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Abstract
In this thesis, we consider statistical change point inference for ergodic diffusion processes using
high frequency data. Our aim is to provide the adaptive inference for changes in the diffusion and
drift parameters in ergodic diffusion processes, and the procedure of our inference is as follows. We
first consider the change detection of the diffusion parameter regardless of the presence or absence of
change in the drift parameter. If a change in the diffusion parameter is detected, we estimate the time
of the change. If no change is detected, we end the inference of the change in the diffusion parameter.
We then infer the change in the drift parameter considering the presence or absence of change in the
diffusion parameter. Furthermore, we reveal the asymptotic properties of the test statistics for change
detection and the change point estimators. We also give some examples and simulation results of our
test statistics and estimators to corroborate our results.
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Chapter 1

Introduction

We consider the change point problem for a d-dimensional diffusion process {Xt}t≥0 satisfying the
stochastic differential equation (SDE)

dXt = b(Xt, β)dt + a(Xt, α)dWt, X0 = x0 (1.1)

where the parameter space Θ = ΘA × ΘB is a compact convex subset of Rp × Rq, θ = (α, β) ∈ Θ is an
unknown parameter and {Wt}t≥0 is an r-dimensional standard Wiener process. The diffusion coefficient
a : Rd ×ΘA → Rd ⊗Rr and the drift coefficient b : Rd ×ΘB → Rd are known except for θ. We assume
that the solution of SDE (1.1) exists, and Pθ and Eθ denote the law of the solution and the expectation
with respect to Pθ, respectively. We use high frequency and long term discrete observations to infer
the change point of the diffusion and drift parameters. Let {Xti}ni=0 be high frequency data, where
ti = tn

i = ihn and {hn} is a positive sequence with hn → 0, T = tn = nhn → ∞ and nh2
n → 0 as n→ ∞.

The change point problem was originally addressed in the field of quality control and has been re-
cently developed in various fields where changes are of interest, such as economics, finance, genetics,
and medicine. For example, in finance, a diffusion process model is used as a stock price fluctuation
model to make forecasts of stock prices. The stock market records show that all stock prices fluctuate
on a daily basis. Most of them are normal fluctuations as expected in statistical models, but some
of them are abnormal fluctuations and caused by political or economic influences. This abnormal
fluctuations may have an effect on our assumed model. If one ignores this change, the stock price
forecast may be worthless. For this reason, we need to investigate the presence of changes that affect
the model, and if there are changes, when these changes occur. The change point problem plays a role
in identifying this abnormal change.

The change point problem for diffusion processes based on discrete observations has been devel-
oped by many researchers. For non-ergodic diffusion processes, see De Gregorio and Iacus (2008) and
Iacus and Yoshida (2012). Since it is impossible to estimate the drift parameter β for the non-ergodic
diffusion process model, one only deals with the change point inference for the diffusion parameter α.
De Gregorio and Iacus (2008) studied the change point estimation for the diffusion parameter based
on the least squares approach, and Iacus and Yoshida (2012) considered the quasi-maximum likeli-
hood estimator of the change point of the diffusion parameter. As for ergodic diffusion processes, see
Song and Lee (2009), Lee (2011), Negri and Nishiyama (2017) and Song (2020). Because it is pos-
sible to estimate the drift parameter in the ergodic diffusion process model, one can treat the change
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point inference for the diffusion and drift parameters. Song and Lee (2009) proposed the CUSUM
type test statistic for changes in the diffusion parameter based on the estimator proposed by Kessler
(1997) under the assumptions nhp

n → 0 and nhq
n → ∞ (p > q > 4). Lee (2011) and Song (2020) con-

sidered the CUSUM type test statistic for changes in the diffusion parameter based on the residuals
and trimmed-residuals under nh2

n → 0, respectively. Negri and Nishiyama (2017) treated the joint test
for changes in the diffusion and drift parameters based on the Z-process method.

(a) α changes from 1 to 1.5 at t = 150, and (β, γ) =
(1, 1) does not change.

(b) (α, β, γ) = (1.2, 1, 1.5) does not change.

(c) α = 1 does not change, and (β, γ) changes from
(1, 1) to (0.5, 0.5) at t = 250.

(d) α changes from 1 to 1.5 at t = 350, and (β, γ)
changes from (1.3, 0.5) to (1.3, 1) at t = 200.

Figure 1: Sample paths of the Ornstein-Uhlenbeck process dXt = −β(Xt − γ)dt + αdWt.

Our aim is to infer changes in the diffusion and drift parameters from given data. Therefore, this
thesis provides a statistical method for parameter changes in ergodic diffusion processes. Specifically,
we consider the detection of changes in the diffusion and drift parameters, and the estimation of the
time of the change. By using our method, we can infer the parameter changes of the paths as shown
in Figure 1. That is, we can infer that the diffusion parameter changes at t = 150 and t = 350 for (a)
and (d), respectively, and that there is no change in the diffusion parameter for (b) and (c). Moreover,
for the drift parameter, it can be inferred that there is a change point at t = 250 and t = 200 in (c) and
(d), respectively, while there is no change in (a) and (b).

For simplicity, we assume that there is at most one change point for each diffusion and drift
parameters throughout this thesis. That is, we consider the following four situations.
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I. Neither parameter changes.

Xt = X0 +

∫ t

0
b(Xs, β

∗)ds +
∫ t

0
a(Xs, α

∗)dWs, t ∈ [0,T ].

II. Only drift parameter changes.

Xt =


X0 +

∫ t

0
b(Xs, β

∗
1)ds +

∫ t

0
a(Xs, α

∗)dWs, t ∈ [0, τβ∗T ),

Xτβ∗T +
∫ t

τ
β
∗T

b(Xs, β
∗
2)ds +

∫ t

τ
β
∗T

a(Xs, α
∗)dWs, t ∈ [τβ∗T,T ].

III. Only diffusion parameter changes.

Xt =


X0 +

∫ t

0
b(Xs, β

∗)ds +
∫ t

0
a(Xs, α

∗
1)dWs, t ∈ [0, τα∗T ),

Xτα∗T +

∫ t

τα∗T
b(Xs, β

∗)ds +
∫ t

τα∗T
a(Xs, α

∗
2)dWs, t ∈ [τα∗T,T ].

IV. Both parameters change.

(i) Diffusion parameter changes after drift parameter does (τβ∗ < τα∗ ).

Xt =



X0 +

∫ t

0
b(Xs, β

∗
1)ds +

∫ t

0
a(Xs, α

∗
1)dWs, t ∈ [0, τβ∗T ),

Xτβ∗T +
∫ t

τ
β
∗T

b(Xs, β
∗
2)ds +

∫ t

τ
β
∗T

a(Xs, α
∗
1)dWs, t ∈ [τβ∗T, τα∗T ),

Xτα∗T +

∫ t

τα∗T
b(Xs, β

∗
2)ds +

∫ t

τα∗T
a(Xs, α

∗
2)dWs, t ∈ [τα∗T,T ].

(ii) Drift parameter changes after diffusion parameter does (τα∗ < τ
β
∗).

Xt =



X0 +

∫ t

0
b(Xs, β

∗
1)ds +

∫ t

0
a(Xs, α

∗
1)dWs, t ∈ [0, τα∗T ),

Xτα∗T +

∫ t

τα∗T
b(Xs, β

∗
1)ds +

∫ t

τα∗T
a(Xs, α

∗
2)dWs, t ∈ [τα∗T, τ

β
∗T ),

Xτβ∗T +
∫ t

τ
β
∗T

b(Xs, β
∗
2)ds +

∫ t

τ
β
∗T

a(Xs, α
∗
2)dWs, t ∈ [τβ∗T,T ].

(iii) Both parameters change at the same time (τα∗ = τ
β
∗).

Xt =


X0 +

∫ t

0
b(Xs, β

∗
1)ds +

∫ t

0
a(Xs, α

∗
1)dWs, t ∈ [0, τα∗T ),

Xτα∗T +

∫ t

τα∗T
b(Xs, β

∗
2)ds +

∫ t

τα∗T
a(Xs, α

∗
2)dWs, t ∈ [τα∗T,T ].
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Here, we set τα∗ , τ
β
∗ ∈ (0, 1), α∗, α∗1, α

∗
2 ∈ IntΘA, α∗1 , α

∗
2, β∗, β∗1, β

∗
2 ∈ IntΘB and β∗1 , β

∗
2. Hence, we

will study the presence of parameter changes in each situation and consider the estimation of τα∗ or τβ∗.
This thesis is organized as follows.
In Chapter 2, we treat the change point inference for the diffusion parameter. In Section 2.1, we

consider the hypothesis testing problem for detecting a change in the diffusion parameter and present
asymptotic properties of the proposed test statistic. Section 2.2 gives the estimation method of the
change point of the diffusion parameter in Situation III or IV, and shows the asymptotic properties of
the estimator.

In Chapter 3, we study the change point inference for the drift parameter. In Section 3.1, we deal
with the change point inference of the drift parameter in Situation I or II, that is, when there is no
change in the diffusion parameter. We discuss the detection of parameter change in Subsection 3.1.1
and the estimation of the time of change in Subsection 3.1.2, respectively. We also treat the change
point inference of the drift parameter when there is a change in the diffusion parameter in Section
3.2. Subsections 3.2.1 and 3.2.2 provide the change detection method and the change point estimation
method, respectively. Moreover, we consider the case where the diffusion and drift parameters change
at the same time in Subsection 3.2.3.

In Chapter 4, we consider two diffusion process models and conduct numerical simulations in
order to verify the asymptotic behavior of the proposed test statistics and estimators in the above four
situations.

In Appendix A, we provide some remarks on change point inference, such as the estimation
method of the nuisance parameters in change point estimation and models that satisfy the assumptions.

Appendix B is devoted to the proofs of our results.
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Chapter 2

Change point inference for diffusion
parameter

In this chapter, we consider the change point detection and estimation for the diffusion parameter. We
first provide the test statistic for detecting a change in the diffusion parameter. We then show that
the null distribution of the test statistic is the supremum of the absolute value of a Brownian bridge
and the test is consistent. Next, we estimate the time of the change in the diffusion parameter when
a change in the diffusion parameter is detected. We treat two cases according to the level of change
in the diffusion parameter and give the asymptotic properties of the estimator. In particular, we show
that the asymptotic distribution of the estimator is the distribution given in Lemma 1.6.3 of Csörgö
and Horváth (1997) in the case where |α∗1 − α∗2| → 0, see Case Aα in Section 2.2 below.

We set the following notations.

1. For a matrix M, MT denotes the transpose of M and let M⊗2 = MMT. Let Id be the d-
dimensional identity matrix.

2. Let A(x, α) = a(x, α)⊗2 and ∆iX = Xti − Xti−1 .

3. For k ∈ N, Bk denotes a k-dimensional standard Brownian motion.

4. For k ∈ N, B0
k denotes a k-dimensional Brownian bridge on [0, 1], which is defined by B0

k(s) =
Bk(s) − sBk(1). For ϵ ∈ (0, 1), let wk(ϵ) be the upper-ϵ point of sup0≤s≤1 |B0

k(s)|, that is,

P
(

sup
0≤s≤1
|B0

k(s)| > wk(ϵ)
)
= ϵ.

5. LetW be a two-sided standard Wiener process.

6. For x = (x1, . . . , xd) ∈ Rd and f : Rd → R, we write

∂x j f (x) =
∂

∂x j f (x), ∂x f (x) = (∂x1 f (x), . . . , ∂xd f (x)), ∂2
x f (x) = (∂xi∂x j f (x))d

i, j=1.

7. Let Ck,l
↑ (Rd × Θ) be the space of all functions f satisfying the following conditions.

5



(1) f is continuously differentiable with respect to x ∈ Rd up to order k for all θ ∈ Θ,

(2) f and all its x-derivatives up to order k are l times continuously differentiable with respect
to θ ∈ Θ,

(3) f and all derivatives are of polynomial growth in x ∈ Rd uniformly in θ ∈ Θ, where g is of
polynomial growth in x ∈ Rd uniformly in θ ∈ Θ if for some C > 0,

sup
θ∈Θ
|g(x, θ)| ≤ C(1 + |x|)C.

8. Let
P→ and

d→ be the convergence in probability and the convergence in distribution, respec-
tively.

We make the following assumptions throughout this thesis.

[A1] There exists a constant C > 0 such that for any x, y ∈ Rd,

sup
α∈ΘA

|a(x, α) − a(y, α)| + sup
β∈ΘB

|b(x, β) − b(y, β)| ≤ C|x − y|.

[A2] supt Eθ[|Xt|k] < ∞ for all k ≥ 0 and θ ∈ Θ.

[A3] infx,α det A(x, α) > 0.

[A4] a ∈ C4,4
↑ (Rd × ΘA) and b ∈ C4,4

↑ (Rd × ΘB).

[A5] There exists a unique invariant measure µθ such that for any µθ-integrable f ,

1
T

∫ T

0
f (Xt)dt

P→
∫
Rd

f (x)dµθ(x) as T → ∞.

Moreover, for any polynomial growth function f and θn → θ0,∫
Rd

f (x)dµθn(x)→
∫
Rd

f (x)dµθ0(x).

Remark 1. [A1]-[A4] and the first part in [A5] are general assumptions in statistical inference for
ergodic diffusion processes. The second part in [A5] is satisfied if the probability density dµθ(x)/dx
is continuous in θ.

2.1 Change point detection
We first investigate the presence of a change in the diffusion parameter α. To this end, we consider
the following hypothesis testing problem.
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Hα0 : the diffusion parameter does not change over [0,T ]
vs.

Hα1 : there exists τα∗ ∈ (0, 1) such that α∗ =

α∗1, t ∈ [0, τα∗T ),
α∗2, t ∈ [τα∗T,T ],

where α∗1, α
∗
2 ∈ IntΘA and α∗1 , α

∗
2.

We make the following assumptions.

[B1] Under Hα0 , there exists an estimator α̂ such that
√

n(α̂ − α∗) = OP(1).

[C1] Under Hα1 , there exist α′ ∈ IntΘA and an estimator α̂ such that α̂ − α′ = oP(1).

Let F (α, α′) =
∫
Rd

Tr
[
A−1(x, α′)A(x, α)

]
dµα(x).

[C2] F (α∗1, α
′) , F (α∗2, α

′) under Hα1 .

[D1] Under Hα1 , ϑα = |α∗1 − α∗2| depends on n, and ϑα → 0, nϑ2
α → ∞ as n→ ∞.

[D2] Under Hα1 , there exists an estimator α̂ such that ϑ−1
α (α̂ − α0) = OP(1).

[D3] Under Hα1 ,
(∫
Rd

(
Tr (A−1∂αl A(x, α0))

)p
l=1dµα0(x)

)T(c1 − c2) , 0, where ck = limn→∞ ϑ
−1
α (α∗k − α0).

Remark 2. For the construction of the estimators that appear in this thesis, see Kessler (1997),
Uchida and Yoshida (2011, 2012, 2014), Yoshida (2011), Kamatani and Uchida (2015), Kaino and
Uchida (2018) or Appendix A.

By setting

Fi(α) = Tr
(
A−1(Xti−1 , α)

(∆iX)⊗2

hn

)
+ log det A(Xti−1 , α), Un(α) =

n∑
i=1

Fi(α)

as the contrast function of the diffusion parameter, n−1/2∂αUn(α∗) has asymptotic normality. Notice
that

∂αlUn(α) =
n∑

i=1

Tr
[
A−1(Xti−1 , α)∂αl A(Xti−1 , α)

(
A−1(Xti−1 , α)

(∆iX)⊗2

hn
− Id

)]
and

1
√

2dn

[ns]∑
i=1

Tr
(
A−1(Xti−1 , α

∗)
(∆iX)⊗2

hn
− Id

)
w→ B1(s) in D[0, 1],

where Yn(·) w→ Y(·) in D[0, 1] denotes that Yn(·) weakly converges to Y(·) in the Skorohod space on
[0, 1]. Therefore, we define the test statistic to detect a change in the diffusion parameter by

T αn =
1
√

2dn
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

η̂i −
k
n

n∑
i=1

η̂i

∣∣∣∣∣∣∣ , η̂i = Tr
(
A−1(Xti−1 , α̂)

(∆iX)⊗2

hn

)
.

The following theorem gives the asymptotic null distribution and the consistency of the test statistic
T αn .
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Theorem 1. Suppose that [A1]-[A5] hold.

(1) If [B1] is satisfied, then T αn
d→ sup

0≤s≤1
|B0

1(s)| under Hα0 .

(2) If either (a) [C1] and [C2] or (b) [D1]-[D3] is satisfied, then for ϵ ∈ (0, 1), lim
n→∞

P(T αn >
w1(ϵ)) = 1 under Hα1 .

2.2 Change point estimation
If Hα0 is rejected, in other words, if a change of the diffusion parameter α is detected, then we estimate
the time of the change. In this section, we study the estimation problem of τα∗ for the SDE in Situation
III or IV.

We consider the following two cases.

Case Aα: ϑα = |α∗1 − α∗2| depends on n, and as n→ ∞,

ϑα → 0, nϑ2
α → ∞, α∗1 → α0 ∈ IntΘA.

Case Bα: |α∗1 − α∗2| is fixed.

We make the following assumptions.

[E1] There exist estimators α̂k (k = 1, 2) and a constant τα∗ ∈ (0, 1) such that

√
n(α̂k − α∗k) = OP(1), α =

α∗1, t ∈ [0, τα∗T ),
α∗2, t ∈ [τα∗T,T ].

[F1] hn/ϑ
2
α → ∞ and Tϑα → 0 as n→ ∞, and ϑ−1

α (α∗k − α0) = O(1).

Let

Ξα(x, α) =
[
Tr

(
A−1∂αl1 AA−1∂αl2 A(x, α)

)]p

l1,l2=1
,

Γα(x, α1, α2) = Tr
(
A−1(x, α1)A(x, α2) − Id

) − log det A−1(x, α1)A(x, α2),

and Q(x, θ) = L2
θφ(y|x)|y=x, φ(y|x) = (y − x)⊗2, where the operator Lθ is defined as follows. For

Rr × Rr-valued C2 functions f = ( fi, j)r
i, j=1 on Rd,

Lθ f (x) =
(
∂x fi, j(x)b(x, β) +

1
2

Tr [∂2
x fi, j(x)A(x, α)]

)r

i, j=1
.

[F2] Let f (x) be the following three functions, (a) Ξα(x, α0), (b) ∂αΞα(x, α0), (c) ∂3
α1
Γα(x, α0, α0). For

any δ ∈ (1, 2) such that nhδn → ∞,

max
[n1/δ]≤k≤n−[nτα∗ ]

∣∣∣∣∣∣1k
[nτα∗ ]+k∑

i=[nτα∗ ]+1

f (Xti−1) −
∫
Rd

f (x)dµ(α0,β)(x)

∣∣∣∣∣∣ P→ 0.

8



[G1] inf
x
Γα(x, α∗1, α

∗
2) > 0.

[G2] There exists a constant C > 0 such that

(a) sup
x,αk

(
|∂α1Γ

α(x, α1, α2)| ∨ |∂α2Γ
α(x, α1, α2)|

)
< C,

(b) sup
x,αk

∣∣∣∣[Tr
({A−1(x, α1) − A−1(x, α2)}∂αl A(x, α3)

)]p
l=1

∣∣∣∣ < C,

(c) sup
x,θ
|Q(x, θ)| < C.

Remark 3.

(1) If the diffusion coefficient is a(x, α) = α, then hn/ϑ
2
α → ∞ is not required in [F1].

(2) [F2] is the assumption that the convergence corresponding to Lemma 4.3 in Song and Lee
(2009) is valid for the three functions (a)-(c). This is the key convergence for the change point
problems for ergodic diffusion processes.

(3) When d = 1, Q in [G2] can be expressed as

Q(x, θ) =
(
2b(x, β) + ∂xA(x, α)

)
b(x, β) +

(
2∂xb(x, β) + ∂2

xA(x, α)
)
A(x, α),

and thus if ∂k
xA(x, α) (k = 0, 1, 2) and ∂l

xb(x, β) (l = 0, 1) are bounded with respect to x and
θ = (α, β), [G2](c) is fulfilled.

Let

Φn(τ : α1, α2) =
[nτ]∑
i=1

Fi(α1) +
n∑

i=[nτ]+1

Fi(α2).

We define the change point estimator for the diffusion parameter by

τ̂αn = argmin
τ∈[0,1]

Φn(τ : α̂1, α̂2).

Remark 4. The change point estimator τ̂αn requires the estimators α̂1 and α̂2 of the parameters α1 and
α2 before and after the change. In order to construct these estimators, we need to find intervals with
α∗1 and α∗2, respectively. We will discuss the method for finding these intervals in Appendix A.

In Case Aα, we define

eα = lim
n→∞
ϑ−1
α (α∗1 − α∗2), Jα =

1
2

eT
α

∫
Rd
Ξα(x, α0)dµα0(x)eα,

F(v) = −2J1/2
α W(v) +Jα|v| for v ∈ R.

We get the following result on the asymptotic behavior of the estimator τ̂αn .
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Theorem 2. Suppose that [A1]-[A5] and [E1] hold.

(1) Under [F1] and [F2], nϑ2
α(τ̂
α
n − τα∗ )

d→ argmin
v∈R

F(v) in Case Aα.

(2) Under [G1] and [G2], n(τ̂αn − τα∗ ) = OP(1) in Case Bα.

(3) Under [G1], [G2](a) and (b), nϵ1(τ̂αn − τα∗ ) = oP(1) for ϵ1 ∈ [0, 1/2) in Case Bα.

Remark 5. For v ∈ R, let Ŵ(v) = W(v) − |v|/2 and η̂ = inf{η ∈ R|Ŵ(η) = supv∈R Ŵ(v)}. Since
F(v) d
= −2Ŵ(Jαv), the asymptotic distribution of (1) in Theorem 2 can be expressed as η̂/Jα. For the

probability density function of the distribution of η̂, see Lemma 1.6.3 of Csörgö and Horváth (1997).
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Chapter 3

Change point inference for drift parameter

The aim of this chapter is to detect and estimate the change point of the drift parameter. First, we
propose the change detection method of the drift parameter when no change in the diffusion parameter
is detected and the change point estimation method when a change in the drift parameter is detected,
and present the asymptotic properties of the statistics. We also consider change point inference for
the drift parameter when a change in the diffusion parameter is detected. Moreover, we discuss the
case where the diffusion and drift parameters change at the same time.

3.1 Change point inference under no significant change in diffu-
sion parameter

In this section, we investigate the presence of a change in the drift parameter β when no change in the
diffusion parameter α is detected, and if there is the change, estimate the time of the change. For this
setting, we make the following assumption throughout this section.

[E2] α does not change over [0,T ], and there exists an estimator α̂ such that
√

n(α̂ − α∗) = OP(1).

3.1.1 Change point detection
In order to investigate a change in the drift parameter, we first consider the following hypothesis
testing problem.

Hβ0 : the drift parameter does not change over [0,T ]
vs.

Hβ1 : there exists τβ∗ ∈ (0, 1) such that β∗ =

β∗1, t ∈ [0, τβ∗T ),
β∗2, t ∈ [τβ∗T,T ],

where β∗1, β
∗
2 ∈ IntΘB and β∗1 , β

∗
2.

We assume the following conditions.

[B2] Under Hβ0 , there exists an estimator β̂ such that
√

T (β̂ − β∗) = OP(1).
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[H1] Under Hβ1 , there exist β′ ∈ ΘB and an estimator β̂ such that β̂ − β′ = oP(1).

For α ∈ ΘA, β1, β2 ∈ ΘB, let

G(α, β1, β2) =
∫
Rd

1T
da−1(x, α)(b(x, β1) − b(x, β2))dµ(α,β1)(x).

[H2] G(α∗, β∗1, β
′) , G(α∗, β∗2, β

′) under Hβ1 .

[I1] Under Hβ1 , ϑβ = |β∗1 − β∗2| depends on n, and ϑβ → 0, Tϑ2
β → ∞ as n→ ∞.

[I2] Under Hβ1 , there exists β(0) ∈ IntΘB such that for k = 1, 2, ϑ−1
β (β∗k − β(0))→ dk as n→ ∞.

[I3] Under Hβ1 , there exist β′ with β′ − β(0) = o(1) and an estimator β̂ such that
√

T (β̂ − β′) = OP(1).

[I4]
∫
Rd

1T
da−1(x, α∗)∂βb(x, β(0))dµ(α∗,β(0))(x)(d1 − d2) , 0 under Hβ1 .

Define

Gi(β|α) = Tr
(
A−1(Xti−1 , α)

(∆iX − hnb(Xti−1 , β))
⊗2

hn

)
, Vn(β|α) =

n∑
i=1

Gi(β|α).

Since T−1/2∂βVn(β∗|α∗) is asymptotically normal and

∂βlVn(β|α) =
n∑

i=1

∂βlb(Xti−1 , β)
TA−1(Xti−1 , α)(∆iX − hnb(Xti−1 , β)),

we find that for r = d = 1,

1
√

T

[ns]∑
i=1

∆iX − hnb(Xti−1 , β
∗)

a(Xti−1 , α
∗)

w→ B(s) in D[0, 1]. (3.1)

Hence we consider the case r = d and define

ξ̂i = 1T
da−1(Xti−1 , α̂)(∆iX − hnb(Xti−1 , β̂)),

which is a simple extension to multiple dimensions. The test statistic for detecting a change in the
drift parameter is as follows.

T β1,n =
1
√

dT
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

ξ̂i −
k
n

n∑
i=1

ξ̂i

∣∣∣∣∣∣∣ .
We then obtain the following theorem.

Theorem 3. Suppose that [A1]-[A5] and [E2] hold.

12



(1) If [B2] is satisfied, then T β1,n
d→ sup

0≤s≤1
|B0

1(s)| under Hβ0 .

(2) If either (a) [H1] and [H2] or (b) [I1]-[I4] is satisfied, then for ϵ ∈ (0, 1), lim
n→∞

P
(T β1,n > w1(ϵ)

)
=

1 under Hβ1 .

T β1,n is a simple test statistic, but for the 1-dimensional Ornstein-Uhlenbeck process defined by
dXt = −β(Xt − γ)dt + αdWt (α, β > 0, γ ∈ R), if β changes and γ does not change, this test statistic
does not satisfy the identifiability condition [H2] (see Appendix A). For this reason, we introduce
another test statistic. Let

ζ̂i = ∂βb(Xti−1 , β̂)
TA−1(Xti−1 , α̂)(∆iX − hnb(Xti−1 , β̂)),

In =
1
n

n∑
i=1

∂βb(Xti−1 , β̂)
TA−1(Xti−1 , α̂)∂βb(Xti−1 , β̂),

T β2,n =
1
√

T
max
1≤k≤n

∣∣∣∣∣∣∣I−1/2
n

 k∑
i=1

ζ̂i −
k
n

n∑
i=1

ζ̂i


∣∣∣∣∣∣∣ .

We additionally make the following assumptions.

[B3] There exists an integer m1 ≥ 3 such that nhm1/(m1−1)
n → ∞ and b ∈ C4,m1+1

↑ (Rd × ΘB).

[H3] Under Hβ1 , there exist β′ ∈ ΘB and an estimator β̂ such that
√

T (β̂ − β′) = OP(1).

For α ∈ ΘA, β1, β2 ∈ ΘB, let

H(α, β1, β2) =
∫
Rd
∂βb(x, β2)TA−1(x, α)(b(x, β1) − b(x, β2))dµ(α,β1)(x).

[H4] H(α∗, β∗1, β
′) , H(α∗, β∗2, β

′) under Hβ1 .

[I5] There exists an integer m2 ≥ 2 such that h−1/2
n ϑm2

β → 0 and b ∈ C4,m2+1
↑ (Rd × ΘB).

As in Theorem 3, we obtain the following result.

Theorem 4. Suppose that [A1]-[A5] and [E2] hold.

(1) If [B2] and [B3] are satisfied, then T β2,n
d→ sup

0≤s≤1
|B0

q(s)| under Hβ0 .

(2) If either (a) [B3], [H3] and [H4] or (b) [I1]-[I3] and [I5] is satisfied, then for ϵ ∈ (0, 1),
lim
n→∞

P
(T β2,n > wq(ϵ)

)
= 1 under Hβ1 .

Remark 6. Since hn → 0, nhn → ∞ and nh2
n → 0, if hn = O(n−δ) for some δ ∈ (1/2, 1), then there

exists an integer m1 > 1/(1 − δ) > 2 such that nhm1/(m1−1)
n → ∞. Therefore, in [B3], we make the

assumption of the smoothness of the drift coefficient b with respect to β up to order m1 + 1 (≥ 4) when
the drift coefficient b is general. In particular, if b ∈ C4,∞

↑ (Rd,ΘB), then [B3] is satisfied. [I5] is also
the assumption on the smoothness of b.
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3.1.2 Change point estimation
This subsection provides an estimator of the time of change of the drift parameter for the SDE such
as Situation II.

We consider the following two cases.

Case Aβ: ϑβ = |β∗1 − β∗2| depends on n, and as n→ ∞,

ϑβ → 0, Tϑ2
β → ∞, β∗1 → β0 ∈ IntΘB.

Case Bβ: |β∗1 − β∗2| is fixed.

We assume the following conditions.

[E3] There exist estimators β̂k (k = 1, 2) and a constant τβ∗ ∈ (0, 1) such that

√
T (β̂k − β∗k) = OP(1), β =

β∗1, t ∈ [0, τβ∗T ),
β∗2, t ∈ [τβ∗T,T ].

[J1] Tϑ4
β → 0 as n→ ∞ and ϑ−1

β (β∗k − β0) = O(1) for k = 1, 2.

[J2] Let f (x) be the following three functions: (a)Ξβ(x, α∗, β0), (b) ∂βΞβ(x, α∗, β0), (c) ∂3
β1
Γβ(x, α∗, β0, β0).

For any δ ∈ (1, 2) such that nhδn → ∞,

max
[n1/δ]≤k≤n−[nτβ∗]

∣∣∣∣∣∣∣∣1k
[nτβ∗]+k∑

i=[nτβ∗]+1

f (Xti−1) −
∫
Rd

f (x)dµ(α∗,β0)(x)

∣∣∣∣∣∣∣∣ P→ 0.

[J3] There exists m3 ≥ 3 such that nhm3/(m3−1)
n → ∞, h−1/2

n ϑm3−1
β → 0 and b ∈ C4,m3+1

↑ (Rd × ΘB).

Let

Ξβ(x, α, β) =
[
∂βl1 b(x, β)TA−1(x, α)∂βl2 b(x, β)

]q

l1,l2=1
,

Γβ(x, α, β1, β2) = Tr
[
A−1(x, α)(b(x, β1) − b(x, β2))⊗2

]
.

[K1] infx Γ
β(x, α∗, β∗1, β

∗
2) > 0.

[K2] There exists a constant C > 0 such that

(a) sup
x,α,βk

(
|∂αΓβ(x, α, β1, β2)| ∨ |∂β1Γ

β(x, α, β1, β2)| ∨ |∂β2Γ
β(x, α, β1, β2)|

)
< C,

(b) sup
x,α,βk

∣∣∣∣∣[∂βlb(x, β1)TA−1(x, α)(b(x, β2) − b(x, β3))
]q

l=1

∣∣∣∣∣ < C.
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We define

Ψn(τ : β1, β2|α, kn, ln) =
[nτ]∑

i=kn+1

Gi(β1|α) +
ln∑

i=[nτ]+1

Gi(β2|α)

where 0 ≤ kn < [nτ] and [nτ] < ln ≤ n. Set

τ̂βn = argmin
τ∈[0,1]

Ψn(τ : β̂1, β̂2|α̂, 0, n)

as an estimator of τβ∗.
In Case Aβ, we set

eβ = lim
n→∞
ϑ−1
β (β∗1 − β∗2), Jβ(α) = eT

β

∫
Rd
Ξβ(x, α, β0)dµ(α,β0)(x)eβ,

G(v : α) = −2Jβ(α)1/2W(v) +Jβ(α)|v| for v ∈ R.

Then, we have the following asymptotic properties of the estimator τ̂βn.

Theorem 5. Suppose that [A1]-[A5], [E2] and [E3] hold.

(1) Under [J1]-[J3], Tϑ2
β(τ̂
β
n − τβ∗)

d→ argmin
v∈R

G(v : α∗) in Case Aβ.

(2) Under [K1] and [K2], T (τ̂βn − τβ∗) = OP(1) in Case Bβ.

3.2 Change point inference with a change in diffusion parameter
In this section, we infer the change point in the drift parameter β when there is a change point in the
diffusion parameter α. The estimator of the time of change of the diffusion parameter is already given
in Section 2.2, and thus we assume [E1] and the existence of the estimator throughout this section.

[E4] There exists ϵ1 ∈ (0, 1) such that nϵ1(τ̂αn − τα∗ ) = oP(1).

For k = 1, 2, let α∗k → α
(0)
k ∈ IntΘA as n→ ∞, where we note that α∗k may depend on n.

3.2.1 Change point detection
In this subsection, we treat the change detection for the drift parameter of the SDE in Situation III
or IV. Since we can estimate the change point τα∗T according to Section 2.2, we divide the intervals
into two parts based on the estimated time of the change in diffusion parameters, and investigate the
change in the drift parameter in each interval. Therefore, we consider the following two hypothesis
testing problems.
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H(1)
0 : the drift parameter does not change over [0, τα∗T ]

vs.

H(1)
1 : there exists τβ∗ ∈ (0, τα∗ ) such that β∗ =

β∗1,1, t ∈ [0, τβ∗T ),
β∗1,2, t ∈ [τβ∗T, τα∗T ],

H(2)
0 : the drift parameter does not change over [τα∗T,T ]

vs.

H(2)
1 : there exists τβ∗ ∈ (τα∗ , 1) such that β∗ =

β∗2,1, t ∈ [τα∗T, τ
β
∗T ),

β∗2,2, t ∈ [τβ∗T,T ],

where β∗k,1, β
∗
k,2 ∈ IntΘB, β∗k,1 , β

∗
k,2 for k = 1, 2.

Let k = 1, 2. We make the following assumptions.

[B2′]k There exists an estimator β̂k such that
√

T (β̂k − β∗) = OP(1) under H(k)
0 .

[B4] Let f (x) be the following two functions: (a) 1T
da−1(x, α∗2)∂βb(x, β0), (b) ∂α(1T

da−1(x, α∗2))b(x, β0).
For any δ ∈ (1, 2) such that nhδn → ∞ and Mn = [n(τα∗ + 2n−ϵ1)],

max
[n1/δ]≤k≤n−Mn

∣∣∣∣∣∣1k
Mn+k∑

i=Mn+1

f (Xti−1) −
∫
Rd

f (x)dµ(α∗2,β0)(x)

∣∣∣∣∣∣ P→ 0.

[H1′]k There exist β′k ∈ ΘB and an estimator β̂k such that β̂k − β′k = oP(1) under H(k)
1 .

[H2′]k G(α(0)
k , β

∗
k,1, β

′
k) , G(α(0)

k , β
∗
k,2, β

′
k) under H(k)

1 .

[I1′]k ϑβk = |β∗k,1 − β∗k,2| depends on n, and ϑβk → 0, Tϑ2
βk
→ ∞ as n→ ∞ under H(k)

1 .

[I2′]k There exists β(0)
k ∈ IntΘB such that ϑ−1

βk
(β∗k,l − β

(0)
k )→ dk,l ∈ Rq as n→ ∞ for l = 1, 2.

[I3′]k There exist β′k with β′k − β
(0)
k = o(1) and an estimator β̂k such that

√
T (β̂k − β′k) = OP(1) under

H(k)
1 .

[I4′]k

∫
Rd

1T
da−1(x, α(0)

k )∂βb(x, β(0)
k )dµ(α(0)

k ,β
(0)
k )(x)(dk,1 − dk,2) , 0 under H(k)

1 .

[I5′]k There exists m′2 ≥ 3 such that n−m′2h−(m′2+1)
n = O(1), h−1/2

n ϑ
m′2
βk
→ 0 and b ∈ C4,m′2+1

↑ (Rd × ΘB).

Remark 7. Since |α∗1 − α∗2| depends on n and satisfies n|α∗1 − α∗2|2 → ∞ in Case Aα and |α∗1 − α∗2| is
fixed in Case Bα, it is obvious from Theorem 2 that there exists ϵ1 ∈ (0, 1) such that [E4] holds. In
practice, since |α∗1 − α∗2| is unknown, we obtain an estimator ϵ̂1 of ϵ1 satisfying [E4], for example, as
follows. Let α̂1, α̂2 be estimators of α∗1, α∗2. If n|α∗1 − α∗2|2 → ∞, then n|α̂1 − α̂2|2 → ∞ in probability,
in other words, the probability of n|α̂1 − α̂2|2 < 1 converges to zero. According to Theorem 2, for a
sufficiently large n, we get ϵ̂1 such that ϵ̂1 = 0.45 ∧ (0.9 log(n|α̂1 − α̂2|2)/ log n).
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Let τn = τ̂
α
n − n−ϵ1 and τn = τ̂

α
n + n−ϵ1 . For r = d, we define the test statistics for detecting a change

in the drift parameter as follows.

T (1)
1,n =

1√
dτnT

max
1≤k≤[nτn]

∣∣∣∣∣∣∣∣
k∑

i=1

ξ̂1,i −
k

[nτn]

[nτn]∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣∣ ,
T (2)

1,n =
1√

d(1 − τn)T
max

1≤k≤n−[nτn]

∣∣∣∣∣∣∣
[nτn]+k∑

i=[nτn]+1

ξ̂2,i −
k

n − [nτn]

n∑
i=[nτn]+1

ξ̂2,i

∣∣∣∣∣∣∣ ,
where ξ̂k,i = 1T

da−1(Xti−1 , α̂k)(∆iX − hnb(Xti−1 , β̂k)).
The following theorem provides the results on the asymptotic properties of T (1)

1,n and T (2)
1,n .

Theorem 6. Let k = 1, 2. Suppose that [A1]-[A5], [E1] and [E4] hold.

(1) If [B2′]1 is satisfied, then T (1)
1,n

d→ sup
0≤s≤1
|B0

1(s)| under H(1)
0 .

(2) If [B2′]2 and [B4] hold, then T (2)
1,n

d→ sup
0≤s≤1
|B0

1(s)| under H(2)
0 .

(3) If either (a) [H1′]k and [H2′]k or (b) [I1′]k-[I5′]k is satisfied, then for ϵ ∈ (0, 1), lim
n→∞

P
(T (k)

1,n >

w1(ϵ)
)
= 1 under H(k)

1 .

Moreover, we consider other test statistics as follows.

T (1)
2,n =

1√
τnT

max
1≤k≤[nτn]

∣∣∣∣∣∣∣∣I−1/2
1,n

 k∑
i=1

ζ̂1,i −
k

[nτn]

[nτn]∑
i=1

ζ̂1,i


∣∣∣∣∣∣∣∣ ,

T (2)
2,n =

1√
(1 − τn)T

max
1≤k≤n−[nτn]

∣∣∣∣∣∣∣I−1/2
2,n

 [nτn]+k∑
i=[nτn]+1

ζ̂2,i −
k

n − [nτn]

n∑
i=[nτn]+1

ζ̂2,i


∣∣∣∣∣∣∣ ,

where

ζ̂k,i = ∂βb(Xti−1 , β̂k)TA−1(Xti−1 , α̂k)
(
∆iX − hnb(Xti−1 , β̂k)

)
,

I1,n =
1

[nτn]

[nτn]∑
i=1

∂βb(Xti−1 , β̂1)TA−1(Xti−1 , α̂1)∂βb(Xti−1 , β̂1),

I2,n =
1

n − [nτn]

n∑
i=[nτn]+1

∂βb(Xti−1 , β̂2)TA−1(Xti−1 , α̂2)∂βb(Xti−1 , β̂2).

We additionally make the following assumptions.

[B5] Let f (x) be the following three functions:

(a) ∂2
βb(x, β0)A−1(x, α∗2)b(x, β0), (b) ∂βb(x, β0)TA−1(x, α∗2)∂βb(x, β0),
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(c) ∂βb(x, β0)∂αA−1(x, α∗2)b(x, β0).

For any δ ∈ (1, 2) such that nhδn → ∞ and Mn = [n(τα∗ + 2n−ϵ1)],

max
[n1/δ]≤k≤n−Mn

∣∣∣∣∣∣∣1k
Mn+k∑

i=Mn+1

f (Xti−1) −
∫
Rd

f (x)dµ(α∗2,β0)(x)

∣∣∣∣∣∣∣ P→ 0.

For k = 1, 2, we make the following assumptions.

[H3′]k There exist β′k ∈ ΘB and an estimator β̂k such that
√

T (β̂k − β′k) = OP(1) under H(k)
1 .

[H4′]k H(α(0)
k , β

∗
k,1, β

′
k) , H(α(0)

k , β
∗
k,2, β

′
k) under H(k)

1 .

[I6]k nϵ1ϑβk → ∞.

We obtain the following theorem.

Theorem 7. Let k = 1, 2. Suppose that [A1]-[A5], [E1] and [E4] hold.

(1) If [B2′]1 and [B3] are satisfied, then T (1)
2,n

d→ sup
0≤s≤1
|B0

q(s)| under H(1)
0 .

(2) If [B2′]2, [B3] and [B5] are satisfied, then T (2)
2,n

d→ sup
0≤s≤1
|B0

q(s)| under H(2)
0 .

(3) If either (a) [B3], [H3′]k and [H4′]k or (b) [I1′]k-[I3′]k, [I5′]k and [I6′]k is satisfied, then for
ϵ ∈ (0, 1), P

(T (k)
2,n > wq(ϵ)

)→ 1 under H(k)
1 .

Remark 8. When the drift parameter changes at the same time point as the diffusion parameter does,
these tests are unable to detect a change in the drift parameter. In other words, even if the null
hypotheses H(1)

0 and H(2)
0 are not rejected, it is possible that the drift parameter changes at the same

time point as the diffusion parameter does. We will discuss the change in the drift parameters when
neither H(1)

0 nor H(2)
0 is rejected in Subsection 3.2.3.

3.2.2 Change point estimation
In this subsection, we estimate the time of the change of the drift parameter for the SDE such as
Situation IV-(i) or (ii). As in Subsection 3.1.2, we address two cases with different levels of change
in the parameter.

Let k = 1, 2. We make the following assumptions.

[J2′]k Let f (x) be the following three functions: (a)Ξβ(x, α∗k, β0), (b) ∂βΞβ(x, α∗k, β0), (c) ∂3
β1
Γβ(x, α∗k, β0, β0).

For any δ ∈ (1, 2) such that nhδn → ∞,

max
[n1/δ]≤m≤n−[nτβ∗]

∣∣∣∣∣∣∣∣ 1
m

[nτβ∗]+m∑
i=[nτβ∗]+1

f (Xti−1) −
∫
Rd

f (x)dµ(α∗k ,β0)(x)

∣∣∣∣∣∣∣∣ P→ 0.
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[K1′]k infx Γ
β(x, α(0)

k , β
∗
1, β
∗
2) > 0.

Consider τβ∗ < τα∗ . Define

τ̂
β
1,n = argmin

τ∈[0,τn]
Ψn(τ : β̂1, β̂2|α̂1, 0, [nτn])

as an estimator of τβ∗.
Then, we obtain the following result of the asymptotic properties of the estimator τ̂β1,n.

Theorem 8. Let τβ∗ < τα∗ . Suppose that [A1]-[A5], [E1], [E3] and [E4] hold.

(1) Under [J1], [J2′]1 and [J3], Tϑ2
β(τ̂
β
1,n − τ

β
∗)

d→ argmin
v∈R

G(v : α(0)
1 ) in Case Aβ.

(2) Under [K1′]1 and [K2], T (τ̂β1,n − τ
β
∗) = OP(1) in Case Bβ.

Consider τα∗ < τ
β
∗. Set

τ̂
β
2,n = argmin

τ∈[τn,1]
Ψn(τ : β̂1, β̂2|α̂2, [nτn], n)

as an estimator of τβ∗.
As in Theorem 8, we have the following result.

Theorem 9. Let τα∗ < τ
β
∗. Suppose that [A1]-[A5], [E1], [E3] and [E4] hold.

(1) Under [J1], [J2′]2 and [J3], Tϑ2
β(τ̂
β
2,n − τ

β
∗)

d→ argmin
v∈R

G(v : α(0)
2 ) in Case Aβ.

(2) Under [K1′]2 and [K2], T (τ̂β2,n − τ
β
∗) = OP(1) in Case Bβ.

Remark 9. We proposed the methods to detect changes in the drift parameter and to estimate the
change point of the drift parameter, which assume the existence of a change point estimator of the
diffusion parameter. This method is based on the fact that the tests utilizing normalization of errors
are distribution free under no change in the parameters. For this thesis, we employed the method
using the change point estimator of the diffusion parameter so that the asymptotic null distribution of
the test statistics for changes in the drift parameter is the distribution of the supremum of the norm
of a Brownian bridge by using the convergence in (3.1). For example, instead of ξ̂k,i or ζ̂k,i, one could
consider a test statistic without a change point estimator of the diffusion parameter and the diffusion
term. In this case, however, the test generally dose not converge to the supremum of a Brownian
bridge under the null hypothesis that the drift parameter does not change. The discussion of methods
to detect changes in the drift parameter independent of the diffusion parameter and to estimate its
change point is a subject for future work.
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3.2.3 Change in diffusion and drift parameters at the same time
Since T (1)

1,n and T (2)
1,n (or, T (1)

2,n and T (2)
2,n ) are tests for the change of the drift parameter in [0, τnT ]

and [τnT,T ], respectively, neither test can detect the change when the drift parameter changes in
[τnT, τnT ], i.e., τβ∗ = τα∗ . Therefore, in this subsection, we consider how to investigate whether the
drift parameter changes at the same time as the diffusion parameter. In other words, we consider a
method for detecting a change in the drift parameter for the SDE in Situation IV-(iii).

If neither H(1)
0 nor H(2)

0 is rejected, we construct the estimators β̌1 and β̌2 for β∗1 and β∗2 with data
from the intervals [0, τnT ] and [τnT,T ], respectively. Notice that the estimators β̌1 and β̌2 can be
constructed to satisfy

√
T (β̌1 − β∗1) = OP(1),

√
T (β̌2 − β∗2) = OP(1).

Since one then has
√

T |β∗1 − β∗2| ≤
√

T |β̌1 − β∗1| +
√

T |β̌2 − β∗2| +
√

T |β̌1 − β̌2| = OP(1) +
√

T |β̌1 − β̌2|

and
√

T |β̌1 − β̌2| ≤
√

T |β̌1 − β∗1| +
√

T |β̌2 − β∗2| +
√

T |β∗1 − β∗2| = OP(1) +
√

T |β∗1 − β∗2|,
√

T |β̌1 − β̌2| = OP(1) is equivalent to
√

T |β∗1 − β∗2| = O(1). Note that if
√

T |β̌1 − β̌2| → ∞, then√
T |β̌1 − β̌2| , OP(1), and if

√
T |β∗1 − β∗2| is monotone, then

√
T |β∗1 − β∗2| , O(1) is equivalent to√

T |β∗1 − β∗2| → ∞. Hence, we have the following assertions.

If
√

T |β̌1 − β̌2| = OP(1), then
√

T |β∗1 − β∗2| = O(1). (3.2)

If
√

T |β̌1 − β̌2| → ∞, then
√

T |β∗1 − β∗2| → ∞. (3.3)

The facts imply that if
√

T |β̌1 − β̌2| is sufficiently large, then we infer that the drift parameter changes
at τα∗T . Here we note that τα∗T is the same time at which the diffusion parameter changes.

Remark 10. The change in the drift parameter that satisfies the assumption [I1′]k can be detected by
the test T (1)

1,n or T (2)
1,n if the change does not occur at the same time as the diffusion parameter, and can

also be detected by the above method based on (3.3) if the change occurs at the same time. As we saw
above, we can theoretically determine whether the drift parameter changes at the same time as the
diffusion parameter by investigating

√
T |β̌1 − β̌2|, but it would be difficult to determine whether the

drift parameter changes simultaneously with the diffusion parameter in practice. See the numerical
simulations in Chapter 4.
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Chapter 4

Numerical simulations

In this chapter, we consider the SDEs of the four situations in the introduction and verify our main
results by numerical simulations. The number of iterations is 1000 for all situations. In the hypothesis
testing problem, the significance level ϵ is 0.05 or 0.10, and the corresponding critical values are
obtained from the following: the Brownian bridge is generated by taking 104 points on the interval
[0, 1], and the maximum value of its norm is recorded. This is repeated 104 times. As a result, we
have w1(0.05) = 1.3617, w2(0.05) = 1.5736, w1(0.10) = 1.2232 and w2(0.10) = 1.4437, where wk(ϵ)
is the upper-ϵ point of sup0≤s≤1 |B0

k(s)|.

4.1 Model 1 : Ornstein-Uhlenbeck process
We consider the one-dimensional Ornstein-Uhlenbeck process defined by

dXt = −β(Xt − γ)dt + αdWt, X0 = x0,

where α, β > 0 and γ ∈ R.

4.1.1 Situation I : neither parameter changes
In order to verify Theorems 1, 3 and 4, we treat the following situation.

Xt = X0 −
∫ t

0
β∗(Xs − γ∗)ds + α∗Wt, t ∈ [0,T ],

where X0 = 1, α∗ = 1, β∗ = 1, γ∗ = 1. In this simulation, we set that the sample size of the data
{Xti}ni=0 is n = 105 or 106, hn = n−3/5, T = nhn = n2/5, nh2

n = n−1/5 and the significant level is ϵ = 0.10.
We verified the performance of the test statistics T αn , T β1,n and T β2,n. Table 4.1 and Figure 1 show

the empirical sizes, the histograms and the empirical distribution functions (EDFs) of T αn , T β1,n and
T β2,n. We find from Table 4.1 and Figure 1 that the proportions of the test statistics that exceed the
critical values are close to ϵ = 0.10 and the distribution of the test statistics almost corresponds with
the null distribution, which implies that the test statistics have good performance.
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Table 4.1: Proportions over the corresponding critical value in Situation I of Model 1.

n T hn T αn T β1,n T β2,n
105 100 10−3 0.098 0.095 0.094
106 251.19 2.51 × 10−4 0.118 0.104 0.091

(a) Histogram of T αn with n = 106. (b) EDF of T αn with n = 106.

(c) Histogram of T β1,n with n = 106. (d) EDF of T β1,n with n = 106.

(e) Histogram of T β2,n with n = 106. (f) EDF of T β2,n with n = 106.

Figure 1: Histogram (black line) versus theoretical density function (red line) and empirical distri-
bution function (black line) versus theoretical distribution function (red line) in Situation I of Model
1.
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4.1.2 Situation II : only drift parameter changes
We consider the following situation to support Theorems 3-5.

Xt =


X0 −

∫ t

0
β∗(Xs − γ∗1)ds + α∗Wt, t ∈ [0, τβ∗T ),

Xτβ∗T +
∫ t

τ
β
∗T
β∗(Xs − γ∗2)ds + α∗(Wt −Wτβ∗T ), t ∈ [τβ∗T,T ],

where X0 = 5, α∗ = 0.5, β∗ = 2.5, γ∗1 = 5 + ϑβ, γ∗2 = 5, τβ∗ = 0.5. In this simulation, we set the sample
size of the data {Xti}ni=0 being n = 106, hn = n−4/7, T = n3/7, nh2

n = n−1/7, ϑβ = n−1/8 and the significant
level ϵ = 0.10.

We first verified the performance of the test statistics T αn , T β1,n and T β2,n. The simulation results of
the test statistics can be found in Table 4.2 and Figure 2. Table 4.2 shows that the proportion of T αn
that exceed the critical value is close to ϵ = 0.10 and the change in the drift parameter is detected in
all iterations.

Table 4.2: Proportions over the corresponding critical value in Situation II of Model 1.

n T hn T αn T β1,n T β2,n
106 372.76 3.73 × 10−4 0.117 1.000 1.000

Next, we estimated the change point of the drift parameter. In all iterations, the change point
was detected in the intervals [T/4,T ] and [0, 3T/4]. Therefore, we estimated β∗1 and β∗2 from [0,T/4]
and [3T/4,T ], respectively. The estimates of α∗, β∗1, β∗2 and τβ∗ are reported in Table 4.3, and the
histogram and the EDF of the estimator τ̂βn are illustrated in Figure 3. From Figure 3, we can see
that the distribution of the estimator almost corresponds with the asymptotic distribution in (1) of
Theorem 5 and the estimators have good performance.

Table 4.3: Mean and standard deviation of the estimators in Situation II of Model 1. True values:
α∗ = 0.5, β∗ = 2.5, γ∗1 = 5.1778, γ∗2 = 5, τβ∗ = 0.5.

n T hn α̂ β̂1 γ̂1 β̂2 γ̂2 τ̂
β
n

106 372.76 3.73 × 10−4 0.5001 2.5498 5.1773 2.5431 4.9998 0.4980
(0.0004) (0.2257) (0.0205) (0.2468) (0.0203) (0.0134)
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(a) Histogram of T αn with n = 106. (b) EDF of T αn with n = 106.

(c) Histogram of T β1,n with n = 106. (d) EDF of T β1,n with n = 106.

(e) Histogram of T β2,n with n = 106. (f) EDF of T β2,n with n = 106.

Figure 2: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation II of
Model 1.
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(a) Histogram of Tϑ2
β(τ̂
β
n − τβ∗). (b) EDF of Tϑ2

β(τ̂
β
n − τβ∗).

Figure 3: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) with n = 107 in
Situation II of Model 1.

4.1.3 Situation III : only diffusion parameter changes
We deal with the following situation in support of Theorems 2, 6, 7 and (3.2).

Xt =


X0 −

∫ t

0
β∗(Xs − γ∗)ds + α∗1Wt, t ∈ [0, τα∗T ),

Xτα∗T −
∫ t

τα∗T
β∗(Xs − γ∗)ds + α∗2(Wt −Wτα∗T ), t ∈ [τα∗T,T ],

where X0 = 2, τα∗ = 0.8, α∗1 = 1, α∗2 = 1.2. We set the sample size of the data {Xti}ni=0 being n = 106 or
107, hn = n−13/25, T = nhn = n12/25, nh2

n = n−1/25 and the significant level ϵ = 0.05.
We first tested for a change in the diffusion parameter in the interval [0,T ]. As a result, the change

was detected in all 1000 iterations and Figure 4 shows the histogram and the EDF of the test statistic
T αn . In order to estimate the parameters before and after the change, we tested for the change in
the diffusion parameter in the interval [0.125T, 0.875T ]. Since the results indicated that the change
is detected in all 1000 iterations, we estimated α∗1 and α∗2 using the data obtained from the intervals
[0, 0.125T ] and [0.875T,T ], respectively, and estimated τα∗ using the estimators α̂1 and α̂2. Table 4.4
and Figure 5 show the simulation results of the estimates of α∗1, α∗2 and τα∗ . In this case, we chose
ϵ1 = 0.45 for all iterations. It seems from Figure 5 that nϵ1(τ̂αn − τα∗ ) = oP(1) in this example.

Next, we tested for a change in the drift parameter in the intervals [0, τnT ] and [τnT,T ]. Table 4.5
and Figure 6 show the results of the tests for the change in the drift parameter. From Table 4.5 and
Figures 6, we can see that the proportions of the test statistics that exceed the critical values are close
to the significance level ϵ = 0.05, and the distribution of the test statistics almost corresponds with
the null distribution, which implies that the test statistics have good performance.

Finally, we constructed estimators β̌1 = (β̌1, γ̌1) and β̌2 = (β̌2, γ̌2) using the data obtained from the
intervals [0, τnT ] and [τnT,T ], respectively when the test statistics T (1)

1,n and T (2)
1,n did not exceed the

critical value, and investigate
√

T |β̌1 − β̌2|. Table 4.6 and Figure 7 show the results of the estimates of
β∗1 and β∗2. It appears from Figure 7 that

√
T |β̌1 − β̌2| is bounded in probability.
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(a) Histogram of T αn with n = 106. (b) EDF of T αn with n = 106.

Figure 4: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation III of
Model 1.

Table 4.4: Mean and standard deviation of the estimators in Situation III of Model 1. True values:
α∗1 = 1, α∗2 = 1.2, τα∗ = 0.8.

n T hn α̂1 α̂2 τ̂αn
106 758.58 7.59 × 10−4 1.0002 1.2002 0.7988

(0.0021) (0.0024) (0.0002)
107 2290.87 2.29 × 10−4 1.0001 1.2001 0.7996

(0.0006) (0.0008) (0.0001)

(a) n = 106. (b) n = 107.

Figure 5: Histogram of nϵ1(τ̂αn − τα∗ ) in Situation III of Model 1.
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Table 4.5: Proportions over the corresponding critical value in Situation III of Model 1.

n T hn T (1)
1,n T (1)

2,n T (2)
1,n T (2)

2,n

106 758.58 7.59 × 10−4 0.040 0.034 0.045 0.048
107 2290.87 2.29 × 10−4 0.048 0.053 0.040 0.046

(a) Histogram of T (1)
1,n with n = 107. (b) EDF of T (1)

1,n with n = 107.

(c) Histogram of T (2)
1,n with n = 107. (d) EDF of T (2)

1,n with n = 107.

Figure 6: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation III of
Model 1.

Table 4.6: Mean and standard deviation of the estimators in Situation III of Model 1. True values:
β∗ = 1, γ∗ = 2.

n T hn β̌1 γ̌1 β̌2 γ̌2

106 758.58 7.59 × 10−4 1.0070 1.9985 1.0270 1.9999
(0.0587) (0.0408) (0.1217) (0.0959)

107 2290.87 2.29 × 10−4 1.0021 2.0002 1.0084 1.9980
(0.0332) (0.0242) (0.0654) (0.0544)
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(a) n = 106. (b) n = 107.

Figure 7: Histogram of
√

T |β̌1 − β̌2| in Situation III of Model 1.

4.1.4 Situation IV-(i) : diffusion parameter changes after drift parameter does
In order to corroborate Theorems 6-8, we consider the following situation.

Xt =



X0 −
∫ t

0
β∗(Xs − γ∗1)ds + α∗1Wt, t ∈ [0, τβ∗T ),

Xτβ∗T −
∫ t

τ
β
∗T
β∗(Xs − γ∗2)ds + α∗1(Wt −Wτβ∗T ), t ∈ [τβ∗T, τα∗T ),

Xτα∗T −
∫ t

τα∗T
β∗(Xs − γ∗2)ds + α∗2(Wt −Wτα∗T ), t ∈ [τα∗T,T ],

where X0 = 2, τα∗ = 0.8, τβ∗ = 0.4, α∗1 = 1, α∗2 = 1.2, β∗ = 1, γ∗1 = 2 − ϑβ, γ∗2 = 2. We set the sample
size of the data {Xti}ni=0 being n = 106 or 107, hn = n−13/25, T = nhn = n12/25, nh2

n = n−1/25, ϑβ = n−1/10

and the significant level ϵ = 0.05.

Table 4.7: Mean and standard deviation of the estimators in Situation IV-(i) of Model 1. True
values: α∗1 = 1, α∗2 = 1.2, τα∗ = 0.8.

n T hn α̂1 α̂2 τ̂αn
106 758.58 7.59 × 10−4 1.0002 1.2002 0.7988

(0.0021) (0.0024) (0.0002)
107 2290.87 2.29 × 10−4 1.0001 1.2001 0.7996

(0.0006) (0.0008) (0.0001)

We first tested for a change in the diffusion parameter in the interval [0,T ]. As a result, the change
was detected in all 1000 iterations. We estimated α∗1, α∗2 and τα∗ in the same way as in Subsection 4.1.3,
and investigated the change in the drift parameter. The results can be found in Tables 4.7 and 4.8 and
Figure 8. Here we chose ϵ1 = 0.45 for all iterations. We find from Table 4.8 and (a)-(d) of Figure 8
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that the proportions of the test statistics T (1)
1,n and T (1)

2,n that exceed the critical value approach 1.000 as
n increases, and the distribution of the test statistics diverges. We can also see from (e)-(f) of Figure
8 that the distribution of the test statistic T (2)

1,n almost corresponds with the null distribution.

Table 4.8: Proportions over the corresponding critical value in Situation IV-(i) of Model 1.

n T hn T (1)
1,n T (1)

2,n T (2)
1,n T (2)

2,n

106 758.58 7.59 × 10−4 0.784 0.704 0.045 0.046
107 2290.87 2.29 × 10−4 0.981 0.944 0.040 0.045

We finally estimated the drift parameters before and after the change of the diffusion parameter,
and also estimated the change point of the drift parameter when the test statistic T (1)

1,n exceeded the
critical value. Here, we constructed the estimators by looking for the intervals with no change point.
Specifically, we first tested for changes in the drift parameter in [0.25τnT, 0.75τnT ]. When the change
was detected, we constructed β̂1 from [0, 0.25τnT ] and β̂2 from [0.75τnT, τnT ]. If no change was
detected, we next expanded the test interval to [0.125τnT, 0.875τnT ], [0.0625τnT, 0.9375τnT ], and
[0.01τnT, 0.99τnT ] and when the change was detected in the expanded interval, we estimated β∗1 and
β∗2 using the data in the intervals that were not used in the test. The results of these estimates are
shown in Table 4.9 and Figure 9. We can see that the distribution of the estimator almost corresponds
with the asymptotic distribution and the estimator has good performance.

Table 4.9: Mean and standard deviation of the estimators in Situation IV-(i) of Model 1. True
values: β∗ = 1, γ∗2 = 2, τβ∗ = 0.4, γ∗1 ≈ 1.7488 and 1.8005 for n = 106 and 107, respectively.

n T hn β̂1 γ̂1 β̂2 γ̂2 τ̂
β
1,n

106 758.58 7.59 × 10−4 1.0932 1.7353 1.1195 2.0080 0.4079
(0.3319) (0.1493) (0.4638) (0.1718) (0.1237)

107 2290.87 2.29 × 10−4 1.0110 1.7984 1.0213 2.0002 0.4023
(0.0957) (0.0562) (0.0920) (0.0637) (0.0703)

29



(a) Histogram of T (1)
1,n with n = 106. (b) EDF of T (1)

1,n with n = 106.

(c) Histogram of T (1)
1,n with n = 107. (d) EDF of T (1)

1,n with n = 107.

(e) Histogram of T (2)
1,n with n = 107. (f) EDF of T (2)

1,n with n = 107.

Figure 8: Histogram (black line) versus theoretical density function (red line) and empirical distri-
bution function (black line) versus theoretical distribution function (red line) in Situation IV-(i) of
Model 1.
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(a) Histogram of Tϑ2
β(τ̂
β
1,n − τ

β
∗). (b) EDF of Tϑ2

β(τ̂
β
1,n − τ

β
∗).

Figure 9: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) with n = 107 in
Situation IV-(i) of Model 1.

4.1.5 Situation IV-(iii) : both parameters change at the same time
We treat the following situation in order to verify Theorems 6, 7 and (3.3).

Xt =


X0 −

∫ t

0
β∗(Xs − γ∗1)ds + α∗1Wt, t ∈ [0, τα∗T ),

Xτα∗T −
∫ t

τα∗T
β∗(Xs − γ∗2)ds + α∗2(Wt −Wτα∗T ), t ∈ [τα∗T,T ],

where X0 = 2, τα∗ = 0.8, α∗1 = 1, α∗2 = 1.2, β∗ = 1, γ∗1 = 2 − ϑβ, γ∗2 = 2. We set the sample size of the
data {Xti}ni=0 being n = 106 or 107, hn = n−13/25, T = nhn = n12/25, nh2

n = n−1/25, ϑβ = n−1/10 and the
significant level ϵ = 0.05.

We first tested for a change in the diffusion parameter in the interval [0,T ]. As a result, the change
was detected in all 1000 iterations. In the same way as in Subsection 4.1.3, we estimated α∗1, α∗2 and
τα∗ , and investigated the change in the drift parameter. The results are shown in Tables 4.10, 4.11 and
Figure 10. Here we chose ϵ1 = 0.45 for all iterations. It can be seen that the results are similar to
those of Subsection 4.1.3.

Table 4.10: Mean and standard deviation of the estimators in Situation IV-(iii) of Model 1. True
values: α∗1 = 1, α∗2 = 1.2, τα∗ = 0.8

n T hn α̂1 α̂2 τ̂αn
106 758.58 7.59 × 10−4 1.0002 1.2002 0.7988

(0.0021) (0.0024) (0.0002)
107 2290.87 2.29 × 10−4 1.0001 1.2001 0.7996

(0.0006) (0.0008) (0.0001)
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Table 4.11: Proportions over the corresponding critical value in Situation IV-(iii) of Model 1.

n T hn T (1)
1,n T (1)

2,n T (2)
1,n T (2)

2,n

106 758.58 7.59 × 10−4 0.040 0.034 0.046 0.048
107 2290.87 2.29 × 10−4 0.048 0.053 0.040 0.046

(a) Histogram of T (1)
1,n with n = 107. (b) EDF of T (1)

1,n with n = 107.

(c) Histogram of T (2)
1,n with n = 107. (d) EDF of T (2)

1,n with n = 107.

Figure 10: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation IV-(iii)
of Model 1.
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Finally, we constructed the estimators β̌1 = (β̌1, γ̌1) and β̌2 = (β̌2, γ̌2) using the data obtained from
the intervals [0, τnT ] and [τnT,T ], respectively when the test statistics T (1)

1,n and T (2)
1,n did not exceed

the critical value, and investigated
√

T |β̌1 − β̌2|. Table 4.12 and Figure 11 show the results of the
estimates of β∗1 and β∗2. It can be seen that

√
T |β̌1 − β̌2| tends to increase as n does.

Table 4.12: Mean and standard deviation of the estimators in Situation IV-(iii) of Model 1. True
values: β∗ = 1, γ∗2 = 2, γ∗1 ≈ 1.7488 and 1.8005 for n = 106 and 107, respectively.

n T hn β̌1 γ̌1 β̌2 γ̌2

106 758.58 7.59 × 10−4 1.0071 1.7472 1.0273 1.9999
(0.0587) (0.0408) (0.1214) (0.0961)

107 2290.87 2.29 × 10−4 1.0022 1.8007 1.0084 1.9980
(0.0333) (0.0242) (0.0654) (0.0543)

(a) n = 106. (b) n = 107.

Figure 11: Histogram of
√

T |β̌1 − β̌2| in Situation IV-(iii) of Model 1.
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4.2 Model 2 : hyperbolic diffusion model
We treat the hyperbolic diffusion model defined by

dXt =

(
β − γXt√

1 + X2
t

)
dt + αdWt, X0 = x0,

where α > 0, β ∈ R and |β| < γ.

4.2.1 Situation I : neither parameter changes
In order to corroborate Theorems 1, 3 and 4, we consider the following situation.

Xt = X0 +

∫ t

0

(
β∗ − γ∗Xs√

1 + X2
s

)
ds + α∗Wt, t ∈ [0,T ],

where X0 = 0.5, α∗ = 0.5, β∗ = 0.5, γ∗ = 1. We set the sample size of the data {Xti}ni=0 being n = 105

or 106, hn = n−7/12, T = n5/12, nh2
n = n−1/6 and the significant level ϵ = 0.10.

We investigated the presence of the change in the diffusion or drift parameter. Table 4.13 and
Figure 12 show the empirical sizes, the histograms and the EDFs of T αn , T β1,n and T β2,n. We see that the
proportions of the test statistics that exceed the critical values are close to ϵ = 0.10 and the distribution
of the test statistics almost corresponds with the null distribution, which implies that the test statistics
have good performance.

Table 4.13: Proportions over the corresponding critical value in Situation of Model 2.

n T hn T αn T β1,n T β2,n
105 121.15 1.21 × 10−3 0.098 0.094 0.090
106 316.23 3.16 × 10−4 0.118 0.106 0.092
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(a) Histogram of T αn with n = 106. (b) EDF of T αn with n = 106.

(c) Histogram of T β1,n with n = 106. (d) EDF of T β1,n with n = 106.

(e) Histogram of T β2,n with n = 106. (f) EDF of T β2,n with n = 106.

Figure 12: Histogram (black line) versus theoretical density function (red line) and empirical distri-
bution function (black line) versus theoretical distribution function (red line) in Situation I of Model
2.
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4.2.2 Situation II : only drift parameter changes
We consider the following situation and verify Theorems 3-5.

Xt =


X0 +

∫ t

0

(
β∗1 −

γ∗Xs√
1 + X2

s

)
ds + α∗Wt, t ∈ [0, τβ∗T ),

Xτβ∗T +
∫ t

τ
β
∗T

(
β∗2 −

γ∗Xs√
1 + X2

s

)
ds + α∗(Wt −Wτβ∗T ), t ∈ [τβ∗T,T ],

where X0 = 0.25, α∗ = 0.2, β∗1 = 0.25, β∗2 = −0.25, γ∗ = 1.2, τβ∗ = 0.5. We set the sample size of the
data {Xti}ni=0 being n = 106 or 107, hn = n−4/7, T = n3/7, nh2

n = n−1/7 and the significant level ϵ = 0.10.
First, we verified the performance of test statistics T αn , T β1,n and T β2,n. The simulation results of the

test statistics can be found in Table 4.14 and Figure 13. Table 4.14 shows that the proportion of T αn
that exceed the critical value is close to ϵ = 0.10 and the change in the drift parameter is detected in
all iterations.

Table 4.14: Proportions over the corresponding critical value in Situation II of Model 2.

n T hn T αn T β1,n T β2,n
106 372.76 3.73 × 10−4 0.119 1.000 1.000
107 103 10−4 0.095 1.000 1.000

Next, we estimated the change point of the drift parameter. Since the change point was detected in
the intervals [T/4,T ] and [0, 3T/4], we estimated β∗1 and β∗2 using the data obtained from the intervals
[0,T/4] and [3T/4,T ] in all iterations, respectively. The estimates of α∗, β∗1, β∗2 and τβ∗ are reported in
Table 4.15. It seems from Figure 14 that T (τ̂βn − τβ∗) = OP(1).

Table 4.15: Mean and standard deviation of the estimators in Situation II of Model 2. True values:
α∗ = 0.2, β∗1 = 0.25, β∗2 = −0.25, γ∗ = 1.2, τβ∗ = 0.5.

n T hn α̂ β̂1 γ̂1 β̂2 γ̂2 τ̂
β
n

106 372.76 3.73 × 10−4 0.2000 0.2596 1.2485 −0.2600 1.2468 0.4988
(1.42 × 10−4) (0.0414) (0.1674) (0.0445) (0.1844) (0.0019)

107 103 10−4 0.2000 0.2522 1.2121 −0.2549 1.2216 0.5000
(4.44 × 10−5) (0.0257) (0.1028) (0.0245) (0.0997) (0.0006)
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(a) Histogram of T αn with n = 107. (b) EDF of T αn with n = 107.

(c) Histogram of T β1,n with n = 106. (d) EDF of T β1,n with n = 106.

(e) Histogram of T β1,n with n = 107. (f) EDF of T β1,n with n = 107.

Figure 13: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation II of
Model 2.
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(a) Histogram of T (τ̂βn − τβ∗). (b) Histogram of T (τ̂βn − τβ∗).

Figure 14: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) with n = 107 in
Situation II of Model 2.

4.2.3 Situation III : only diffusion parameter changes
In order to verify Theorems 1, 2, 6, 7 and (3.2), we deal with the following situation.

Xt =


X0 +

∫ t

0

(
β∗ − γ∗Xs√

1 + X2
s

)
ds + α∗1Wt, t ∈ [0, τα∗T ),

Xτα∗T +

∫ t

τα∗T

(
β∗ − γ∗Xs√

1 + X2
s

)
ds + α∗2(Wt −Wτα∗T ), t ∈ [τα∗T,T ],

where X0 = 1, τα∗ = 0.4, α∗1 = 1 + n−9/25, α∗2 = 1, β∗ = 1, γ∗ = 2. We set the sample size of the data
{Xti}ni=0 being n = 106 or 107, hn = n−5/8, T = n3/8, nh2

n = n−1/4 and the significant level ϵ = 0.05.
We tested for changes in the diffusion parameter in the interval [0,T ] in 1000 iterations. The

change was detected 990 times when n = 106 and 1000 times when n = 107. Figure 15 shows
the histograms and the EDFs of T αn . When the change in the diffusion parameter was detected, we
estimated the parameters α∗1 and α∗2 in the same way to estimate β∗1 and β∗2 in Subsection 4.1.3, and
estimated τα∗ using the estimators α̂1 and α̂2. The estimates of α∗1, α∗2 and τα∗ are shown in Table 4.16.
We find from Figure 16 that the distribution of nϑ2

α(τ̂
α
n − τα∗ ) almost corresponds with the theoretical

distribution in Theorem 2-(1) and the estimators have good performance. In this case, we chose
ϵ1 = 0.9 + 1.8 log |α̂1 − α̂2|/ log n for all iterations.

Next, we tested for changes in the drift parameter in the intervals [0, τnT ] and [τnT,T ]. Table 4.17
and Figure 17 show the simulation results of the tests for changes in the drift parameter. It can be
seen that the test statistics have good performance. Hence, we constructed β̌1 and β̌2 using the data
obtained from the intervals [0, τnT ] and [τnT,T ], respectively when the test statistics T (1)

1,n and T (2)
1,n

did not exceed the critical value, and investigated
√

T |β̌1 − β̌2|. The result of the estimates of β∗1 and
β∗2 can be found in Table 4.18 and Figure 18. It can be seen that

√
T |β̌1 − β̌2| = OP(1).
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(a) Histogram of T αn with n = 106. (b) EDF of T αn with n = 106.

(c) Histogram of T αn with n = 107. (d) EDF of T αn with n = 107.

Figure 15: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation III of
Model 2.

Table 4.16: Mean and standard deviation of the estimators in Situation III of Model 2. True values:
α∗2 = 1, τα∗ = 0.4, α∗1 = 1.0069 and 1.0030 for n = 106 and 107, respectively

n T hn α̂1 α̂2 τ̂αn
106 177.83 1.78 × 10−4 1.0070 1.0000 0.3986

(0.0017) (0.0017) (0.0663)
107 421.70 4.22 × 10−4 1.0030 1.0000 0.3986

(0.0005) (0.0005) (0.0258)

Table 4.17: Proportions over the corresponding critical value in Situation III of Model 2.

n T hn T (1)
1,n T (1)

2,n T (2)
1,n T (2)

2,n

106 177.83 1.78 × 10−4 0.035 0.043 0.060 0.051
107 421.70 4.22 × 10−4 0.038 0.040 0.038 0.031
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(a) Histogram of nϑ2
α(τ̂
α
n − τα∗ ). (b) EDF of nϑ2

α(τ̂
α
n − τα∗ ).

Figure 16: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) with n = 107 in
Situation III of Model 2.

(a) Histogram of T (1)
2,n with n = 107. (b) EDF of T (1)

2,n with n = 107.

(c) Histogram of T (2)
2,n with n = 107. (d) EDF of T (2)

2,n with n = 107.

Figure 17: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation III in
Model 2.
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Table 4.18: Mean and standard deviation of the estimators in Situation III of Model 2. True values:
β∗ = 1, γ∗ = 2.

n T hn β̌1 γ̌1 β̌2 γ̌2

106 177.83 1.78 × 10−4 1.0993 2.1873 1.0509 2.0980
(0.5332) (0.7292) (0.3476) (0.4881)

107 421.70 4.22 × 10−4 1.0179 2.0413 1.0165 2.0323
(0.1370) (0.2114) (0.1110) (0.1722)

(a) n = 106. (b) n = 107.

Figure 18: Histogram of
√

T |β̌1 − β̌2| in Situation III in Model 2.

4.2.4 Situation IV-(ii) : drift parameter changes after diffusion parameter
does

In support of Theorems 6, 7 and 9, we consider the following situation.

Xt =



X0 +

∫ t

0

(
β∗1 −

γ∗Xs√
1 + X2

s

)
ds + α∗1Wt, t ∈ [0, τα∗T ),

Xτα∗T +

∫ t

τα∗T

(
β∗1 −

γ∗Xs√
1 + X2

s

)
ds + α∗2(Wt −Wτα∗T ), t ∈ [τα∗T, τ

β
∗T ),

Xτβ∗T +
∫ t

τ
β
∗T

(
β∗2 −

γ∗Xs√
1 + X2

s

)
ds + α∗2(Wt −Wτβ∗T ), t ∈ [τβ∗T,T ],

where X0 = 1, τα∗ = 0.4, τβ∗ = 0.7, α∗1 = 1+ n−9/25, α∗2 = 1, β∗1 = 1, β∗2 = 0.5, γ∗ = 2. We set the sample
size of the data {Xti}ni=0 being n = 106 or 107, hn = n−5/8, T = n3/8, nh2

n = n−1/4 and the significant level
ϵ = 0.05.

We tested for changes in the diffusion parameter in the interval [0,T ] in 1000 iterations. The
change was detected 990 times when n = 106 and 1000 times when n = 107. As in Subsection 4.2.3,
we estimated τα∗ using the estimators α̂1 and α̂2. The estimates of α∗1, α∗2 and τα∗ are shown in Table
4.19. In this case, we chose ϵ1 = 0.9 + 1.8 log |α̂1 − α̂2|/ log n for all iterations.
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Table 4.19: Mean and standard deviation of the estimators in Situation IV-(ii) of Model 2. True
values: α∗2 = 1, τα∗ = 0.4, α∗1 = 1.0069 and 1.0030 for n = 106 and 107, respectively

n T hn α̂1 α̂2 τ̂αn
106 177.83 1.78 × 10−4 1.0071 0.9999 0.3929

(0.0018) (0.0015) (0.0600)
107 421.70 4.22 × 10−4 1.0030 1.0000 0.3987

(0.0005) (0.0005) (0.0273)

Table 4.20: Proportions over the corresponding critical value in Situation IV-(ii) of Model 2.

n T hn T (1)
1,n T (1)

2,n T (2)
1,n T (2)

2,n

106 177.83 1.78 × 10−4 0.034 0.060 0.510 0.414
107 421.70 4.22 × 10−4 0.040 0.040 0.941 0.887

Table 4.21: Mean and standard deviation of the estimators in Situation IV-(ii) of Model 2. True
values: β∗1 = 1, β∗2 = 0.5, γ∗ = 2, τβ∗ = 0.7.

n T hn β̂1 γ̂1 β̂2 γ̂2 τ̂
β
2,n

106 177.83 1.78 × 10−4 1.7297 3.0951 0.5300 2.9141 0.7063
(1.8108) (2.1513) (0.8434) (1.8332) (0.1318)

107 421.70 4.22 × 10−4 1.1436 2.2546 0.5143 2.1135 0.6987
(0.5965) (0.8216) (0.2102) (0.4559) (0.0698)
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(a) Histogram of T (1)
2,n with n = 107. (b) EDF of T (1)

2,n with n = 107.

(c) Histogram of T (2)
2,n with n = 106. (d) EDF of T (2)

2,n with n = 106.

(e) Histogram of T (2)
2,n with n = 107. (f) EDF of T (2)

2,n with n = 107.

Figure 19: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation IV-(ii)
of Model 2.
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Next, we tested for changes in the drift parameter in the intervals [0, τnT ] and [τnT,T ]. From Table
4.20 and (a)-(b) of Figure 19, we see that the distribution of the test statistic T (1)

2,n almost corresponds
with the null distribution. Moreover, it can be seen from Table 4.20 and (c)-(f) of Figure 19 that
the proportions of the test statistics T (2)

1,n and T (2)
2,n that exceed the critical value approach 1.000 as

n increases, and the distribution of the test statistics T (2)
2,n diverges. Therefore, we estimated the drift

parameters before and after the change of the diffusion parameter, and also estimated the change point
when the test statistic T (2)

1,n exceeded the critical value. Here, we constructed the estimators β̂1 and β̂2
in the same way as in Subsection 4.1.4. The results of these estimates are shown in Table 4.21 and
Figure 20. We can see that the distribution of the estimator does not diverge when n increases from
106 to 107, which implies that the estimator has good performance.

(a) n = 106. (b) n = 107.

Figure 20: Histogram of T (τ̂β2,n − τ
β
∗) in Situation IV-(ii) of Model 2.

4.2.5 Situation IV-(iii) : both parameters change at the same time
We treat the following situation and corroborate Theorems 6, 7 and (3.3).

Xt =


X0 −

∫ t

0

(
β∗1 −

γ∗Xs√
1 + X2

s

)
ds + α∗1Wt, t ∈ [0, τα∗T ),

Xτα∗T −
∫ t

τα∗T

(
β∗2 −

γ∗Xs√
1 + X2

s

)
ds + α∗2(Wt −Wτα∗T ), t ∈ [τα∗T,T ],

where X0 = 1, τα∗ = 0.4, α∗1 = 1 + n−9/25, α∗2 = 1, β∗1 = 1, β∗2 = 0.5, γ∗ = 2. We set the sample size
of the data {Xti}ni=0 being n = 106 or 107, hn = n−5/8, T = n3/8, nh2

n = n−1/4 and the significant level
ϵ = 0.05.

We tested for changes in the diffusion parameter in the interval [0,T ] in 1000 iterations. The
change was detected 990 times when n = 106 and 1000 times when n = 107. When the change in the
diffusion parameter was detected, we estimated the parameters α∗1 and α∗2 in the same way to estimate
β∗1 and β∗2 in Subsection 4.1.3, and estimated τα∗ using the estimators α̂1 and α̂2. The estimates of
α∗1, α∗2 and τα∗ are shown in Table 4.16. We find from Figure 16 that the distribution of nϑ2

α(τ̂
α
n − τα∗ )

almost corresponds with the theoretical distribution in (1) of Theorem 2 and the estimators have good
performance. In this case, we chose ϵ1 = 0.9 + 1.8 log |α̂1 − α̂2|/ log n for all iterations.
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Table 4.22: Mean and standard deviation of the estimators in Situation IV-(iii) of Model 2. True
values: α∗2 = 1, τα∗ = 0.4, α∗1 = 1.0069 and 1.0030 for n = 106 and 107, respectively

n T hn α̂1 α̂2 τ̂αn
106 177.83 1.78 × 10−4 1.0070 1.0000 0.3992

(0.0017) (0.0017) (0.0677)
107 421.70 4.22 × 10−4 1.0030 1.0000 0.3986

(0.0005) (0.0005) (0.0264)

Next, we tested for changes in the drift parameter in the intervals [0, τnT ] and [τnT,T ]. Table 4.23
and Figure 21 show the simulation results of the tests for changes in the drift parameter. It can be
seen that the test statistics have good performance. Hence, we constructed β̌1 and β̌2 using the data
obtained from the intervals [0, τnT ] and [τnT,T ], respectively when the test statistics T (1)

1,n and T (2)
1,n

did not exceed the critical value, and investigate
√

T |β̌1 − β̌2|. The result of the estimates of β∗1 and β∗2
is summarized in Table 4.24 and Figure 22. It can be inferred from Figure 22 that

√
T |β̌1 − β̌2| tends

to increase as n does.

Table 4.23: Proportions over the corresponding critical value in Situation IV-(iii) of Model 2.

n T hn T (1)
1,n T (1)

2,n T (2)
1,n T (2)

2,n

106 177.83 1.78 × 10−4 0.043 0.071 0.052 0.065
107 421.70 4.22 × 10−4 0.043 0.049 0.044 0.048

Table 4.24: Mean and standard deviation of the estimators in Situation IV-(iii) of Model 2. True
values: β∗1 = 1, β∗1 = 0.5, γ∗ = 2.

n T hn β̌1 γ̌1 β̌2 γ̌2

106 177.83 1.78 × 10−4 1.0720 2.1524 0.5222 2.0737
(0.4282) (0.6173) (0.2731) (0.4723)

107 421.70 4.22 × 10−4 1.0142 2.0395 0.5064 2.0227
(0.1374) (0.2129) (0.0769) (0.1502)
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(a) Histogram of T (1)
2,n with n = 107. (b) EDF of T (1)

2,n with n = 107.

(c) Histogram of T (2)
2,n with n = 107. (d) EDF of T (2)

2,n with n = 107.

Figure 21: Histogram (black line) versus theoretical density function (red line) and empirical dis-
tribution function (black line) versus theoretical distribution function (red line) in Situation IV-(iii)
of Model 2.

(a) n = 106. (b) n = 107.

Figure 22: Histogram of
√

T |β̌1 − β̌2| in Situation IV-(iii) of Model 2.
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Appendix A

Estimation of the nuisance parameters
When one considers change point estimation, it is necessary to estimate the parameters α∗k and β∗k.
Here we discuss the estimation of nuisance parameters α∗k and β∗k.

First, we need the following information to estimate α∗k or β∗k:

[L1] There exist τα, τα ∈ (0, 1) such that τα∗ ∈ [τα, τα].

[L2] There exist τβ, τβ ∈ (0, 1) such that τβ∗ ∈ [τβ, τβ].

If this information is obtained, one can see that there is no change point in interval [0, ταT ] nor
[ταT,T ], and estimate α∗1 from the data of [0, ταT ] and α∗2 from the data of [ταT,T ].

Next, we discuss how to find τ and τ that satisfy [L1] or [L2]. To find them, we use the test
statistics to detect a change in the diffusion or drift parameters. Specifically, one can detect a change
in the diffusion or drift parameters in the interval [τ1T, τ2T ] by the following test statistics.

T αn (τ1, τ2) =
1

√
2d([nτ2] − [nτ1])

max
1≤k≤[nτ2]−[nτ1]

∣∣∣∣∣∣∣
[nτ1]+k∑

i=[nτ1]+1

η̂i −
k

[nτ2] − [nτ1]

[nτ2]∑
i=[nτ1]+1

η̂i

∣∣∣∣∣∣∣ ,
T β1,n(τ1, τ2) =

1
√

dT (τ2 − τ1)
max

1≤k≤[nτ2]−[nτ1]

∣∣∣∣∣∣∣
[nτ1]+k∑

i=[nτ1]+1

ξ̂i −
k

[nτ2] − [nτ1]

[nτ2]∑
i=[nτ1]+1

ξ̂i

∣∣∣∣∣∣∣ ,
T β2,n(τ1, τ2) =

1
√

T (τ2 − τ1)
max

1≤k≤[nτ2]−[nτ1]

∣∣∣∣∣∣∣I−1/2
n (τ1, τ2)

 [nτ1]+k∑
i=[nτ1]+1

ζ̂i −
k

[nτ2] − [nτ1]

[nτ2]∑
i=[nτ1]+1

ζ̂i


∣∣∣∣∣∣∣ ,

where

In(τ1, τ2) =
1

[nτ2] − [nτ1]

[nτ2]∑
i=[nτ1]+1

∂βb(Xti−1 , β̂)
TA−1(Xti−1 , α̂)∂βb(Xti−1 , β̂).

Finally, we describe how to find τ and τ. Assume that a change is detected in the interval [0,T ].

U1) Choose τU
1 ∈ (0, 1), and investigate a change point in the interval [0, τU

1 T ].

(1) If a change is detected, set τ = τU
1 and go to step L1.
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(2) If not detected, go to step U2.

...

Uk) Choose τU
k ∈ (τU

k−1, 1), and investigate a change point in the interval [0, τU
k T ].

(1) If a change is detected, set τ = τU
k and go to step L1.

(2) If not detected, go to step Uk+1.

Assume that τU
k is chosen as τ in step Uk.

L1) Choose τL
1 ∈ (0, τU

k ), and investigate a change point in the interval [τL
1T,T ].

(1) If a change is detected, set τ = τL
1 .

(2) If not detected, go to step L2.

...

Lm) Choose τL
m ∈ (0, τL

m−1), and investigate a change point in the interval [τL
mT,T ].

(1) If a change is detected, set τ = τL
m.

(2) If not detected, go to step Lm+1.

We may also choose τ and τ at the same time, that is,

1) Choose τ1 ∈ (0, 1/2), and investigate a change point in the interval [τ1T, (1 − τ1)T ].

(1) If a change is detected, set τ = τ1 and τ = 1 − τ1.

(2) If not detected, go to step 2.

k) Choose τk ∈ (0, τk−1), and investigate a change point in the interval [τkT, (1 − τk)T ].

(1) If a change is detected, set τ = τk and τ = 1 − τk.

(2) If not detected, go to step k + 1.

We can choose τ and τ in the above manner.

Sufficient condition of the assumptions
A process {Xt}t≥0 with a change point can be expressed as follows. There exists a process {X̃t}t≥0 such
that X(1)

t = X̃t(θ∗1), X(1)
0 = x(1)

0 , X(2)
t = X̃t(θ∗2), X(2)

0 = x(2)
0 , X(1)

τT = X(2)
τT and

Xt =

X(1)
t , t ∈ [0, τT ),

X(2)
t , t ∈ [τT,T ].
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If the process {X(2)
t }t≥0 is stationary and θ∗2 → θ0, then one has the result that for f ∈ C1

↑(R
d),

max
[n1/r]≤k≤n−[nτ]

∣∣∣∣∣∣∣1k
[nτ]+k∑

i=[nτ]+1

f (Xti−1) −
∫
Rd

f (x)dµθ0(x)

∣∣∣∣∣∣∣
= max

[n1/r]≤k≤n−[nτ]

∣∣∣∣∣∣∣1k
[nτ]+k∑

i=[nτ]+1

f (X(2)
ti−1

) −
∫
Rd

f (x)dµθ0(x)

∣∣∣∣∣∣∣
d
= max

[n1/r]≤k≤n−[nτ]

∣∣∣∣∣∣∣1k
k∑

i=1

f (X(2)
ti−1

) −
∫
Rd

f (x)dµθ0(x)

∣∣∣∣∣∣∣ P→ 0,

and thus [F2], [J2], [B4] and [B5] hold. The same is true for [J2′]k. In this case, one can remove
Tϑα → 0 in [F1] and Tϑ4

β → 0 in [J1].

Model which satisfies [D2]
As an example of a model that satisfies [D2], we consider the d-dimensional diffusion process

Xt =


X0 +

∫ t

0
b(Xs, β)ds +

∫ t

0
σ(Xs)δ(α∗1)dWs, t ∈ [0, τα∗T ),

Xτα∗T +

∫ t

τα∗T
b(Xs, β)ds +

∫ t

τα∗T
σ(Xs)δ(α∗2)dWs, t ∈ [τα∗T,T ],

where σ : Rd → Rd ⊗ Rd, δ(α) = diag (α1, . . . , αd), α = (α1, . . . , αd)T, α1, . . . , αd > 0. The true
values of the parameters are α∗1 = (α∗1,1, . . . , α

∗
1,d)T, α∗2 = (α∗2,1, . . . , α

∗
2,d)T, which converge to α0 =

(α0,1, . . . , α0,d)T , 0. We define the estimator α̂ = arginfαUn(α). Then, we have

ϑ−1
α (α̂ − α0) = OP(1). (A.1)

Proof of (A.1). α̂ = (α̂ j)d
j=1 can be expressed as follows.

α̂ j =

√√
1
n

n∑
i=1

Tr
(
[σ(Xti−1)T]−1δ(e j)σ(Xti−1)−1 (∆iX)⊗2

hn

)
,

where e1 = (1, 0, . . . , 0)T, . . . , ed = (0, . . . , 0, 1)T. Define

Un(α) =
[nτα∗ ]∑
i=1

Fi(α), Un(α) =
n∑

i=[nτα∗ ]+1

Fi(α),

α̂1 = arginfαUn(α) and α̂2 = arginfαUn(α). We find that α̂1 = (α̂1, j)d
j=1 and α̂2 = (α̂2, j)d

j=1 satisfy√
n(α̂k − α∗k) = OP(1) and

α̂1, j =

√√√
1

[nτα∗ ]

[nτα∗ ]∑
i=1

Tr
(
[σ(Xti−1)T]−1δ(e j)σ(Xti−1)−1 (∆iX)⊗2

hn

)
,
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α̂2, j =

√√
1

n − [nτα∗ ]

n∑
i=[nτα∗ ]+1

Tr
(
[σ(Xti−1)T]−1δ(e j)σ(Xti−1)−1 (∆iX)⊗2

hn

)
.

Noting that ϑ−1
α (α̂k − α0) = OP(1) and

α̂ j =

√
[nτα∗ ]

n
α̂2

1, j +
n − [nτα∗ ]

n
α̂2

2, j,

we obtain

ϑ−1
α |α̂ − α0| ≤

d∑
j=1

ϑ−1
α |α̂ j − α0, j| ≤

d∑
j=1

( |α̂1, j + α0, j|
|α̂ j + α0, j|

ϑ−1
α |α̂1, j − α0, j| +

|α̂2, j + α0, j|
|α̂ j + α0, j|

ϑ−1
α |α̂2, j − α0, j|

)
,

which together with α̂k
P→ α0 and α̂

P→ α0 yields ϑ−1
α (α̂ − α0) = OP(1). □

From the above, the one-dimensional Ornstein-Uhlenbeck process and the hyperbolic diffusion
model satisfy [D2] because the diffusion coefficient is a(x, α) = α.

Model which satisfies [D3]
First, as an example of a model that satisfies [D3], we consider the d-dimensional diffusion process
with the diffusion coefficient

a(x,α) = σ(x)diag (α),

where σ : Rd → Rd ⊗ Rd, α = (α1, . . . , αd)T, α1, . . . , αd > 0. The true values of the parameters
are α∗1 = α0 + ϑαc1 and α∗2 = α0 + ϑαc2, where α0 = (α0,1, . . . , α0,3)T , 0, c1 = (c1,1, . . . , c1,d)T,
c2 = (c2,1, . . . , c2,d)T. We have from Tr (A−1∂α j A(x,α)) = 2/α j the result that∫

Rd

[
Tr

(
A−1∂αl A(x,α0)

)]
ldµα0(x)(c1 − c2) =

d∑
j=1

2(c1, j − c2, j)
α0, j

.

Therefore if
d∑

j=1

c1, j − c2, j

α j
, 0, (A.2)

then [D3] holds. In particular, we have (A.2) if any of the following cases:

1. c1, j − c2, j ≥ 0 for all 1 ≤ j ≤ d, and c1, j − c2, j > 0 for some 1 ≤ j ≤ d.

2. c1, j − c2, j ≤ 0 for all 1 ≤ j ≤ d, and c1, j − c2, j < 0 for some 1 ≤ j ≤ d.

This means that [D3] holds when only α j (1 ≤ j ≤ d) changes. Therefore, the one-dimensional
Ornstein-Uhlenbeck process and the hyperbolic diffusion model satisfy [D3] because the diffusion
coefficient is a(x, α) = α.
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Ornstein-Uhlenbeck process
We consider the one-dimensional Ornstein-Uhlenbeck process

dXt = −β(Xt − γ)dt + αdWt, X0 = x0, (A.3)

where α, β > 0, γ ∈ R.
First, consider the consistency of the test T αn . Since the invariant measure of the solution in (A.3)

is µθ ∼ N(γ, α
2

2β ), θ = (α, β, γ), we have F (α, α′) = (α/α′)2. Therefore, it follows from α > 0 that
F (α∗1, α

′) , F (α∗2, α
′) for α∗1 , α

∗
2, and the test T αn has consistency according to Theorem 1 when

|α∗1 − α∗2| is fixed. For the case where |α∗1 − α∗2| shrinks, we have already discussed above.
Next, we investigate the consistency of the tests T β1,n and T β2,n. For the drift parameter β∗1 = (β∗1, γ

∗
1),

we have

G(α,β∗1,β
′) =

∫
R

1
α

(
−(β∗1 − β′)x + (β∗1γ

∗
1 − β′γ′)

)
dµθ1(x) =

β′

α
(γ∗1 − γ′),

where θ1 = (α,β∗1). If β∗1 , β
∗
2 and γ∗1 = γ

∗
2, then

G(α∗,β∗1,β
′) − G(α∗,β∗2,β

′) =
β′

α∗
(γ∗1 − γ∗2) = 0,

and [H2] does not hold. If γ∗1 , γ
∗
2, then

G(α∗,β∗1,β
′) − G(α∗,β∗2,β

′) =
β′

α0
(γ∗1 − γ∗2) , 0,

and the test T β1,n is consistent according to Theorem 3 when |β∗1 − β∗2| is fixed. Consider the case where
|β∗1 − β∗2| shrinks. Thus, we consider the SDE

Xt =


X0 −

∫ t

0
β∗1(Xs − γ∗1)ds + α∗Wt, t ∈ [0, τβ∗T ),

Xτβ∗T −
∫ t

τ
β
∗T
β∗2(Xs − γ∗2)ds + α∗(Wt −Wτβ∗T ), t ∈ [τβ∗T,T ],

where β0 = (β0, γ0)T, dk = (dk,1, dk,2)T, β∗k = (β∗k, γ
∗
k)T = β0 + ϑβdk, which implies that [I2] holds.

Furthermore,∫
R

1
α∗

(−x + γ0, β0)dµ(α∗,β0)(x)(d1 − d2) =
(
0,
β0

α∗

) (d1,1 − d2,1

d1,2 − d2,2

)
=
β0

α∗
(d1,2 − d2,2).

Therefore, if γ changes and β does not change, then [I4] holds, and the testT β1,n is consistent. However,
when β changes and γ does not change, [I4] does not hold.

Since

H(α,β∗1,β
′) =

1
α2

∫
R

(
−(x − γ′)
β′

)
(−(β∗1 − β′)x + (β∗1γ

∗
1 − β′γ′))dµθ∗1(x)
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=
1
α2

(
α2(1 − β′/β∗1)/2 − β′(γ∗1 − γ′)2

(β′)2(γ∗1 − γ′)

)
and

H(α∗,β∗1,β
′) −H(α∗,β∗2,β

′) =
β′

(α∗)2

(
−(α∗)2((β∗1)−1 − (β∗2)−1)/2 − (γ∗1 − γ∗2)(γ∗1 + γ

∗
2 − 2γ′)

β′(γ∗1 − γ∗2)

)
,

we find from β′ > 0 that H(α∗,β∗1,β
′) − H(α∗,β∗2,β

′) , 0 under γ∗1 , γ
∗
2. It also holds that under

β∗1 , β
∗
2 and γ∗1 = γ

∗
2,

H(α∗,β∗1,β
′) −H(α∗,β∗2,β

′) = −β
′

2

( 1
β∗1
− 1
β∗2

) (1
0

)
, 0.

Hence, the test T β2,n is consistent.
If a(x, α) = σ(x)c(α) for σ : Rd → Rd ⊗ Rd, c : Rp → Rd ⊗ Rd, then [F2], [G1], [G2](a) and (b)

are satisfied because the functions which appear in them do not depend on x. Therefore, we find that
the Ornstein-Uhlenbeck process is an example of a model that satisfies the conditions in Case Aα.

Hyperbolic diffusion model
We consider the hyperbolic diffusion model

dXt =

β − γXt√
1 + X2

t

 dt + αdWt, X0 = x0, (A.4)

where α > 0, β ∈ R, γ > |β|.
We study the consistency of the tests T αn and T β1,n when the change in the parameter is small. Let

b(x,β) = β − γx/
√

1 + x2 and a(x, α) = α. From (A.2), the test T αn is consistent when |α∗1 − α∗2| → 0.
Next, we investigate the consistency of the test T β1,n in Case Aβ. That is, we consider the SDE

Xt =


X0 +

∫ t

0

β∗1 − γ∗1Xs√
1 + X2

s

 ds + α∗Wt, t ∈ [0, τβ∗T ),

Xτβ∗T +
∫ t

τ
β
∗T

β∗2 − γ∗2Xs√
1 + X2

s

 ds + α∗(Wt −Wτβ∗T ), t ∈ [τβ∗T,T ],

where β0 = (β0, γ0)T, dk = (dk,1, dk,2)T, β∗k = (β∗k, γ
∗
k)T = β0 + ϑβdk, which implies that [I2] holds. The

invariant density of the solution in (A.4) is π(x) = m(x)/M, where

m(x) = exp
(

2
α2

(
βx − γ

√
1 + x2

))
, M =

∫
R

m(x)dx.

We then have∫
R

∂βb(x,β)π(x)dx = 1,
∫
R

∂γb(x,β)π(x)dx = −β
γ
.
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Therefore∫
R

1
α∗
∂βb(x,β0)dµ(α∗,β0)(x)(d1 − d2) =

1
α∗

(
(d1,1 − d2,1) − β0

γ0
(d1,2 − d2,2)

)
. (A.5)

In the following cases, [I4] holds because equation (A.5) does not equal 0:

(1) β changes and γ does not change,

(2) β0 , 0, γ changes and β does not change,

(3) β0 > 0, d1,1 − d2,1 < 0 (resp. > 0) and d1,2 − d2,2 > 0 (resp. < 0),

(4) β0 < 0, d1,1 − d2,1 < 0 (resp. > 0) and d1,2 − d2,2 < 0 (resp. > 0).

Finally, we confirm that the hyperbolic diffusion model is an example of a model that satisfies the
conditions in Cases Bα and Bβ. It was noted above that [G1], [G2](a) and (b) hold. Since b(x,β) and
∂xb(x,β) are bounded, we see from Remark 3 that [G2](c) holds. Because of

Γβ(x, α,β1,β2) =
1
α2

(
(β1 − β2) − (γ1 − γ2)

x
√

1 + x2

)2

,

where βk = (βk, γk)T and −1 < x/
√

1 + x2 < 1 for x ∈ R, we have supx |Γβ(x, α∗,β∗1,β
∗
2)| > 0 in the

following cases:

(1) γ∗1 = γ
∗
2,

(2) γ∗1 , γ
∗
2 and β∗1 − β∗2 < −(γ∗1 − γ∗2),

(3) γ∗1 , γ
∗
2 and β∗1 − β∗2 > γ∗1 − γ∗2,

and then [K1] holds. Furthermore, we see from boundedness of x/
√

1 + x2 that

sup
x,α,βk

(∣∣∣∂αΓβ(x, α,β1,β2)
∣∣∣ ∨ ∣∣∣∂β1

Γβ(x, α,β1,β2)
∣∣∣ ∨ ∣∣∣∂β2

Γβ(x, α,β1,β2)
∣∣∣) < C,

sup
x,α,βk

∣∣∣∣∣ 1
α2∂βb(x,β)

(
b(x,β1) − b(x,β2)

)2
∣∣∣∣∣ < C

and thus [K2] holds. Therefore, we find that the hyperbolic diffusion model is an example of a model
that satisfies the conditions in Cases Bα and Bβ.
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Appendix B

This chapter provides the proofs of the results of Chapters 2 and 3.
We set the following notations.

1. G n
i−1 = σ

[{Ws}s≤tni−1

]
.

2. For a measurable set A and an integrable random variable X, we define

E[X : A] =
∫

A
X(ω)dP(ω).

3. For a function f on Rd × Θ, we define fi−1(θ) = f (Xti−1 , θ).

4. We define

A ⊗ x⊗k =

d1∑
l1,...,lk=1

Al1,...,lk xl1 · · · xlk , for A ∈ Rd1 ⊗ · · · ⊗ Rd1︸            ︷︷            ︸
k

, x ∈ Rd1 .

Proof of Theorem 1
We first prepare some auxiliary results. Afterwards, we show Theorem 1.

Lemma 1 (Kessler,1997). Suppose that [A1]-[A4] hold. Then for l1, . . . , l4 ∈ {1, . . . , d},

(1) Eθ[(∆iX)l1 |G n
i−1] = hnbl1

i−1(β) + Ri−1(h2
n),

(2) Eθ[(∆iX)l1(∆iX)l2 |G n
i−1] = hnAl1,l2

i−1 (α) + Ri−1(h2
n),

(3) Eθ[
∏4

j=1(∆iX)l j |G n
i−1] = h2

n(Al1,l2
i−1 Al3,l4

i−1 (α) + Al1,l3
i−1 Al2,l4

i−1 (α) + Al1,l4
i−1 Al2,l3

i−1 (α)) + Ri−1(h3
n).

Let

ηi = Tr
(
A−1

i−1(α∗)
(∆Xi)⊗2

hn

)
, κ(x, α) = 1T

da−1(x, α), ξi = κi−1(α∗)(∆iX − hnbi−1(β∗)),

ζi = ∂βbi−1(β∗)TA−1
i−1(α∗)(∆iX − hnbi−1(β∗)).

Lemma 2. Suppose that [A1]-[A4] hold. Then,
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(1) Eθ∗[ηi|G n
i−1] = d + Ri−1(hn),

(2) Eθ∗[η2
i |G n

i−1] = d2 + 2d + Ri−1(hn),

(3) Eθ∗[ξi|G n
i−1] = Ri−1(h2

n),

(4) Eθ∗[ξ2
i |G n

i−1] = dhn + Ri−1(h2
n),

(5) Eθ∗[ζi|G n
i−1] = Ri−1(h2

n),

(6) Eθ∗[ζiζT
i |G n

i−1] = hn∂βbi−1(β∗)TA−1
i−1(α∗)∂βbi−1(β∗) + Ri−1(h2

n).

Proof. (3) and (5) are obvious. We have from Lemma 1 the result that

Eθ∗[ηi|G n
i−1] = h−1

n Tr (A−1
i−1(α∗)Eθ∗[(∆iX)⊗2|G n

i−1]) = d + Ri−1(hn),

Eθ∗[η2
i |G n

i−1] = h−2
n

d∑
l1,...,l4=1

(A−1
i−1)l1,l2(A−1

i−1)l3,l4(α∗)Eθ∗
[ 4∏

j=1

(∆iX)l j

∣∣∣∣∣G n
i−1

]

=

d∑
l1,...,l4=1

(A−1
i−1)l1,l2(A−1

i−1)l3,l4(Al1,l2
i−1 Al3,l4

i−1 + Al1,l3
i−1 Al2,l4

i−1 + Al1,l4
i−1 Al2,l3

i−1 )(α∗) + Ri−1(hn)

= d2 + 2d + Ri−1(hn),

Eθ∗[ξ2
i |G n

i−1] = κi−1(α∗)Eθ∗[(∆iX − hnbi−1(β∗))(∆iX − hnbi−1(β∗))T|G n
i−1]κTi−1(α∗)

= κi−1(α∗)(hnAi−1(α∗) + Ri−1(h2
n))κTi−1(α∗)

= dhn + Ri−1(h2
n),

Eθ∗[ζiζT
i |G n

i−1] = ∂βbi−1(β∗)TA−1
i−1(α∗)Eθ∗[(∆iX − hnbi−1(β∗))⊗2|G n

i−1]A−1
i−1(α∗)∂βbi−1(β∗)

= ∂βbi−1(β∗)TA−1
i−1(α∗)(hnA−1

i−1(α∗) + Ri−1(h2
n))A−1

i−1(α∗)∂βbi−1(β∗)

= hn∂βbi−1(β∗)TA−1
i−1(α∗)∂βbi−1(β∗) + Ri−1(h2

n).

□

Lemma 3 (Song and Lee, 2009). Suppose that [A1], [A2], [A5] hold and a function f on Rd × Θ
satisfies

(i) f is continuous in θ ∈ Θ for all x ∈ Rd,

(ii) ∂x f exists and f , ∂x f are of polynomial growth in x ∈ Rd uniformly θ ∈ Θ.

Moreover, if nhr
n → ∞ for some 1 < r < 2, then under Hα0 (or Hα0 and Hβ0) as nh2

n → 0,

max
[n1/r]≤k≤n

sup
θ∈Θ

∣∣∣∣∣∣∣1k
k∑

i=1

f (Xti−1 , θ) −
∫
Rd

f (x, θ)dµθ∗(x)

∣∣∣∣∣∣∣ a.s.→ 0.

Lemma 4. Suppose that [A1], [A2], [A5] hold and f satisfies the conditions (i), (ii) in Lemma 3.
Then, under Hα0 (or Hα0 and Hβ0) as nh2

n → 0,

1
n

max
1≤k≤n

sup
θ∈Θ

∣∣∣∣∣∣∣
k∑

i=1

f (Xti−1 , θ) −
k
n

n∑
i=1

f (Xti−1 , θ)

∣∣∣∣∣∣∣ = oP(1).
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Proof. Under nhn → ∞ and nh2
n → 0, there exists 1 < r < 2 such that nhr

n → ∞. Since it follows
from Lemma 3 that

max
1≤k≤[n1/r]

sup
θ∈Θ

1
n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ) − k
n

n∑
i=1

fi−1(θ)

∣∣∣∣∣∣∣
≤ 1

n

[n1/r]∑
i=1

sup
θ∈Θ
| fi−1(θ)| + [n1/r]

n

n∑
i=1

sup
θ∈Θ
| fi−1(θ)|


=

[n1/r]
n

 1
[n1/r]

[n1/r]∑
i=1

sup
θ∈Θ
| fi−1(θ)| + 1

n

n∑
i=1

sup
θ∈Θ
| fi−1(θ)|

 = oP(1)

and

max
[n1/r]≤k≤n

sup
θ∈Θ

1
n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ) − k
n

n∑
i=1

fi−1(θ)

∣∣∣∣∣∣∣
= max

[n1/r]≤k≤n
sup
θ∈Θ

k
n

∣∣∣∣∣∣∣1k
k∑

i=1

fi−1(θ) − 1
n

n∑
i=1

fi−1(θ)

∣∣∣∣∣∣∣
≤ max

[n1/r]≤k≤n
sup
θ∈Θ

∣∣∣∣∣∣∣1k
k∑

i=1

fi−1(θ) −
∫
Rd

f (x, θ)dµθ∗(x) − 1
n

n∑
i=1

fi−1(θ) +
∫
Rd

f (x, θ)dµθ∗(x)

∣∣∣∣∣∣∣
≤ 2 max

[n1/r]≤k≤n
sup
θ∈Θ

∣∣∣∣∣∣∣1k
k∑

i=1

fi−1(θ) −
∫
Rd

f (x, θ)dµθ∗(x)

∣∣∣∣∣∣∣ a.s.→ 0,

we obtain

1
n

max
1≤k≤n

sup
θ∈Θ

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ) − k
n

n∑
i=1

fi−1(θ)

∣∣∣∣∣∣∣
≤ 1

n
max

1≤k≤[n1/r]
sup
θ∈Θ

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ) − k
n

n∑
i=1

fi−1(θ)

∣∣∣∣∣∣∣ + 1
n

max
[n1/r]≤k≤n

sup
θ∈Θ

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ) − k
n

n∑
i=1

fi−1(θ)

∣∣∣∣∣∣∣
= oP(1).

□

Lemma 5. Suppose that [A1]-[A5] hold and f satisfies the conditions (i), (ii) in Lemma 3. Then,
under Hα0 (or Hα0 and Hβ0) as nh2

n → 0,

1
T

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

f (Xti−1 , θ
∗)(∆iX)l − k

n

n∑
i=1

f (Xti−1 , θ
∗)(∆iX)l

∣∣∣∣∣∣∣ = oP(1), (B.6)

1
T

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

f (Xti−1 , θ
∗)(∆iX)l1(∆iX)l2 − k

n

n∑
i=1

f (Xti−1 , θ
∗)(∆iX)l1(∆iX)l2

∣∣∣∣∣∣∣ = oP(1). (B.7)
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Proof. We first show that

S(1)
n =

1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)
(∆iX)l

hn
−

k∑
i=1

Eθ∗

[
fi−1(θ∗)

(∆iX)l

hn

∣∣∣∣∣∣G n
i−1

]∣∣∣∣∣∣∣ = oP(1). (B.8)

Let

Mi = fi−1(θ∗)
(
(∆iX)l

hn
− Eθ∗

[
(∆iX)l

hn

∣∣∣∣∣∣G n
i−1

])
, Mk =

k∑
i=1

Mi.

Because it follows from Lemma 1 that Eθ∗[|Mi|2|G n
i−1] = Ri−1(h−1

n , θ), we obtain from Theorem 2.11 of
Hall and Heyde (1980) the result that

1
n2Eθ∗

[
max
1≤k≤n
|Mk|2

]
≲

1
n2

Eθ∗  n∑
i=1

Eθ∗[|Mi|2|G n
i−1]

 + Eθ∗ [max
1≤k≤n
|Mk|2

] ≲ 1
T
→ 0,

which implies that S(1)
n = n−1 max1≤k≤n |Mk| = oP(1).

Next, we show that

S(2)
n =

1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)Eθ∗
[
(∆iX)l

hn

∣∣∣∣∣∣G n
i−1

]
− k

∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x)

∣∣∣∣∣∣∣ = oP(1). (B.9)

We have from Lemmas 1-4 the result that

S(2)
n =

1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)(bl
i−1(β∗) + Ri−1(hn)) − k

∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x)

∣∣∣∣∣∣∣
≤ 1

n
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)bl
i−1(β∗) − k

∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x)

∣∣∣∣∣∣∣ + 1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Ri−1(hn)

∣∣∣∣∣∣∣
≤ 1

n
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)bl
i−1(β∗) − k

n

n∑
i=1

fi−1(θ∗)bl
i−1(β∗)

∣∣∣∣∣∣∣
+

1
n

max
1≤k≤n

∣∣∣∣∣∣∣kn
n∑

i=1

fi−1(θ∗)bl
i−1(β∗) − k

∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x)

∣∣∣∣∣∣∣ + oP(1)

≤ 1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)bl
i−1(β∗) − k

n

n∑
i=1

fi−1(θ∗)bl
i−1(β∗)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣1n
n∑

i=1

fi−1(θ∗)bl
i−1(β∗) −

∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x)

∣∣∣∣∣∣∣ + oP(1)

= oP(1).

Hence, we obtain from (B.8) and (B.9) the result that

1
T

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)(∆iX)l − k
n

n∑
i=1

fi−1(θ∗)(∆iX)l

∣∣∣∣∣∣∣
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≤ 1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)
(∆iX)l

hn
− k

∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x)

∣∣∣∣∣∣∣
+

1
n

max
1≤k≤n

∣∣∣∣∣∣∣k
∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x) − k
n

n∑
i=1

fi−1(θ∗)
(∆iX)l

hn

∣∣∣∣∣∣∣
≤ 1

n
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)
(∆iX)l

hn
− k

∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x)

∣∣∣∣∣∣∣
+

1
n

∣∣∣∣∣∣∣n
∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x) −
n∑

i=1

fi−1(θ∗)
(∆iX)l

hn

∣∣∣∣∣∣∣
≲

1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

fi−1(θ∗)
(∆iX)l

hn
− k

∫
Rd

f (x, θ∗)bl(x, β∗)dµθ∗(x)

∣∣∣∣∣∣∣
≤ S(1)

n + S(2)
n = oP(1).

This completes the proof of (B.6). In the same way, we have (B.7). □

Proof of Theorem 1. (1) Let

ηi = Tr
(
A−1

i−1(α∗)
(∆Xi)⊗2

hn

)
=

d∑
l1,l2=1

(A−1
i−1(α∗))l1,l2 (∆iX)l1(∆iX)l2

hn
.

Since it follows from the Taylor expansion that

(A−1
i−1(α̂))l1,l2 = (A−1

i−1(α∗))l1,l2 + ∂α(A−1
i−1(α∗))l1,l2(α̂ − α∗) + (α̂ − α∗)TAl1,l2

i−1 (α̂ − α∗),

where

Al1,l2
i−1 =

∫ 1

0
(1 − u)∂2

α(A
−1
i−1(α∗ + u(α̂ − α∗))l1,l2du,

we have

η̂i =

d∑
l1,l2=1

(A−1
i−1(α̂))l1,l2 (∆iX)l1(∆iX)l2

hn

= ηi +

(
1
√

n

d∑
l1,l2=1

∂α(A−1
i−1(α∗))l1,l2 (∆iX)l1(∆iX)l2

hn

)√
n(α̂ − α∗)

+
√

n(α̂ − α∗)T

1
n

d∑
l1,l2=1

Al1,l2
i−1

(∆iX)l1(∆iX)l2

hn

 √n(α̂ − α∗)

=: ηi +
1
√

n
H1,i
√

n(α̂ − α∗) + 1
n
√

n(α̂ − α∗)TH2,i
√

n(α̂ − α∗).
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Therefore, it is enough to verify

1
√

2dn
max
1≤k≤n

∣∣∣∣∣∣ k∑
i=1

ηi −
k
n

n∑
i=1

ηi

∣∣∣∣∣∣ d→ sup
0≤s≤1
|B0

1(s)|, (B.10)

1
n

max
1≤k≤n

∣∣∣∣∣∣ k∑
i=1

H1,i −
k
n

n∑
i=1

H1,i

∣∣∣∣∣∣ = oP(1), (B.11)

1
n3/2 max

1≤k≤n

∣∣∣∣∣∣ k∑
i=1

H2,i −
k
n

n∑
i=1

H2,i

∣∣∣∣∣∣ = oP(1) (B.12)

for the proof of the first statement of Theorem 1. Thereafter, we show (B.10)-(B.12).
Proof of (B.10). We just show

Un(s) =
1
√

2dn

[ns]∑
i=1

(ηi − d)
w→ B1(s) in D[0, 1] (B.13)

because it follows from the continuous mapping theorem that

1
√

2dn
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

ηi −
k
n

n∑
i=1

ηi

∣∣∣∣∣∣∣ = max
1≤k≤n

∣∣∣∣∣∣∣ 1
√

2dn

k∑
i=1

(ηi − d) − k
n

1
√

2dn

n∑
i=1

(ηi − d)

∣∣∣∣∣∣∣
= sup

0≤s≤1

∣∣∣∣∣∣∣ 1
√

2dn

[ns]∑
i=1

(ηi − d) − [ns]
n

1
√

2dn

n∑
i=1

(ηi − d)

∣∣∣∣∣∣∣
= sup

0≤s≤1

∣∣∣∣∣Un(s) − [ns]
n
Un(1)

∣∣∣∣∣
d→ sup

0≤s≤1
|B0

1(s)|

when the convergence (B.13) holds true.
Let us prove (B.13). First, we obtain from Lemma 1 the result that

1
√

n

n∑
i=1

Eθ∗[ηi − d|G n
i−1] =

1
√

n

n∑
i=1

Ri−1(hn) =
√

nh2
n ×

1
n

n∑
i=1

Ri−1(1) = oP(1). (B.14)

We next show

1
√

2dn

[ns]∑
i=1

(ηi − d − Eθ∗[ηi − d|G n
i−1])

w→ B1(s) in D[0, 1] (B.15)

in order to complete the proof of (B.13). Since it follows from Lemma 1 that

Eθ∗
[
((ηi − d) − Eθ∗[ηi − d|G n

i−1])2
∣∣∣G n

i−1

]
= 2d + Ri−1(hn), Eθ∗[η4

i |G n
i−1] = Ri−1(1),

1
2dn

[ns]∑
i=1

Eθ∗
[
((ηi − d) − Eθ∗[ηi − d|G n

i−1])2
∣∣∣G n

i−1

]
=

[ns]
n

1
2d[ns]

[ns]∑
i=1

(2d + Ri−1(hn))
P→ s
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for all s ∈ [0, 1], and

1
n2

[ns]∑
i=1

Eθ∗
[
(ηi − d − Eθ∗[ηi − d|G n

i−1])4
∣∣∣G n

i−1

]
≲

1
n2

[ns]∑
i=1

Eθ∗[η4
i + d4 + Ri−1(h4

n)|G n
i−1]

=
1
n2

[ns]∑
i=1

Ri−1(1) = oP(1),

we obtain (B.15) from Corollary 3.8 of McLeish (1974). This concludes the proof of (B.10).
Proof of (B.11). Noting that

H1,i =

d∑
l1,l2=1

∂α(A−1
i−1(α∗))l1,l2 (∆iX)l1(∆iX)l2

hn
,

we have from Lemma 5 the result that

1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

H1,i −
k
n

n∑
i=1

H1,i

∣∣∣∣∣∣∣
≤

d∑
l1,l2=1

1
T

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

∂α(A−1
i−1(α∗))l1,l2(∆iX)l1(∆iX)l2 − k

n

n∑
i=1

∂α(A−1
i−1(α∗))l1,l2(∆iX)l1(∆iX)l2

∣∣∣∣∣∣∣
= oP(1).

Proof of (B.12). Because of α∗ ∈ IntΘA, there exists an open neighborhood Oα∗ of α∗ such that
Oα∗ ⊂ ΘA. Since it follows that on Ωn = {α̂ ∈ Oα∗},

|H2,i| =
∣∣∣∣∣∣∣

d∑
l1,l2=1

Al1,l2
i−1

(∆iX)l1(∆iX)l2

hn

∣∣∣∣∣∣∣ ≤
d∑

l1,l2=1

sup
α∈ΘA

|∂2
α(A

−1
i−1(α))l1,l2 |

∣∣∣∣∣∣ (∆iX)l1(∆iX)l2

hn

∣∣∣∣∣∣
and

Eθ∗

 1
n3/2

n∑
i=1

d∑
l1,l2=1

sup
α∈ΘA

|∂2
α(A

−1
i−1(α))l1,l2 |

∣∣∣∣∣∣ (∆iX)l1(∆iX)l2

hn

∣∣∣∣∣∣


≤ 1
n3/2

n∑
i=1

d∑
l1,l2=1

Eθ∗

[
sup
α∈ΘA

∣∣∣∂2
α(A

−1
i−1(α))l1,l2

∣∣∣2]1/2

Eθ∗

∣∣∣∣∣∣ (∆iX)l1(∆iX)l2

hn

∣∣∣∣∣∣2
1/2

≲
1

n1/2 → 0,

we have from [B1] the result that for all ϵ > 0,

Pθ∗
 1

n3/2

n∑
i=1

|H2,i| ≥ ϵ


≤ Pθ∗
{ 1

n3/2

n∑
i=1

|H2,i| ≥ ϵ
}
∩Ωn

 + Pθ∗
{ 1

n3/2

n∑
i=1

|H2,i| ≥ ϵ
}
∩Ωc

n


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≤ Pθ∗

{ 1
n3/2

n∑
i=1

d∑
l1,l2=1

sup
α∈ΘA

|∂2
α(A

−1
i−1(α))l1,l2 |

∣∣∣∣∣∣ (∆iX)l1(∆iX)l2

hn

∣∣∣∣∣∣ ≥ ϵ
}
∩Ωn

 + Pθ∗(Ωc
n)

≤ Pθ∗

 1
n3/2

n∑
i=1

d∑
l1,l2=1

sup
α∈ΘA

|∂2
α(A

−1
i−1(α))l1,l2 |

∣∣∣∣∣∣ (∆iX)l1(∆iX)l2

hn

∣∣∣∣∣∣ ≥ ϵ
 + Pθ∗(Ωc

n)

≲
1
ϵn1/2 + Pθ∗(Ωc

n)→ 0.

Hence we get n−3/2 ∑n
i=1 |H2,i| = oP(1) and

1
n3/2 max

1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

H2,i −
k
n

n∑
i=1

H2,i

∣∣∣∣∣∣∣ ≤ 1
n3/2 max

1≤k≤n

 k∑
i=1

|H2,i| +
k
n

n∑
i=1

|H2,i|


≲
1

n3/2

n∑
i=1

|H2,i| = oP(1).

(2) (a) Notice that

T αn ≥
√

n
2d

[nτ∗α]
n

∣∣∣∣∣∣∣ 1
[nτ∗α]

[nτ∗α]∑
i=1

η̂i −
1
n

n∑
i=1

η̂i

∣∣∣∣∣∣∣ =:
√

n
2d
|H̃n|

and

1
n

n∑
i=1

η̂i =
[nτ∗α]

n
1

[nτ∗α]

[nτ∗α]∑
i=1

η̂i +
n − [nτ∗α]

n
1

n − [nτ∗α]

n∑
i=[nτ∗α]+1

η̂i.

Hence it is enough to show

1
[nτ∗α]

[nτ∗α]∑
i=1

η̂i
P→ F (α∗1, α

′), (B.16)

1
n − [nτ∗α]

n∑
i=[nτ∗α]+1

η̂i
P→ F (α∗2, α

′) (B.17)

because it holds from (B.16), (B.17) and [C2] that

1
n

n∑
i=1

η̂i
P→ τ∗αF (α∗1, α

′) + (1 − τ∗α)F (α∗2, α
′)

and

H̃n =
[nτ∗α]

n

 1
[nτ∗α]

[nτ∗α]∑
i=1

η̂i −
1
n

n∑
i=1

η̂i

 P→ τ∗α(1 − τ∗α)(F (α∗1, α
′) − F (α∗2, α

′)) , 0,

which implies that P(T αn > w1(ϵ))→ 1 for ϵ ∈ (0, 1).
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Let us show (B.16). We find from the Taylor expansion that

η̂i = Tr
(
A−1

i−1(α′)
(∆iX)⊗2

hn

)
+

d∑
l1,l2=1

∫ 1

0
∂α(A−1

i−1(α′ + u(α̂ − α′)))l1,l2du
(∆iX)l1(∆iX)l2

hn
(α̂ − α′)

=: η1,i + η2,i(α̂ − α′).

Since we have from Lemma 1 the result that

1
[nτ∗α]

[nτ∗α]∑
i=1

Eα∗1[η1,i|G n
i−1] =

1
[nτ∗α]

[nτ∗α]∑
i=1

Tr
(
A−1

i−1(α′)Ai−1(α∗1) + Ri−1(hn)
)

P→
∫
Rd

Tr [A−1(x, α′)A(x, α∗1)]dµα∗1(x) = F (α∗1, α
′)

and

1
[nτ∗α]2

[nτ∗α]∑
i=1

Eα∗1[η
2
1,i|G n

i−1]

=
1

[nτ∗α]2

[nτ∗α]∑
i=1

d∑
l1,l2=1

d∑
l3,l4=1

(A−1
i−1(α′))l1,l2(A−1

i−1(α′))l3,l4Eα∗1

[
(∆iX)l1(∆iX)l2(∆iX)l3(∆iX)l4

h2
n

∣∣∣∣∣∣G n
i−1

]

=
1

[nτ∗α]2

[nτ∗α]∑
i=1

Ri−1(1) = oP(1),

it holds from Lemma 9 of Genon-Catalot and Jacod (1993) that

1
[nτ∗α]

[nτ∗α]∑
i=1

η1,i
P→ F (α∗1, α

′). (B.18)

On the other hand, we obtain from [C1] and 1
[nτ∗α]

∑[nτ∗α]
i=1 η2,i = OP(1) the result that η2,i(α̂ − α′) =

oP(1), which together with (B.18) yields (B.16). In the same way, we have from α = α∗2 under
[nτ∗α] + 1 ≤ i ≤ n the result that (B.17), which completes the proof.

(b) Note that

T αn ≥
√

nϑ2
α

2d

∣∣∣∣∣∣∣ 1
nϑα

[nτα∗ ]∑
i=1

η̂i −
[nτα∗ ]

n
1

nϑα

n∑
i=1

η̂i

∣∣∣∣∣∣∣ =:

√
nϑ2
α

2d
|Ĥn|.

By the Taylor expansion,

η̂i = η3,i + η4,i(α̂ − α0) +
∫ 1

0
(1 − u)∂2

αTr
(
A−1

i−1(α0 + u(α̂ − α0))
(∆iX)⊗2

hn

)
du ⊗ (α̂ − α0)⊗2,

where

η3,i = Tr
(
A−1

i−1(α0)
(∆iX)⊗2

hn

)
, η4,i =

(
Tr

(
A−1∂αl AA−1

i−1(α0)
(∆iX)⊗2

hn

))p

l=1
.
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Therefore we have from [D1], [D2] and E[h−1
n (∆iX)⊗2] = O(1) the result that Ĥn = H3,i +H4,iϑ

−1
α (α̂−

α0) + oP(1), where

H3,i =

n∑
i=1

c3,iη3,i :=
(
1 − [nτα∗ ]

n

)
1

nϑα

[nτα∗ ]∑
i=1

η3,i −
[nτα∗ ]

n
1

nϑα

n∑
i=[nτα∗ ]+1

η3,i,

H4,i =

n∑
i=1

c4,iη4,i :=
(
1 − [nτα∗ ]

n

)
1
n

[nτα∗ ]∑
i=1

η4,i −
[nτα∗ ]

n
1
n

n∑
i=[nτα∗ ]+1

η4,i.

Because of Eα∗k [η3,i|G n
i−1] = d +

[
Tr (A−1∂αl Ai−1(α0))

]
l(α
∗
k − α0) + Ri−1(ϑ2

α ∨ hn), E[η2
3,i] ≲ 1 and [D1],

we have

n∑
i=1

c3,iE[η3,i|G n
i−1] =

(
1 − [nτα∗ ]

n

)
1
n

[nτα∗ ]∑
i=1

[
Tr (A−1∂αl Ai−1(α0))

]
lϑ
−1
α (α∗1 − α0)

− [nτα∗ ]
n

1
n

n∑
i=[nτα∗ ]+1

[
Tr (A−1∂αl Ai−1(α0))

]
lϑ
−1
α (α∗2 − α0) + oP(1)

P→ τα∗ (1 − τα∗ )
(∫
Rd

(
Tr (A−1∂αl A(x, α0))

)p
l=1dµα0(x)

)T

(c1 − c2)

and
∑n

i=1 c2
3,iE[η2

3,i|G n
i−1]

P→ 0. Similarly, it follows from Eα∗k [η4,i|G n
i−1] = d + [Tr (A−1∂αl Ai−1(α0))]l(α∗k −

α0) + Ri−1(ϑ2
α ∨ hn) and E[|η4,i|2] ≲ 1 that

n∑
i=1

c4,iE[η4,i|G n
i−1]

P→ 0,
n∑

i=1

c2
4,iE[η2

4,i|G n
i−1]

P→ 0.

From Lemma 9 of Genon-Catalot and Jacod (1993), we obtain

H3,i
P→ τα∗ (1 − τα∗ )

(∫
Rd

(
Tr (A−1∂αl A(x, α0))

)p
l=1dµα0(x)

)T

(c1 − c2), H4,i
P→ 0.

Hence we find from [D3] that Ĥn converges to a non-zero constant in probability, which implies
P(T αn > w1(ϵ))→ 1. □

Proof of Theorem 2
The following lemma presents a sufficient condition to specify the asymptotic distribution of the
proposed estimators, which can be identified if (a) and (b) of Lemma 6 are fulfilled.

Lemma 6. Let Υn(τ : θ1, θ2) be a contrast function, and let θ̂1, θ̂2 be estimators of θ1, θ2, respectively,
and let τ̂n = argminτ∈[0,1]Υn(τ : θ̂1, θ̂2) be the estimator of τ∗, and let Ĥn(v) = Υn(τ∗ + v/rn : θ̂1, θ̂2) −
Υn(τ∗ : θ̂1, θ̂2). If there exist a positive sequence {rn} with rn → ∞ and a random field H(v) that satisfy
the following conditions
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(a) rn(τ̂n − τ∗) = OP(1),

(b) For all L > 0, Ĥn(v)
w→ H(v) in D[−L, L],

then rn(τ̂n − τ∗)
d→ argminv∈RH(v).

Proof. Let v† = argminv∈RH(v). For all x ∈ R,

P(rn(τ̂n − τ∗) ≤ x) ≤ P
(
rn(τ̂n − τ∗) ≤ x, rn(τ̂n − τ∗) ∈ [−L, L], inf

v∈[−L,x]
Ĥn(v) > inf

v∈[x,L]
Ĥn(v)

)
+ P

(
rn(τ̂n − τ∗) < [−L, L]

)
+ P

(
inf

v∈[−L,x]
Ĥn(v) ≤ inf

v∈[x,L]
Ĥn(v)

)
. (B.19)

If rn(τ̂n − τ∗) ∈ [−L, L] and infv∈[−L,x] Ĥn(v) > infv∈[x,L] Ĥn(v), then x < rn(τ̂n − τ∗) ≤ L. Therefore, we
find that

P
(
rn(τ̂n − τ∗) ≤ x, rn(τ̂n − τ∗) ∈ [−L, L], inf

v∈[−L,x]
Ĥn(v) > inf

v∈[x,L]
Ĥn(v)

)
= 0,

which together with (b) and (B.19) yields

lim
n→∞

P
(
rn(τ̂n − τ∗) ≤ x

) ≤ sup
n∈N

P
(
rn(τ̂n − τ∗) < [−L, L]

)
+ P

(
inf

v∈[−L,x]
H(v) ≤ inf

v∈[x,L]
H(v)

)
. (B.20)

Since

P
(

inf
v∈[−L,x]

H(v) ≤ inf
v∈[x,L]

H(v)
)
≤ P

(
inf

v∈[−L,x]
H(v) ≤ inf

v∈[x,L]
H(v), v† ∈ [−L, L], v† > x

)
+ P(v† < [−L, L]) + P(v† ≤ x),

P
(

inf
v∈[−L,x]

H(v) ≤ inf
v∈[x,L]

H(v), v† ∈ [−L, L], v† > x
)
≤ P(−L ≤ v† ≤ x, v† > x) = 0,

we obtain from (a) and (B.20) the result that as L→ ∞,

lim
n→∞

P
(
rn(τ̂n − τ∗) ≤ x

) ≤ P(v† ≤ x).

In the same way, we have limn→∞ P(rn(τ̂n − τ∗) ≤ x) ≥ P(v† ≤ x) and thus the proof is complete. □

In Case Aα, defineDαn (v) = F̂n(v) − Fn(v), where

Fn(v) = Φn

(
τα∗ +

v
nϑ2
α

: α∗1, α
∗
2

)
− Φn

(
τα∗ : α∗1, α

∗
2
)
,

F̂n(v) = Φn

(
τα∗ +

v
nϑ2
α

: α̂1, α̂2

)
− Φn

(
τα∗ : α̂1, α̂2

)
.

Lemma 7. Suppose that [A1]-[A5], [E1], [F1] and [F2] hold. Then, for all L > 0,

sup
v∈[−L,L]

|Dαn (v)| P→ 0

as n→ ∞.
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Proof. We assume that v > 0. Since

Fi(α̂k) = Fi(α∗k) + ∂αFi(α∗k)(α̂k − α∗k) +
∫ 1

0
∂2
αFi(α∗k + u(α̂k − α∗k))du ⊗ (α̂k − α∗k)⊗2,

[E1] and nϑ2
α → ∞, we have

Dαn (v) =
[nτα∗+v/ϑ2

α]∑
i=[nτα∗ ]+1

(
Fi(α̂1) − Fi(α̂2)

) − [nτα∗+v/ϑ2
α]∑

i=[nτα∗ ]+1

(
Fi(α∗1) − Fi(α∗2)

)
=

[nτα∗+v/ϑ2
α]∑

i=[nτα∗ ]+1

(
∂αFi(α∗1)(α̂1 − α∗1) + ∂αFi(α∗2)(α̂2 − α∗2)

)
+ ōP(1), (B.21)

where Yn(v) = ōP(1) denotes supv∈[0,L] |Yn(v)| = oP(1). By Theorem 2.11 of Hall and Heyde (1980)
and Eα∗2[|∂αFi(α∗k)|2] ≲ 1, we have

Eα∗2

1
n

sup
v∈[0,L]

∣∣∣∣∣∣∣∣
[nτα∗+v/ϑ2

α]∑
i=[nτα∗ ]+1

(
∂αFi(α∗k) − Eα∗2[∂αFi(α∗k)|G n

i−1]
)∣∣∣∣∣∣∣∣

2
≲

1
n

[nτα∗+L/ϑ2
α]∑

i=[nτα∗ ]+1

Eα∗2

[∣∣∣∂αFi(α∗k) − Eα∗2[∂αFi(α∗k)|G n
i−1]

∣∣∣2] ≲ 1
nϑ2
α

→ 0.

Moreover, we see from Eα∗2[∂αFi(α∗k)|G n
i−1] = Ξαi−1(α0)(α∗2 − α∗k) + Ri−1(ϑ2

α ∨ hn) and [F2](a) that

sup
v∈[0,L]

∣∣∣∣∣∣∣∣
[nτα∗+v/ϑ2

α]∑
i=[nτα∗ ]+1

Eα∗2[∂αFi(α∗k)|G n
i−1]

∣∣∣∣∣∣∣∣ |α̂k − α∗k|

≤ sup
v∈[0,L]

∣∣∣∣∣∣∣∣
[nτα∗+v/ϑ2

α]∑
i=[nτα∗ ]+1

Ξαi−1(α0)

∣∣∣∣∣∣∣∣ |α∗2 − α∗k||α̂k − α∗k| + OP

(
1
√

n

[nτα∗+L/ϑ2
α]∑

i=[nτα∗ ]+1

ϑ2
α ∨ hn

)
= OP

(
1
√

nϑα
∨ 1
√

n
∨ hn√

nϑ2
α

)
= oP(1).

Therefore, we have

[nτα∗+v/ϑ2
α]∑

i=[nτα∗ ]+1

∂αFi(α∗k)(α̂k − α∗k) = ōP(1),

and we obtain from (B.21) the result that supv∈[0,L] |Dαn (v)| P→ 0. By a similar proof, we see supv∈[−L,0] |Dαn (v)| P→
0 and this proof is complete. □

Lemma 8. Suppose that [A1]-[A5], [E1], [F1] and [F2] hold. Then, for all L > 0,

Fn(v)
w→ F(v) in D[−L, L]

as n→ ∞.
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Proof. We consider v > 0. Let

F1,n(v) =
[nτα∗+v/ϑ2

α]∑
i=[nτα∗ ]+1

∂αFi(α∗2)(α∗1 − α∗2), F2,n(v) =
1
2

[nτα∗+v/ϑ2
α]∑

i=[nτα∗ ]+1

∂2
αFi(α∗2) ⊗ (α∗1 − α∗2)⊗2.

By the Taylor expansion and |α∗1 − α∗2| = ϑα, we have

Fn(v) =
[nτα∗+v/ϑ2

α]∑
i=[nτα∗ ]+1

(
Fi(α∗1) − Fi(α∗2)

)
= F1,n(v) + F2,n(v) + ōP(1).

It follows from Eα∗2[∂αFi(α∗2)|G n
i−1] = Ri−1(hn) and hn/ϑα → 0 that

[nτα∗+v/ϑ2
α]∑

i=[nτα∗ ]+1

Eα∗2[∂αFi(α∗2)|G n
i−1](α∗1 − α∗2) = ōP(1). (B.22)

Let Mi = ∂αFi(α∗2) − Eα∗2[∂αFi(α∗2)|G n
i−1]. Because of

Eα∗2

[(
Mi(α∗1 − α∗2)

)2
∣∣∣∣G n

i−1

]
= 2Ξαi−1(α∗2) ⊗ (α∗1 − α∗2)⊗2 + Ri−1(hnϑ

2
α),

Eα∗2

[(
Mi(α∗1 − α∗2)

)4
∣∣∣∣G n

i−1

]
= Ri−1(ϑ4

α)

and [F2](a), we have

[nτα∗+v/ϑ2
α]∑

i=[nτα∗ ]+1

Eα∗2

[(
Mi(α∗1 − α∗2)

)2
∣∣∣∣G n

i−1

] P→ 2eT
α

∫
Rd
Ξα(x, α0)dµα0(x)eαv = 4Jαv (B.23)

[nτα∗+v/ϑ2
α]∑

i=[nτα∗ ]+1

Eα∗2

[(
Mi(α∗1 − α∗2)

)4
∣∣∣∣G n

i−1

] P→ 0. (B.24)

According to Corollary 3.8 of McLeish (1974), we obtain from (B.23) and (B.24) the result that

[nτα∗+v/ϑ2
α]∑

i=[nτα∗ ]+1

Mi(α∗1 − α∗2)
w→ −2J1/2

α W(v) in D[0, L], (B.25)

which together with (B.22) yields F1,n(v)
w→ −2J1/2

α W(v) in D[0, L].
Since it follows from Theorem 2.11 of Hall and Heyde (1980),

Eα∗2[|∂αFi(α∗2)|2] ≲ 1, Eα∗2[∂
2
αFi(α∗2)|G n

i−1] = Ξαi−1(α∗2) + Ri−1(ϑ2
α)

and [F2](a) that

sup
v∈[0,L]

∣∣∣∣∣∣∣∣
[nτα∗+v/ϑ2

α]∑
i=[nτα∗ ]+1

(
∂2
αFi(α∗2) − Eα∗2[∂

2
αFi(α∗2)|G n

i−1]
)
⊗ (α∗1 − α∗2)⊗2

∣∣∣∣∣∣∣∣ P→ 0
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and

sup
v∈[0,L]

∣∣∣∣∣∣∣∣
[nτα∗+v/ϑ2

α]∑
i=[nτα∗ ]+1

Eα∗2[∂
2
αFi(α∗2)|G n

i−1] ⊗ (α∗1 − α∗2)⊗2 − 2Jαv

∣∣∣∣∣∣∣∣ P→ 0,

we have supv∈[0,L] |F2,n(v) − Jαv|
P→ 0 and from the continuous mapping theorem,

Fn(v)
w→ −2J1/2

α W(v) +Jαv in D[0, L].

In the same way, it can be shown that Fn(v)
w→ F(v) in D[−L, 0]. □

By Lemmas 7 and 8, we find that (b) of Lemma 6 is satisfied. It remains for us to confirm the
validity of (a) of Lemma 6 in Case Aα.

Proof of Theorem 2. (1) Let M ≥ 1. Since

Fi(α1) − Fi(α2) = Fi(α1) − Fi(α2) − Eα∗2[Fi(α1) − Fi(α2)|G n
i−1]

+ Tr
(
A−1

i−1(α1)Ai−1(α2) − Id

)
− log det A−1

i−1(α1)Ai−1(α2)

− Tr
((

A−1
i−1(α1) − A−1

i−1(α2)
) (

Ai−1(α2) − h−1Eα∗2[(∆iX)⊗2|G n
i−1]

))
,

we see that for τ > τα∗ ,

Φn(τ : α1, α2) − Φn(τα∗ : α1, α2) =
[nτ]∑

i=[nτα∗ ]+1

(
Fi(α1) − Fi(α2)

)
=Mαn (τ : α1, α2) +Aαn (τ : α1, α2) + ϱαn (τ : α1, α2),

where

Mαn (τ : α1, α2) =
[nτ]∑

i=[nτα∗ ]+1

(
Fi(α1) − Fi(α2) − Eα∗2[Fi(α1) − Fi(α2)|G n

i−1]
)
,

Aαn (τ : α1, α2) =
[nτ]∑

i=[nτα∗ ]+1

(
Tr

(
A−1

i−1(α1)Ai−1(α2) − Id

)
− log det A−1

i−1(α1)Ai−1(α2)
)
,

ϱαn (τ : α1, α2) =
[nτ]∑

i=[nτα∗ ]+1

Tr
((

A−1
i−1(α1) − A−1

i−1(α2)
) (

Ai−1(α2) − h−1Eα∗2[(∆iX)⊗2|G n
i−1]

))
.

Let Dαn,M = {τ ∈ [0, 1]|nϑ2
α(τ − τα∗ ) > M}. For any δ > 0, we have

P
(
nϑ2
α(τ̂n − τα∗ ) > M

)
≤ P

(
inf
τ∈Dαn,M

Φn(τ : α̂1, α̂2) ≤ Φn(τα∗ : α̂1, α̂2)
)

≤ P
 sup
τ∈Dαn,M

|Mαn (τ : α̂1, α̂2)|
ϑ2
α([nτ] − [nτα∗ ])

≥ δ
 + P

(
inf
τ∈Dαn,M

Aαn (τ : α̂1, α̂2)
ϑ2
α([nτ] − [nτα∗ ])

≤ 2δ
)
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+ P
 sup
τ∈Dαn,M

|ϱαn (τ : α̂1, α̂2)|
ϑ2
α([nτ] − [nτα∗ ])

≥ δ


=: Pα1,n + Pα2,n + Pα3,n.

(i) Estimation of Pα1,n. Let ϵ > 0 be an arbitrary number. Let Oα be an open neighborhood of α.
Because ∂αFi(α) is continuous with respect to α ∈ ΘA, we can choose ᾱ ∈ Oα̂2 such that

Mαn (τ : α̂1, α̂2) =
[nτ]∑

i=[nτα∗ ]+1

(
∂αFi(ᾱ) − Eα∗2[∂αFi(α)|G n

i−1]
∣∣∣
α=ᾱ

)
(α̂1 − α̂2).

If α̂k ∈ Oα0 , then

|Mαn (τ : α̂1, α̂2)| ≤ sup
α∈ΘA

∣∣∣∣∣∣∣∣
[nτ]∑

i=[nτα∗ ]+1

(
∂αFi(α) − Eα∗2[∂αFi(α)|G n

i−1]
)∣∣∣∣∣∣∣∣ |α̂1 − α̂2|

=: sup
α∈ΘA

|Mαn (τ : α)||α̂1 − α̂2|.

Hence we have

Pα1,n ≤ P
 sup
τ∈Dαn,M

|Mαn (τ : α̂1, α̂2)|
ϑ2
α([nτ] − [nτα∗ ])

≥ δ, |α̂1 − α̂2| ≤ 2ϑα, α̂1, α̂2 ∈ Oα0


+ P(|α̂1 − α̂2| > 2ϑα) +

2∑
k=1

P(α̂k < Oα0)

≤ P
 sup
τ∈Dαn,M

supα∈ΘA
|Mαn (τ : α)|

[nτ] − [nτα∗ ]
≥ δϑα

2

 + P(|α̂1 − α̂2| > 2ϑα) +
2∑

k=1

P(α̂k < Oα0). (B.26)

By the uniform version on the Hájek-Renyi inequality in Lemma 2 of Iacus and Yoshida (2012), we
obtain

P
 sup
τ∈Dαn,M

supα∈ΘA
|Mαn (τ : α)|

[nτ] − [nτα∗ ]
≥ δϑα

2

 ≲ 1
δ2M

=: γα(M). (B.27)

Note that {|α̂1 − α̂2| > 2ϑα} ⊂
⋃2

k=1{|α̂k − α∗k| > ϑα/2}. Since P(|α̂k − α∗k| > ϑα/2) < ϵ/2 for sufficiently
large n because of ϑ−1

α (α̂k − α∗k) = oP(1), we find

P(|α̂1 − α̂2| > 2ϑα) < ϵ. (B.28)

Therefore, we have from [E1] and [F1] the result that P(α̂k < Oα0) < ϵ/2 for large n, which together
with (B.26)-(B.28) yields Pα1,n ≤ γα(M) + 2ϵ for large n.

(ii) Estimation of Pα2,n. If α̂k ∈ Oα0 , then

Tr
(
A−1

i−1(α̂1)Ai−1(α̂2) − Id

)
− log det A−1

i−1(α̂1)Ai−1(α̂2)
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=

(1
2
Ξαi−1(α0) +

1
2
∂αΞ

α
i−1(α0) ⊗ (α̂2 − α0)

+
1
3!
∂3
αΓ
α
i−1(α0, α0) ⊗ (α̂1 − α̂2) + O(ϑ2

α)
)
⊗ (α̂1 − α̂2)⊗2

≥
(
1
2
λ1[Ξαi−1(α0)] + rn,i−1

)
|α̂1 − α̂2|2,

where λ1[M] denotes the minimum eigenvalue of a symmetric matrix M, and rn,i−1 satisfies

sup
τ∈Dαn,M

∣∣∣∣∣∣∣∣ 1
[nτ] − [nτα∗ ]

[nτ]∑
i=[nτα∗ ]+1

rn,i−1

∣∣∣∣∣∣∣∣ = oP(1)

from [F1], [F2](b) and (c). We thus obtain

Pα2,n ≤ P
(

inf
τ∈Dαn,M

Aαn (τ : α̂1, α̂2)
ϑ2
α([nτ] − [nτα∗ ])

≤ 2δ, |α̂1 − α̂2| ≥
ϑα
2
, α̂k ∈ Oα0

)
+ P

(
|α̂1 − α̂2| <

ϑα
2

)
+

2∑
k=1

P(α̂k < Oα0)

≤ P

 inf
τ∈Dαn,M

1
[nτ] − [nτα∗ ]

[nτ]∑
i=[nτα∗ ]+1

(
1
2
λ1[Ξαi−1(α0)] + rn,i−1

)
≤ 8δ


+ P

(
|α̂1 − α̂2| <

ϑα
2

)
+

2∑
k=1

P(α̂k < Oα0).

Choose δ = 1
19

∫
Rd λ1[Ξα(x, α0)]dµα0(x) > 0. It then follows from [F2](a) that for large n,

P
(

inf
τ∈Dαn,M

1
[nτ] − [nτα∗ ]

[nτ]∑
i=[nτα∗ ]+1

(1
2
λ1[Ξαi−1(α0)] + rn,i−1

)
≤ 8δ

)

≤ P
(

inf
τ∈Dαn,M

1
[nτ] − [nτα∗ ]

[nτ]∑
i=[nτα∗ ]+1

λ1[Ξαi−1(α0)] ≤ 18δ
)
+ P

(
sup
τ∈Dαn,M

∣∣∣∣∣∣ 1
[nτ] − [nτα∗ ]

[nτ]∑
i=[nτα∗ ]+1

rn,i−1

∣∣∣∣∣∣ ≥ δ
)

≤ P
(

sup
τ∈Dαn,M

∣∣∣∣∣∣ 1
[nτ] − [nτα∗ ]

[nτ]∑
i=[nτα∗ ]+1

λ1[Ξαi−1(α0)] − 19δ

∣∣∣∣∣∣ ≥ δ
)
+
ϵ

2
≤ ϵ.

Noting that {|α̂1 − α̂2| < ϑα/2} ⊂
⋃2

k=1{|α̂k −α∗k| > ϑα/4} and P(|α̂k −α∗k| > ϑα/4) < ϵ/2 for large n, we
see P(|α̂1 − α̂2| < ϑα/2) < ϵ. Hence, we obtain Pα2,n ≤ 3ϵ for large n.

(iii) Estimation of Pα3,n. If α̂k ∈ Oα0 , then it holds from [E1] and α̂1 − α̂2 = OP(ϑα) that

Tr
((

A−1
i−1(α̂1) − A−1

i−1(α̂2)
) (

Ai−1(α̂2) − h−1
n Eα∗2[(∆iX)⊗2|G n

i−1]
))

≤ Ξαi−1(α0) ⊗ (α̂1 − α̂2) ⊗ (α̂2 − α∗2) + Ri−1

( ϑ2
α√
n
∨ hnϑα

)
.
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We have from [F1] and [F2](a) the result that

sup
τ∈Dαn,M

|ϱαn (τ : α̂1, α̂2)|
ϑ2
α([nτ] − [nτα∗ ])

≤ sup
τ∈Dαn,M

∣∣∣∣∣∣∣∣ 1
[nτ] − [nτα∗ ]

[nτ]∑
i=[nτα∗ ]+1

Ξαi−1(α0)

∣∣∣∣∣∣∣∣ |α̂1 − α̂2||α̂2 − α∗2| + OP(
√

nϑ2
α ∨ Tϑα)

= OP

( 1
√

nϑα
∨
√

nϑ2
α ∨ Tϑα

)
= oP(1),

which implies that Pα3,n ≤ 2ϵ for large n.
(iv) From the estimations in Steps (i)-(iii), we have

lim
n→∞

P(nϑ2
α(τ̂
α
n − τα∗ ) > M) ≤ γα(M) + 7ϵ

for any M ≥ 1 and ϵ > 0. Hence

lim
M→∞

lim
n→∞

P(nϑ2
α(τ̂
α
n − τα∗ ) > M) ≤ 7ϵ.

In the same way as above, we see

lim
M→∞

lim
n→∞

P(nϑ2
α(τ
α
∗ − τ̂αn ) > M) ≤ 7ϵ,

and thus, lim
M→∞

lim
n→∞

P(nϑ2
α|τ̂αn − τα∗ | > M) ≤ 14ϵ, which shows

nϑ2
α(τ̂
α
n − τα∗ ) = OP(1). (B.29)

From Lemmas 6-8 and (B.29), we obtain

nϑ2
α(τ̂
α
n − τα∗ )

d→ argmin
v∈R

F(v).

(2) Let Dαn,M = {τ ∈ [0, 1]|n(τ−τα∗ ) > M}. Similarly, we have P(n(τ̂αn−τα∗ ) > M) ≤ Pα1,n+Pα2,n+Pα3,n,
where

Pα1,n = P
 sup
τ∈Dαn,M

|Mαn (τ : α̂1, α̂2)|
[nτ] − [nτα∗ ]

≥ δ
 , Pα2,n = P

(
inf
τ∈Dαn,M

Aαn (τ : α̂1, α̂2)
[nτ] − [nτα∗ ]

≤ 2δ
)
,

Pα3,n = P
 sup
τ∈Dαn,M

|ϱαn (τ : α̂1, α̂2)|
[nτ] − [nτα∗ ]

≥ δ
 .

Let ϵ > 0. Since it follows from Lemma 2 of Iacus and Yoshida (2012) that

P

 sup
τ∈Dαn,M

1
[nτ] − [nτα∗ ]

sup
αk∈Oα∗k

|Mαn (τ : α1, α2)| ≥ δ
 ≲ 1
δ2M

=: γα(M),
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we find Pα1,n ≤ γα(M) + ϵ for large n.
From [G2](a), if α̂k ∈ Oα∗k , then there exists c > 0 independent of i such that

Γαi−1(α̂1, α̂2) ≥ Γαi−1(α∗1, α
∗
2) − c(|α̂1 − α∗1| + |α̂2 − α∗2|). (B.30)

Choose δ = infx Γ
α(x, α∗1, α

∗
2)/4 > 0. It then holds from [G1] that for large n,

P
(

inf
τ∈Dαn,M

Aαn (τ : α̂1, α̂2)
[nτ] − [nτα∗ ]

≤ 2δ, α̂1 ∈ Oα∗1 , α̂2 ∈ Oα∗2

)
≤ P

(
inf

x
Γα(x, α∗1, α

∗
2) ≤ 3δ

)
+ ϵ = ϵ,

and thus we have Pα2,n ≤ 2ϵ.
Moreover, it follows that for α̂k ∈ Oα∗k ,

Tr
((

A−1
i−1(α̂1) − A−1

i−1(α̂2)
) (

Ai−1(α̂2) − h−1
n Eα∗2[(∆iX)⊗2|G n

i−1]
))

≤ sup
x,αk

∣∣∣∣[Tr
(
(A−1(x, α1) − A−1(x, α2))∂αl A(x, α3)

)]
l

∣∣∣∣|α̂2 − α∗2|

+ h|A−1
i−1(α̂1) − A−1

i−1(α̂2)||Qi−1(θ∗)| + Ri−1(h2
n),

and from [E1], [G2](b) and (c) that

sup
τ∈Dαn,M

|ϱαn (τ : α̂1, α̂2)|
[nτ] − [nτα∗ ]

≤ sup
x,αk

∣∣∣∣[Tr
(
(A−1(x, α1) − A−1(x, α2))∂αl A(x, α3)

)]
l

∣∣∣∣|α̂2 − α∗2|

+ hn sup
x,αk

∣∣∣A−1(x, α1) − A−1(x, α2)
∣∣∣ sup

x,θ
|Q(x, θ)| + OP(nh2

n)

= OP(n−1/2 ∨ hn ∨ nh2
n) = oP(1).

We hence see Pα3,n ≤ 2ϵ for large n.
Therefore we have

lim
M→∞

lim
n→∞

P(n(τ̂αn − τα∗ ) > M) ≤ 5ϵ.

(3) It suffices to estimate the following probabilities for any ϵ1 ∈ [0, 1/2) and M > 0.

Pα1,n = P
 sup
τ∈Dαn,M

|Mαn (τ : α̂1, α̂2)|
n−δ1([nτ] − [nτα∗ ])

≥ 1

 , Pα2,n = P
(

inf
τ∈Dαn,M

Aαn (τ : α̂1, α̂2)
n−δ1([nτ] − [nτα∗ ])

≤ 2
)
,

Pα3,n = P
 sup
τ∈Dαn,M

|ϱαn (τ : α̂1, α̂2)|
n−δ1([nτ] − [nτα∗ ])

≥ 1

 ,
where Dαn,M = {τ ∈ [0, 1]|nϵ1(τ − τα∗ ) > M}.

Let 0 < δ1 < 1/2 − ϵ1. For any ϵ > 0, we have from Lemma 2 of Iacus and Yoshida (2012), [E1]
and ϵ1 + 2δ1 < 1 the result that

Pα1,n ≤ P

 sup
τ∈Dαn,M

supαk∈Oα∗k
|Mαn (τ : α1, α2)|

[nτ] − [nτα∗ ]
≥ n−δ1

 + 2∑
k=1

P(α̂k < Oα∗k )
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≲
nϵ1+2δ1−1

M
+

2∑
k=1

P(α̂k < Oα∗k ) ≤ 2ϵ

for large n. By (B.30), [G1], [E1] and δ1 < 1/2

Pα2,n ≤ P
(
inf

x
Γα(x, α∗1, α

∗
2) ≤ 3n−δ1

)
+ P

(
|α̂1 − α∗1| + |α̂2 − α∗2| ≥

n−δ1

c

)
+

2∑
k=1

P(α̂k < Oα∗k ) ≤ 3ϵ

for large n. Furthermore, if α̂k ∈ Oα∗k , then

Tr
((

A−1
i−1(α̂1) − A−1

i−1(α̂2)
) (

Ai−1(α̂2) − h−1
n Eα∗2[(∆iX)⊗2|G n

i−1]
))

≤ sup
x,αk

∣∣∣∣[Tr
(
(A−1(x, α1) − A−1(x, α2))∂αl A(x, α3)

)]
l

∣∣∣∣|α̂2 − α∗2| + Ri−1(hn),

that is, it holds from [E1], [G2](b) and 0 < δ1 < 1/2 − ϵ1 that

sup
τ∈Dαn,M

|ϱαn (τ : α̂1, α̂2)|
n−δ1([nτ] − [nτα∗ ])

= OP(nδ1−1/2 ∨ nϵ1+δ1hn) = oP(1),

which indicates that Pα3,n ≤ 2ϵ for large n.
Therefore, we have

lim
n→∞

P(nϵ1(τ̂αn − τα∗ ) > M) ≤ lim
n→∞

(Pα1,n + Pα2,n + Pα3,n) ≤ 7ϵ

for any M > 0 and ϵ > 0. □

Proofs of Theorems 3 and 4
Proof of Theorem 3. (1) By the Taylor expansion, we have

κli−1(α̂) = κli−1(α∗) + ∂ακli−1(α∗)(α̂ − α∗) + (α̂ − α∗)TK l
i (α̂ − α∗),

where K l
i =

∫ 1

0
(1 − u)∂2

ακ
l
i−1(α∗ + u(α̂ − α∗))du. We then find that

ξ̂i =

d∑
l=1

κli−1(α̂)(∆iX − hnbi−1(β̂))l

=

d∑
l=1

κli−1(α∗)
(
∆iX − hnbi−1(β∗) − hn(bi−1(β̂) − bi−1(β∗))

)l

+

 1
√

n

d∑
l=1

∂ακ
l
i−1(α∗)(∆iX − hnbi−1(β̂))l

 √n(α̂ − α∗)

+
√

n(α̂ − α∗)T

1
n

d∑
l=1

K l
i (∆iX − hnbi−1(β̂))l

 √n(α̂ − α∗)

72



= ξi −
√hn

n

d∑
l=1

κli−1(α∗)∂βbl
i−1(β∗)

 √T (β̂ − β∗)

−
√

T (β̂ − β∗)T

1
n

d∑
l=1

κli−1(α∗)
∫ 1

0
(1 − u)∂2

βb
l
i−1(β∗ + u(β̂ − β∗))du

 √T (β̂ − β∗)

+

 1
√

n

d∑
l=1

∂ακ
l
i−1(α∗)(∆iX)l

 √n(α̂ − α∗) −
 hn√

n

d∑
l=1

∂ακ
l
i−1(α∗)bl

i−1(β̂)

 √n(α̂ − α∗)

+
√

n(α̂ − α∗)T

1
n

d∑
l=1

K l
i (∆iX − hnbi−1(β̂))l

 √n(α̂ − α∗)

=: ξi +

√
hn

n
Q1,i

√
T (β̂ − β∗) + 1

n

√
T (β̂ − β∗)TQ2,i

√
T (β̂ − β∗)

+
1
√

n
Q3,i
√

n(α̂ − α∗) + hn√
n
Q4,i
√

n(α̂ − α∗)

+
1
n
√

n(α̂ − α∗)TQ5,i
√

n(α̂ − α∗).

Therefore, it is enough to show

1
√

dT
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

ξi −
k
n

n∑
i=1

ξi

∣∣∣∣∣∣∣ d→ sup
0≤s≤1
|B0

1(s)|, (B.31)

1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Q1,i −
k
n

n∑
i=1

Q1,i

∣∣∣∣∣∣∣ = oP(1), (B.32)

1

n
√

T
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Q2,i −
k
n

n∑
i=1

Q2,i

∣∣∣∣∣∣∣ = oP(1), (B.33)

1
n
√

hn
max
1≤k≤n

∣∣∣∣∣∣∣
n∑

i=1

Q3,i −
k
n

n∑
i=1

Q3,i

∣∣∣∣∣∣∣ = oP(1), (B.34)

√
hn

n
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Q4,i −
k
n

n∑
i=1

Q4,i

∣∣∣∣∣∣∣ = oP(1), (B.35)

1

n
√

T
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Q5,i −
k
n

n∑
i=1

Q5,i

∣∣∣∣∣∣∣ = oP(1). (B.36)

(B.32) and (B.34) are easily shown by Lemmas 4 and 5.
Proof of (B.31). In order to show

Vn(s) =
1
√

dT

[ns]∑
i=1

ξi
w→ B1(s) in D[0, 1], (B.37)

73



we verify that

1
√

dT

[ns]∑
i=1

(ξi − Eθ∗[ξi|G n
i−1])

w→ B1(s) in D[0, 1], (B.38)

1
√

T

n∑
i=1

Eθ∗[ξi|G n
i−1] = oP(1). (B.39)

(B.39) is easily shown from Lemma 2. Moreover, we find from Lemma 2 that

1
dT

[ns]∑
i=1

Eθ∗[(ξi − Eθ∗[ξi|G n
i−1])2|G n

i−1] =
[ns]

n
1

d[ns]hn

[ns]∑
i=1

(dhn + Ri−1(h2
n))

P→ s for all s ∈ [0, 1],

1
T 2

[ns]∑
i=1

Eθ∗[(ξi − Eθ∗[ξi|G n
i−1])4|G n

i−1] ≲
1

T 2

[ns]∑
i=1

Eθ∗[ξ4
i + Ri−1(h8

n)|G n
i−1] =

1
n2

[ns]∑
i=1

Ri−1(1) = oP(1).

and thus (B.38) follows from Corollary 3.8 of McLeish (1974).
Proofs of (B.33), (B.35) and (B.36). Since there exists an open neighborhood Oθ∗ of θ∗ such that

Oθ∗ ⊂ Θ, we see that on Ωn = {θ̂ ∈ Oθ∗},

|Q2,i| ≤
d∑

l=1

sup
α∈ΘA

|κli−1(α)| sup
β∈ΘB

|∂2
βb

l
i−1(β)|,

|Q4,i| ≤
d∑

l=1

sup
α∈ΘA

|∂ακli−1(α)| sup
β∈ΘB

|bl
i−1(β)|,

|Q5,i| ≤
d∑

l=1

sup
α∈ΘA

|∂2
ακ

l
i−1(α)|

(
|(∆iX)l| + hn sup

β∈ΘB

|bl
i−1(β)|

)
.

Noting that

1

n
√

T

n∑
i=1

d∑
l=1

Eθ∗
[
sup
α∈ΘA

|κli−1(α)| sup
β∈ΘB

|∂2
βb

l
i−1(β)|

]
≲

1
√

T
→ 0,

√
hn

n

n∑
i=1

d∑
l=1

Eθ∗
[
sup
α∈ΘA

|∂ακli−1(α)| sup
β∈ΘB

|bl
i−1(β)|

]
≲

√
hn → 0

and

1

n
√

T

n∑
i=1

d∑
l=1

Eθ∗
[
sup
α∈ΘA

|∂2
ακ

l
i−1(α)|

(
|(∆iX)l| + hn sup

β∈ΘB

|bl
i−1(β)|

)]
≲

1

n
√

T

n∑
i=1

d∑
l=1

Eθ∗
[
sup
α∈ΘA

|∂2
ακ

l
i−1(α)|2

]1/2
(
Eθ∗[((∆iX)l)2] + h2

nEθ∗
[
sup
β∈ΘB

|bl
i−1(β)|2

])1/2
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≲
1
√

n
→ 0,

we see from [E2] and [B2] that

1

n
√

T

n∑
i=1

|Q2,i| = oP(1),
√

hn

n

n∑
i=1

|Q4,i| = oP(1),
1

n
√

T

n∑
i=1

|Q5,i| = oP(1).

(2) (a) Since

T β1,n ≥
√

T
d

∣∣∣∣∣∣∣∣ 1
T

[nτβ∗]∑
i=1

ξ̂i −
[nτβ∗]

n
1
T

n∑
i=1

ξ̂i

∣∣∣∣∣∣∣∣ =:

√
T
d
|X̃n|, X̃n =

[nτβ∗]
n

 1

[nτβ∗]hn

[nτβ∗]∑
i=1

ξ̂i −
1

nhn

n∑
i=1

ξ̂i

 ,
and [H2], we just show

1

[nτβ∗]hn

[nτβ∗]∑
i=1

ξ̂i
P→ G(α∗, β∗1, β

′),
1

(n − [nτβ∗])hn

n∑
i=[nτβ∗]+1

ξ̂i
P→ G(α∗, β∗2, β

′). (B.40)

We show only the first part of (B.40). By the Taylor expansion,

ξ̂i = ξ1,i +
√

n(α̂ − α∗)Tξ2,i + ξ3,i(β̂ − β′),

where ξ1,i = κi−1(α∗)(∆iX − hnbi−1(β′)),

ξ2,i =
1
√

n

∫ 1

0
∂ακi−1(α∗ + u(α̂ − α∗))Tdu(∆iX − hnbi−1(β̂))

ξ3,i = κi−1(α∗)
∫ 1

0
∂βbi−1(β′ + u(β̂ − β′))du.

Let θ1 = (α∗, β∗1). Since we have from Lemma 2 the result that

1

[nτβ∗]hn

[nτβ∗]∑
i=1

Eθ1[ξ1,i|G n
i−1]

P→ G(α∗, β∗1, β
′),

1

[nτβ∗]hn

[nτβ∗]∑
i=1

Eθ1[ξ
2
1,i|G n

i−1]
P→ 0,

we find from Lemma 9 of Genon-Catalot and Jacod (1993) that

1

[nτβ∗]hn

[nτβ∗]∑
i=1

ξ1,i
P→ G(α∗, β∗1, β

′). (B.41)

Furthermore, it follows from Lemma 1, [E1] and [H1] that

1

[nτβ∗]hn

[nτβ∗]∑
i=1

ξ2,i = oP(1),
1

[nτβ∗]hn

[nτβ∗]∑
i=1

ξ3,i = OP(1).
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Hence we obtain the desired result.
(b) Since

T β1,n ≥

√
Tϑ2
β

d

∣∣∣∣∣∣ 1
Tϑβ

[nτβ∗]∑
i=1

ξ̂i −
[nτβ∗]

n
1

Tϑβ

n∑
i=1

ξ̂i

∣∣∣∣∣∣ =:

√
Tϑ2
β

d
|X̂n|,

it suffices to show that X̂n converges to a non-zero constant in probability.
Let ξ1,i = κi−1(α∗)(∆iX − hnbi−1(β′)) and

Xn =

n∑
i=1

ciξ1,i :=
1

Tϑβ

[nτβ∗]∑
i=1

ξ1,i −
[nτβ∗]

n
1

Tϑβ

n∑
i=1

ξ1,i.

We have from the Taylor expansion, [E2], [I3] and E[|∆iX − hnbi−1(β)|] ≲ h1/2
n the result that X̂n =

Xn + oP(1). Because of Eβ∗k [ξ1,i|G
n

i−1] = hnκ
−1
i−1(α∗)∂βbi−1(β(0))(β∗k − β(0)) + Ri−1(hnϑ

2
β), E[ξ2

1,i] ≲ hn, [I1]
and [I2], there exists a non-zero constant c such that

n∑
i=1

ciE[ξi|G n
i−1]

P→ c,
n∑

i=1

c2
i E[ξ2

i |G n
i−1]

P→ 0.

Therefore, we obtain from Lemma 9 of Genon-Catalot and Jacod (1993) the result that Xn
P→ c and

X̂n
P→ c. □

Proof of Theorem 4. (1) Let ζi = ∂βbi−1(β∗)TA−1
i−1(α∗)(∆iX − hnbi−1(β∗)). By the Taylor expansion,

ζ̂ l
i =

d∑
l1,l2=1

∂βlbl1
i−1(β̂)(A−1

i−1(α̂))l1,l2(∆iX − hnbi−1(β̂))l2

=

d∑
l1,l2=1

∂βlbl1
i−1(β̂)(A−1

i−1(α∗))l1,l2(∆iX − hnbi−1(β∗))l2

+ hn

d∑
l1,l2=1

∂βlbl1
i−1(β̂)(A−1

i−1(α∗))l1,l2(bl2
i−1(β∗) − bl2

i−1(β̂))

+
1
√

n

d∑
l1,l2=1

∂βlbl1
i−1(β̂)∂α(A−1

i−1(α∗))l1,l2(∆iX − hnbi−1(β̂))l2
√

n(α̂ − α∗)

+
√

n(α̂ − α∗)T

1
n

d∑
l1,l2=1

∂βlbl1
i−1(β̂)Al1,l2

i−1 (∆iX − hnbi−1(β̂))l2

 √n(α̂ − α∗)

=: J1 + J2 + J3 + J4.

Note that

∂βlbl1
i−1(β̂) = ∂βlbl1

i−1(β∗)+
m1−1∑

j=1

T− j/2∂
j
β∂βlbl1

i−1(β∗)⊗ (
√

T (β̂−β∗))⊗ j+T−m1/2Bl,l1
m1,i−1⊗ (

√
T (β̂−β∗))⊗m1 ,
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where Bl,k
m1,i−1 =

1
(m1−1)!

∫ 1

0
(1 − u)m1−1∂m1

β ∂βlbk
i−1(β∗ + u(β̂ − β∗))du. Since

J1 =

d∑
l1,l2=1

(
∂βlbl1

i−1(β∗) +
m1−1∑

j=1

T− j/2∂
j
β∂βlbl1

i−1(β∗) ⊗ (
√

T (β̂ − β∗))⊗ j

+ T−m1/2Bl,k
m1,i−1 ⊗ (

√
T (β̂ − β∗))⊗m1

)
(A−1

i−1(α∗))l1,l2(∆iX − hnbi−1(β∗))l2

=: ζ l
i +

m1−1∑
j=1

T− j/2Yl
j,i ⊗ (

√
T (β̂ − β∗))⊗ j + T−m1/2Yl

m1,i ⊗ (
√

T (β̂ − β∗))⊗m1 ,

J2 = hn

d∑
l1,l2=1

∂βlbl1
i−1(β∗)(A−1

i−1(α∗))l1,l2

(
− 1
√

T
∂βb

l2
i−1(β∗)

√
T (β̂ − β∗)

− T−1
∫ 1

0
(1 − u)∂2

βb
l2
i−1(β∗ + u(β̂ − β∗))du ⊗ (

√
T (β̂ − β∗))⊗2

)
− 1

n

 d∑
l1,l2=1

∂β∂βlbl1
i−1(β∗)T(A−1

i−1(α∗))l1,l2

∫ 1

0
∂βb

l2
i−1(β∗ + u(β̂ − β∗))du

 ⊗ (
√

T (β̂ − β∗))⊗2

+
1
n

 d∑
l1,l2=1

Bl,k
2,i−1(A−1

i−1(α∗))l1,l2(bl2
i−1(β∗) − bl2

i−1(β̂))

 ⊗ (
√

T (β̂ − β∗))⊗2

=:

√
hn

n
Zl

1,i

√
T (β̂ − β∗) + 1

n
Zl

2,i ⊗ (
√

T (β̂ − β∗))⊗2,

J3 =
1
√

n

d∑
l1,l2=1

∂βlbl1
i−1(β∗)∂α(A−1

i−1(α∗))l1,l2(∆iX)l2
√

n(α̂ − α∗)

− hn√
n

d∑
l1,l2=1

∂βlbl1
i−1(β∗)∂α(A−1

i−1(α∗))l1,l2bl2
i−1(β̂)

√
n(α̂ − α∗)

+
√

T (β̂ − β∗)T 1
n
√

hn

d∑
l1,l2=1

∫ 1

0
∂β∂βlbl1

i−1(β∗ + u(β̂ − β∗))Tdu

× ∂α(A−1
i−1(α∗))l1,l2(∆iX − hnbi−1(β̂n))l2

√
n(α̂ − α∗)

=:
1
√

n
Zl

3,i

√
n(α̂ − α∗) + hn√

n
Zl

4,i

√
n(α̂ − α∗) + 1

n
√

hn

√
T (β̂ − β∗)TZl

5,i

√
n(α̂ − α∗),

J4 =:
1
n
√

n(α̂ − α∗)TZl
6,i

√
n(α̂ − α∗),

it is sufficient to show

1
√

T
max
1≤k≤n

∣∣∣∣∣∣∣I−1/2

 k∑
i=1

ζi −
k
n

n∑
i=1

ζi


∣∣∣∣∣∣∣ d→ sup

0≤s≤1
|B0

q(s)|, (B.42)

T−( j+1)/2 max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Yl
j,i −

k
n

n∑
i=1

Yl
j,i

∣∣∣∣∣∣∣ = oP(1), (1 ≤ j ≤ m1 − 1) (B.43)
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T−(m1+1)/2 max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Yl
m,i −

k
n

n∑
i=1

Yl
m,i

∣∣∣∣∣∣∣ = oP(1), (B.44)

1
n

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Zl
1,i −

k
n

n∑
i=1

Zl
1,i

∣∣∣∣∣∣∣ = oP(1), (B.45)

1

n
√

T
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Zl
2,i −

k
n

n∑
i=1

Zl
2,i

∣∣∣∣∣∣∣ = oP(1), (B.46)

1
n
√

hn
max
1≤k≤n

∣∣∣∣∣∣∣
n∑

i=1

Zl
3,i −

k
n

n∑
i=1

Zl
3,i

∣∣∣∣∣∣∣ = oP(1), (B.47)

√
hn

n
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Zl
4,i −

k
n

n∑
i=1

Zl
4,i

∣∣∣∣∣∣∣ = oP(1), (B.48)

1
n3/2hn

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Zl
5,i −

k
n

n∑
i=1

Zl
5,i

∣∣∣∣∣∣∣ = oP(1), (B.49)

1

n
√

T
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Zl
6,i −

k
n

n∑
i=1

Zl
6,i

∣∣∣∣∣∣∣ = oP(1). (B.50)

(B.43), (B.45) and (B.47) are shown by Lemmas 4 and 5.
Proof of (B.42). In order to show

Wn(s) =
1
√

T

[ns]∑
i=1

I−1/2ζi
w→ Bq(s) in D[0, 1], (B.51)

we prove

1
√

T

[ns]∑
i=1

I−1/2(ζi − Eθ∗[ζi|G n
i−1])

w→ Bq(s) in D[0, 1], (B.52)

1
√

T

n∑
i=1

Eθ∗[ζi|G n
i−1] = oP(1). (B.53)

(B.53) is shown from Lemma 2. Furthermore, we have from Lemma 2 and Eθ∗[|ζi|4|G n
i−1] = Ri−1(h2

n)
the result that for all c ∈ Rq,

1
T

[ns]∑
i=1

Eθ∗
[(

cTI−1/2 (
ζi − Eθ∗[ζi|G n

i−1]
))2∣∣∣G n

i−1

]
=

1
T

[ns]∑
i=1

cTI−1/2
(
Eθ∗[ζiζT

i |G n
i−1] − Eθ∗[ζi|G n

i−1]Eθ∗[ζi|G n
i−1]T

)
I−1/2c
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=
[ns]

n
1

[ns]hn

[ns]∑
i=1

cTI−1/2
(
hn∂βbi−1(β∗)TA−1

i−1(α∗)∂βbi−1(β∗) + Ri−1(h2
n)
)
I−1/2c

P→ scTI−1/2II−1/2c = |c|2s

for all s ∈ [0, 1], and

1
T 2

[ns]∑
i=1

Eθ∗
[(

cTI−1/2(ζi − Eθ∗[ζi|G n
i−1])

)4∣∣∣G n
i−1

]
≤ 1

T 2

[ns]∑
i=1

Eθ∗
[
|cTI−1/2|4|ζi − Eθ∗[ζi|G n

i−1]|4
∣∣∣G n

i−1

]
≲

1
T 2

[ns]∑
i=1

Eθ∗[|ζi|4 + Ri−1(h8
n)|G n

i−1] = oP(1).

Therefore we find from Corollary 3.8 of McLeish (1974) that

1
√

T

[ns]∑
i=1

cTI−1/2(ζi − Eθ∗[ζi|G n
i−1])

w→ cTBq(s) in D[0, 1],

which together with the Cramér-Wold theorem yields (B.52). This completes the proof of (B.42).
Proofs of (B.44), (B.46), (B.48), (B.49) and (B.50). Since there exists an open neighborhood Oθ∗

of θ∗ such that Oθ∗ ⊂ Θ, it follows that on Ωn = {θ̂ ∈ Oθ∗},

|Yl
m1,i| ≤

d∑
l1,l2=1

sup
β∈ΘB

|∂m1
β ∂βlbl1

i−1(β)| sup
α∈ΘA

|(A−1
i−1(α))l1,l2 | |(∆iX − hnbi−1(β∗))l2 |,

|Zl
2,i| ≤

d∑
l1,l2=1

(
sup
β∈ΘB

|∂βlbl1
i−1(β)| sup

α∈ΘA

|(A−1
i−1(α))l1,l2 | sup

β∈ΘB

|∂2
βb

l2
i−1(β)|

+ sup
β∈ΘB

|∂β∂βlbl1
i−1(β)| sup

α∈ΘA

|(A−1
i−1(α))l1,l2 | sup

β∈ΘB

|∂βbl2
i−1(β)|

+ 2 sup
β∈ΘB

|∂2
β∂βlbl1

i−1(β)| sup
β∈ΘB

|bl2
i−1(β)|

)
,

|Zl
4,i| ≤

d∑
l1,l2=1

sup
β∈ΘB

|∂βlbl1
i−1(β)| sup

α∈ΘA

|∂α(A−1
i−1(α))l1,l2 | sup

β∈ΘB

|bl2
i−1(β)|,

|Zl
5,i| ≤

d∑
l1,l2=1

sup
β∈ΘB

|∂β∂βlbl1
i−1(β)| sup

α∈ΘA

|∂α(A−1
i−1(α))l1,l2 |

(
|(∆iX)l2 | + hn sup

β∈ΘB

|bl2
i−1(β)|

)
,

|Zl
6,i| ≤

d∑
l1,l2=1

sup
β∈ΘB

|∂βlbl1
i−1(β)| sup

α∈ΘA

|∂2
α(A

−1
i−1(α))l1,l2 |

(
|(∆iX)l2 | + hn sup

β∈ΘB

|bl2
i−1(β)|

)
.

Since

1
T (m1+1)/2

n∑
i=1

Eθ∗[|Yl
m1,i| : Ωn] ≤ 1

T (m1+1)/2

n∑
i=1

d∑
l1,l2=1

Eθ∗
[
sup
β∈ΘB

|∂m1
β ∂βlbl1

i−1(β)|2 sup
α∈ΘA

|(A−1
i−1(α))l1,l2 |2

]1/2
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× Eθ∗[|(∆iX − hnbi−1(β∗))l2 |2]1/2

≲
1

(nhm1/(m1−1)
n )(m1−1)/2

→ 0,

1

n
√

T

n∑
i=1

Eθ∗[|Zl
2,i| : Ωn] ≲

1
√

T
→ 0,

√
hn

n

n∑
i=1

Eθ∗[|Zl
4,i| : Ωn] ≲

√
hn → 0,

1
n3/2hn

n∑
i=1

Eθ∗[|Zl
5,i| : Ωn] ≲

1
n3/2hn

n∑
i=1

d∑
l1,l2=1

Eθ∗
[
sup
β∈ΘB

|∂β∂βlbl1
i−1(β)|2 sup

α∈ΘA

|∂α(A−1
i−1(α))l1,l2 |2

]1/2

× Eθ∗
[
|(∆iX)l2 |2 + h2

n sup
β∈ΘB

|bl2
i−1(β)|2

]1/2

≲
1
√

T
→ 0,

1

n
√

T

n∑
i=1

Eθ∗[|Zl
6,i| : Ωn] ≲

1

n
√

T

n∑
i=1

d∑
l1,l2=1

Eθ∗
[
sup
β∈ΘB

|∂βlbl1
i−1(β)|2 sup

α∈ΘA

|∂2
α(A

−1
i−1(α))l1,l2 |2

]1/2

× Eθ∗
[
|(∆iX)l2 |2 + h2

n sup
β∈ΘB

|bl2
i−1(β)|2

]1/2

≲
1
√

n
→ 0,

[E2] and [B2], we obtain the desired results.
(2) (a) We show

1

[nτβ∗]hn

[nτβ∗]∑
i=1

ζ̂i
P→ H(α∗, β∗1, β

′). (B.54)

Let ζ1,i = ∂βbi−1(β′)TA−1
i−1(α∗)(∆iX − hnbi−1(β′)). In the same way as in the proof of (2)-(a) of Theorem

3, one has from the Taylor expansion, [E2], [B3] and [H3] that

1

[nτβ∗]hn

[nτβ∗]∑
i=1

ζ̂i =
1

[nτβ∗]hn

[nτβ∗]∑
i=1

ζ1,i + oP(1),
1

[nτβ∗]hn

[nτβ∗]∑
i=1

ζ1,i
P→ H(α∗, β∗1, β

′).

Hence we get the desired result.
(b) It is enough to show that

Ẑn =
1

Tϑβ

([nτβ∗]∑
i=1

ζ̂i −
[nτβ∗]

n

n∑
i=1

ζ̂i

)
P→ c

for some c , 0. Let ζ1,i = ∂βbi−1(β′)TA−1
i−1(α∗)(∆iX − hnbi−1(β′)). Since

E[∆iX − hnbi−1(β′)] = O(hn), E[|∆iX − hnbi−1(β)|] ≲ h1/2
n , E[|ζ1,i|2] ≲ hn,

E[ζ1,i|G n
i−1] = hn∂βbi−1(β′)TA−1

i−1(α∗)∂βbi−1(β0)(β∗k − β′) + Ri−1(hnϑ
2
β),
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[E2], [I3] and [I5], we find that

1
Tϑβ

[nτβ∗]∑
i=1

ζ̂i =
1

Tϑβ

[nτβ∗]∑
i=1

ζ1,i + oP(1).

Therefore there exists c , 0 such that

1
Tϑβ

([nτβ∗]∑
i=1

ζ1,i −
[nτβ∗]

n

n∑
i=1

ζ1,i

)
P→ c,

and we get Ẑn
P→ c. □

Proof of Theorem 5
In Case Aβ, defineDβn(v) = Ĝn(v) − Gn(v), where

Gn(v) = Ψn

(
τβ∗ +

v
Tϑ2
β

: β∗1, β
∗
2

∣∣∣∣∣α∗) − Ψn(τβ∗ : β∗1, β
∗
2|α∗),

Ĝn(v) = Ψn

(
τβ∗ +

v
Tϑ2
β

: β̂1, β̂2

∣∣∣∣∣α̂) − Ψn(τβ∗ : β̂1, β̂2|α̂).

Lemma 9. Suppose that [A1]-[A5], [E2], [E3] and [J1]-[J3] hold. Then, for all L > 0,

sup
v∈[−L,L]

|Dβn(v)| P→ 0

as n→ ∞.

Proof. It is enough to show supv∈[0,L] |D
β
n(v)| P→ 0. We have from the Taylor expansion, [E2], [E3],

[J3] and Eβ∗2[|∂
m3
β Gi(β|α∗)|] ≲ h1/2

n the result that

Gi(β̂k|α∗) =
m3−1∑

j=0

1
j!
∂

j
βGi(β∗k|α∗) ⊗ (β̂k − β∗k)⊗ j + Ri−1(h1/2

n T−m3/2).

Since ∂αGi(β̂1|α) − ∂αGi(β̂2|α) = OP(ϑβ) and [J3], we see

Dβn(v) =
[nτβ∗+v/hnϑ

2
β]∑

i=[nτβ∗]+1

m3−1∑
j=1

1
j!

(
∂

j
βGi(β∗1|α∗) ⊗ (β̂1 − β∗1)⊗ j − ∂ j

βGi(β∗2|α∗) ⊗ (β̂2 − β∗2)⊗ j
)
+ ōP(1).

(B.55)

Because of Eβ∗2[|∂
j
βGi(β|α∗)|2] ≲ hn,

[nτβ∗+v/hnϑ
2
β]∑

i=[nτβ∗]+1

Eβ∗2[∂βGi(β|α∗)|G n
i−1] = −2hn

[nτβ∗+v/hnϑ
2
β]∑

i=[nτβ∗]+1

Ξ
β
i−1(α∗, β∗k) + ōP(1),
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and Eβ∗2[∂
j
βGi(β|α∗)] = O(hn) for j = 2, . . . ,m3 − 1, we have

[nτβ∗+v/hnϑ
2
β]∑

i=[nτβ∗]+1

∂
j
βGi(β∗k|α∗) ⊗ (β̂k − β∗k)⊗ j = ōP(1). (B.56)

Therefore, we obtain from (B.55) and (B.56) the desired convergence. □

Lemma 10. Suppose that [A1]-[A5], [E2], [E3] and [J1]-[J3] hold. Then, for all L > 0,

Gn(v)
w→ G(v : α∗) in D[−L, L]

as n→ ∞.

Proof. We show Gn(v)
w→ G(v) in D[0, L]. Let

G1,n(v) =
[nτβ∗+v/hnϑ

2
β]∑

i=[nτβ∗]+1

∂βGi(β∗2|α∗)(β∗1 − β∗2), G2,n(v) =
1
2

[nτβ∗+v/hnϑ
2
β]∑

i=[nτβ∗]+1

∂2
βGi(β∗2|α∗) ⊗ (β∗1 − β∗2)⊗2.

It follows from

[nτβ∗+v/hnϑ
2
β]∑

i=[nτβ∗]+1

∂
j
βGi(β∗2|α∗) ⊗ (β∗1 − β∗2)⊗ j = ōP(1)

for j ≥ 3 and [J3] that Gn(v) = G1,n(v) + G2,n(v) + ōP(1). Since Eβ∗2[∂βGi(β∗2|α∗)|G n
i−1] = Ri−1(h2

n),

Eβ∗2

[((
∂βGi(β∗2|α∗) − Eβ∗2[∂βGi(β∗2|α∗)|G n

i−1]
)
(β∗1 − β∗2)

)2∣∣∣∣G n
i−1

]
= 4hnΞ

β
i−1(α∗, β∗2) ⊗ (β∗1 − β∗2)⊗2 + Ri−1(h2

nϑ
2
β),

Eβ∗2

[((
∂βGi(β∗2|α∗) − Eβ∗2[∂βGi(β∗2|α∗)|G n

i−1]
)
(β∗1 − β∗2)

)4∣∣∣∣G n
i−1

]
= Ri−1(hnϑ

4
β),

we have

[nτβ∗+v/hnϑ
2
β]∑

i=[nτβ∗]+1

Eβ∗2[∂βGi(β∗2|α∗)|G n
i−1](β∗1 − β∗2) = ōP(1),

[nτβ∗+v/hnϑ
2
β]∑

i=[nτβ∗]+1

Eβ∗2

[((
∂βGi(β∗2|α∗) − Eβ∗2[∂βGi(β∗2|α∗)|G n

i−1]
)
(β∗1 − β∗2)

)2∣∣∣∣G n
i−1

] P→ 4Jβv

and

[nτβ∗+v/hnϑ
2
β]∑

i=[nτβ∗]+1

Eβ∗2

[((
∂βGi(β∗2|α∗) − Eβ∗2[∂βGi(β∗2|α∗)|G n

i−1]
)
(β∗1 − β∗2)

)4∣∣∣∣G n
i−1

] P→ 0.
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Hence, it follows that

G1,n(v)
w→ −2J1/2

β W(v) in D[0, L]. (B.57)

Besides, from Theorem 2.11 of Hall and Heyde (1980), Eβ∗2[|∂
2
βGi(β∗2|α∗)|] ≲ hn, Eβ∗2[∂

2
βGi(β∗2|α∗)|G n

i−1] =
2hnΞ

β
i−1(α∗, β∗2) + oP(hnϑ

2
β) and [J1](a), we see

sup
v∈[0,L]

∣∣∣∣∣∣∣∣∣
[nτβ∗+v/hnϑ

2
β]∑

i=[nτβ∗]+1

(
∂2
βGi(β∗2|α∗) − Eβ∗2[∂

2
βGi(β∗2|α∗)|G n

i−1]
)
⊗ (β∗1 − β∗2)⊗2

∣∣∣∣∣∣∣∣∣
P→ 0 (B.58)

and

sup
v∈[0,L]

∣∣∣∣∣∣∣∣∣
[nτβ∗+v/hnϑ

2
β]∑

i=[nτβ∗]+1

Eβ∗2[∂
2
βGi(β∗2|α∗)|G n

i−1] ⊗ (β∗1 − β∗2)⊗2 − 2Jβv

∣∣∣∣∣∣∣∣∣
P→ 0. (B.59)

Therefore we have from (B.58) and (B.59) the result that supv∈[0,L] |G2,n(v)−Jβv|
P→ 0, which together

with (B.57) yields the desired result. □

Proof of Theorem 5. (1) According to Lemmas 6, 9 and 10, it is sufficient to prove

lim
M→∞

lim
n→∞

P(Tϑ2
β(τ̂
β
n − τβ∗) > M) = 0. (B.60)

Noting that

Gi(β1|α) −Gi(β2|α) = Gi(β1|α) −Gi(β2|α) − Eβ∗2[Gi(β1|α) −Gi(β2|α)|G n
i−1]

+ hnTr
(
A−1

i−1(α) (bi−1(β1) − bi−1(β2))⊗2
)

+ 2Tr
(
A−1

i−1(α)
(
hbi−1(β2) − Eβ∗2[∆iX|G n

i−1]
)

(bi−1(β1) − bi−1(β2))T
)
,

we see that for τ > τβ∗,

Ψn(τ : β1, β2|α) − Ψn(τβ∗ : β1, β2|α)

=

[nτ]∑
i=[nτβ∗]+1

(
Gi(β1|α) −Gi(β2|α) − Eβ∗2[Gi(β1|α) −Gi(β2|α)|G n

i−1]
)

+ hn

[nτ]∑
i=[nτβ∗]+1

Tr
(
A−1

i−1(α) (bi−1(β1) − bi−1(β2))⊗2
)

+ 2
[nτ]∑

i=[nτβ∗]+1

Tr
(
A−1

i−1(α)
(
hnbi−1(β2) − Eβ∗2[∆iX|G n

i−1]
)

(bi−1(β1) − bi−1(β2))T
)

=:Mβn(τ : β1, β2|α) +Aβn(τ : β1, β2|α) + ϱβn(τ : β1, β2|α).
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Let M ≥ 1, Dβn,M = {τ ∈ [0, 1]|Tϑ2
β(τ − τ

β
∗) > M}. For all δ > 0, we have

P
(
Tϑ2
β(τ̂
β
n − τβ∗) > M

)
≤ P

 sup
τ∈Dβn,M

|Mβn(τ : β̂1, β̂2|α̂)|
hnϑ

2
β([nτ] − [nτβ∗])

≥ δ

 + P

 inf
τ∈Dβn,M

Aβn(τ : β̂1, β̂2|α̂)

hnϑ
2
β([nτ] − [nτβ∗])

≤ 2δ


+ P

 sup
τ∈Dβn,M

|ϱβn(τ : β̂1, β̂2|α̂)|
hnϑ

2
β([nτ] − [nτβ∗])

≥ δ


=: Pβ1,n + Pβ2,n + Pβ3,n.

Let ϵ > 0 be an arbitrary number. In the same way as the proof of (1) of Theorem 2, we obtain
Pβ1,n ≤ γβ(M) + ϵ for large n, where γβ(M) > 0 satisfies γβ(M) → 0 as M → ∞. Further, using [J1],
[J2](b) and (c), we see that for α̂ ∈ Oα∗ and β̂k ∈ Oβ0 ,

Tr
(
A−1

i−1(α̂)(bi−1(β̂1) − bi−1(β̂2))⊗2) ≥ (
λ1[Ξβi−1(α∗, β0)] + rn,i−1

)|β̂1 − β̂2|2,

where rn,i−1 satisfies

sup
τ∈Dβn,M

∣∣∣∣∣∣∣∣ 1

[nτ] − [nτβ∗]

[nτ]∑
i=[nτβ∗]+1

rn,i−1

∣∣∣∣∣∣∣∣ = oP(1),

and therefore we estimate Pβ2,n ≤ ϵ for some δ > 0 and for large n. Since it follows from [E2], [E3]
and β̂1 − β̂2 = OP(ϑβ) that for α̂ ∈ Oα∗ and β̂k ∈ Oβ0 ,

Tr
(
A−1

i−1(α̂)(bi−1(β̂2) − hnE[∆iX|G n
i−1])(bi−1(β̂1) − bi−1(β̂2))T

)
≤ hnΞ

β
i−1(α∗, β0) ⊗ (β̂2 − β∗2) ⊗ (β̂1 − β̂2) + Ri−1

(hnϑ
2
β√

T
∨ h2

n

)
,

we have from [J1] and [J2](c) the result that

sup
τ∈Dβn,M

|ϱβn(τ : β̂1, β̂2|α̂)|
hnϑ

2
β([nτ] − [nτβ∗])

≤ sup
τ∈Dβn,M

∣∣∣∣∣∣∣∣ 1

[nτ] − [nτβ∗]

[nτ]∑
i=[nτβ∗]+1

Ξ
β
i−1(α∗, β0)

∣∣∣∣∣∣∣∣ |β̂2 − β∗2||β̂1 − β̂2| + OP(
√

Tϑ2
β ∨ nh2

n)

= OP

( 1
√

Tϑβ
∨
√

Tϑ2
β ∨ nh2

n

)
= oP(1),

and we see Pβ3,n ≤ ϵ for large n. From the estimations, we obtain (B.60).
(2) It is sufficient to control for the following probabilities for some δ > 0.

Pβ1,n = P

 sup
τ∈Dβn,M

|Mβn(τ : β̂1, β̂2|α̂)|
hn([nτ] − [nτβ∗])

≥ δ

 , Pβ2,n = P
 inf
τ∈Dβn,M

Aβn(τ : β̂1, β̂2|α̂)

hn([nτ] − [nτβ∗])
≤ 2δ

 ,
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Pβ3,n = P

 sup
τ∈Dβn,M

|ϱβn(τ : β̂1, β̂2|α̂)|
hn([nτ] − [nτβ∗])

≥ δ

 ,
where M ≥ 1, Dβn,M = {τ ∈ [0, 1]|T (τ − τβ∗) > M}.

Let ϵ > 0. In the same way as the proof of (2) of Theorem 2, we have Pβ1,n ≤ γβ(M) + ϵ and
Pβ2,n ≤ ϵ for large n and γβ(M) such that γβ(M) → 0 as M → ∞ by Lemma 2 of Iacus and Yoshida
(2012), [E2], [E3], [K1] and [K2](a). Since

Tr
(
A−1

i−1(α̂)(bi−1(β̂2) − hnEβ∗2[∆iX|G n
i−1])(bi−1(β̂1) − bi−1(β̂2))T

)
≤ hn sup

x,α,βk

∣∣∣∣[∂βlb(x, β1)TA−1(x, α)
(
b(x, β2) − b(x, β3)

)]
l

∣∣∣∣|β̂2 − β∗2| + Ri−1(h2
n)

for α̂ ∈ Oα∗ and β̂k ∈ Oβ∗k , we find from [E2], [E3] and [K2](b) that

sup
τ∈Dβn,M

|ϱβn(τ : β̂1, β̂2)|
hn([nτ] − [nτβ∗])

= oP(1),

which yields Pβ3,n ≤ ϵ for large n. Thus, we obtain the desired result. □

Proofs of Theorems 6-9
Lemma 11. Let 0 ≤ τ1 < τ2 ≤ 1, where τ1, τ2 may depend on n. Let {rn}∞n=1 be a sequence with
r2

n([nτ2] − [nτ1])hn → 0, and {Mi}ni=1 be a martingale with E[|Mi|2] ≲ hn. If [nτ1] < kn ≤ [nτ2] and
[nτ1] ≤ ln < [nτ2] on Ωn with P(Ωn)→ 1, then

rn

∣∣∣∣∣∣ kn∑
i=[nτ1]+1

Mi

∣∣∣∣∣∣ = oP(1), rn

∣∣∣∣∣∣ [nτ2]∑
i=ln+1

Mi

∣∣∣∣∣∣ = oP(1). (B.61)

Proof. Let Sn = rn|
∑kn

i=[nτ1]+1Mi|. For all ϵ > 0,

P(Sn > ϵ) ≤ P(Sn > ϵ,Ωn) + P(Ωc
n) ≤ ϵ−2E[S2

n : Ωn] + P(Ωc
n). (B.62)

From the Burkholder inequality, we have

E[S2
n : Ωn] ≤ r2

nE

 max
[nτ1]<k≤[nτ2]

∣∣∣∣∣∣ k∑
i=[nτ1]+1

Mi

∣∣∣∣∣∣2
 ≲ r2

n

[nτ2]∑
i=[nτ1]+1

E[|Mi|2]

= O
(
r2

n([nτ2] − [nτ1])hn
)
= o(1). (B.63)

Therefore, we see from (B.62), (B.63) and P(Ωc
n)→ 0 that the first part of (B.61). According to∣∣∣∣∣∣ [nτ2]∑

i=ln+1

Mi

∣∣∣∣∣∣2 ≤ 2


∣∣∣∣∣∣ [nτ2]∑
i=[nτ1]+1

Mi

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ ln∑
i=[nτ1]+1

Mi

∣∣∣∣∣∣2
 ,

the second part of (B.61) is obtained in the same way. □
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Let θk = (α∗k, βk), τL
n = τ

α
∗ − 2n−ϵ1 , τU

n = τ
α
∗ + 2n−ϵ1 , mn = [nτL

n] and Mn = [nτU
n ].

Proof of Theorem 6. (1) Define

L(1)
1,n =

1√
dτnT

max
1≤k≤mn

∣∣∣∣∣∣∣∣
k∑

i=1

ξ̂1,i −
k

[nτn]

[nτn]∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣∣ , U(1)
1,n =

1√
dτnT

max
1≤k≤[nτα∗ ]

∣∣∣∣∣∣∣∣
k∑

i=1

ξ̂1,i −
k

[nτn]

[nτn]∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣∣
and Dn = {nϵ1 |τ̂αn − τα∗ | ≤ 1}. Note that the probability of Dn converges to one from [E4], and
mn ≤ [nτn] ≤ [nτα∗ ] ≤ [nτn] ≤ Mn on Dn. Since L(1)

1,n ≤ T
(1)
1,n ≤ U

(1)
1,n on Dn, if

L(1)
1,n

d→ sup
0≤s≤1
|B0

1(s)|, (B.64)

U(1)
1,n

d→ sup
0≤s≤1
|B0

1(s)|, (B.65)

then it follows that for any x ∈ R,

lim
n→∞

P(T (1)
1,n ≤ x,Dn) = P

(
sup

0≤s≤1
|B0

1(s)| ≤ x
)
. (B.66)

Hence, we obtain from (B.66) and P(Dn) → 1 the result that the desired result. From the above, it
suffices to show (B.64) and (B.65).

We first show (B.64). It can be expressed as

k∑
i=1

ξ̂1,i −
k

[nτn]

[nτn]∑
i=1

ξ̂1,i

=

k∑
i=1

ξ̂1,i −
k

mn

mn∑
i=1

ξ̂1,i +
k

mn

(
1 − mn

[nτn]

) mn∑
i=1

ξ̂1,i −
k

[nτn]

[nτn]∑
i=mn+1

ξ̂1,i. (B.67)

Let ξk,i = 1T
da−1

i−1(α∗k)(∆iX − hnbi−1(βk)),Mk,i = ξk,i − Eθk[ξk,i|G n
i−1]. Note that

ξ̂k,i = ξk,i + Ri−1

(√
hn

n

)
=Mk,i + Ri−1

(√
hn

n

)
(B.68)

under [E1] and [B2′]1. Since

1
√

T
max

1≤k≤mn

∣∣∣∣∣∣∣ k
mn

(
1 − mn

[nτn]

) mn∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣
≤ mn

[nτn]
nϵ1−1|[nτn] − mn|

 n1−ϵ1
√

Tmn

∣∣∣∣∣∣∣
mn∑
i=1

M1,i

∣∣∣∣∣∣∣ + n1−ϵ1
√

T
OP

(√
hn

n

) ,
mn

[nτn]n
ϵ1−1|[nτn] − mn| = OP(1), n1−ϵ1√

T

√
hn
n = n−ϵ1 → 0, Eθ1[M2

1,i] ≲ hn and

n2−2ϵ1mnhn

Tm2
n
= O(n−2ϵ1) = o(1),
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we have from Lemma 11 the result that

1
√

T
max

1≤k≤mn

∣∣∣∣∣∣∣ k
mn

(
1 − mn

[nτn]

) mn∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣ = oP(1). (B.69)

In the same way, we have

1
√

T
max

1≤k≤mn

∣∣∣∣∣∣∣∣ k
[nτn]

[nτn]∑
i=mn+1

ξ̂1,i

∣∣∣∣∣∣∣∣ = oP(1). (B.70)

Therefore, we obtain from (B.67), (B.69), (B.70) and (1) of Theorem 3 the result that

L(1)
1,n =

1√
dτnT

max
1≤k≤mn

∣∣∣∣∣∣∣
k∑

i=1

ξ̂1,i −
k

mn

mn∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣ + oP(1)
d→ sup

0≤s≤1
|B0

1(s)|,

which concludes the proof of (B.64). Similarly, (B.65) can be shown.
(2) Let

L(2)
1,n =

1√
d(1 − τn)T

max
1≤k≤n−Mn

∣∣∣∣∣∣∣
[nτn]+k∑

i=[nτn]+1

ξ̂2,i −
k

n − [nτn]

n∑
i=[nτn]+1

ξ̂2,i

∣∣∣∣∣∣∣ ,
U(2)

1,n =
1√

d(1 − τn)T
max

1≤k≤n−[nτα∗ ]

∣∣∣∣∣∣∣
[nτn]+k∑

i=[nτn]+1

ξ̂2,i −
k

n − [nτn]

n∑
i=[nτn]+1

ξ̂2,i

∣∣∣∣∣∣∣ .
Since L(2)

1,n ≤ T
(2)
1,n ≤ U

(2)
1,n on Dn, it is enough to show

L(2)
1,n

d→ sup
0≤s≤1
|B0

1(s)|, (B.71)

U(2)
1,n

d→ sup
0≤s≤1
|B0

1(s)|. (B.72)

We verify (B.71). It follows that

[nτn]+k∑
i=[nτn]+1

ξ̂2,i −
k

n − [nτn]

n∑
i=[nτn]+1

ξ̂2,i

=

Mn+k∑
i=Mn+1

ξ̂2,i −
k

n − Mn

n∑
i=Mn+1

ξ̂2,i −
Mn+k∑

i=[nτn]+k+1

ξ̂2,i

+
k

n − Mn

(
1 − n − Mn

n − [nτn]

) n∑
i=Mn+1

ξ̂2,i +

(
1 − k

n − [nτn]

) Mn∑
i=[nτn]+1

ξ̂2,i. (B.73)

It also follows from (B.68), Eθ2[M2
2,i] ≲ hn and Lemma 11 that

1
√

T
max

1≤k≤n−Mn

∣∣∣∣∣∣∣ k
n − Mn

(
1 − n − Mn

n − [nτn]

) n∑
i=Mn+1

ξ̂2,i

∣∣∣∣∣∣∣ = oP(1), (B.74)
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1
√

T
max

1≤k≤n−Mn

∣∣∣∣∣∣∣
(
1 − k

n − [nτn]

) Mn∑
i=[nτn]+1

ξ̂2,i

∣∣∣∣∣∣∣ = oP(1). (B.75)

Furthermore, we have

1
√

T
max

1≤k≤n−Mn

∣∣∣∣∣∣∣
Mn+k∑

i=[nτn]+k+1

ξ̂2,i

∣∣∣∣∣∣∣ ≤ 1
√

T
max

1≤k≤n−Mn

∣∣∣∣∣∣∣
Mn+k∑

i=[nτn]+k+1

M2,i

∣∣∣∣∣∣∣ + oP(1) =: Qn + oP(1). (B.76)

For all ϵ > 0,

P(Qn > 2ϵ) ≤ P(Qn > 2ϵ,Dn) + P(Dc
n). (B.77)

Here the first term on the right hand side can be transformed as follows.

P(Qn > 2ϵ,Dn) ≤ P

 1
√

T
max

[nτα∗ ]≤l<Mn
max

1≤k≤n−Mn

∣∣∣∣∣∣∣
Mn+k∑

i=l+k+1

M2,i

∣∣∣∣∣∣∣ > 2ϵ,Dn


≤ P

 1
√

T
max

1≤k≤n−Mn

∣∣∣∣∣∣∣∣
Mn+k∑

i=[nτα∗ ]+k+1

M2,i

∣∣∣∣∣∣∣∣ > ϵ


+ P

 1
√

T
max

[nτα∗ ]<l≤Mn
max

1≤k≤n−Mn

∣∣∣∣∣∣∣∣
l+k∑

i=[nτα∗ ]+k+1

M2,i

∣∣∣∣∣∣∣∣ > ϵ
 . (B.78)

We choose r > 2−ϵ1
ϵ1

. Noting that ϵ1r > 2 − ϵ1 > 1, we see from Theorem 2.11 of Hall and Heyde
(1980), the convex inequality and Eθ2[M2r

2,i] ≲ hr
n that

P

 1
√

T
max

1≤k≤n−Mn

∣∣∣∣∣∣∣∣
Mn+k∑

i=[nτα∗ ]+k+1

M2,i

∣∣∣∣∣∣∣∣ > ϵ
 ≤ n−Mn∑

k=1

1
T rϵ2rEθ2

[∣∣∣∣∣∣ Mn+k∑
i=[nτα∗ ]+k+1

M2,i

∣∣∣∣∣∣2r]

≲
n−Mn∑
k=1

1
T rϵ2rEθ2

[( Mn+k∑
i=[nτα∗ ]+k+1

M2
2,i

)r]

≲
n−Mn∑
k=1

[n1−ϵ1]r

T rϵ2r

1
[n1−ϵ1]

Mn+k∑
i=[nτα∗ ]+k+1

Eθ2[M2r
2,i]

= O(n1−ϵ1r) = o(1) (B.79)

and

P

 1
√

T
max

[nτα∗ ]<l≤Mn
max

1≤k≤n−Mn

∣∣∣∣∣∣∣∣
l+k∑

i=[nτα∗ ]+k+1

M2,i

∣∣∣∣∣∣∣∣ > ϵ
 ≲ Mn∑

l=[nτα∗ ]+1

n−Mn∑
k=1

1
T rϵ2r [n1−ϵ1]rhr

n

= O(n2−ϵ1−ϵ1r) = o(1). (B.80)
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According to (B.77)-(B.80) and P(Dc
n) → 0, we have Qn = oP(1). Therefore, it follows from (B.76)

that

1
√

T
max

1≤k≤n−Mn

∣∣∣∣∣∣∣
Mn+k∑

i=[nτn]+k+1

ξ̂2,i

∣∣∣∣∣∣∣ = oP(1). (B.81)

Moreover, it follows from the proofs of (B.32) and (B.34) that under [B4],

1√
d(1 − τU

n )T
max

1≤k≤n−Mn

∣∣∣∣∣∣∣
Mn+k∑

i=Mn+1

ξ̂2,i −
k

n − Mn

n∑
i=Mn+1

ξ̂2,i

∣∣∣∣∣∣∣ d→ sup
0≤s≤1
|B0

1(s)|. (B.82)

Hence we obtain from (B.73)-(B.75), (B.81) and (B.82) the result that

L(2)
1,n =

1√
d(1 − τn)T

max
1≤k≤n−Mn

∣∣∣∣∣∣∣
Mn+k∑

i=Mn+1

ξ̂2,i −
k

n − Mn

n∑
i=Mn+1

ξ̂2,i

∣∣∣∣∣∣∣ + oP(1)
d→ sup

0≤s≤1
|B0

1(s)|.

Similarly, (B.72) can be shown.
(3) We prove that P(T (1)

1,n > w1(ϵ)) converges to one as n→ ∞ under H(1)
1 .

(a) If we prove

1

τ
β
∗T

[nτβ∗]∑
i=1

ξ̂1,i
P→ G(α(0)

1 , β
∗
1,1, β

′
1), (B.83)

1

(τn − τ
β
∗)T

[nτn]∑
i=[nτβ∗]+1

ξ̂1,i
P→ G(α(0)

1 , β
∗
1,2, β

′
1), (B.84)

then it follows that

1
τnT

[nτn]∑
i=1

ξ̂1,i
P→ τ

β
∗
τα∗
G(α(0)

1 , β
∗
1,1, β

′
1) +

(
1 − τ

β
∗
τα∗

)
G(α(0)

1 , β
∗
1,2, β

′
1),

and from [H2′]1 that

1
τnT

[nτβ∗]∑
i=1

ξ̂1,i −
[nτβ∗]
[nτn]

1
τnT

[nτn]∑
i=1

ξ̂1,i
P→ τ

β
∗
τα∗

(
1 − τ

β
∗
τα∗

)(G(α(0)
1 , β

∗
1,1, β

′
1) − G(α(0)

1 , β
∗
1,2, β

′
1)
)
, 0.

Therefore, we have

T (1)
1,n ≥

1√
dτnT

∣∣∣∣∣∣∣∣
[nτβ∗]∑
i=1

ξ̂1,i −
[nτβ∗]
[nτn]

[nτn]∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣∣
=

√
τnT
d

∣∣∣∣∣∣∣∣ 1
τnT

[nτβ∗]∑
i=1

ξ̂1,i −
[nτβ∗]
[nτn]

1
τnT

[nτn]∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣∣ P→ ∞,
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which implies P(T (1)
1,n > w1(ϵ))→ 1. (B.83) can be shown similarly to the first part of (B.40).

We show (B.84). It can be proved that

1

(τα∗ − τ
β
∗)T

[nτα∗ ]∑
i=[nτβ∗]+1

ξ̂1,i
P→ G(α(0)

1 , β
∗
1,2, β

′
1) (B.85)

with the same argument as the second part of (B.40). We have

∆n =

∣∣∣∣∣∣∣∣ 1

(τn − τ
β
∗)T

[nτn]∑
i=[nτβ∗]+1

ξ̂1,i −
1

(τα∗ − τ
β
∗)T

[nτα∗ ]∑
i=[nτβ∗]+1

ξ̂1,i

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ nϵ1(τα∗ − τn)

(τn − τ
β
∗)(τα∗ − τ

β
∗)

∣∣∣∣∣∣∣ n−ϵ1

T

∣∣∣∣∣∣∣∣
[nτn]∑

i=[nτβ∗]+1

ξ̂1,i

∣∣∣∣∣∣∣∣ + 1

(τα∗ − τ
β
∗)T

∣∣∣∣∣∣∣∣
[nτn]∑

i=[nτβ∗]+1

ξ̂1,i −
[nτα∗ ]∑

i=[nτβ∗]+1

ξ̂1,i

∣∣∣∣∣∣∣∣
=:

∣∣∣∣∣∣∣ nϵ1(τα∗ − τn)

(τn − τ
β
∗)(τα∗ − τ

β
∗)

∣∣∣∣∣∣∣ Šn +
1

τα∗ − τ
β
∗
Q̌n.

If we show Šn
P→ 0 and Q̌n

P→ 0, then we have from nϵ1(τα∗ − τn) = OP(1) and (B.85) the result that

∆n
P→ 0 and (B.84). In the following, we prove them.
Set Yk,i = κ

−1
i−1(α∗k)∆iX,Mk,i = Yk,i − Eθk[Yk,i|G n

i−1]. We see from ξ̂k,i =Mk,i + Ri−1(hn) that

Šn =
n−ϵ1

T

∣∣∣∣∣∣∣∣
[nτn]∑

i=[nτβ∗]+1

M1,i

∣∣∣∣∣∣∣∣ + OP

(
n1−ϵ1hn

T

)
=: Sn + oP(1),

and

Q̌n =
1
T

∣∣∣∣∣∣∣∣
[nτα∗ ]∑

i=[nτn]+1

ξ̂1,i

∣∣∣∣∣∣∣∣ = 1
T

∣∣∣∣∣∣∣∣
[nτα∗ ]∑

i=[nτn]+1

M1,i

∣∣∣∣∣∣∣∣ + OP(n−ϵ1) =: Qn + oP(1)

on Dn. We have from Lemma 11 the result that Sn
P→ 0 and Qn

P→ 0. Hence, we obtain the desired
results.

(b) According to

T (1)
1,n ≥

1√
dτnT

∣∣∣∣∣∣∣∣
[nτβ∗]∑
i=1

ξ̂1,i −
[nτβ∗]
[nτn]

[nτn]∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣∣ =
√

Tϑ2
β1

dτn

∣∣∣∣∣∣∣∣ 1
Tϑβ1

[nτβ∗]∑
i=1

ξ̂1,i −
[nτβ∗]
[nτn]

1
Tϑβ1

[nτn]∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣∣ ,
it is enough to prove that there exists c , 0 such that

K (1)
n =

1
Tϑβ1

[nτβ∗]∑
i=1

ξ̂1,i −
[nτβ∗]
[nτn]

1
Tϑβ1

[nτn]∑
i=1

ξ̂1,i
P→ c. (B.86)
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Note that there exists c′ , 0 such that

K (2)
n =

1
Tϑβ1

[nτβ∗]∑
i=1

ξ̂1,i −
[nτβ∗]
[nτα∗ ]

1
Tϑβ1

[nτα∗ ]∑
i=1

ξ̂1,i
P→ c′

in the same way as the proof of (2) of Theorem 3 under [I4′]1. Meanwhile, we see

∆n = |K (1)
n − K (2)

n |

≤ [nτβ∗]
[nτn]

1
Tϑβ1

∣∣∣∣∣∣∣∣
[nτn]∑
i=1

ξ̂1,i −
[nτα∗ ]∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣∣ + nϵ1
∣∣∣∣∣∣ [nτβ∗][nτn]

− [nτβ∗]
[nτα∗ ]

∣∣∣∣∣∣ n−ϵ1

Tϑβ1

∣∣∣∣∣∣∣
[nτα∗ ]∑
i=1

ξ̂1,i

∣∣∣∣∣∣∣
=:

[nτβ∗]
[nτn]

Q̌n + nϵ1
∣∣∣∣∣∣ [nτβ∗][nτn]

− [nτβ∗]
[nτα∗ ]

∣∣∣∣∣∣ Šn.

Here, it follows from [I6]1 that

Q̌n =
1

Tϑβ1

∣∣∣∣∣∣∣∣
[nτα∗ ]∑

i=[nτn]+1

ξ̂1,i

∣∣∣∣∣∣∣∣ = 1
Tϑβ1

∣∣∣∣∣∣∣∣
[nτα∗ ]∑

i=[nτn]+1

M1,i

∣∣∣∣∣∣∣∣ + OP

(
1

nϵ1ϑβ1

)
=: Qn + oP(1)

and

Šn =
n−ϵ1

Tϑβ1

∣∣∣∣∣∣∣
[nτα∗ ]∑
i=1

M1,i

∣∣∣∣∣∣∣ + OP

(
1

nϵ1ϑβ1

)
=: Sn + oP(1)

on Dn. Applying Lemma 11, we obtainSn = oP(1) andQn = oP(1), that is, Šn = oP(1) and Q̌n = oP(1).

Consequently, we have from nϵ1
∣∣∣∣ [nτβ∗]

[nτn] −
[nτβ∗]
[nτα∗ ]

∣∣∣∣ = OP(1) the result that ∆n
P→ 0 and thus (B.86).

Similarly, the consistency of the test T (2)
1,n can be shown. □

Proof of Theorem 7. (1) Define

L(1)
2,n =

1√
τnT

max
1≤k≤mn

∣∣∣∣∣∣∣∣I−1/2
1,n

 k∑
i=1

ζ̂1,i −
k

[nτn]

[nτn]∑
i=1

ζ̂1,i


∣∣∣∣∣∣∣∣ ,

Z[ j]
k,i =

1
j!
∂

j
β

(
∂βbi−1(β)TA−1

i−1(α∗k)(∆iX − hbi−1(βk))
)∣∣∣∣
β=βk
,

N [ j]
k,i = Z

[ j]
k,i − Eθk[Z

[ j]
k,i |G

n
i−1].

Since Eθ1[|N
[ j]
1,i |2] ≲ hn and

ζ̂k,i =

m1−1∑
j=0

1
T j/2N

[ j]
k,i ⊗

(√
T (β̂k − βk)

)⊗ j
+ Ri−1

(√
hn

n

)
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under [B3], it can be shown in the same way as (B.71) that

L(1)
2,n =

1√
τnT

max
1≤k≤mn

∣∣∣∣∣∣∣I−1/2
1,n

 k∑
i=1

ζ̂1,i −
k

mn

mn∑
i=1

ζ̂1,i


∣∣∣∣∣∣∣ + oP(1)

d→ sup
0≤s≤1
|B0

q(s)|.

(2) Let

L(2)
2,n =

1√
(1 − τn)T

max
1≤k≤n−Mn

∣∣∣∣∣∣∣I−1/2
2,n

 [nτn]+k∑
i=[nτn]+1

ζ̂2,i −
k

n − [nτn]

n∑
i=[nτn]+1

ζ̂2,i


∣∣∣∣∣∣∣ .

According to the proofs of (B.43), (B.45) and (B.47), it follows that under [B5],

1√
(1 − τU

n )T
max

1≤k≤n−Mn

∣∣∣∣∣∣∣I−1/2
2,n

 Mn+k∑
i=Mn+1

ζ̂2,i −
k

n − Mn

n∑
i=Mn+1

ζ̂2,i


∣∣∣∣∣∣∣ d→ sup

0≤s≤1
|B0

q(s)|.

Therefore, it can be shown in the same way as (B.71) that L(2)
2,n

d→ sup0≤s≤1 |B0
q(s)|.

(3) We show that P(T (1)
2,n > w1(ϵ))→ 1 under H(1)

1 .
(a) If we prove

1

τ
β
∗T

[nτβ∗]∑
i=1

ζ̂1,i
P→ H(α(0)

1 , β
∗
1,1, β

′
1),

1

(τn − τ
β
∗)T

[nτn]∑
i=[nτβ∗]+1

ζ̂1,i
P→ H(α(0)

1 , β
∗
1,2, β

′
1), (B.87)

then it follows from [H4′]1 that

1
τnT

[nτβ∗]∑
i=1

ζ̂1,i −
[nτβ∗]
[nτn]

1
τnT

[nτn]∑
i=1

ζ̂1,i
P→ τ

β
∗
τα∗

(
1 − τ

β
∗
τα∗

)(H(α(0)
1 , β

∗
1,1, β

′
1) −H(α(0)

1 , β
∗
1,2, β

′
1)
)
, 0,

and

T (1)
2,n ≥

√
τnT

∣∣∣∣∣∣∣∣I−1/2
1,n

 1
τnT

[nτβ∗]∑
i=1

ζ̂1,i −
[nτβ∗]
[nτn]

1
τnT

[nτn]∑
i=1

ζ̂1,i


∣∣∣∣∣∣∣∣ P→ ∞.

The first part of (B.87) can be shown similarly to (B.54).
We show the second part of (B.87). It can be proved that

1

(τα∗ − τ
β
∗)T

[nτα∗ ]∑
i=[nτβ∗]+1

ζ̂1,i
P→ H(α(0)

1 , β
∗
1,2, β

′
1).

We have

∆n =

∣∣∣∣∣∣∣∣ 1

(τn − τ
β
∗)T

[nτn]∑
i=[nτβ∗]+1

ζ̂1,i −
1

(τα∗ − τ
β
∗)T

[nτα∗ ]∑
i=[nτβ∗]+1

ζ̂1,i

∣∣∣∣∣∣∣∣
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≤
∣∣∣∣∣∣∣ nϵ1(τα∗ − τn)

(τn − τ
β
∗)(τα∗ − τ

β
∗)

∣∣∣∣∣∣∣ n−ϵ1

T

∣∣∣∣∣∣∣∣
[nτn]∑

i=[nτβ∗]+1

ζ̂1,i

∣∣∣∣∣∣∣∣ + 1

(τα∗ − τ
β
∗)T

∣∣∣∣∣∣∣∣
[nτn]∑

i=[nτβ∗]+1

ζ̂1,i −
[nτα∗ ]∑

i=[nτβ∗]+1

ζ̂1,i

∣∣∣∣∣∣∣∣
=:

∣∣∣∣∣∣∣ nϵ1(τα∗ − τn)

(τn − τ
β
∗)(τα∗ − τ

β
∗)

∣∣∣∣∣∣∣ Řn +
1

τα∗ − τ
β
∗
V̌n.

To show the second part of (B.87), we verify Řn
P→ 0 and V̌n

P→ 0.
Let

Z[ j]
k,i =

1
j!
∂

j
β

(
∂βbi−1(β)TA−1

i−1(α∗k)∆iX
)∣∣∣∣
β=β′k
, N [ j]

k,i = Z
[ j]
k,i − Eθk[Z

[ j]
k,i |G

n
i−1],

R[ j]
n =

n−ϵ1

T

∣∣∣∣∣∣∣∣
[nτn]∑

i=[nτβ∗]+1

N [ j]
1,i

∣∣∣∣∣∣∣∣ , V[ j]
n =

1
T

∣∣∣∣∣∣∣∣
[nτα∗ ]∑

i=[nτn]+1

N [ j]
1,i

∣∣∣∣∣∣∣∣ .
Since

ζ̂k,i =

m1−1∑
j=0

N [ j]
k,i ⊗ (β̂k − β′k)⊗ j + Ri−1(hn)

under [B3] and [H3′]1, we have

Řn ≤
m1−1∑

j=0

R[ j]
n |β̂1 − β′1| j + OP

(
n1−ϵ1hn

T

)
=

m1−1∑
j=0

R[ j]
n |β̂1 − β′1| j + oP(1),

V̌n =
1
T

∣∣∣∣∣∣∣∣
[nτα∗ ]∑

i=[nτn]+1

ζ̂1,i

∣∣∣∣∣∣∣∣ ≤
m1−1∑

j=0

V[ j]
n |β̂1 − β′1| j + OP(n−ϵ1) =

m1−1∑
j=0

V[ j]
n |β̂1 − β′1| j + oP(1)

on Dn. Let En = {|β̂1 − β′1| ≤ 1}. Noting that P(Ec
n)→ 0 from [H1′]1, it follows that for all ϵ > 0,

P
(Řn > (m1 + 1)ϵ

) ≤ P
(m1−1∑

j=0

R[ j]
n > m1ϵ,Dn ∩ En

)
+ o(1) ≤ 1

ϵ2

m1−1∑
j=0

Eθ1[(R[ j]
n )2 : Dn] + o(1),

P
(V̌n > (m1 + 1)ϵ

) ≤ P
(m1−1∑

j=0

V[ j]
n > m1ϵ,Dn ∩ En

)
+o(1) ≤ 1

ϵ2

m1−1∑
j=0

Eθ1[(V[ j]
n )2 : Dn] + o(1).

Since Eθ1[|N
[ j]
1,i |2] ≲ hn, we have Eθ1[(R

[ j]
n )2 : Dn] = o(1) and Eθ1[(V

[ j]
n )2 : Dn] = o(1) for 0 ≤ j ≤

m1 − 1 as in Lemma 11. Hence, we get the desired results.
(b) According to

T (1)
2,n ≥

1√
τnT

∣∣∣∣∣∣∣∣I−1/2
1,n

[nτβ∗]∑
i=1

ζ̂1,i −
[nτβ∗]
[nτn]

[nτn]∑
i=1

ζ̂1,i


∣∣∣∣∣∣∣∣
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=

√
Tϑ2
β1

τn

∣∣∣∣∣∣∣∣I−1/2
1,n

 1
Tϑβ1

[nτβ∗]∑
i=1

ζ̂1,i −
[nτβ∗]
[nτn]

1
Tϑβ1

[nτn]∑
i=1

ζ̂1,i


∣∣∣∣∣∣∣∣ ,

it is sufficient to verify that there exists c , 0 such that

K (1)
n =

1
Tϑβ1

[nτβ∗]∑
i=1

ζ̂1,i −
[nτβ∗]
[nτn]

1
Tϑβ1

[nτn]∑
i=1

ζ̂1,i
P→ c. (B.88)

Notice that there exists c′ , 0 such that

K (2)
n =

1
Tϑβ1

[nτβ∗]∑
i=1

ζ̂1,i −
[nτβ∗]
[nτα∗ ]

1
Tϑβ1

[nτα∗ ]∑
i=1

ζ̂1,i
P→ c′ (B.89)

in the same way as the proof of (2) of Theorem 4. Meanwhile, it follows from [I3′]1 and [I5′]1 that

ζ̂1,i =

m′2−1∑
j=0

N [ j]
1,i ⊗ (β̂1 − β′1)⊗ j + Ri−1(hn)

and it can be shown that ∆n = |K (1)
n − K (2)

n |
P→ 0 under [I6′]1 in the same way as in (a). Therefore, we

have (B.88).
Similarly, it can be shown that P(T (2)

2,n > w1(ϵ))→ 1 under H(2)
1 . □

Proof of Theorem 8. We have

Ψ1,n(τ : β1, β2|α) − Ψ1,n(τβ∗ : β1, β2|α) =
[nτ]∑

i=[nτβ∗]+1

(
Gi(β1|α) −Gi(β2|α)

)
for τβ∗ < τ < τα∗ , and

Ψ1,n(τ : β1, β2|α) − Ψ1,n(τβ∗ : β1, β2|α) =
[nτβ∗]∑

i=[nτ]+1

(
Gi(β2|α) −Gi(β1|α)

)
for τ < τβ∗. Therefore, in the same way as the proof of Theorem 5, we obtain from [J1], [J2′]1 and [J3]
the result that

Tϑ2
β(τ̂
β
1,n − τ

β
∗)

d→ argmin
v∈R

G1(v : α(0)
1 )

in Case Aβ, and from [K1′]1 and [K2] the result that T (τ̂β1,n − τ
β
∗) = OP(1) in Case Bβ. □

Theorem 9 can be shown in the same way as the proof of Theorem 8.
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