup IM(7: a1, )l 2 5) S oy Yo(M),

TED;Y,M [nT] - [nT(:] ake()az
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we find Py, < y,(M) + € for large n.
From [G2](a), if &; € Oa;;’ then there exists ¢ > 0 independent of i such that

'Y, (@, ar) 2T (@, a3) — c(|@) — o] + @2 — a3)). (B.30)
Choose 6 = inf, I'""(x, a7, a3)/4 > 0. It then holds from [G1] that for large n,

ANt ay, & .
p( g TnT00&) o0 &1 € O, Gn €0,: | < P(mfr“(x, o) < 35) +e=¢
reDy, [nt] = [n7Y] : : x

and thus we have P§ < 2e.
Moreover, it follows that for @; € O(,;;,

Tr (A7 @) = A7 @) (4i1(@2) - 17 By [(AX)P1921))
[Tr (A7 (v, n) - A”' (. 02D Ar, @) a2 - o)

< sup
X,k

+hlA (@) = A (@)1Qimt (09)] + Rizy (B)),
and from [E1], [G2](b) and (c) that

loy (7 = @1, &)
Qn_’ S Sup
repr, [nT]=[n7¢]

+ hy sup|A™! (x, 1) — A (x, @2)| sup |Q(x, 0)| + Op(nhy)
0

X,k X

[T (A7 (x, 0) = A7 (3, 020, A(x, @3)] Iz = )

= Op(n™"? V h, vV nh?) = op(1).

We hence see P35, < 2e for large n.
Therefore we have

lim lim P(n(? — %) > M) < Se.

M—o00 n—oo

(3) It suffices to estimate the following probabilities for any €, € [0,1/2) and M > 0.

inf <
ey, 0 ([nt] — [n7Y])

b

Mot @y, @ ) AT 2 &y, a
Pclyn — P Sup | . n(T aq aQ)l > , Pgn — P( n(T (03] (12)
’ repz,, 170 ([n7] = [n7¢]) ’

loy (T = ay, @)
PY =P| su N > 1],
3 [TED;’E,I n~1([nt] — [n7?])

where Dy = {r € [0, 1]|n(r —1%) > M}.
Let 0 < d; < 1/2 — €. For any € > 0, we have from Lemma 2 of Iacus and Yoshida (2012), [E1]
and € + 26; < 1 the result that

2
+ > P ¢ Ouy)

Py, < P[ sup
k=1

Supake()n* |M:f(T Ly, a/2)|
k > —01
Zn
eD?, [nt] = [nTY]
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€1+251—1 2
+ ) P(ax ¢ O,) < 2e

k=1

for large n. By (B.30), [G1], [El] and 6; < 1/2

n
<
M

P, < P(ian“(x, ), @) < 3n_51) + P(Im )|+ 1@ — a3 > —) ZP(ak ¢ 0, -) < 3e
. " c

for large n. Furthermore, if @, € OGZ’ then

Tr (( '_]l(&l) - A'_]1(542))( i—1(an) — h“E *[(A'X)®2|g‘nl]))
[Tr (A7 (x, 1) — A7 (x, 2))0pA(x, a3))], '|a,2 — &)+ Rioi (hy),

< sup

X,k

that is, it holds from [E1], [G2](b) and 0 < ¢; < 1/2 — ¢ that

sup T80 a1y s, = op(1),
Sof (] = [ )

which indicates that P35, < 2e for large n.
Therefore, we have

lim P(n (+7 — 7%) > M) < lim(P},, + P5,, + P§,) < Te

n—0oo

forany M > 0 and € > 0.

Proofs of Theorems 3 and 4

Proof of Theorem 3. (1) By the Taylor expansion, we have
Kf_l(&) = Kf_l(a/*) + @lkf_l(a/*)(& —a") +(a- a/*)Tq(il(d/ —-a’),
where K! = fo (1 — w2k (" + u(@& — ))du. We then find that
d
& =) K @(AX = hbi (B))
=1
d I
= ZKf 1(6Y*)(AX hubit(B") = hu(bi-1 (B) — i—1(,3*)))
|
[ —= D, 0ukl @) (AX = By lw»] Vi@ - o)
=1

+ V(@ - a)( vax hubi- lw»]xf(a @)
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Iy 3
(Vo St o | VTd- )
=1

A 1 ¢ : A A o
- ﬁ(ﬂ—ﬁ*)T[;ZKf_l(a*) fo (1—u)3ébf_1(ﬁ*+u(ﬂ—ﬁ*))du) VTG -5)

=1

1 < h, d * ) ) *
+ [% Z‘ aakf_l(a*)(A,-X)z) V(@ - o) - (% ZZ; duk_ (a )bg_l(ﬁ)] Va(d — o)

d
+ V(@ - o)’ [é > Kiax - hnbl-_mB))l] Vi@ - o)
=1

hl’l P % 1 P sk P %
= &+ \/;al,i VT(B -5 + - VTB - ) QNTB - B
1 A * ﬂ . A _ *
+ WQM Vn(@ — ) + \/ﬁaél,l V(@ — o)
+ % Vi@ - @) @s; V(@ - a).

Therefore, it is enough to show

1 d
T 1o, i——= > &l — sup [BI(s),
AT l<ksn 3 n & 3 0951' 1 ()]
k L
7 19k ;QU T ; Q| = op(1),
T 1sksn ZQZI__ZQZt = op(1),
I’l\/_{1<11?<)§; ZQ3’__ZQ3z = op(1),
1<k<n ZQ4’__ZQ4I = op(l),
T 1<ksn ZQ5’__ZQ51 = op(1).

(B.32) and (B.34) are easily shown by Lemmas 4 and 5.
Proof of (B.31). In order to show

[ns]

V. (s) = —Zgl 5 B,(s) inD[0,1],

73

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)



we verify that

[ns]
Nors D (& —Eel&41) > Bi(s)  inDIO, 1], (B.38)
i=1

1 n
7 DB L6711 = o).
i=1

(B.39) is easily shown from Lemma 2. Moreover, we find from Lemma 2 that

(B.39)

[ns]

Los) ns] 1

Eo [(& — B [E19" DAIY" ] = 22 (dhy + Ria(2)) > s forall 5 € [0, 1],
n d[nslh,

1
T &

[ns] [ns] [ns]

1 1
75 O BolE —Belél! D197 < = > Bolél + Ra()Ig! 1= = )
i=1 i=1 i=1
and thus (B.38) follows from Corollary 3.8 of McLeish (1974).
Proofs of (B.33), (B.35) and (B.36). Since there exists an open neighborhood Oy of 6* such that

Ri1(1) = op(1).

Oy C O, we see that on Q, = {9 € Oy},

d

Qi1 < ) sup (@) sup 1036/, (A)
=1 SO 50
d
Quil < D sup |8ukl_y (@) sup 616,
=1 QE@A
d
Qs < ) sup 1026, (@)I(I(AX)'| + By sup [BL, (B)])-
=1 (1€®A ﬁE@B
Noting that
1 O 1
Eg | sup k]_ (@)l sup 1936}, (B)l| s —= — 0,
n \/T ; ; @€y 1 BeOp - ] ‘/T
Vi < <
D Bo| sup 10u4L, (@) sup I B < Vi, =0
n (IGGA

i=1 I=1

and

n d
1 Z By [sup |aa . 1(a)|(|(A X)'| + h, sup |b, 1(,3)|)]
=1

€@y ﬁe B

~

n i=

S

d
S B [sup 102 (@] (B 407 + 1280 [ sup 16,87 ;
1

nNT ‘= = €@, BeOp
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< -0

2

sl-

we see from [E2] and [B2] that

1 n
- \F Z @l = opD), 2y Z Quil = or(. —= Zl Q5.1 = op(1),

(2) (a) Since

[mﬁ
Xn X = i
\ﬁ | . [[Mﬁ]h Db~

n j=1

and [H2], we just show

| AN . o
i 28 2 OB C g D b 6@ B

i=[n?1+1

We show only the first part of (B.40). By the Taylor expansion,

& =&+ V@ -a) &+ &8P,
where fl,i = K1 (@) AX = hy,bi—1(B)),

1
&2 = % f Dokt (@ + u(@ — @) du(AX = hybi-1(B))
0

i
&= Ki—l(a'*)f Opbi1 (B + u(B — B))du.
0

Let 6, = (a*,p]). Since we have from Lemma 2 the result that

(4] [n7%]
— DETE AR o DETINEL
we find from Lemma 9 of Genon-Catalot and Jacod (1993) that
1 (7] »
——Y ;fu = G(@",B;.8).
Furthermore, it follows from Lemma 1, [E1] and [H1] that
[n7?] [n7?]
— n;&,- ) n;&l—opm
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Hence we obtain the desired result.
(b) Since

Tﬁz

(] 92
1 Z A nTE 11 Z /T
Tﬁﬁ i n Tﬁﬁ é:ll = |Xn|

d

s
Tz

it suffices to show that X, converges to a non-zero constant in probability.
Let &1 = ki-1(@")(AX — hybi1(B')) and

(%] n
n—Z Ci1i =m0 T, Zflz—[nj] : fll

We have from the Taylor expansion, [E2], [I3] and E[|A;X — h.bi_1(B)] < hy'* the result that X, =
X, + op(1). Because of Eg:[£1,19" ] = ki (@)pbi 1 (BOVB; — BO) + Ri—l(hnﬁé), E[£1,] S hy, [11]
and [I2], there exists a non-zero constant ¢ such that

n n

D CEIEE ] D e Y RIS 0

i=1 i=1

Therefore, we obtain from Lemma 9 of Genon-Catalot and Jacod (1993) the result that X, 3> c and
s P
X, — c. O

Proof of Theorem 4. (1) Let ¢; = 9sb;_1(B*) A7 (@*)(AX — hybi1(8)). By the Taylor expansion,

d
8= aub, BYAT @) AKX - hibia (B

l1,=1

d
= " dpbl BYAT @D (AX = hybiy (B)"

l1,=1

d
+hy Y dpbl BYAT @D BE (B = b2 (B)

l1,L=1

1 d
+—= > Opbl (BAAT @) (AX = hybiy (B)* V(@ - o)
\/ﬁ l1,h=1

+ V@ - o) Zaﬁzbh]@ﬂ“’zmx hbi 1 (B)" | V(@ — @)

lllzl
=Ji+h+J3+ 4.

Note that

In1—1
bl (B) = dpb (B + Y T P0ub (BYS(NT BN +T ™18 @(NTB-)"™,

my,i—1
j=1
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where B = Lo [1(1 — ™13 9ubk (8" + u(B — B*)du. Since

d

Z (aﬁ,b’l (B + Z T304 (B & (NT(B - B)™

l,h=

+ T EBL @ (VT - ﬁ*))@’ml)(AZ_l] (@) (AX = hibier(B)"

m1—1
=+ Y TPY o (NTE =) + T™2Y, o (VT - )™,
j=1

d
J=h, Z dpb (BYAZ (@) ——=pb2 , (BINT (B - )

[1’[2 ! ( \/_
~T" f (1 - Wb, (B +u(,3—,8*))du®(‘/7(,3—ﬁ*))®2)

1
—;(Z 0plb (BT A (@) ’2[ Opb2 (B + u(B - B))du)éb(‘/_(ﬂ BN
11,12:1

Z B A (e ))’1%’21(3)—b’ﬂ(ﬁ)))@(«/_ B - BN

11,l=1
\f ZLNTB-5)+ 1z§,,- ® (VT (B - )™,

3

Z Iyl BV (AT (0 ) AKX Vi@~ )
\/_ l1,h=1

b (B)OAL (@))2b2 () V(@ - o)

112

d 1
+ VT -5 > f Op0pb! (B° + u(B - ) du

NAy 5= Y0

X Oo(A7L (@N"(AX = hybio (B))? V(@ — )

_. %zg,,. hfz Vi@ - o) + n\l/h_n\/f(ff—ﬁ*)TZ’s,,. VA - ),
Jy = (@ - @) Z4, Vi~ o),
it is sufficient to show
k
—T max |71/ [Z] G- Z} ;) 5 sup [B)(5), (B.42)
' k
770" max Zy -= ;y =op(l), (I<j<m-1) (B.43)

7



T (mu+D/2 aos
1<k<n

;%QZZ‘SiﬁJ
n7£%ZZ ZZ
n%ﬁ%ZZ ZZ

sz - —sz

n3/2h 1<k<n

T 1<k<n

IS

L
Zz ;;ﬁj
L
Zz ;;%J

Y, = oe(1),

= op(1),

= op(1),

= op(1),

= op(1),

= op(l),

= op(1).

(B.43), (B.45) and (B.47) are shown by Lemmas 4 and 5.

Proof of (B.42). In order to show

[ns]

W,(s) = % D I S By(Gs) inDIO, 1],

i=1
we prove

1 [ns]

7 D TG - By [Gi9, 1) > By(s) inDI0, 1],
i=1

1
VT

D EelZig ] = op(1).

(B.44)

(B.45)

(B.46)

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)

(B.53) is shown from Lemma 2. Furthermore, we have from Lemma 2 and Eg»«[|{i|4lgﬁ = R,-,l(hﬁ)

the result that for all ¢ € RY,

1 [ns]

T Z By [(C‘T.rl/2 (& — Bpr [§i|g£1]))2|g£1]

i=1
1 [ns]
=7 Z CTI_I/Z(EG* [£T1970 ]

i=1

— Eo[4il9" | Iy [{i%ﬁl]T)I_l/zc
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ms] 1 & o * _
= g 22 € T (b (B A @b (B7) + R ()T e

P
— s TV 1V = s

for all s € [0, 1], and

1 [ns]
T2 Z Ee*[(CTI_1/2(§i — B¢ [§i|g,~’il]))4

7z

1 [n5]
T—Z [T TG - B 120 1|9

[ns
Z Gl + R (BIFE 1 = op(D).
=1

Therefore we find from Corollary 3.8 of McLeish (1974) that
[ns]

1
\FZ TG By [G192,1) = ¢"By(s)  in D0, 1],

which together with the Cramér-Wold theorem yields (B.52). This completes the proof of (B.42).
Proofs of (B.44), (B.46), (B.48), (B.49) and (B.50). Since there exists an open neighborhood Oy
of 6 such that Oy C @, it follows that on Q, = {§ € O},

d
Vo< > suplayapblt (B sup (A (@) IAX = hybiy(B))"),
I h=1P<®n €0,
d
Z5< ) (sup s, B sup IA (@) sup 0352, B)l
I1,=1 P<Os
+ sup [9pdpb;., (B)] sup (A7 l(oz»“ %) sup 19gbi2, (B)]
,EE@B QE@A ﬂE@B
+2 sup |030,b! (B sup b2 ,(B)I).
BeOp
d
IZ40 < D supldghl (B)l sup 10,47 ()] sup |b, B)),
Iy,l= 1ﬁ€®3 €0y BeOp
d
1Z5,1< > sup 1059, ()] sup 0a(A7 (@) [(I(AX)"] + by sup b2, (B)]),
’ hb=1 BEOg €@y BB
d
1Z6d < D sup [9pblL, (B)] sup 102(AT, (@) [(I(AX)"] + By sup b2, (B)I).
' I.h=1 BeOp [Z<C BeOp

Since

T H),ZZEH 1Y Q] < (mﬁmz Z Eq | sup 05" dpblt, (B)P sup IA7- L]

i=1 I).l=1 BB
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X Eg-[|(AX — hnbi—l(ﬁ*))lzlz]l/2
1
S (nh;nl/(ml_l))(ml_l)/z -

1 Vh, ~
Ll <s— —0, N B 1Z ] Q4] < VA, — 0,
2l s Qi \/T* ; Z P 11Zh) - Q] Sy —

1 C 1 . 2 Il 2
—n3/2hn ;EG* [lZS’[| . Qn] S l’l3/2h Z Z EG ;up |(9ﬁ(9ﬁ1b, l(ﬁ)l Sup |a“(Al l(a))l 2| ]

i=1 Il;,b=

b

i

X B [[(AX)"F + 1 sup e, @Br) "
B<Bp

A
)
(=]

d
Eo[1Z5,1 : Q] sup |95b!  (B) sup 162(A (@)
n\/T i=1 ’ & nﬁ;h%;ﬂ [ﬁe Op prin ac0y ! ]

X Eg [[(AX)P + 12 sup 162, ()]
BeBp

A

1

— 50,

i

[E2] and [B2], we obtain the desired results.
(2) (a) We show

N

mff]
1 e
— Z‘ &S H@ BB (B.54)

Let {1, = Opbi-y (,L%")TAZ.‘_I1 (") (A X — h,b;i_1(5’)). In the same way as in the proof of (2)-(a) of Theorem
3, one has from the Taylor expansion, [E2], [B3] and [H3] that

(n7] (nt] 1 (nt] b
i = it o 1, ,,-—>7-(a/*, *, .
MZJ( mﬁ]nllgl, p(1) [mf]hn;a @B..8)

Hence we get the desired result.
(b) It is enough to show that

nt?]
s 1 (E, Y.
Zn_T_ﬁ‘B(;gi n g)_)c

i=1

for some ¢ # 0. Let {;; = 6Bb,-_1(,8’)TAi‘_11 (a")(AX — h,b;_1(B)). Since

E[AX = hubi1(B)] = O(hy),  ElIAX = hubii B < By%, Bl S b,
E[£119" 1 = haOpbiy(B) AL (@)3pbi1 (Bo)(Bi = B)) + Rit (hy3)),
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[E2], [13] and [I5], we find that
[mﬁ] [mﬂ

mﬁzg—m Za,mp(l)

Therefore there exists ¢ # 0 such that

1 [nt)] ("] <& ,
79, Z{l,i— ” Giil = ¢

i=1 i=1

s P
and we get Z, — c. O

Proof of Theorem 5

In Case Ag, define Z)ﬁ(v) = Gn(v) - G,(v), where

Go) = W7 = BBl ) = e < Bl ),

Tﬂz

G,(v) = (Tﬁ + W : B, B 07) — V(77 : B1, Bald).

Lemma 9. Suppose that [Al]-[AS5], [E2], [E3] and [J1]-[J3] hold. Then, for all L > 0,
sup [DE)| 5 0
ve[-L.L]

asn — oo,

Proof. 1t is enough to show sup ., |Z)§(v)| £> 0. We have from the Taylor expansion, [E2], [E3],
93] and Eg[10;° Gi(Bla")I < ' the result that

m3—1
. o1 N .
Gi(Bda") = ) 705G Ba) @ (B = B + Ricy (P11,

Jj=0
Since 3,Gi(B1l@) — 0,Gi(Bala) = Op(¥p) and [J3], we see
(v 93] 10 1
D= > Y = (%GB & (B - B - 9GiBila") & (Br - B + Gw(D).

i=(nP1+1 J=1 J:
(B.55)

Because of Eﬁ;[laéGi(,Bla*)lz] < hy,

e/ 1, 93] (71, 93]
> BgldGiBeNg ) = =2k, > EL (@) + oe(l),
i=[nt?]+1 i=[nt?]+1
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and Eﬁ; [%Gi(ﬁla*)] = O(h,) for j=2,...,m3 — 1, we have

7+ 1y 93]
DL aGiBla) & (B - B = de(1). (B.56)
i=[ntP1+1
Therefore, we obtain from (B.55) and (B.56) the desired convergence. O

Lemma 10. Suppose that [Al]-[AS], [E2], [E3] and [J1]-[J3] hold. Then, for all L > 0,
G,(v) > G(v : a*) in D[-L, L]

asn — oo,

Proof. We show G, (v) 5 G(v) in D[O, L]. Let

(e +v/ Ry 93] | (i +v/ 93]
G = ), GBI ~). Cum=3 ) GGBl)eE -
i=[nt?]+1 i=[ntf]+1
It follows from
[+ 1y 93]
D, 9GBile) @ B) - B = ap(D)
i=[nt?]+1

for j > 3 and [J3] that G,(v) = G, ,(v) + G,,(v) + op(1). Since Eﬁ; [8ﬁGi(ﬁ§|a*)|€¢i’jl] = R,-_l(h,%),

Eﬁz[((aﬁG Bola") ~ B, [0sGBla N9 )B; — B) |9
= 4h,Z (@, B3) ® (B} — B + Ry (hy97),
5| (06Gi(Bsle") — By 0GBl NI B, — B) 9] = Ria(hat),

we have

[n‘rf+v/hn192]

> EgldsGiBila NG 1(B; - B5) = ae(1),

i=[nP1+1

2+ hy 93]

> Bu[(@GBaka) - Byl 0GiBla N DB; - B)

i=[nt?1+1

A R e

and

e/ 1, 93]

>, E|(@GiBIe") - By l0sG Bl L] - B)

i=[nP1+1

9] 5 o.
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Hence, it follows that

Gia(v) > =29, *W(v) inD[0,L]. (B.57)

Besides, from Theorem 2.11 of Hall and Heyde (1980), Eg; [IaéG,-(EZIa/*)I] < hy, Eg; [(92G,~(,8§|a*)|§¢£1] =
2h,E] (", B3) + op(hy93) and [T1](a), we see

[n‘r[:+v/h,119/25,]
% * % * n * % P
sup | > (BBGi(Bsle’) - By [3Gi(Bsle)IF 1) @ (B; - B5)| = 0 (B.58)
vel0.L] i=[n?1+1
and
[m€+v/h,,19§]
2 k| ok n % #*\®2 P

sup Z Eg [03Gi(B3la ) 1 © (B) — B3)® — 2T v| — 0. (B.59)
vel0,L]

i=[nt?1+1

Therefore we have from (B.58) and (B.59) the result that sup,¢( ;1 G2..(v) — Jpv 5 0, which together
with (B.57) yields the desired result. O

Proof of Theorem S. (1) According to Lemmas 6, 9 and 10, it is sufficient to prove

lim lim P(T95(# — %) > M) = 0. (B.60)

M—o00 n—oo

Noting that

Gi(Bila) - Gi(Bala) = Gi(Bila) — Gi(Bala) — Eg:[Gi(Bila) — Gi(Bale)¥ ]
+ h,Tr (Ai‘_l1 (@) (Di-1(B1) — bi—l(BZ))®2)
+2Tr (A7 (@) (i1 (B) = By [AXIF] 1) (it (B1) — bioa (B2)T),

we see that for T > Tf ,

P, (7 : B1, Bal@) — W78 - B1, Bal)

[n7]
= Y. (GBile) - Gi(Bale) - Bg[Gi(Bile) - GiBala)l;" 1)
i=[nt?1+1
[n7]
thy > Tr(AZ @) (b (B1) = bii (B2))
i=[nt?1+1
[n7]
+2 % Tr(A7 (@) (hubit (B2) — B [AXIZ! 1) (bio1(B1) = bt (B2)")
i=[nt?1+1

= Mz : B, Bole) + Az - B1, Bale) + (7 : Bu, Bala).
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Let M > 1, DB = {r € [0,1]|TY (r—ff)>M}. For all § > 0, we have

<26

P(TO3(5 — %) > M) <P

qwp WO BB ) Bl e PG BBl
el n03(In7] = [n7l]) Tepﬁq hy93([n7] = [n7])

0T 2 Br. Bal @)
P 5
" ,Z;i ha93([n7] = [n74]) = J
= Pf,n + Pg,n + Pl;,n'

Let € > 0 be an arbitrary number. In the same way as the proof of (1) of Theorem 2, we obtain
P?’n < yg(M) + € for large n, where yz(M) > 0O satisfies ys(M) — 0 as M — oco. Further, using [J1],

[J2](b) and (c), we see that for & € O, and ,@k € Og,,

Tr (AZ (@) Bie1 (B1) = it (B2)®) = (MIEL (@, Bo)] + ruic)IB1 = Bal,

where r,,;_; satisfies

[n7]
1
sup Tﬁ Z Fpi-1| = op(1),
TEDf, [l’lT l’l ]l (n1+1

and therefore we estimate Pg’n < € for some ¢ > 0 and for large n. Since it follows from [E2], [E3]
and B — 3, = Op(9p) that for & € O,- and By € Og,,

Tr (A7 (@)(bi-1(B2) = BEIAXIZ" D (bi-1(B) = iy (B2)T)
h, 192

T

< hnEf_l(a’*’ﬁO) ® (BZ _ﬂ;) ® (Bl _BZ) + Ri—l( \ hz)

we have from [J1] and [J2](c) the result that

cup 0T 2 B, Bl
wef ) n93(In7] = [n22])

[n7]
1 , O
< Sgﬁp ey 20 (@ .B0)|1B> — B3llB1 — Bl + Op(NTO2 v nh2)
€D, u i=[ntf1+1
1
- OP( v VT8 v nhg) = op(1),
VT8,

and we see Pgn < € for large n. From the estimations, we obtain (B.60).
(2) It is sufficient to control for the following probabilities for some ¢ > 0.

P = p| qup MTBLBIDL ) s :P[inf FT BBl
o ,eDa ha([n7] = [n7l]) 2 =, ] — (e
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P = p| gup 1T BB
= - )

where M > 1, D! = {r € [0,1]|T(r - 7) > M}.
Let € > 0. In the same way as the proof of (2) of Theorem 2, we have Pﬁ < yp(M) + € and

PB < € for large n and y(M) such that y3(M) — 0 as M — oo by Lemma 2 of Iacus and Yoshida
(2012) [E2], [E3], [K1] and [K2](a). Since

Tr (A7 (@)(bies (Bo) = hEg [AXIZ D (bics B) = bir (B)T)
[0pb(x, B)TA™ (x, @)(b(x, B2) = b(x, )] |1B = B3l + Re1 ()

< h, sup
X, B

for & € O, and j3; € Oﬁ;, we find from [E2], [E3] and [K2](b) that

LACEY:IN:D)

su = op(1),
by bl =)
which yields Pg’n < € for large n. Thus, we obtain the desired result. |

Proofs of Theorems 6-9

Lemma 11. Let 0 < 71 < 7, < 1, where 7,7, may depend on n. Let {r,}.  be a sequence with
rﬁ([m’z] [nT1Dh, — 0, and {M;}_, be a martingale with EIIM*] < h,. If [ m’l < k, < [n73] and
[nT1] £ 1, < [nT2] on Q, with P(Q,,) — 1, then

[n72]
T M; ‘ = op(1), r,, M ‘ = op(1). (B.61)
i= [n‘rl]+l i=l,+1
Proof. LetS, = r,] Z " nea1 Mil. For all € > 0,
P(S, > ) <P(S, > €,Q,) + P(Q) < € “E[S? : Q,] + P(Q). (B.62)

From the Burkholder inequality, we have

k 2

> M

i=[nt]+1

= O(ri([m'z] — [nt1)h,) = o(1). (B.63)

[n12]
< ) EIMP

i=[nti]+1

max
[nT1]<k<[nTs]

E[S?:Q,] < r’E

Therefore, we see from (B.62), (B.63) and P(€2;) — 0 that the first part of (B.61). According to

[n72] [n72] 2 Iy

2 2
Z Mi < 2[ Z M,’ + Z Mi ],
i=l,+1 i=[nti]+1 i=[nti]+1

the second part of (B.61) is obtained in the same way. O
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Let 6, = (@}, B0, Tk =17 = 2n79, 7Y = 1¢ + 2n79, m,, = [n7] and M,, = [n7Y].

Proof of Theorem 6. (1) Define

_ o__ 1
ul L.n \Jdr, T 1sksin]

and D, = {n®|7y — 7| < 1}. Note that the probability of D, converges to one from [E4], and
n < [n7,] < [n7Y] < [n7,] < M, on D,. Since .E(l) < T(l) < (Ll(l) on D,, if

1,n

£S5 sup [BY(s)l, (B.64)
0<s<1

fu“) — sup [BY(s), (B.65)
0<s<1

then it follows that for any x € R,

lim P(7})) < x,D,) = (sup BY(s)| < x). (B.66)

n—oo 0<s<1

Hence, we obtain from (B.66) and P(D,) — 1 the result that the desired result. From the above, it

suffices to show (B.64) and (B.65).
We first show (B.64). It can be expressed as

Z (B.67)

—"tm

a k& k m, |
:Z“__;”m_n( [m])Z

Let & = 1ja; ' (@)(AX — hybii(BY), My = éri — o [£i19" 1. Note that

&= &+ Ri 1(\/}’7) M + Ri_ 1(\/}7) (B.68)
n n

under [E1] and [B2'];. Since

1 k 1 mn My é?

— max |[—|[1- i

T 1<ksm, |m,, [nz,1] 4 1
" nl—fl my n]—E] h

= ~n ll[nT] my|| —— Mol + 0 ( _n) ’
[nIn] " \/Tmn lZl: 1 \/_ ' "

fan€ [z, ] = myl = Op(1), " \[% = n™% — 0, By [M},] < h, and

[nT, ]

n2—26| mnhn oy
T—m,% =0n ") =o(1),
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we have from Lemma 11 the result that

1 my
T ( nt ] )Zflz = oe(D). (B.69)
In the same way, we have
1 [nT,]
i1 = op(1). (B.70)
VT 15k, [nT,] ,;1 S

Therefore, we obtain from (B.67), (B.69), (B.70) and (1) of Theorem 3 the result that

1
\/ﬁkkqﬂn Z&’_—anlz

which concludes the proof of (B.64). Similarly, (B.65) can be shown.

L) = +op(1) 5 sup [BY(s)l.

0<s<l1

(2) Let
[nT,]+k n
1 5 k P
2
e SR DI T BV Y
d(1 —7,)T === |,z " i=(nT, ]+l
[nT,]+k n
1 A k A
2
| 2 By 2 B
d(l —7,)T sl | i " it )+

Since £(12,)1 < ‘7'1(2”) < (ngzr)l on D,, it is enough to show

1:(2) - Osup1 BY(s), (B.71)
fu@) — sup [BY(s)|. (B.72)
0<s<1

We verify (B.71). It follows that

le - §21
i=[nTy]+1 - [nTn] i=[n7,]+1
Ma+k M, +k
Z ng - Z 521 - Z §21
i=M,+1 M, i=M,+1 i=[nT, | +k+1
n M,
k ( n— Ml’l ) ~ k n .
+ 1- — &t (1 - —) & (B.73)
n—M, n — [n7,] i=MZ,,+1 n— [n7,] - ;}H
It also follows from (B.68), Eg,[M5,] < h, and Lemma 11 that
1 k n—-M,
T = i| = or(l B.74
R TR (e s DR B0
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1 ( k ) &
— max (|1 - — &l = op(1). (B.75)
\/T 1<k<n—M, n— [nt,] i=[;n]+l
Furthermore, we have
1 M, +k 1 M,+k
—— max &l £ — max Myl + op(1) =: Q, + op(1). (B.76)
VT 1sksn-M, i=[n§!—k+l VT 1sksn-My | _ [n;rkﬂ
For all € > 0,
P(Q, > 2¢) < P(Q, > 2¢,D,) + P(D)). B.77)

Here the first term on the right hand side can be transformed as follows.

M, +k
1 n
P@Q, > 2¢,D,) <P|— max  max M, > 2e,D,
AT ntd1<i<M, 1<ksn—M, |, ’
i=l+k+1
1 My, +k
<P|— max Z Myl > €
T 1sksn—M,
i=[ntd+k+1
1 I+k
+P|— max  max Z Myl > €]. (B.78)
N/T [nT¥]<I<M,, 1<k<n—M,, ’
i=[nt¢+k+1

2:1. Noting that ;7 > 2 — ¢, > 1, we see from Theorem 2.11 of Hall and Heyde

(1980), the convex inequality and Eqg,[M3’;] < hj, that

P| — max M| > €l < ﬁEoz[ My, ]
VT 1sksn-M, |, | = T'e i=[nt? ] +k+1
n—-M, 1 M, +k r
e |
k=1 i=[nt¢]+k+1
n—-M, M, +k
B N 2
< Eq, [M3]
r-2r 1—¢ 2 2,
o T7e” Inme] [n;wm
= 0" = o(1) (B.79)

and

I+k
1 )1
P|— max max Mz, > € [l’l1 El]rl’lr
r 2r
1/ [ [nt¢]<Ii<M, 1<k<n—-M, |

i=[ntd]+k+1 I=[nt¢]+1 k=1

= O(n* 479" = o(1). (B.80)
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According to (B.77)-(B.80) and P(D{) — 0, we have Q, = op(1). Therefore, it follows from (B.76)
that

M, +k

1

max
T 1sksn-M,

Moreover, it follows from the proofs of (B.32) and (B.34) that under [B4],

&l = op(1). (B.81)

i=[n7,]+k+1

M, +k n

Z §21 _Mn Z éZ,i

i=M,+1 i=M,+1

5 sup [BYs)\. (B.82)

0<s<l1

1
max

Jd(1 = 7O)T 1sksn-,

Hence we obtain from (B.73)-(B.75), (B.81) and (B.82) the result that

M,+k n
1 ol k A d
(2) 0
= —————— max Eri— ——— &l + op(1) = sup [B(s)|.
b \d(1 = 7,)T 1sksn=My |, Mzﬁl n—-M, i=;1+1 0sssl
Similarly, (B.72) can be shown.
(3) We prove that P(7", SIS wi(€)) converges to one as n — oo under H ),
1,n 1
(a) If we prove
1 [n]
57 2,6 G (B.83)
1 [n7,]
——— > &> 6508, (B.84)
T, - w7 i=[ne1+1

then it follows that

[n7,]
o .
— Z b G BB+ (1~ )G 1B,

Q’
*

and from [H2’]; that

# |
(1- S o 518 - Gl 181 2 0

a1 ["ZT@ ; [nt] ' :
= T — 1,i 1,i
v vdz,T |5 [nz,]
tT| 1 mfé ] 1 ["Lllé P
= e i — i - o,
d |r,7 & gz, &5




which implies P(77,) > wi(€)) — 1. (B.83) can be shown similarly to the first part of (B.40).
We show (B.84). It can be proved that

[n{]

> Ei S G5B (B.85)

i= [nrf]+l

1
-7

with the same argument as the second part of (B.40). We have

[nz,] [n7¢]

1 o 1 A
Av=|———= > &u- > &
(In N TE)T i=[n?]+1 (Ta Tﬁ) i=[ntf]+1
_ [nT ] [nT,] [n7¢]
o -t) e | & 1 o S
< = Z S|+ ————— Z Ei— Z &1
(7, - )? -7 i=[n]+1 (2 =TT i=[ne]+1 i=[nt]+1
n(rt¢ -1 « 1 x
= ( _n) Sﬂ \Qn
(-t -)| -

If we show Sn E) 0 and é,, £> 0, then we have from n (7 — 7,) = Op(1) and (B.85) the result that

A, 5 0 and (B.84). In the following, we prove them.
Set Yi; = kL (@)AX, My; = Yi; — Bo [Y 9" 1. We see from Eei = My, + Ri_i(h,) that

[nT,]
. n_El —n nl—E]h
"= M +0P( n):3 S, + op(1),
i=[nt?1+1
and
1 [n7Y] 1 [n7¢]
Qn = ? é:l,i = 7 Ml,i + OP(n_El) =: Qn + OP(I)
i=[nz,]+1 i=[nz,]+1

on D,. We have from Lemma 11 the result that S, : 0 and Q, L 0. Hence, we obtain the desired
results.
(b) According to

[ [nT ]

Zflt_ T é

(1)

l’l_

AR
£ —Zfl,i— ——Zfl,i ,
dr, |T0s 4 [nz, 1 Tg, 4

it is enough to prove that there exists ¢ # 0 such that

1 o] n‘rﬂ] 1 st P
(1 _ o -2 B
K= 75 ;a, Tz 179, ;fu—w’- (B.86)
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Note that there exists ¢’ # 0 such that

(nt]
1 A [mﬁ ] 1 s P
KD = — E ;- — E ; !
" Tﬂﬁl é:l’ [an:] Tﬂﬂl fl’ e

i=1 i=1
in the same way as the proof of (2) of Theorem 3 under [14’],. Meanwhile, we see

1 2
Ay =150 = K2

BTN o PR PO DR 17 B [ L o
= Ta i~ it n - i
[nT,1T0 |&° &iF [nT,]  [n72]| T |&0°"
el |Ind] ] «
= Qn +n | — - —|S,.
[nz,] [nT,]  [n7¢]
Here, it follows from [16]; that
Qn = 31,1‘ = — Ml,i + OP( - ) =: Qn + Op(l)
T8, i=[nz, 1+1 T i=[nz, 1+1 n,
and
ne (7] 1
T, ; ) P(”Elﬂﬁl) oD

on D,. Applying Lemma 11, we obtain S,, = op(1) and Q, = op(1), thatis, S, = op(1)and Q, = op(1)
Consequently, we have from n* nri] _ ]

e 1~ | = Op(1) the result that A, % 0 and thus (B.86).
Similarly, the consistency of the test 7’1(2 can be shown.

Proof of Theorem 7. (1) Define

max

1
\/In_T 1<k<my,

1.
Z3] = 5 OH(Opbia BT AL @K — hbia (B,

1 _
‘£2,n -

B=Pi
Nl = Z{ - BalZ9)
Since Ey, [INl[i.]|2] < h, and
LS EY! . [n
ki = Z Tj/ZNIE,jiJ ® (VT (B — B)* + Ri—l( ;n)
=0
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under [B3], it can be shown in the same way as (B.71) that

1 ny
(M) _ 72 k. .
L= [ [Z & Za ] +op(1) > sup [E{(s).
(2) Let
@ _ 1

max

Lz’” - ,/(1 -7)T 1<k<n—M,

According to the proofs of (B.43), (B.45) and (B.47), it follows that under [B5],

M,+k k n
-172 5 5
X on 2i ~ Z $2i
l

i=[n7,]+1 i=[nT,]+1

1

d 0
- M — sup [B,(s)].
i=Mp+1 n i=M,+1 0<s<1

Therefore, it can be shown in the same way as (B.71) that -E(zzr), i> SUP(<,<i |B2(s)|.

(3) We show that P(7;)) > wi(e)) — 1 under H{".
(a) If we prove

[n7?] [nt,]
1 %k / 2 k 4
TB Z 1, > W(Q(O) Aribi) (Tt TB)T Z {1, 5 7‘((“(0) Bi2:B1);
T —n e

then it follows from [H4']; that

LS Y e P
— i — Z§1,i (

T [nT]T

@
—n i=1 i=1 Ty

and

P
— 00,

(1) /
7—2,n 2 InT

The first part of (B.87) can be shown similarly to (B.54).
We show the second part of (B.87). It can be proved that

[ne?] [n,]
_ 1 A [mﬁ] 1 3 A
I — § P——— E i
L {T T . [nIn] InT i=1 gl)

—n i=1

[nT¢]
1 Z O o
511 —> 7{(@ ﬁT,z’ﬁl)-
(7 Tﬁ) i=[n?1+1
We have
Ay =|——— Zl,i R — Zl,i
@, -7 (re =TT S
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[n7,] [nz,] [n7{]

n(t¢ — 1) ne . ‘ 1 n .
< = Z il + Z {1i— Z {l,il
(x, - ) -7 =141 (Te - (rr =T =141 =141
n'(r¢ - 1) 9 1 .
— R, + V,.
@, - -] -

To show the second part of (B.87), we verify 7%,1 E> 0 and ‘Vn L 0.

Let
1 . )
2} = 0i(Aba B AL @paX)| . N = 2 - B2,
Tk
noe | ] 1] e
Ul = [J1 1 _ L1
RI==| 2 Ml vh=g| 2, M.
i=[n?1+1 i=[nt,]+1
Since
m1—1

= > NI ® (B - B + Rioa(hy)
=0

under [B3] and [H3’];, we have

m1—1

v qa A . 1_61
Ro< > RIB-BY + op(” -
j=0

hn m|—1 o -
) = Z; RIB, — g1 + op(1),
J=

[l’ng] m;—1 m;—1
v 1 ~ oA . A .
_ ) (/] i —€1y _ [/] _ R
V.= T ,-:[,g H{],z < ;:0 V7B — Bl + Op(n™) = ;:0 V1B — Bil’ + op(1)

onD,. LetE, = {|[31 — Bl < 1}. Noting that P(E};) — 0 from [H1]y, it follows that for all € > 0,
mj 1 1 mi— 1

P(R, > (m; + 1)e) < P(Z RU > mye, D, N E) +o(l) < — Z o, [(RUY? : D,] + o(1),
Jj=0 J=0

m]—l mi— 1
P(V, > (m, + De) < P(Z VU > mye, D, N En)+o(1) < é DBy (VI D]+ o(1),
=0

J=0

Since B, [IN}I’] $ hy, we have Ey, [(R)? : D,] = o(1) and Eg,[(V}/)? : D,] = o(1) for 0 < j <

m; — 1 asin Lemma 11. Hence, we get the desired results.
(b) According to

(OB
Ton 2

n?] [n 7,1
I_l/z [Z J1i— —— fl,i]
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2
Tﬂﬁl

b

T

[ne?] [n7,]
_ 1 A [m'f] 1 3 A
I 12 E i~ e E i
T l’l [Tﬂ 41, [nzn] Tﬁ‘gl e é/l’ }

B oq

it is sufficient to verify that there exists ¢ # 0 such that

] [n7,]

1 A [nT, ] 1
(I _ 2 _ E B.88
K T, & ¥ ]Tﬁﬁl - (B.88)

Notice that there exists ¢’ # 0 such that

[n7%] 7]
1 N [I’lTB R s P,
K, = 9, D N (B.89)
1

in the same way as the proof of (2) of Theorem 4. Meanwhile, it follows from [I3"]; and [I5']; that

’
m;—1

Li= Y NI @B =B+ Ria(hy)

=0

and it can be shown that A, = |(K,(,l) - ‘K,(,z)l 5 0 under [16’]; in the same way as in (a). Therefore, we
have (B.88).
Similarly, it can be shown that P(7". 2(2,3 > w;(€)) = 1 under H 52). |

Proof of Theorem 8. We have

[n7]

Y172 B fola) = Piu(7 2 B, Bala) = Z (Gi(ﬁﬂ(l) - Gi(ﬁ2|6¥))

i=[nP1+1
forff <71t <7¢ and
(ne?]
Wi 2 BrBale) = Wi Brfole) = Y (GilBale) - GiBile)
i=[nt]+1

for T < Tf . Therefore, in the same way as the proof of Theorem 5, we obtain from [J1], [J2’]; and [J3]
the result that

Tﬁé(f"f — ) 5 argmin Gy (v : a(o))

veR

in Case Ag, and from [K1’]; and [K2] the result that T(f"in - Tf) = Op(1) in Case Bg. O

Theorem 9 can be shown in the same way as the proof of Theorem 8.
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