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I. Introduction

In the last 20 years, materials used for dental restoration have changed from alloys and
metals to ceramics and resin composites because of the increasing aesthetic demand of
patients. Especially, mechanical properties of resin composites have been greatly advanced
based on numerous studies, and inlays and crowns made from resin composite blocks
(RCBs) using computer-aided design and computer-aided manufacturing (CAD/CAM)
systems are widely used in daily clinical practice [1]. However, despite the continued
evolution of dental materials and manufacturing techniques, edge chipping and fracture of
composite restorations still occur under clinical service, which results in the limited
longevity of restorations [2, 3]. Therefore, how to improve the mechanical properties of
resin composites has always been a topic of great interest, and efforts to improve the
mechanical properties of CAD/CAM RCBs, including the flexural strength, have been
made by changing the type of fillers and monomers [4-6]. However, because various
compositions result in the varied flexural strength of CAD/CAM RCBs, which filler or

monomer contributes specifically to improving flexural strength remains unknown.

The conventional approach to modifying material compositions to achieve superior
properties relies on repetitive in vitro experiments, which are time-consuming and often
inefficient [7], and can barely distinguish the contribution of each composition to the target
material properties. In recent years, artificial intelligence (Al) technologies have become
widely accepted in society, and preliminarily implemented in dentistry [8, 9]. A promising
approach that combines traditional experimental methods with intelligent data analysis

grew out of the quest for Al and is known as machine learning (ML). ML is a powerful



tool for finding meaningful regularities in high-dimensional data, which allows for
predictions of unknown data. It uses algorithms by which a computer can learn from
empirical data by modeling the linear or nonlinear relationships between material
properties and related factors [7, 10]. ML has successfully resolved the difficulties of
modeling the relationships between material properties and complex physical factors [11].
Compared with using only experimental measurement, ML quickly assesses and analyzes
the collected data with extraction of various relevant features, which saves a great amount
of time and cost for scientists and manufacturers [12]. Compared with conventional
statistical modelling, ML methods are especially advantageous to deal with data that the
number of input features surpasses the number of subjects [13]. On the other hand, ML
methods yielded higher prediction accuracy when facing large dataset. ML makes minimal
assumptions about the data-generating systems; they remain effective in scenarios where
data collection lacks a carefully controlled experimental design and involves complex

nonlinear interactions [13].

Moreover, for many Al users in both the dental and medical fields, a high level of
accountability is required; thus, it is highly possible that directly interpretable and tractable
Al techniques will be adopted as assistants for decision-making [14, 15]. In interpretable
machine learning (IML), methods and models are proposed that make the behavior and
predictions of machine learning systems understandable to humans [16]. Unlike the opaque
explainability of deep neural networks, IML could provide insight into what a trained

model has learned and reason about its entire decision-making process [17].

For the purpose of predicting material properties, ML models should contain three parts:

training data, descriptors, and algorithms that can map the descriptors to the property of



interest [18]. The descriptors are a set of attributes that require selection to be capable of
both uniquely defining each of the materials in the dataset and relating to the targeted
property [18]. Compositional information has been commonly used as descriptors for
developing ML models for materials [19]. Hyperparameters are parameters of ML
algorithms that must be pre-set and tuned to control how an algorithm learns from the
training data [20]. The development of an effective model also relies on the optimization

of the hyperparameters [21].

To date, dental applications of ML, such as computer-aided diagnosis, treatment, and
disease prediction, have mainly focused on classification problems for which the outputs
are discrete values [8, 9, 22]. The correlation between the composition and mechanical
behavior of aging enamel was considered in only one study [23]. There have been no
studies in which ML has been applied to prediction of dental material properties. However,
this data-driven informatic (materials informatics) approach [24] has already been applied
to classical materials science to predict the mechanical properties (e.g., toughness, strength,
and stiffness) of composite materials, and densities and elastic modulus of Si0;-based glass
using regression models with only the chemical composition or with the chemical or

physical quantities as descriptors [25-28].

The aims of this study were:
1) to develop an interpretable Al using ML methods to predict the flexural strength of
CAD/CAM RCBs, and
2) to investigate the components that affect flexural strength to explore the optimum

composition based on the available dataset.



II. Machine learning model development

1. Purpose

In this chapter, development of ML models to predict the flexural strengths of
CAD/CAM RCBs based on the available dataset was aimed. The fluctuation range and
increased sample number were evaluated for dataset augmentation. Models were developed

using the augmented dataset after hyperparameters adjustment and model evaluation.

2. Materials and methods
1) CAD/CAM RCBs

Twelve commercially available CAD/CAM RCBs were considered in this study:
Cerasmart (CS; GC, Tokyo, Japan), Katana Avencia Block (KA; Kuraray Noritake Dental,
Tokyo, Japan), Katana Avencia P Block (AP; Kuraray Noritake Dental), Shofu Block HC
(HC; Shofu, Kyoto, Japan), Shofu Block HC Hard (HC; Shofu), KZR-CAD HR2 (HR2;
Yamakin, Osaka, Japan), Estelite Block (EB; Tokuyama Dental, Tsukuba, Japan), Estelite
P Block (EP; Tokuyama Dental), Brilliant Crios (BC; Coltene, Switzerland), Lava Ultimate
(LU; 3M ESPE, St. Paul, MN, USA), Paradigm MZ 100 (MZ100; 3M ESPE), and Tetric
CAD (TC; Ivoclar Vivadent, Schaan Liechtenstein). The details of the composition of each

block are summarized in Table 1.

2) Data collection



The detailed compositional information of each commercial product was collected from
manufacturers or the literatures [5, 29-33]. The flexural strengths of the products were
collected from the manufacturers or literature, and they were measured by the three-point

bending test according to the ISO 6872:2015 [34-36].

3) Investigation of fluctuation range

The initial data consisted of 16 attributes (15 input compositional descriptors and 1 label)
and 12 samples. There were two types of compositional descriptors: fillers and monomers.
The fillers were Si02, ZrO», ZrSiO4, micro-fumed silica, barium glass, Al>O3, methacrylate
mixed filler, Si0,-ZrO; filler, and the monomers were urethane dimethacrylate (UDMA),
2,2-Bis(4-methacryloxypolyethoxyphenyl)propane  (Bis-MEPP), triethylene glycol
dimethacrylate (TEGDMA), neopentyl glycol dimethacrylate (NPGDMA), bisphenol A
glycidyl methacrylate (Bis-GMA), and ethoxylated bisphenol A-glycol dimethacrylate

(Bis-EMA) (Table 2). Filler contents were also added as one descriptor.

Each product had a unique composition; accordingly, 1 and 0 were used to represent
whether the sample contained the specific descriptor or not, respectively. Therefore, the
composition of each product could be represented with different combinations of 1 and 0.
Considering that the input data for each sample were recognized as a multi-dimensional
vector, a fluctuation range was defined for each vector. To decide the appropriate

fluctuation range, different fluctuation ranges were set for 0 and 1 (Table 3).

Taking a fluctuation range 0.1 as an example, new samples (n = 9) were created based

on the data of the original sample. Specifically, for each original sample, new samples were



constructed by generating random numbers to two decimal places using the function
“RANDBETWEEN” in Microsoft Excel (version 2307) within the range [0, 0.1] for 0 and
[0.95, 1.05] for 1. The same labels were used for the original samples and created samples
(i.e., flexural strength). Consequently, the dataset was increased to 16 attributes (15 input
compositional descriptors and 1 label) and 120 samples. The same process was conducted

for each of the fluctuation range; 10 different datasets were obtained accordingly.

4) Hyperparameters adjustment

Hyperparameters are parameters used to configure a ML algorithm and defines its
architecture [19]. Four regression algorithms, random forest (RF) [37], extra trees (ET)
[38], gradient boosting decision tree (GBDT) [39], and extreme gradient boosting
(XGBoost) [40], were implemented using the scikit-learn package (version 0.24.1) in
Python (version 3.7.4) and run in Jupyter Notebook (version 6.0.1) on a laptop (Surface
Laptop 2: Core 15-8250U CPU and 8 GB RAM, Microsoft, Redmond, Washington, USA).
Each of the dataset was imported and randomly split into two groups: 80% of the data was
used for training the algorithm and 20% was used for testing [41]. The variable
“random_state” was set to five different values (random_state= 1, 3, 9, 23, 100) to get
different splits of each dataset. The function “GridSearchCV” in scikit-learn’s model
selection package was applied to search for the optimal combination of hyperparameters
for each algorithm. This function evaluated the algorithm’s performance for each
combination of hyperparameters using 10-fold cross-validation, in which the algorithm
fitted the training data 10 times (Figure 1). For each iteration, the training data were split

into 10 subsets: 9 subsets were used for training the algorithm and the 10th subset was used
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as test data. The combination of hyperparameters that exhibited the best performance

during the cross-validation process was selected.

5) Algorithm performance on each fluctuation range dataset

The coefficient of determination (R?), root mean square error (RMSE), and mean
absolute error (MAE) were calculated to assess the regression accuracy of each algorithm
on each fluctuation range dataset, accordingly ten R’ values, ten RMSE values, and ten
MAE values were obtained for each algorithm. The values of each metric were compared
among different fluctuation range datasets numerically. The fluctuation range dataset
showed the highest R’ value, and the lowest RMSE value, MAE value was selected as the

appropriate fluctuation range. The metrics are expressed as follows:

2Dy O)°

R?=1 1
o (-y®)° )
1 . (i 2
RMSE = —31,(y® — @) 2)
1 . (i
MAE = =31 |y® - 50|, 3)

where y® is the flexural strength calculated from in vitro experiments, @ is the predicted

flexural strength from the above four algorithms, and m is the number of test samples.



6) Investigation of increased sample number

After the appropriate fluctuation range was settled, the appropriate increased sample
number was investigated by generating different sample number datasets. Specifically, new
samples (n = 1, 2, 3...9, 11) were constructed by generating random numbers to two
decimal places within the decided fluctuation range [0, 0.1] for 0 and [0.95, 1.05] for 1
using the function “RANDBETWEEN” in Microsoft Excel (version 2307). The same
labels were used for the original samples and created samples (i.e., flexural strength).
Accordingly, for each algorithm, eleven datasets with different increased sample numbers
were obtained. After hyperparameters adjustment as described in section 4), R?, RMSE,
and MAE were used to assess the regression accuracy of each algorithm on each increased
sample number dataset. Each dataset was evaluated five times with different random seeds
(random_state= 1, 3, 9, 23, and 100), and each time the data for training and testing was
split differently. The increased sample number dataset which showed the converged R’,

RMSE, and MAE values were selected as the appropriate increased sample number.

7) Model development

After the appropriate fluctuation range and increased sample number were settled, the
final dataset to develop the ML models was constructed. The learning model was
developed and run in Jupyter Notebook (version 6.0.1) on a laptop (Surface Laptop 2: Core
15-8250U CPU and 8 GB RAM, Microsoft) as described in section 2-4). RF, ET, GBDT,
and XGBoost algorithms were implemented using the scikit-learn package (version 0.24.1)

in Python (version 3.7.4). The dataset was imported and randomly split into two groups:



80% of the data was used for training the model and 20% was used for testing. The variable
“random_state” was set to a fixed value to ensure the same split of the data for each model.
The function “GridSearchCV” was applied to search for the optimal combination of
hyperparameters for each model. The R, RMSE, and MAE values were calculated to assess
the regression accuracy of each model, and the values were compared. Additionally, to

further assess the performance of the models, the relative error [19] was defined as:

. lp®—y®|
Relative error = SO (4)

where y® is the flexural strength calculated from in vitro experiments, §@ is the predicted

flexural strength from the above four models.

8) ML algorithms basis

The selected algorithms are ensemble algorithms. In an ensemble, a set of base learners
are trained to act together as a strong learner, thereby providing more accurate predictions
[26]. Bagging and boosting are the two most frequently used approaches for constructing
ensemble algorithms. The schematic stucture of bagging and boosting are shown in Figure
2. The ensemble algorithms used in this study included RF, ET, GBDT, and XGBoost. RF
and ET algorithms use the bagging approach, and the rest of the two algorithms use
boosting approach. A brief introduction of the four algorithms implemented in this study

is provided below.



Random Forest (RF)

Breiman [37] developed the RF algorithm for both regression and classification purposes.
As the base constituents of the ensemble are tree-structured predictors, and since each tree
is constructed using an injection of randomness, the method is called “random forests” [42].
This tree-structured predictor is called a decision tree (DT). DT works by continuously
splitting data into smaller and smaller subsets by calculating a certain parameter. The final
subset of a regression tree gives a quantitative prediction, while the classification tree gives
categorical predictions [43]. A bootstrap sample was used to train each decision tree as the
basic estimator. The number of the decision tree and how the tree grows are controlled by
the hyperparameters in the algorithm. Each decision tree will give a predicted value for the
regression problem. The final output value in RF model is the unweighted average of all

the predicted values obtained from all decision trees, which could be expressed as follows:

Zt:}?(” : 5

where Y is the output value from RF model, ¢ is the number of DT, and ¥ is the prediction

value of each decision tree.

Extra Tree (ET)

Geurts et al. [38] developed the ET algorithm as an extension from the RF algorithm.
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ET is also a tree-based ensemble algorithm, which has some differences from that of RF.
ET algorithm uses the whole training dataset to train each decision tree, while RF algorithm
uses the bootstrap sample. RF algorithm obtains the best feature and value to split into two
branches for decision tree by calculating specific mathematical parameter (MSE for
regression problems), while ET algorithm obtains the splitting feature and value

completely randomly.

Gradient Boosting Decision Tree (GBDT)

GBDT is a widely used ML algorithm proposed by Friedman [39] which integrates
multiple DTs into a strong final ensemble model using the boosting approach [44, 45]. The
training set was adaptively updated according to the performance of a previously created
DT (predecessor). Each basic model is created sequentially trying to correct its predecessor.

The process could be expressed as follows:

fe(x) = fro1(x0) + ah(x) , (6)

where f;(x) is the GBDT model and h;(x) is the basic model (DT) at step ¢, x is the
configuration that need to be optimized (“‘chemical composition” in this study) and «a is
called the learning rate, which is a regularization parameter [26]. It scales the length of the
step for finding the optimum solution. Larger alpha leads to faster iteration speed, while

smaller alpha leads to lower iteration speed, which is more possible to find the optimum

11



solution, but it requires more computational cost. Except from regularization through
shrinkage of the contributed basic models, randomness is also incorporated as an integral

part of the fitting procedure.

eXtreme Gradient Boosting (XGBoost)

Under the framework of GBDT, XGBoost has been proposed with higher computation
efficiency and better capability to deal with overfitting problems [40]. There are some main
differences between GBDT and XGBoost, one is the different definition in objective

function, in which a regularization function is implemented alongside the loss function.

0bj® = > U5,y + ) 0, ™)
k=1 k=1

where / is the loss function, n is the number of observations used, ¢ is step and {2 is the
regularization term to prevent overfitting issue [46]. The other main difference from
XGBoost is that GBDT only uses the first-order derivative information of the loss function
when optimizing the objective function, while XGBoost performs a second-order Taylor
expansion on the loss function, and both the first-order and second-order derivatives are

used [26, 44].

3. Results

12



1) Appropriate fluctuation range

The R?, RMSE, and MAE values of different fluctuation range datasets for each model
are shown in Table 4 to Table 7. For the four models, fluctuation range 0.1 showed the
highest R’ value and the lowest RMSE and MAE value ( RF: R’ 0.972+0.015, RMSE:
5.199+1.277, MAE: 4.048+1.043; ET: R’: 0.995+ 0.004, RMSE: 2.172+0.900, MAE:
1.533+0.710; GBDT: R%: 0.999+0.001, RMSE: 0.678+0.374, MAE: 0.435+0.190; XGBoost:
R?:0.956+0.029, RMSE: 6.070£1.919, MAE: 3.805+1.067 ). Therefore, 0.1 was decided to
be the appropriate fluctuation range. For GBDT and RF models, the R’ value dropped
below 0.9 starting from a fluctuation range of 0.8. For ET and XGBoost models, the R’

value dropped below 0.9 starting from a fluctuation range of 0.7.

2) Appropriate increased sample number

For ET, GBDT, and XGBoost models, the R’, RMSE, and MAE values showed
convergence when the sample number increased to eight, while for the RF model, the
evaluation metrics started to converge when the sample number increased to nine. The
standard deviation value showed a decreased tendency from 1 sample to 11 samples (Figure

3 to Figure 6).

3) Tuned hyperparameters
The tuned hyperparameters for the final developed four models are shown in Table 8.

2 (13

For RF model, the hyperpameters “n_estimators”, “max_depth”, “min_samples leaf”,

“min_samples_split”, “max_features”, “min_weight fraction leaf” and “random state”

were adjusted. For ET model, “n_estimators”, “max depth”, “min samples leaf”,

13



“min_samples_split”, and “random state” were adjusted. For GBDT model,
“n_estimators”, “max_depth”, “learning_rate”, “min_samples_leaf”, “min_samples_split”,
“min_weight fraction leaf” and “random_state” were adjusted. For XGBoost model,
“n_estimators”, “max_depth”, “learning rate”, “booster”, “min_child weight”,

29 ¢¢ 29 ¢¢

“reg_alpha”, “colsample bytree”, “colsample bylevel” and “random_state” were adjusted.

4) Prediction performance of the four ML models developed

The prediction performance of each model is shown in Table 9. The R’ values for RF,
ET, GBDT, and XGBoost were 0.947, 0.997, 0.998, and 0.927, respectively. The relative
errors of all the models were within 15%.

The flexural strength predictions using the ML models beyond the training set are
plotted versus the observed values in Figure 7. The data points within the region of two
black dashed lines have relative errors less than 5%. For ET and GBDT models, the test
points were all within the black dashed lines. However, for RF and XGBoost models, two

test points deviated from the black dashed lines.

4. Summary
All of the four models developed achieved R’ values of over 0.9 in terms of prediction

accuracy. GBDT was the best performing model, closely followed by the ET model.
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II1. Feature Importance

1. Purpose
After the ML models were developed, this chapter aims at conducting a feature

importance analysis using the developed models to investigate the components that affect

the flexural strengths of CAD/CAM RCBs.

2. Materials and methods

The feature importance analysis was conducted using scikit-learn package (version
0.24.1) in Python (version 3.7.4) on a laptop (Surface Laptop 2: Core 15-8250U CPU and
8 GB RAM, Microsoft). Feature importance analysis is a built-in attribute inside each of
the four algorithms. It determined the contribution of each feature to the targeted properties
(i.e., flexural strength) by assigning a score for each feature. The importance of a feature
is basically: how much this feature is used in each tree of the forest. It was calculated by

2

implementing the function “feature importances ”, thereafter, the scores were calculated
automatically. Finally, the scores were compared for each component within the ET and

GBDT models.

3. Results

The feature importance analysis result is shown in Figure 8. The filler content,
TEGDMA, and ZrSiO4 were the top three features that had a relatively high importance
value in ET and GBDT models. However, even though SiO; was contained in all products,

it had little importance for ET and GBDT models. By contrast, as a synthetic amorphous

15



form of silicon dioxide, micro-fumed silica had relatively high importance, ranking fourth

for the ET model and fifth for the GBDT model.

4. Summary
The feature importance analysis demonstrated that the filler content, TEGDMA, and

ZrSi04 were the top three important features.

16



IV. Exhaustive search

1. Purpose

The feature importance analysis conducted in Chapter III revealed which feature had
great influence on flexural strength. However, influence of each feature is positive or
negative has not been clarified. Therefore, an exhaustive search was conducted in this
chapter to illustrate the above mentioned influence of the component and to identify

effective compositions.

2. Materials and methods

1) Running environment

The exhaustive search was conducted in Jupyter Notebook (version 6.0.1) on a laptop
(Surface Laptop 2: Core 15-8250U CPU and 8 GB RAM, Microsoft) using scikit-learn

package (version 0.24.1) in Python (version 3.7.4).

2) Exhaustive search

The first 14 descriptors were set to 0 or 1, and the 15th descriptor (filler content) was set
to be in the range of 62 to 85. The function “itertools.product” was used to generate 2'4 x
24 (393,216) combinations of the descriptors. An exhaustive search was performed by
GBDT model to iterate all 2'* x 24 (393,216) combinations of the descriptors and predict
393,216 values of the corresponding flexural strengths. By checking the original output of
the exhaustive search, the predicted flexural strength and its combination number were

plotted. The composition differences were analyzed among the high and low predicted

17



flexural strengths groups, by checking how many times a specific component was
contained among those compositions. Accordingly, the frequency for each component is

defined as:

Times a specific component occurs

(8)

Frequency = , ;
Number of all predicted compostions

Finally, the possible compositions that lead to the highest predicted flexural strength were

tllustrated.

3. Results
1) Original output of the exhaustive search

Part of the original output of the exhaustive search is shown in Figure 9. The original
output of the exhaustive search contains three parts: the combination numbers, the
corresponding compositions, and the predicted flexural strengths. The combination
numbers are from 1 to 393,216, and some of these numbers are displayed as examples in
the red square. For each combination, it represents a specific composition for the
CAD/CAM RCB that was formed by 0 and 1 as shown in the yellow square. By checking
the corresponding feature name, we could know what is contained in this composition and
its filler content. In the meantime, the model will predict the flexural strength for each

combination, which was shown in the blue square.

2) Plot of the exhaustive search

Figure 10 shows the plot of an exhaustive search using the GBDT model. The horizontal

18



axis of Figure 10 represents the combination number (red square of Figure 9), and the
vertical axis represents the corresponding flexural strength predicted by the model (blue
square of Figure 9). The plot of the GBDT model mainly contains three groups of
predictions, with the top group and the bottom group indicated by red and red dotted circles.
For the GBDT model, the bottom group of Figure 10 shows four high-density areas of
points, where the predictions varied from 132.2 MPa to 180.1 MPa (93,135 compositions).
By contrast, the highest predictions in the top group ranged from 256.6 MPa to 269.5 MPa

(4,527 compositions).

3) Composition differences between higher and lower predictions group

The composition differences in the higher prediction group and lower prediction group
are demonstrated in Figure 11. Among the compositions in higher prediction group, the
filler content ranged from 81 to 85 (wt)%, and ranged from 62 to 69 (wt)% in the lower
prediction group. For the monomers in the lower predictions group, TEGDMA shared the
highest ratio of 53.5%. In the higher predictions group for GBDT model, none of the
combinations contained TEGDMA or Bis-GMA; instead, UDMA and Bis-EMA were the
most frequently contained monomers. In the case of fillers, ZrSiO4 and micro-fumed silica
had a relatively high frequency in the lower prediction group for GBDT model predictions
(59.2% and 60.6%, respectively), whereas it dramatically decreased in the higher

prediction group.
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4) The maximum prediction by GBDT model and its corresponding composition

The maximum flexural strength predicted by the GBDT model was 269.5 MPa. For the
GBDT model’s prediction, the related chemical composition for the maximum flexural
strength was Si0O», barium glass, methacrylate mixed filler, with or without Al,Oj for fillers,
and UDMA alone for monomers. Simultaneously, the filler content was from 82 to 85

(wt)%.

4. Summary
The exhaustive search showed UDMA and Bis-EMA were the most frequently contained
monomers, and the filler content ranged from 82 to 85 (wt)% in the higher prediction group.

Effective compositions predicted by GBDT model were identified.

20



V. Bayesian optimization

1. Purpose
In Chapter IV, an exhaustive search was applied and effective compositions were
identified. However, the exhaustive search is a time-consuming process, and therefore, a

Bayesian optimizer was used to shorten the time to search for the effective composition.

2. Materials and methods
1) Building composition space

To implement Bayesian optimization for chemical reaction parameter selection, we used
a user-friendly package “Experimental Design via Bayesian Optimization™ (short for
EDBO) developed by Shields et al. [47] for our data. First, a dictionary of components was
defined following the same rule as exhaustive search, the first 14 components were set to
0 or 1, and the 15th descriptor (filler content) was set to be in the range from 62 to 85 (wt)%.
Then, a dictionary of desired encodings was specified; the first 14 components used one-
hot encoding (OHE) [47]. This method details the presence or absence of certain
components with 0 or 1; the 15th descriptor was numeric. As the next step, a Bayesian
optimizer, called “BO_express” inside this package was applied and instantiated to

automatically build the composition space.

2) Surrogate model and acquisition functions
Over the course of our study, we investigated three acquisition functions, including mean
maximization (MeanMax), variance maximization (VarMax), and expected improvement

(EI). MeanMax is a purely exploratory algorithm which selects compositions for
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optimization via domain points with the highest model variance. MaxVar is a purely
exploratory algorithm which selects compositions for optimization via domain points with
the highest model variance. EI attempts to balance exploration and exploitation by
accounting for the amount of improvement over the best-observed value. The surrogate
model was Gaussian process regression, which was already built in the “BO_express”.
“BO_express” has built-in adjusted hyperparameters for different encoding methods. We

select the hyperparameters for OHE method.

3) Initialization

From the exhaustive search space, five random compositions (the batch size was chosen
to be five according to [47]) and their corresponding flexural strengths predicted by GBDT
model were used as initialization data. After the surrogate model was updated according to
these five predictions, the acquisition function was applied to propose five new candidate
compositions. These newly proposed compositions were then given to GBDT model to
make predictions. Afterwards, these five compositions and their predicted flexural
strengths were added to the observations, and the surrogate model updated again, then
another five new candidate compositions were proposed by the acquisition function. This
process was repeated 10 times, calling each time as one “iteration”. Three different
initializations were performed. The time to find the highest flexural strength among
combinations was compared between the exhaustive search optimized by BO and without

BO.

4) Bayesian optimization basis
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Bayesian optimization (BO) is an approach to optimizing objective functions that take a
long time. Instead of searching all the possible combinations like exhaustive search, the
BO method could propose candidate compositions that have a high possibility to lead to
improved flexural strength, therefore, reducing the predicting time for GBDT model. It
builds a surrogate for the objective and quantifies the uncertainty in that surrogate using a
Bayesian machine learning technique, and then uses an acquisition function defined from
this surrogate to decide where to sample [48]. Sequential model-based Bayesian
optimization (SMBO) is one of the Bayesian optimization approaches [49]. The framework

is as follows [50]:

SMBO (f, My, T, S)

1 H«— o,

2 Fort < 1to T,

3 x* «— argminx S (x, M;-)),
4 Evaluate f'(x*),

5 H—HU (x* f(x¥),

6 Fit a new model M, to H.
7 return

f1is the target black box function that needs to be optimized, usually, it is very time-
consuming to calculate f. Therefore, a surrogate S is usually used to “mimic” f, which
requires less calculation compared to f. x are the combinations of the hyperparameters. H
is the observed history. To pick the next evaluated hyperparameter x* S needs to be

minimized, to minimize S, usually an acquisition function should be applied and
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maximized. M is the fitting distribution model.

The commonly used probability distribution model (surrogate model) is Gaussian
process regression, which estimates the mean and variance of the training data as a
posterior distribution [48, 51]. However, the dimensions of the descriptors could be large,
resulting in a large reaction space of up to tens of thousands of possible compositions that
cannot be all conducted in vitro to update the posterior distribution. Therefore, after
training the surrogate model, an acquisition function is used to select the next trial
experiment from the reaction space [52]. There are two typical strategies in acquisition
functions: exploration and exploitation. Exploitation tends to select the next experiment
around the neighborhood of the current best-observed value, while exploration tends to
select the next point with the greatest predictive uncertainty, and tends to investigate the
entire reaction space thoroughly [47]. As in any iterative search algorithm, the goal is to
balance exploration of options for x with exploitation of previously-explored options, so
that a good choice is found in a small number of trials [49].

Commonly used acquisition functions such as expected improvement (EI) aim to balance
these two strategies. EI was proposed initially in Mockus ef al. (1978) [53] and then made
popular by Jones et al. (1998) [54]. EI measures the expectation of the improvement on f
(x) with respect to the predictive distribution of the probabilistic surrogate model. EI
considers not only the probability of improving the current best estimate but also factors in
the magnitude of the improvement. The point with the highest expected improvement will

be selected as the next candidate. EI has the form [55] :

FOT) = u() = HPZ) + o()e@)if o(x) > 0)

El(x) = { Oifo(x)=10 )
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And

. f(x);(’;gx)_f if (x) >0

Oifo(x) =0

(10)

where ¢p(Z) and ® (Z) are the probability distribution and the cumulative distribution of
the standardized normal, respectively. f(x¥) is the best value of the objective function
observed so far, u(x) and o(x) are the mean and standard deviation of the probabilistic
surrogate model. ¢ is an empirical parameter that can be actively managed for the trade-off
between exploration and exploitation. the next point to evaluate is chosen according to:
Xn+1 = argmax.ex EI(x). A graphical overview of Bayesian optimization is shown in

Figure 12.

3. Results
1) Performance of different acquisition functions

With three times different initializations, EI all demonstrated the best performance
(Figure 13). For each initialization, EI found the highest flexural strength (269.5MPa)
among combinations as concluded from exhaustive search within 10 iterations. MeanMax

and VarMax did not achieve the desired performance.

2) Time reduction by EI

As shown in Figure 14, in the first initialization, EI found the highest flexural strength
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in the 9th iteration (6.00 hours). In the second and third initializations, EI found the highest
flexural strength in the 10th and 6th iterations, respectively (6.67 hours and 4.00 hours,
respectively). The average time to find the 269.5 MPa and its corresponding composition

is 5.56 hours, which is decreased by 8 times compared to the time for exhaustive search

(48 hours).

3) Comparison of the compositions proposed by EI and exhaustive search

The detailed composition proposed by BO in the 9th iteration of the first initialization is
shown in Figure 15. In figure 16, the compositions proposed by BO of 10 iterations in the
first initialization were plotted on the exhaustive search figure. It can be seen that the
proposed compositions from BO encompass a varied range of predicted flexural strengths.
Furthermore, EI predominantly focused its searches on the top prediction group of
exhaustive search, as indicated by the higher density of orange compared to the other areas
in Figure 16. Finally, the composition proposed by BO that led to the 269.5 MPa (Figure

15) was shown in the white dot in Figure 16.

4. Summary
BO with EI as an acquisition function shortened the time (5.56 hours) for GBDT model
to find an effective composition compared to exhaustive search (48 hours) regardless of

the initialization data.
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VI. Discussion

Al technology has been applied to the dental field mainly for the diagnosis, decision-
making, and treatment planning [56-60]. Farhadian et al. [58] developed a support vector
machine model and diagnosed three classifications of periodontal diseases using data
collected from 300 patients. Reyes et al. [59] developed caries prognosis models in primary
and permanent teeth after 2 and 10 years of follow-up through a ML approach, using
predictors collected in early childhood. Sakai et al. [60] developed a deep neural network
based on LeNet-5 and predicted the implant treatment plans using cone beam computed
tomography images collected from 60 patients. However, it has not yet been used to modify
the properties of dental materials. In this study, CAD/CAM RCBs was chosen as the target
material for the application of the interpretable Al process. It is an ideal material for Al
modelling study, since the mechanical properties of CAD/CAM RCBs could be improved
simply by modification of the compositions. This study was performed to establish a
process using Al technology to predict the flexural strength of CAD/CAM RCBs and
investigate the components that affect flexural strength to explore the optimum

composition based on the available dataset.

Data size is of great importance in the ML process [28]. It is likely that relatively little
attention has been paid to the application of ML methods to dental materials, particularly
CAD/CAM RCBs, because of the limitation of compositional information. Therefore,
before developing the final ML models, we conducted the fluctuation range and sample
increment study. For GBDT and RF models, the R value dropped below 0.9 starting from
a fluctuation range of 0.8. For ET and XGBoost models, the R’ value dropped below 0.9

starting from the fluctuation range of 0.7. This result could be explained by the overlap of
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the fluctuated range for both 0 and 1. Specifically, when the fluctuation range was 0.7, 1
could be represented with random numbers within the range of [0.65, 1.35], while 0 could
be represented within the range [0, 0.7]. The overlapping of the ranges may result in the
models erroneously interpreting the inclusion or exclusion of the related component,

thereby reducing the accuracy of predictions.

In the sample increment study, increasing only one or two samples resulted in minus R’
value and large standard deviation, which indicated the unstable performance of the models.
ET, GBDT, and XGBoost models showed converged evaluated metrics on increased
sample number of eight, but RF showed the convergence on increased sample number of
nine. When considering nine newly generated samples, the total sample count would reach
120, making it more favorable for subsequent processes such as the 10-fold cross-
validation due to its divisibility. Based on the above reasons, the increased sample number

was determined to be nine.

Furthermore, to avoid the negative effect of a small dataset, ensembles were used in this
study. In an ensemble, a set of base learners are trained to act together as a strong learner,
thereby providing more accurate predictions [26]. Bagging and boosting are the two most
frequently used approaches for constructing ensemble models [61]. Among these two
approaches, algorithms that involve bagging, such as RF and ET, and algorithms that use
boosting, such as GBDT and XGBoost, have demonstrated robust performance in
predicting material properties in recent studies [62-64]. One study demonstrated R’ values
of over 0.939 in predicting the compressive strength of concrete using ensemble algorithms,
utilizing a dataset comprising 154 data points [26]. In the present study, the four selected

ensemble algorithms all achieved acceptable R’ values of over 0.9 in terms of prediction
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accuracy. The RMSE and MAE values indicated the superior predictive ability of the
developed models for the flexural strength of CAD/CAM RCBs. GBDT was the best-
performing model. This was followed closely by the ET model. These results imply that,
for the available dataset applied in this study, the algorithms performed similarly when

bagging or boosting techniques were used.

Because the ML models were only trained on limited data, it was crucial for the models
to provide reliable predictions beyond the training set. The prediction results using the test
data suggested that the ET and GBDT models had a promising ability to reliably predict
the flexural strength values of CAD/CAM RCBs, provided the chemical compositions were
given. However, several predictions of the XGBoost and RF models deviated from the
observed values, and their relative errors were within 15%. Moreover, the RMSE values
for the RF and XGBoost models were 5.64 MPa and 6.64 MPa, respectively, which were
much larger than those for the other two models. These results suggest that the RF and

XGBoost models yielded uncertainties during the extrapolation process.

The translation of components into a machine-readable format can play a critical role in
the development of predictive models [65]. In Chapter I, OHE method was used to
represent each component. This computationally simplistic method merely details the
presence or absence of certain components with 0 or 1, whilst encoding no chemical
information. Some studies implemented other representation methods for the inclusion of
structural and chemical information for the components; for instance, Morgan fingerprints
[66] (atom types, neighbouring connectivity...), Morderd descriptors [67, 68] (atom-bond
connectivity index, acidic group count...) and Density Functional Theory (DFT)

Descriptors [69, 70] (molar mass, electronic spatial extent...). Pomberger et al. [66]
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demonstrated a decrease of 2% in RMSE value of RF model when using Morgan
fingerprints to generate descriptors for the input composition to predict the yield of their
target reaction compared to OHE, while no improvement for RMSE when using all ligand
DFT descriptors. The utilization of the structural and chemical information representation
method can lead to an increase in the number of descriptors, subsequently necessitating a
larger sample size. Given the limited dataset available, the simplest OHE method was used
in this study. This decision was made by the need to accommodate the data constraints

while still enabling meaningful interpretation for the next analysis on exhaustive search.

After the ML models were developed, in Chapter III and IV, the effective components
that contribute to the flexural strength of CAD/CAM RCBs was investigated. In terms of
the feature importance analysis, the high importance of the top three features were filler
content, TEGDMA, and ZrSiOas. According to the ranking, the filler content and the use of
monomers should be adjusted as a priority when modifying the composition of CAD/CAM
RCBs to improve flexural strength. Furthermore, even though SiO; is contained in all
products, it had little importance for all models. By contrast, as a synthetic amorphous form
of silicon dioxide, micro-fumed silica had relatively high importance, ranking fourth for
ET model and fifth for the GBDT model, which suggests that the different size and
manufacturing process for the same element contributed differently to the flexural strength
of CAD/CAM RCBs. However, the feature importance could not illustrate whether these
components demonstrated positive or negative contribution to the flexural strength of
CAD/CAM RCBs. Therefore, the exhaustive search was conducted to reveal the influence

in detail in Chapter V.

The exhaustive search results of GBDT model were analyzed because of its promising
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prediction performance. In the bottom group of predictions from the GBDT model, the
filler content in the combinations ranged from 62 to 69 (wt)%, whereas in the top group, it
ranged from 82 to 85 (wt)%, yielding higher predicted flexural strength values. It has been
proved that high filler content improves flexural strength [71], which is in agreement with
the finding in the present study. However, exceptions to this rule were observed for MZ
100, which obtained a relatively low strength value compared with other materials listed
in this study, despite its relatively high filler fraction of 85 (wt)%. Furthermore, the same
predictions were made by the ML models using compositions that varied only in filler
content. This result suggests that, for CAD/CAM RCBs, the filler content and flexural
strengths did not always positively correlate. Flexural strength tended to decrease when the
filler content exceeded 60 (vol)% [5, 72]. Our results suggest that, within a specific range,
increasing/decreasing the content of fillers does not necessarily improve/decrease the

flexural strength.

For the monomers in the lower predictions group, TEGDMA shared the highest ratio of
53.5%, This result suggests that TEGDMA could be an essential component that affects
the predicted flexural strength. This finding is in agreement with that obtained by in vitro
results [73], where increasing the content of TEGDMA in the experimental RCBs slightly

reduced the flexural strength.

In the higher predictions group for GBDT model, none of the combinations contained
TEGDMA or Bis-GMA; instead, UDMA and Bis-EMA were the most frequently
contained monomers. UDMA has a lower molecular weight and exhibits lower viscosity
than Bis-GMA, and simultaneously demonstrates higher cross linking and polymerization

activity with light curing [5, 74]. UDMA can be used alone or with other monomers, such
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as TEGDMA and Bis-GMA, in a matrix. For an in vitro experiment, it was reported that
when fillers were fixed, UDMA used alone exhibited the highest flexural strength
compared with the mixture of different ratios of UDMA and TEGDMA [72]. The present
result was consistent with this finding. Bis-EMA is a monomer analogous to Bis-GMA,
but without the two hydroxyl groups (-OH). It is more flexible and mobile than Bis-GMA
[75]. Therefore, it demonstrates a higher overall conversion [76-78]. Another study has
reported that UDMA/Bis-EMA/TEGDMA monomer mixtures are characterized with
better flexural strength compared with UDMA/TEGDMA [78]. However, in this study, the
model failed to identify the underlying collective pattern within these three components.
This discrepancy could potentially be attributed to the absence of specific monomer

combinations (as mentioned above) in the original input products.

Furthermore, the results of the exhaustive search also indicated that among all the
combinations containing Bis-EMA, half also included UDMA. These findings suggest that
Bis-EMA alone may not contribute to the heightened flexural strength; rather, the enhanced
strength might be a result of the synergistic effects of its combination with UDMA. This
observation aligns with the feature importance analysis, where Bis-EMA does not exhibit

a notably high importance score.

In the case of fillers, the results demonstrated that ZrSiO4 had a relatively high frequency
in the lower prediction group for GBDT models’ predictions (59.2%), whereas it halved in
the higher prediction group. ZrSiO4 is an important component in the ceramic industry
because of its high chemical stability and excellent coloring performance at high firing
temperatures [79]. These results suggest that ZrSiO4 may have some effect on the flexural

strength of CAD/CAM RCBs, which needs to be explored.
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It is noteworthy that the maximum flexural strength predicted by the GBDT models was
269.5 MPa. For the GBDT model’s prediction, the related chemical compositions for the
maximum flexural strength were SiO», barium glass, methacrylate mixed filler, with or
without Al,O3 for fillers, and UDMA alone for monomers. Simultaneously, the filler
content ranged from 82 to 85 (wt)%. None of these combinations were shown in Table 1;

therefore, these compositions could be considered for use in the future.

BO has become prominent especially as a tool to optimize hyperparameters of ML
models and has become of interest to the chemical community [80-83]. In Chapter V, a
Bayesian optimizer and its user-friendly platform (EDBO) were applied to shorten the time
for exhaustive search to find an effective composition which led to the highest predicted
flexural strength (269.5 MPa). This optimizer was originally developed for optimizing
chemical reaction configurations. Shields et al. [47] used the BO method to optimize the
yield of two reactions in the pharmaceutical field and successfully found unconventional
compositions and configurations that were not commonly selected by human experts and
improved the reaction yield within only 40 experiments. Rankovi'c et al. [84] also reported
that when BO was applied on a 720 additives dataset, the effective additives were proposed
as evidenced by the high-throughput experimentation in less than 100 iterations. In this
study, within three different initializations, the Bayesian optimizer proposed the effective
composition within only 30 composition predictions in minimum (Maximum: 50).
Compared with searching 393,216 compositions in exhaustive search (48 hours),
implementing this Bayesian optimizer decreased the time to an average of 5.56 hours.
These results agree with former studies on the effectiveness of the BO method in reducing

the search time for effective compositions.
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During the process of three different initializations, only the acquisition function EI
successfully proposed the effective composition within 10 iterations, which suggested that
balance exploration and exploitation is an effective way in this study. The robust
performance of EI were also demonstrated by other studies in proposing effective
molecules, reaction parameters, and structures for different materials [85-87]. Furthermore,
in this study, the results of MeanMax in the first and second optimization processes did not
show any improvement even after the second and fifth iterations. This result could be
explained by the fact that MeanMax (pure exploitation) tends to select the next point near
the temporary best value, making it easy to be trapped in local maxima. By contrast,
VarMax (pure exploration) tends to thoroughly investigate the entire composition space.
However, it may not necessarily find the global minima without searching the entire space,
which can be very time-consuming. In the second and third optimization process,
VarMax’s proposed composition close to the 269.5 MPa. Therefore, it is assumed that
VarMax will finally be converged if iterations are added.

Within the scope of this study, Chapters IV and V presented two approaches for
proposing effective compositions of CAD/CAM RCBs. While BO offers a time-efficient
means of identifying such compositions, an exhaustive search provides a wealth of
information that can be analyzed. Specifically, it elucidates the influence of each
component on the flexural strength of CAD/CAM RCBs by examining and comparing the
compositional differences of compositions in the high and low predicted flexural strengths
groups. Hence, an exhaustive search can be recommended under the scenario that deals
with a small compositional space and enables calculations to be completed within a few

days, and also when the influence of each descriptor on the target property is needed.
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However, if the goal is only to discover effective formulations, it is advisable to employ

the BO method.

Regarding the limitation of this study, the data used for training the ML models in
Chapter II were not sufficiently comprehensive to contain all factors that affected the target
material property. For instance, the detailed concentrations of each component, the
temperature and pressure used during the manufacturing process, the size and shape of the
fillers. Therefore, these factors should be considered for further improvement. Even though
an approach was established to increase the dataset, the information contained was still
limited; hence, the models developed in this study may not have excellent extrapolating
ability. Therefore, the newly released products and their compositional information should
be further added. In Chapter V, the hyperparameters for the surrogate model were chosen
directly from the literature, as they were optimized specifically for the OHE representation
and demonstrated satisfactory results in our study. However, if the hyperparameters were
adjusted using the dataset developed in Chapter I prior to their application, it would further
enhance the comprehensiveness of the interpretable Al process developed in this study.
Furthermore, the ML model developed in this study may be applicable for other properties
of CAD/CAM RCBs, such as hardness and water absorption ability, and they should also

be considered in the future for enhanced clinical application.
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VII. Conclusion

In this study, the interpretable Al process was established, and flexural strength of
CAD/CAM RCBs were predicted with acceptable accuracy. UDMA and filler content were
identified by the process to be the major factors to affect the flexural strength during the
established process. This technology has great potential as an important tool to help modify
various targeting properties for different dental materials, provided an adequate data set is

available, which will save time and cost for materials designing.
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Table 2. The compositional descriptors used.

No. Descriptors
1 S10; filler
2 ZrOs filler
3 ZrSi104 filler
4 Micro-fumed silica filler
5 Barium glass filler
6 ALO:s filler
7 Methacrylate mixed filler
8 Si0,-ZrO, filler
9 UDMA
10  Bis-MEPP
11  TEGDMA
12 NPGDMA
13 Bis-GMA
14  Bis-EMA
15  Filler content
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Table 3. Different fluctuation ranges for 0 and 1.

Fluctuation range 0 1
0.1 [0,0.1] [0.95,1.05]
0.2 [0,0.2] [0.90,1.10]
0.3 [0,0.3] [0.85,1.15]
0.4 [0,0.4] [0.80,1.20]
0.5 [0,0.5] [0.75,1.25]
[
[
[
[
[

0.6 0,0.6]  [0.70,1.30]
0.7 0,0.7]  [0.65,1.35]
0.8 0,08]  [0.60,1.40]
0.9 0,09]  [0.55,1.45]
1.0 0,1.0]  [0.50,1.50]
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Figure 2. The schematic structure of bagging and boosting.

(a) Bagging: Each basic estimator is independent. (b) Boosting: Each basic estimator is
created sequentially based on the former results, trying to correct its shortcomings. The

three round arrows represent data updating process.
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Table 4. The RZ, RMSE, and MAE values of different fluctuation range dataset for

RF model.
Fluctuation range RF
R’ RMSE MAE
0.1 0.972+0.015 5.199+1.277 4.048+1.043
0.2 0.969+0.009 6.384£1.911 4.283+0.808
0.3 0.967+0.012 6.192+1.900 4.855+1.505
0.4 0.966+0.010 5.767£1.304 4.359+1.030
0.5 0.961+0.037 6.300+1.610 5.034+1.437
0.6 0.957+0.020 6.688+1.891 5.276x1.796
0.7 0.928+0.032 9.173+3.380 5.629+1.364
0.8 0.855+0.058 12.986+4.169 9.227+3.250
0.9 0.708+0.265 16.263+4.623 11.444+2.303
1.0 0.729+0.092 17.450+4.697 13.363+3.029
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Table 5. The RZ, RMSE, and MAE values of different fluctuation range dataset for

ET model.
Fluctuation range ET
R? RMSE MAE
0.1 0.995+0.004 2.172+0.900 1.533+0.710
0.2 0.994+0.004 2.357+0.424 1.810+0.413
0.3 0.989+0.009 3.100+0.545 2.355+0.533
0.4 0.984+0.008 4.077+0.910 3.145+0.623
0.5 0.982+0.009 4.289+0.848 3.344+0.529
0.6 0.968+0.017 5.729+1.711 4.698+1.408
0.7 0.894+0.038 11.178+3.222 7.627+1.604
0.8 0.863+0.037 12.692+3.698 10.301+3.025
0.9 0.873+0.041 11.913+2.158 9.643+1.725
1.0 0.832+0.053 13.647+2.206 10.921+1.316
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Table 6. The RZ, RMSE, and MAE values of different fluctuation range dataset for

GBDT model.
) GBDT
Fluctuation range
R? RMSE MAE
0.1 0.999+0.001 0.678+0.374 0.435+0.190
0.2 0.991+0.007 2.939+1.701 1.893+0.941
0.3 0.998+0.002 1.081£1.062 0.530+0.389
0.4 0.998+0.001 1.664+0.474 0.781+0.221
0.5 0.984+0.013 3.108£1.078 2.247+0.649
0.6 0.997+0.004 1.183+0.826 0.559+0.218
0.7 0.927+0.058 8.439+5.652 3.918+1.703
0.8 0.828+0.104 13.625+5.798 7.520+3.075
0.9 0.705+0.325 15.423+4.698 10.800+2.163
1.0 0.660+0.333 16.977+4.425 11.550+3.542
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Table 7. The RZ, RMSE, and MAE values of different fluctuation range dataset for

XGBoost model.
. XGBoost
Fluctuation range
R? RMSE MAE
0.1 0.956+0.029 6.070+£1.919 3.805+1.067
0.2 0.955+0.046 6.282+2.649 4.303+1.973
0.3 0.950+0.011 8.023+1.669 5.964+1.176
0.4 0.948+0.010 7.604+0.928 3.771+£0.627
0.5 0.954+0.031 7.295+£2.016 4.823+1.401
0.6 0.955+0.028 7.330+3.625 5.373+2.585
0.7 0.898+0.055 11.089+4.850 6.489+1.797
0.8 0.730+0.030 18.070+4.639 13.310+4.300
0.9 0.708+0.335 15.404+5.973 11.523+3.663
1.0 0.635+0.211 18.606+2.326 14.236+2.029
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Figure 3. The RZ, RMSE, and MAE values of different increased sample number

dataset for RF model.
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Figure 4. The RZ, RMSE, and MAE values of different increased sample number

dataset for ET model.
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Table 9. Prediction performance of the four ML models.

Model RMSE MAE R? Percent of predictions within
(MPa) (MPa) relative error of
1%  2.5% 5% 10% 15%
RF 5.643 4753 0947 20.83 58.33 91.67 100.00 100.00
ET 1.240  0.725 0.997 95.83 95.83 100.00 100.00 100.00
GBDT 1.179 0.761 0.998 91.67 100.00 100.00 100.00 100.00
XGBoost 6.639 4.142 0927 29.17 75.00 91.67 95.83 100.00
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Figure 7. Prediction performance of the ML models on the test set.
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The predicted flexural strengths from the four ML models are plotted versus the in vitro three-

point bending test result (observed value). (a) RF model; (b) ET model; (c) GBDT model; (d)

XGBoost model. The data points within the region of two black dashed lines have relative errors

less than 5%.
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Figure 8. Feature importance for each composition calculated by ET and GBDT

models.

(a) ET model; (b) GBDT model.
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Figure 9. Part of the original output of exhaustive search by GBDT model.

The original output of the exhaustive search contains three parts: the combination numbers,
the corresponding compositions and the predicted flexural strengths. The combination
numbers are from 1 to 393,216, and some of these numbers are displayed in the red square.
For each combination, it represents a specific composition for the CAD/CAM RCB that

was formed by 0,1 and filler content (62-85) as shown in the yellow square. The predicted

flexural strength for each composition was shown in the blue square.
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Figure 10. Flexural strengths of 2'* x 24 combinations of descriptors predicted by

the GBDT model using an exhaustive search.

The bottom of the figure shows four high-density areas of points as shown by the red
dotted circle, where the predictions varied from 132.2 MPa to 180.1 MPa, containing
around 93,135 possible combinations. By contrast, the high predictions group (shown in

red circle) ranged from 256.6 MPa to 269.5 MPa, containing 4,527 possible combinations.
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357470

393217

Filler Frequency(%) Monomer Frequency(%)
Si02 100.0 UDMA 53.9

71Oz 51.1 Bis-MEPP 493

Z1Si04 27 TEGDMA 0

Micro-fumed silica 1.1 NPGDMA 50.7

Barium glass 61.6 Bis-GMA 0

ALOs 51.2 Bis-EMA  53.9
Methacrylate mixed filler 54.2 Filler content (wt%)
S10.-Z10: filler 46.3 81-85

Filler Frequency(%) Monomer Frequency(%)
Si0O2 100.0 UDMA 52.1

7102 50.1 Bis-MEPP  53.5

ZrSi04 59.2 TEGDMA  53.5
Micro-fumed silica 60.6 NPGDMA  50.7

Barium glass 51.3 Bis-GMA  50.6

ALOs 50.1 Bis-EMA  50.7
Methacrylate mixed filler 50.1 Filler content (wt%)
Si0.-ZrO: filler 50.2 62-69

Figure 11. The composition differences in the higher prediction group and lower prediction group

predicted by GBDT model.
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Model mean Observations

Next experiment *

Maxima

Acquisition function

X

Figure 12. Graphical overview of Bayesian optimization.

One-dimensional example depicting a Gaussian process surrogate model fitted to initialized data
and the acquisition function is maximized to select the next configurations. The surrogate model
is plotted as the model mean, with the shaded region showing 95% confidence interval. The
horizontal axis X could represent the configurations (“‘chemical composition” in this study). The
F(x) could represent the target property that needs to be optimized (“flexural strength” in this

study).
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Figure 13. Acquisition function performance of three times initialization on finding the

highest flexural strength and the corresponding compositions predicted by GBDT model.

(a) First initialization; (b) Second initialization; (¢) Third initialization.
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Figure 14. Detailed EI’s performance of three times initialization on finding the

highest flexural strength and the corresponding compositions predicted by GBDT

model.

(a) First initialization: EI proposed one composition led to the highest flexural strength
(269.5 MPa) on 9th iteration using 6.00 hours; (b) Second initialization: EI proposed one
composition led to the highest flexural strength (269.5 MPa) on 10th iteration using 6.67
hours; (c) Third initialization: EI proposed one composition led to the highest flexural

streneth (269.5 MPa) on 6th iteration using 4.00 hours .
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GBDT model predictions from BO

Maximum predicted flexural strength: 269.5 MPa
Filler: SiO,, barium glass, methacrylate mixed filler, Al,O,
Monomer: UDMA

Filler content: 85wt%

269.5MPa 1000111010000085

!

270

N
(9]
[e)

N
(V8]
[e)

Flexural strength (MPa)
N
>

190 ¢ O
- EI
170 © Compositions proposed
by BO
150 | 1 1 | 1 1 1 | )

1 2 3 4 5 6 7 8 9 10
Iteration

Figure 15. An example from first initialization of EI.

BO proposed a candidate composition in the 9th iteration, and the GBDT model
predicted this composition, which resulted in a flexural strength of 269.5 MPa. By

checking the descriptors’ name, the composition was illustrated in the upper panel.
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GBDT model predictions from exhaustive search

Maximum predicted flexural strength: 269.5 MPa
Filler: SiO,, barium glass, methacrylate mixed filler, with or without Al,O,

Monomer: UDMA

Filler content: 82wt% to 85wt%

Flexural strength (MPa)
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142988
178735
214482
250229
285976
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357470
393217

Combination number

Figure 16. Compositions proposed by BO of 10 iterations in the first initialization.

The proposed compositions were demonstrated in the exhaustive search plot (orange and
white dots). The white dot represented the composition showed in Figure 15, which was
contained in the concluded compositions from exhaustive search as shown in the upper

panel.
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