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I. Introduction 
 

    In the last 20 years, materials used for dental restoration have changed from alloys and 

metals to ceramics and resin composites because of the increasing aesthetic demand of 

patients. Especially, mechanical properties of resin composites have been greatly advanced 

based on numerous studies, and inlays and crowns made from resin composite blocks 

(RCBs) using computer-aided design and computer-aided manufacturing (CAD/CAM) 

systems are widely used in daily clinical practice [1]. However, despite the continued 

evolution of dental materials and manufacturing techniques, edge chipping and fracture of 

composite restorations still occur under clinical service, which results in the limited 

longevity of restorations [2, 3]. Therefore, how to improve the mechanical properties of 

resin composites has always been a topic of great interest, and efforts to improve the 

mechanical properties of CAD/CAM RCBs, including the flexural strength, have been 

made by changing the type of fillers and monomers [4-6]. However, because various 

compositions result in the varied flexural strength of CAD/CAM RCBs, which filler or 

monomer contributes specifically to improving flexural strength remains unknown. 

    The conventional approach to modifying material compositions to achieve superior 

properties relies on repetitive in vitro experiments, which are time-consuming and often 

inefficient [7], and can barely distinguish the contribution of each composition to the target 

material properties. In recent years, artificial intelligence (AI) technologies have become 

widely accepted in society, and preliminarily implemented in dentistry [8, 9]. A promising 

approach that combines traditional experimental methods with intelligent data analysis 

grew out of the quest for AI and is known as machine learning (ML). ML is a powerful 
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tool for finding meaningful regularities in high-dimensional data, which allows for 

predictions of unknown data. It uses algorithms by which a computer can learn from 

empirical data by modeling the linear or nonlinear relationships between material 

properties and related factors [7, 10]. ML has successfully resolved the difficulties of 

modeling the relationships between material properties and complex physical factors [11]. 

Compared with using only experimental measurement, ML quickly assesses and analyzes 

the collected data with extraction of various relevant features, which saves a great amount 

of time and cost for scientists and manufacturers [12]. Compared with conventional 

statistical modelling, ML methods are especially advantageous to deal with data that the 

number of input features surpasses the number of subjects [13]. On the other hand, ML 

methods yielded higher prediction accuracy when facing large dataset. ML makes minimal 

assumptions about the data-generating systems; they remain effective in scenarios where 

data collection lacks a carefully controlled experimental design and involves complex 

nonlinear interactions [13].  

    Moreover, for many AI users in both the dental and medical fields, a high level of 

accountability is required; thus, it is highly possible that directly interpretable and tractable 

AI techniques will be adopted as assistants for decision-making [14, 15]. In interpretable 

machine learning (IML), methods and models are proposed that make the behavior and 

predictions of machine learning systems understandable to humans [16]. Unlike the opaque 

explainability of deep neural networks, IML could provide insight into what a trained 

model has learned and reason about its entire decision-making process [17].  

    For the purpose of predicting material properties, ML models should contain three parts: 

training data, descriptors, and algorithms that can map the descriptors to the property of 
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interest [18]. The descriptors are a set of attributes that require selection to be capable of 

both uniquely defining each of the materials in the dataset and relating to the targeted 

property [18]. Compositional information has been commonly used as descriptors for 

developing ML models for materials [19]. Hyperparameters are parameters of ML 

algorithms that must be pre-set and tuned to control how an algorithm learns from the 

training data [20]. The development of an effective model also relies on the optimization 

of the hyperparameters [21].  

    To date, dental applications of ML, such as computer-aided diagnosis, treatment, and 

disease prediction, have mainly focused on classification problems for which the outputs 

are discrete values [8, 9, 22]. The correlation between the composition and mechanical 

behavior of aging enamel was considered in only one study [23]. There have been no 

studies in which ML has been applied to prediction of dental material properties. However, 

this data-driven informatic (materials informatics) approach [24] has already been applied 

to classical materials science to predict the mechanical properties (e.g., toughness, strength, 

and stiffness) of composite materials, and densities and elastic modulus of SiO2-based glass 

using regression models with only the chemical composition or with the chemical or 

physical quantities as descriptors [25-28]. 

    The aims of this study were: 

1) to develop an interpretable AI using ML methods to predict the flexural strength of 

CAD/CAM RCBs, and  

2) to investigate the components that affect flexural strength to explore the optimum 

composition based on the available dataset.   
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II. Machine learning model development 

 

1. Purpose 

    In this chapter, development of ML models to predict the flexural strengths of 

CAD/CAM RCBs based on the available dataset was aimed. The fluctuation range and 

increased sample number were evaluated for dataset augmentation. Models were developed 

using the augmented dataset after hyperparameters adjustment and model evaluation. 

 

2. Materials and methods 

1) CAD/CAM RCBs 

    Twelve commercially available CAD/CAM RCBs were considered in this study: 

Cerasmart (CS; GC, Tokyo, Japan), Katana Avencia Block (KA; Kuraray Noritake Dental, 

Tokyo, Japan), Katana Avencia P Block (AP; Kuraray Noritake Dental), Shofu Block HC 

(HC; Shofu, Kyoto, Japan), Shofu Block HC Hard (HC; Shofu), KZR-CAD HR2 (HR2; 

Yamakin, Osaka, Japan), Estelite Block (EB; Tokuyama Dental, Tsukuba, Japan), Estelite 

P Block (EP; Tokuyama Dental), Brilliant Crios (BC; Coltene, Switzerland), Lava Ultimate 

(LU; 3M ESPE, St. Paul, MN, USA), Paradigm MZ 100 (MZ100; 3M ESPE), and Tetric 

CAD (TC; Ivoclar Vivadent, Schaan Liechtenstein). The details of the composition of each 

block are summarized in Table 1. 

 

2) Data collection 



5 
 

    The detailed compositional information of each commercial product was collected from 

manufacturers or the literatures [5, 29-33]. The flexural strengths of the products were 

collected from the manufacturers or literature, and they were measured by the three-point 

bending test according to the ISO 6872:2015 [34-36]. 

 

3) Investigation of fluctuation range  

    The initial data consisted of 16 attributes (15 input compositional descriptors and 1 label) 

and 12 samples. There were two types of compositional descriptors: fillers and monomers. 

The fillers were SiO2, ZrO2, ZrSiO4, micro-fumed silica, barium glass, Al2O3, methacrylate 

mixed filler, SiO2-ZrO2 filler, and the monomers were urethane dimethacrylate (UDMA), 

2,2-Bis(4-methacryloxypolyethoxyphenyl)propane (Bis-MEPP), triethylene glycol 

dimethacrylate (TEGDMA), neopentyl glycol dimethacrylate (NPGDMA), bisphenol A 

glycidyl methacrylate (Bis-GMA), and ethoxylated bisphenol A-glycol dimethacrylate 

(Bis-EMA) (Table 2). Filler contents were also added as one descriptor.  

Each product had a unique composition; accordingly, 1 and 0 were used to represent 

whether the sample contained the specific descriptor or not, respectively. Therefore, the 

composition of each product could be represented with different combinations of 1 and 0. 

Considering that the input data for each sample were recognized as a multi-dimensional 

vector, a fluctuation range was defined for each vector. To decide the appropriate 

fluctuation range, different fluctuation ranges were set for 0 and 1 (Table 3).  

    Taking a fluctuation range 0.1 as an example, new samples (n = 9) were created based 

on the data of the original sample. Specifically, for each original sample, new samples were 
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constructed by generating random numbers to two decimal places using the function 

“RANDBETWEEN” in Microsoft Excel (version 2307) within the range [0, 0.1] for 0 and 

[0.95, 1.05] for 1. The same labels were used for the original samples and created samples 

(i.e., flexural strength). Consequently, the dataset was increased to 16 attributes (15 input 

compositional descriptors and 1 label) and 120 samples. The same process was conducted 

for each of the fluctuation range; 10 different datasets were obtained accordingly.  

 

4) Hyperparameters adjustment  

    Hyperparameters are parameters used to configure a ML algorithm and defines its 

architecture [19]. Four regression algorithms, random forest (RF) [37], extra trees (ET) 

[38], gradient boosting decision tree (GBDT) [39], and extreme gradient boosting 

(XGBoost) [40], were implemented using the scikit-learn package (version 0.24.1) in 

Python (version 3.7.4) and run in Jupyter Notebook (version 6.0.1) on a laptop (Surface 

Laptop 2: Core i5-8250U CPU and 8 GB RAM, Microsoft, Redmond, Washington, USA). 

Each of the dataset was imported and randomly split into two groups: 80% of the data was 

used for training the algorithm and 20% was used for testing [41]. The variable 

“random_state” was set to five different values (random_state= 1, 3, 9, 23, 100) to get 

different splits of each dataset. The function “GridSearchCV” in scikit-learn’s model 

selection package was applied to search for the optimal combination of hyperparameters 

for each algorithm. This function evaluated the algorithm’s performance for each 

combination of hyperparameters using 10-fold cross-validation, in which the algorithm 

fitted the training data 10 times (Figure 1). For each iteration, the training data were split 

into 10 subsets: 9 subsets were used for training the algorithm and the 10th subset was used 



7 
 

as test data. The combination of hyperparameters that exhibited the best performance 

during the cross-validation process was selected. 

 

5) Algorithm performance on each fluctuation range dataset  

    The coefficient of determination (R2), root mean square error (RMSE), and mean 

absolute error (MAE) were calculated to assess the regression accuracy of each algorithm 

on each fluctuation range dataset, accordingly ten R2 values, ten RMSE values, and ten 

MAE values were obtained for each algorithm. The values of each metric were compared 

among different fluctuation range datasets numerically. The fluctuation range dataset 

showed the highest R2 value, and the lowest RMSE value, MAE value was selected as the 

appropriate fluctuation range. The metrics are expressed as follows: 

 

𝑅𝑅2 = 1 − ∑ �𝑦𝑦�(𝑖𝑖)−𝑦𝑦(𝑖𝑖)�
2𝑚𝑚

𝑖𝑖=1

∑ �𝑦𝑦�−𝑦𝑦(𝑖𝑖)�
2𝑚𝑚

𝑖𝑖=1
                                                                                                             (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1
𝑚𝑚
∑ �𝑦𝑦(𝑖𝑖) − 𝑦𝑦�(𝑖𝑖)�

2
                                                                                                 𝑚𝑚

𝑖𝑖=1 (2) 

𝑅𝑅𝑀𝑀𝑅𝑅 = 1
𝑚𝑚
∑ �𝑦𝑦(𝑖𝑖) − 𝑦𝑦�(𝑖𝑖)�𝑚𝑚
𝑖𝑖=1 ,                                                                                                      (3) 

 

where 𝑦𝑦(𝑖𝑖) is the flexural strength calculated from in vitro experiments, 𝑦𝑦�(𝑖𝑖) is the predicted 

flexural strength from the above four algorithms, and 𝑚𝑚 is the number of test samples. 
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6) Investigation of increased sample number 

    After the appropriate fluctuation range was settled, the appropriate increased sample 

number was investigated by generating different sample number datasets. Specifically, new 

samples (n = 1, 2, 3…9, 11) were constructed by generating random numbers to two 

decimal places within the decided fluctuation range [0, 0.1] for 0 and [0.95, 1.05] for 1 

using the function “RANDBETWEEN” in Microsoft Excel (version 2307). The same 

labels were used for the original samples and created samples (i.e., flexural strength). 

Accordingly, for each algorithm, eleven datasets with different increased sample numbers 

were obtained. After hyperparameters adjustment as described in section 4), R2, RMSE, 

and MAE were used to assess the regression accuracy of each algorithm on each increased 

sample number dataset. Each dataset was evaluated five times with different random seeds 

(random_state= 1, 3, 9, 23, and 100), and each time the data for training and testing was 

split differently. The increased sample number dataset which showed the converged R2, 

RMSE, and MAE values were selected as the appropriate increased sample number. 

 

7) Model development 

    After the appropriate fluctuation range and increased sample number were settled, the 

final dataset to develop the ML models was constructed. The learning model was 

developed and run in Jupyter Notebook (version 6.0.1) on a laptop (Surface Laptop 2: Core 

i5-8250U CPU and 8 GB RAM, Microsoft) as described in section 2-4).  RF, ET, GBDT, 

and XGBoost algorithms were implemented using the scikit-learn package (version 0.24.1)  

in Python (version 3.7.4). The dataset was imported and randomly split into two groups: 
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80% of the data was used for training the model and 20% was used for testing. The variable 

“random_state” was set to a fixed value to ensure the same split of the data for each model. 

The function “GridSearchCV” was applied to search for the optimal combination of 

hyperparameters for each model. The R2, RMSE, and MAE values were calculated to assess 

the regression accuracy of each model, and the values were compared. Additionally, to 

further assess the performance of the models, the relative error [19] was defined as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑦𝑦�(𝑖𝑖)−𝑦𝑦(𝑖𝑖)�
𝑦𝑦(𝑖𝑖)  ,                                                                                                (4) 

 

where 𝑦𝑦(𝑖𝑖) is the flexural strength calculated from in vitro experiments, 𝑦𝑦�(𝑖𝑖) is the predicted 

flexural strength from the above four models. 

 

8) ML algorithms basis 

    The selected algorithms are ensemble algorithms. In an ensemble, a set of base learners 

are trained to act together as a strong learner, thereby providing more accurate predictions 

[26].  Bagging and boosting are the two most frequently used approaches for constructing 

ensemble algorithms. The schematic stucture of bagging and boosting are shown in Figure 

2. The ensemble algorithms used in this study included RF, ET, GBDT, and XGBoost. RF 

and ET algorithms use the bagging approach, and the rest of the two algorithms use 

boosting approach. A brief introduction of the four algorithms implemented in this study 

is provided below. 
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Random Forest (RF) 

    Breiman [37] developed the RF algorithm for both regression and classification purposes. 

As the base constituents of the ensemble are tree-structured predictors, and since each tree 

is constructed using an injection of randomness, the method is called “random forests” [42]. 

This tree-structured predictor is called a decision tree (DT). DT works by continuously 

splitting data into smaller and smaller subsets by calculating a certain parameter. The final 

subset of a regression tree gives a quantitative prediction, while the classification tree gives 

categorical predictions [43]. A bootstrap sample was used to train each decision tree as the 

basic estimator. The number of the decision tree and how the tree grows are controlled by 

the hyperparameters in the algorithm. Each decision tree will give a predicted value for the 

regression problem. The final output value in RF model is the unweighted average of all 

the predicted values obtained from all decision trees, which could be expressed as follows: 

 

𝑌𝑌� =
1
𝑅𝑅
�𝑦𝑦�(𝑖𝑖)       ,                                                                                                                    (5)
𝑡𝑡

𝑖𝑖=1

 

 

where 𝑌𝑌�  is the output value from RF model, t is the number of DT, and 𝑦𝑦� is the prediction 

value of each decision tree. 

 

Extra Tree (ET) 

    Geurts et al. [38] developed the ET algorithm as an extension from the RF algorithm. 



11 
 

ET is also a tree-based ensemble algorithm, which has some differences from that of RF. 

ET algorithm uses the whole training dataset to train each decision tree, while RF algorithm 

uses the bootstrap sample. RF algorithm obtains the best feature and value to split into two 

branches for decision tree by calculating specific mathematical parameter (MSE for 

regression problems), while ET algorithm obtains the splitting feature and value 

completely randomly. 

 

Gradient Boosting Decision Tree (GBDT) 

    GBDT is a widely used ML algorithm proposed by Friedman [39] which integrates 

multiple DTs into a strong final ensemble model using the boosting approach [44, 45]. The 

training set was adaptively updated according to the performance of a previously created 

DT (predecessor). Each basic model is created sequentially trying to correct its predecessor. 

The process could be expressed as follows: 

 

𝑓𝑓𝑡𝑡(𝑥𝑥) = 𝑓𝑓𝑡𝑡−1(𝑥𝑥) + 𝛼𝛼ℎ𝑡𝑡(𝑥𝑥)  ,                                                                                                    (6) 

 

where 𝑓𝑓𝑡𝑡(𝑥𝑥) is the GBDT model and ℎ𝑡𝑡(𝑥𝑥) is the basic model (DT) at step t , x is the 

configuration that need to be optimized (“chemical composition” in this study) and 𝛼𝛼 is 

called the learning rate, which is a regularization parameter [26]. It scales the length of the 

step for finding the optimum solution. Larger alpha leads to faster iteration speed, while 

smaller alpha leads to lower iteration speed, which is more possible to find the optimum 
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solution, but it requires more computational cost. Except from regularization through 

shrinkage of the contributed basic models, randomness is also incorporated as an integral 

part of the fitting procedure. 

 

eXtreme Gradient Boosting (XGBoost) 

    Under the framework of GBDT, XGBoost has been proposed with higher computation 

efficiency and better capability to deal with overfitting problems [40]. There are some main 

differences between GBDT and XGBoost, one is the different definition in objective 

function, in which a regularization function is implemented alongside the loss function.  

 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑡𝑡) = �𝑅𝑅(𝑦𝑦�𝑖𝑖

𝑛𝑛

𝑘𝑘=1

,𝑦𝑦𝑖𝑖) + �𝛺𝛺(𝑓𝑓𝑖𝑖)
𝑡𝑡

𝑘𝑘=1

 ,                                                                                    (7) 

 

where l is the loss function, n is the number of observations used, t is step and 𝛺𝛺 is the 

regularization term to prevent overfitting issue [46]. The other main difference from 

XGBoost is that GBDT only uses the first-order derivative information of the loss function 

when optimizing the objective function, while XGBoost performs a second-order Taylor 

expansion on the loss function, and both the first-order and second-order derivatives are 

used [26, 44]. 

 

3. Results 
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1) Appropriate fluctuation range 

    The R2, RMSE, and MAE values of different fluctuation range datasets for each model 

are shown in Table 4 to Table 7. For the four models, fluctuation range 0.1 showed the 

highest R2 value and the lowest RMSE and MAE value ( RF: R2: 0.972±0.015, RMSE: 

5.199±1.277, MAE: 4.048±1.043; ET: R2: 0.995± 0.004, RMSE: 2.172±0.900, MAE: 

1.533±0.710; GBDT: R2: 0.999±0.001, RMSE: 0.678±0.374, MAE: 0.435±0.190; XGBoost: 

R2: 0.956±0.029, RMSE: 6.070±1.919, MAE: 3.805±1.067 ). Therefore, 0.1 was decided to 

be the appropriate fluctuation range. For GBDT and RF models, the R2 value dropped 

below 0.9 starting from a fluctuation range of 0.8. For ET and XGBoost models, the R2 

value dropped below 0.9 starting from a fluctuation range of 0.7. 

 

2) Appropriate increased sample number 

    For ET, GBDT, and XGBoost models, the R2, RMSE, and MAE values showed 

convergence when the sample number increased to eight, while for the RF model, the 

evaluation metrics started to converge when the sample number increased to nine. The 

standard deviation value showed a decreased tendency from 1 sample to 11 samples (Figure 

3 to Figure 6).  

 

3) Tuned hyperparameters 

    The tuned hyperparameters for the final developed four models are shown in Table 8. 

For RF model, the hyperpameters “n_estimators”, “max_depth”, “min_samples_leaf”, 

“min_samples_split”, “max_features”, “min_weight_fraction_leaf”  and “random_state” 

were adjusted. For ET model, “n_estimators”, “max_depth”, “min_samples_leaf”, 
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“min_samples_split”, and “random_state” were adjusted. For GBDT model, 

“n_estimators”, “max_depth”, “learning_rate”, “min_samples_leaf”, “min_samples_split”, 

“min_weight_fraction_leaf”  and “random_state” were adjusted. For XGBoost model, 

“n_estimators”, “max_depth”, “learning_rate”, “booster”, “min_child_weight”, 

“reg_alpha”, “colsample_bytree”, “colsample_bylevel” and “random_state” were adjusted. 

 

4) Prediction performance of the four ML models developed 

    The prediction performance of each model is shown in Table 9. The R2 values for RF, 

ET, GBDT, and XGBoost were 0.947, 0.997, 0.998, and 0.927, respectively. The relative 

errors of all the models were within 15%.  

The flexural strength predictions using the ML models beyond the training set are 

plotted versus the observed values in Figure 7. The data points within the region of two 

black dashed lines have relative errors less than 5%. For ET and GBDT models, the test 

points were all within the black dashed lines. However, for RF and XGBoost models, two 

test points deviated from the black dashed lines. 

 

 

4. Summary 

    All of the four models developed achieved R2 values of over 0.9 in terms of prediction 

accuracy. GBDT was the best performing model, closely followed by the ET model. 
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III. Feature Importance 

 

1. Purpose 

    After the ML models were developed, this chapter aims at conducting a feature 

importance analysis using the developed models to investigate the components that affect 

the flexural strengths of CAD/CAM RCBs. 

 

2. Materials and methods 

    The feature importance analysis was conducted using scikit-learn package (version 

0.24.1)  in Python (version 3.7.4) on a laptop (Surface Laptop 2: Core i5-8250U CPU and 

8 GB RAM, Microsoft). Feature importance analysis is a built-in attribute inside each of 

the four algorithms. It determined the contribution of each feature to the targeted properties 

(i.e., flexural strength) by assigning a score for each feature. The importance of a feature 

is basically: how much this feature is used in each tree of the forest. It was calculated by 

implementing the function “feature_importances_”, thereafter, the scores were calculated 

automatically. Finally, the scores were compared for each component within the ET and 

GBDT models.  

 

3. Results 

    The feature importance analysis result is shown in Figure 8. The filler content, 

TEGDMA, and ZrSiO4 were the top three features that had a relatively high importance 

value in ET and GBDT models. However, even though SiO2 was contained in all products, 

it had little importance for ET and GBDT models. By contrast, as a synthetic amorphous 
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form of silicon dioxide, micro-fumed silica had relatively high importance, ranking fourth 

for the ET model and fifth for the GBDT model. 

 

4. Summary 

    The feature importance analysis demonstrated that the filler content, TEGDMA, and 

ZrSiO4 were the top three important features. 
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IV. Exhaustive search 
 

1. Purpose 

   The feature importance analysis conducted in Chapter III revealed which feature had 

great influence on flexural strength. However, influence of each feature is positive or 

negative has not been clarified. Therefore, an exhaustive search was conducted in this 

chapter to illustrate the above mentioned influence of the component and to identify 

effective compositions. 

 

2. Materials and methods 

1) Running environment 

    The exhaustive search was conducted in Jupyter Notebook (version 6.0.1) on a laptop 

(Surface Laptop 2: Core i5-8250U CPU and 8 GB RAM, Microsoft) using scikit-learn 

package (version 0.24.1)  in Python (version 3.7.4). 

 

2) Exhaustive search 

    The first 14 descriptors were set to 0 or 1, and the 15th descriptor (filler content) was set 

to be in the range of 62 to 85. The function “itertools.product” was used to generate 214 × 

24 (393,216) combinations of the descriptors.  An exhaustive search was performed by 

GBDT model to iterate all 214 × 24 (393,216) combinations of the descriptors and predict 

393,216 values of the corresponding flexural strengths. By checking the original output of 

the exhaustive search, the predicted flexural strength and its combination number were 

plotted. The composition differences were analyzed among the high and low predicted 
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flexural strengths groups, by checking how many times a specific component was 

contained among those compositions. Accordingly, the frequency for each component is 

defined as: 

𝐹𝐹𝑒𝑒𝑅𝑅𝐹𝐹𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝑦𝑦 =  𝑇𝑇𝑖𝑖𝑚𝑚𝑇𝑇𝑇𝑇 𝑎𝑎 𝑇𝑇𝑠𝑠𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 𝑠𝑠𝑐𝑐𝑚𝑚𝑠𝑠𝑐𝑐𝑛𝑛𝑇𝑇𝑛𝑛𝑡𝑡 𝑐𝑐𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑇𝑇
𝑁𝑁𝑜𝑜𝑚𝑚𝑁𝑁𝑇𝑇𝑜𝑜 𝑐𝑐𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑜𝑜𝑇𝑇𝑝𝑝𝑖𝑖𝑠𝑠𝑡𝑡𝑇𝑇𝑝𝑝 𝑠𝑠𝑐𝑐𝑚𝑚𝑠𝑠𝑐𝑐𝑇𝑇𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑇𝑇  

                                                                   (8)                 

 Finally, the possible compositions that lead to the highest predicted flexural strength were 

illustrated.   

 

3. Results 

1) Original output of the exhaustive search 

    Part of the original output of the exhaustive search is shown in Figure 9. The original 

output of the exhaustive search contains three parts: the combination numbers, the 

corresponding compositions, and the predicted flexural strengths. The combination 

numbers are from 1 to 393,216, and some of these numbers are displayed as examples in 

the red square. For each combination, it represents a specific composition for the 

CAD/CAM RCB that was formed by 0 and 1 as shown in the yellow square. By checking 

the corresponding feature name, we could know what is contained in this composition and 

its filler content. In the meantime, the model will predict the flexural strength for each 

combination, which was shown in the blue square. 

 

2) Plot of the exhaustive search 

    Figure 10 shows the plot of an exhaustive search using the GBDT model. The horizontal 
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axis of Figure 10 represents the combination number (red square of Figure 9), and the 

vertical axis represents the corresponding flexural strength predicted by the model (blue 

square of Figure 9). The plot of the GBDT model mainly contains three groups of 

predictions, with the top group and the bottom group indicated by red and red dotted circles. 

For the GBDT model, the bottom group of Figure 10 shows four high-density areas of 

points, where the predictions varied from 132.2 MPa to 180.1 MPa (93,135 compositions). 

By contrast, the highest predictions in the top group ranged from 256.6 MPa to 269.5 MPa 

(4,527 compositions).  

 

3) Composition differences between higher and lower predictions group 

    The composition differences in the higher prediction group and lower prediction group 

are demonstrated in Figure 11. Among the compositions in higher prediction group, the 

filler content ranged from 81 to 85 (wt)%, and ranged from 62 to 69 (wt)% in the lower 

prediction group. For the monomers in the lower predictions group, TEGDMA shared the 

highest ratio of 53.5%. In the higher predictions group for GBDT model, none of the 

combinations contained TEGDMA or Bis-GMA; instead, UDMA and Bis-EMA were the 

most frequently contained monomers. In the case of fillers, ZrSiO4 and micro-fumed silica 

had a relatively high frequency in the lower prediction group for GBDT  model predictions 

(59.2% and 60.6%, respectively), whereas it dramatically decreased in the higher 

prediction group. 
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4) The maximum prediction by GBDT model and its corresponding composition 

    The maximum flexural strength predicted by the GBDT model was 269.5 MPa. For the 

GBDT model’s prediction, the related chemical composition for the maximum flexural 

strength was SiO2, barium glass, methacrylate mixed filler, with or without Al2O3 for fillers, 

and UDMA alone for monomers. Simultaneously, the filler content was from 82 to 85 

(wt)%. 

 

4. Summary 

    The exhaustive search showed UDMA and Bis-EMA were the most frequently contained 

monomers, and the filler content ranged from 82 to 85 (wt)% in the higher prediction group. 

Effective compositions predicted by GBDT model were identified. 
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V. Bayesian optimization 

 

1. Purpose 

    In Chapter IV, an exhaustive search was applied and effective compositions were 

identified. However, the exhaustive search is a time-consuming process, and therefore, a 

Bayesian optimizer was used to shorten the time to search for the effective composition. 

 

2. Materials and methods 

1) Building composition space 

    To implement Bayesian optimization for chemical reaction parameter selection, we used 

a user-friendly package “Experimental Design via Bayesian Optimization” (short for 

EDBO) developed by Shields et al. [47] for our data. First, a dictionary of components was 

defined following the same rule as exhaustive search, the first 14 components were set to 

0 or 1, and the 15th descriptor (filler content) was set to be in the range from 62 to 85 (wt)%. 

Then, a dictionary of desired encodings was specified; the first 14 components used one-

hot encoding (OHE) [47]. This method details the presence or absence of certain 

components with 0 or 1; the 15th descriptor was numeric. As the next step, a Bayesian 

optimizer, called “BO_express” inside this package was applied and instantiated to 

automatically build the composition space.  

 

2) Surrogate model and acquisition functions 

    Over the course of our study, we investigated three acquisition functions, including mean 

maximization (MeanMax), variance maximization (VarMax), and expected improvement 

(EI). MeanMax is a purely exploratory algorithm which selects compositions for 
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optimization via domain points with the highest model variance. MaxVar is a purely 

exploratory algorithm which selects compositions for optimization via domain points with 

the highest model variance. EI attempts to balance exploration and exploitation by 

accounting for the amount of improvement over the best-observed value. The surrogate 

model was Gaussian process regression, which was already built in the “BO_express”. 

“BO_express” has built-in adjusted hyperparameters for different encoding methods. We 

select the hyperparameters for OHE method. 

 

3) Initialization 

    From the exhaustive search space, five random compositions (the batch size was chosen 

to be five according to [47]) and their corresponding flexural strengths predicted by GBDT 

model were used as initialization data. After the surrogate model was updated according to 

these five predictions, the acquisition function was applied to propose five new candidate 

compositions. These newly proposed compositions were then given to GBDT model to 

make predictions. Afterwards, these five compositions and their predicted flexural 

strengths were added to the observations, and the surrogate model updated again, then 

another five new candidate compositions were proposed by the acquisition function. This 

process was repeated 10 times, calling each time as one “iteration”. Three different 

initializations were performed. The time to find the highest flexural strength among 

combinations was compared between the exhaustive search optimized by BO and without 

BO. 

 

4) Bayesian optimization basis 



23 
 

    Bayesian optimization (BO) is an approach to optimizing objective functions that take a 

long time. Instead of searching all the possible combinations like exhaustive search, the 

BO method could propose candidate compositions that have a high possibility to lead to 

improved flexural strength, therefore, reducing the predicting time for GBDT model. It 

builds a surrogate for the objective and quantifies the uncertainty in that surrogate using a 

Bayesian machine learning technique, and then uses an acquisition function defined from 

this surrogate to decide where to sample [48]. Sequential model-based Bayesian 

optimization (SMBO) is one of the Bayesian optimization approaches [49]. The framework 

is as follows [50]: 

 

SMBO (f, M0, T, S) 

1               H ← ∅,  

2               For t ← 1 to T,  

3                      x* ← argminx S (x, Mt−1),  

4                      Evaluate f (x*),  

5                      H ← H ∪ (x*, f (x*)),  

6                      Fit a new model Mt to H. 

7               return H 

 

    f is the target black box function that needs to be optimized, usually, it is very time-

consuming to calculate f. Therefore, a surrogate S is usually used to “mimic” f, which 

requires less calculation compared to f. x are the combinations of the hyperparameters. H 

is the observed history. To pick the next evaluated hyperparameter x*, S needs to be 

minimized, to minimize S, usually an acquisition function should be applied and 
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maximized. M is the fitting distribution model.  

    The commonly used probability distribution model (surrogate model) is Gaussian 

process regression, which estimates the mean and variance of the training data as a 

posterior distribution [48, 51]. However, the dimensions of the descriptors could be large, 

resulting in a large reaction space of up to tens of thousands of possible compositions that 

cannot be all conducted in vitro to update the posterior distribution. Therefore, after 

training the surrogate model, an acquisition function is used to select the next trial 

experiment from the reaction space [52]. There are two typical strategies in acquisition 

functions: exploration and exploitation. Exploitation tends to select the next experiment 

around the neighborhood of the current best-observed value, while exploration tends to 

select the next point with the greatest predictive uncertainty, and tends to investigate the 

entire reaction space thoroughly [47]. As in any iterative search algorithm, the goal is to 

balance exploration of options for x with exploitation of previously-explored options, so 

that a good choice is found in a small number of trials [49]. 

    Commonly used acquisition functions such as expected improvement (EI) aim to balance 

these two strategies. EI was proposed initially in Mockus et al. (1978) [53] and then made 

popular by Jones et al. (1998) [54]. EI measures the expectation of the improvement on f 

(x) with respect to the predictive distribution of the probabilistic surrogate model. EI 

considers not only the probability of improving the current best estimate but also factors in 

the magnitude of the improvement. The point with the highest expected improvement will 

be selected as the next candidate.  EI has the form [55] : 

 

𝑅𝑅𝐸𝐸(𝑥𝑥) = �(𝑓𝑓
(𝑥𝑥+) − 𝜇𝜇(𝑥𝑥) − 𝜉𝜉)Φ(𝑍𝑍)  +  𝜎𝜎(𝑥𝑥)𝜑𝜑(𝑍𝑍)𝑅𝑅𝑓𝑓 𝜎𝜎(𝑥𝑥)  >  0)

0 𝑅𝑅𝑓𝑓 𝜎𝜎(𝑥𝑥) =  0                           (9) 
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And 

 

𝑍𝑍 = �
𝑓𝑓(𝑥𝑥⁺) − 𝜇𝜇(𝑥𝑥) − 𝜉𝜉

𝜎𝜎(𝑥𝑥)
 𝑅𝑅𝑓𝑓 𝜎𝜎(𝑥𝑥) > 0

0 𝑅𝑅𝑓𝑓 𝜎𝜎(𝑥𝑥) =  0
                                                                            (10) 

 

     where φ(Z) and Φ (Z) are the probability distribution and the cumulative distribution of 

the standardized normal, respectively. 𝑓𝑓(𝑥𝑥+) is the best value of the objective function 

observed so far, μ(x) and σ(x) are the mean and standard deviation of the probabilistic 

surrogate model. 𝜉𝜉 is an empirical parameter that can be actively managed for the trade-off 

between exploration and exploitation. the next point to evaluate is chosen according to: 

𝑥𝑥𝑛𝑛+1  =  𝑅𝑅𝑒𝑒𝑎𝑎𝑚𝑚𝑅𝑅𝑥𝑥x∈X 𝑅𝑅𝐸𝐸(𝑥𝑥). A graphical overview of Bayesian optimization is shown in 

Figure 12. 

 

3. Results 

1) Performance of different acquisition functions 

    With three times different initializations, EI all demonstrated the best performance 

(Figure 13). For each initialization, EI found the highest flexural strength (269.5MPa) 

among combinations as concluded from exhaustive search within 10 iterations. MeanMax 

and VarMax did not achieve the desired performance.  

 

2) Time reduction by EI 

    As shown in Figure 14, in the first initialization, EI found the highest flexural strength 
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in the 9th iteration (6.00 hours). In the second and third initializations, EI found the highest 

flexural strength in the 10th and 6th iterations, respectively (6.67 hours and 4.00 hours, 

respectively). The average time to find the 269.5 MPa and its corresponding composition 

is 5.56 hours, which is decreased by 8 times compared to the time for exhaustive search 

(48 hours).  

 

3) Comparison of the compositions proposed by EI and exhaustive search 

    The detailed composition proposed by BO in the 9th iteration of the first initialization is 

shown in Figure 15. In figure 16, the compositions proposed by BO of 10 iterations in the 

first initialization were plotted on the exhaustive search figure. It can be seen that the 

proposed compositions from BO encompass a varied range of predicted flexural strengths. 

Furthermore, EI predominantly focused its searches on the top prediction group of 

exhaustive search, as indicated by the higher density of orange compared to the other areas 

in Figure 16. Finally, the composition proposed by BO that led to the 269.5 MPa (Figure 

15) was shown in the white dot in Figure 16. 

 

4. Summary 

    BO with EI as an acquisition function shortened the time (5.56 hours) for GBDT model 

to find an effective composition compared to exhaustive search (48 hours) regardless of 

the initialization data.  
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VI. Discussion 

    AI technology has been applied to the dental field mainly for the diagnosis, decision-

making, and treatment planning [56-60]. Farhadian et al. [58] developed a support vector 

machine model and diagnosed three classifications of periodontal diseases using data 

collected from 300 patients. Reyes et al. [59] developed caries prognosis models in primary 

and permanent teeth after 2 and 10 years of follow-up through a ML approach, using 

predictors collected in early childhood. Sakai et al. [60] developed a deep neural network 

based on LeNet-5 and predicted the implant treatment plans using cone beam computed 

tomography images collected from 60 patients. However, it has not yet been used to modify 

the properties of dental materials. In this study, CAD/CAM RCBs was chosen as the target 

material for the application of the interpretable AI process. It is an ideal material for AI 

modelling study, since the mechanical properties of CAD/CAM RCBs could be improved 

simply by modification of the compositions. This study was performed to establish a 

process using AI technology to predict the flexural strength of CAD/CAM RCBs and 

investigate the components that affect flexural strength to explore the optimum 

composition based on the available dataset.  

    Data size is of great importance in the ML process [28]. It is likely that relatively little 

attention has been paid to the application of ML methods to dental materials, particularly 

CAD/CAM RCBs, because of the limitation of compositional information. Therefore, 

before developing the final ML models, we conducted the fluctuation range and sample 

increment study. For GBDT and RF models, the R2 value dropped below 0.9 starting from 

a fluctuation range of 0.8. For ET and XGBoost models, the R2 value  dropped below 0.9 

starting from the fluctuation range of 0.7. This result could be explained by the overlap of 
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the fluctuated range for both 0 and 1. Specifically, when the fluctuation range was 0.7, 1 

could be represented with random numbers within the range of [0.65, 1.35], while 0 could 

be represented within the range [0, 0.7]. The overlapping of the ranges may result in the 

models erroneously interpreting the inclusion or exclusion of the related component, 

thereby reducing the accuracy of predictions.  

    In the sample increment study, increasing only one or two samples resulted in minus R2 

value and large standard deviation, which indicated the unstable performance of the models. 

ET, GBDT, and XGBoost models showed converged evaluated metrics on increased 

sample number of eight, but RF showed the convergence on increased sample number of 

nine. When considering nine newly generated samples, the total sample count would reach 

120, making it more favorable for subsequent processes such as the 10-fold cross-

validation due to its divisibility. Based on the above reasons, the increased sample number 

was determined to be nine. 

    Furthermore, to avoid the negative effect of a small dataset, ensembles were used in this 

study. In an ensemble, a set of base learners are trained to act together as a strong learner, 

thereby providing more accurate predictions [26]. Bagging and boosting are the two most 

frequently used approaches for constructing ensemble models [61]. Among these two 

approaches, algorithms that involve bagging, such as RF and ET, and algorithms that use 

boosting, such as GBDT and XGBoost, have demonstrated robust performance in 

predicting material properties in recent studies [62-64]. One study demonstrated R2 values 

of over 0.939 in predicting the compressive strength of concrete using ensemble algorithms, 

utilizing a dataset comprising 154 data points [26]. In the present study, the four selected 

ensemble algorithms all achieved acceptable R2 values of over 0.9 in terms of prediction 
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accuracy. The RMSE and MAE values indicated the superior predictive ability of the 

developed models for the flexural strength of CAD/CAM RCBs. GBDT was the best-

performing model. This was followed closely by the ET model. These results imply that, 

for the available dataset applied in this study, the algorithms performed similarly when 

bagging or boosting techniques were used.  

    Because the ML models were only trained on limited data, it was crucial for the models 

to provide reliable predictions beyond the training set. The prediction results using the test 

data suggested that the ET and GBDT models had a promising ability to reliably predict 

the flexural strength values of CAD/CAM RCBs, provided the chemical compositions were 

given. However, several predictions of the XGBoost and RF models deviated from the 

observed values, and their relative errors were within 15%. Moreover, the RMSE values 

for the RF and XGBoost models were 5.64 MPa and 6.64 MPa, respectively, which were 

much larger than those for the other two models. These results suggest that the RF and 

XGBoost models yielded uncertainties during the extrapolation process.  

    The translation of components into a machine-readable format can play a critical role in 

the development of predictive models [65]. In Chapter I, OHE method was used to 

represent each component. This computationally simplistic method merely details the 

presence or absence of certain components with 0 or 1, whilst encoding no chemical 

information. Some studies implemented other representation methods for the inclusion of 

structural and chemical information for the components; for instance, Morgan fingerprints 

[66] (atom types, neighbouring connectivity…), Morderd descriptors [67, 68] (atom-bond 

connectivity index, acidic group count…) and Density Functional Theory (DFT) 

Descriptors [69, 70] (molar mass, electronic spatial extent…). Pomberger et al. [66] 
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demonstrated a decrease of 2% in RMSE value of RF model when using Morgan 

fingerprints to generate descriptors for the input composition to predict the yield of their 

target reaction compared to OHE, while no improvement for RMSE when using all ligand 

DFT descriptors. The utilization of the structural and chemical information representation 

method can lead to an increase in the number of descriptors, subsequently necessitating a 

larger sample size. Given the limited dataset available, the simplest OHE method was used 

in this study. This decision was made by the need to accommodate the data constraints 

while still enabling meaningful interpretation for the next analysis on exhaustive search. 

    After the ML models were developed, in Chapter III and IV, the effective components 

that contribute to the flexural strength of CAD/CAM RCBs was investigated. In terms of 

the feature importance analysis, the high importance of the top three features were filler 

content, TEGDMA, and ZrSiO4. According to the ranking, the filler content and the use of 

monomers should be adjusted as a priority when modifying the composition of CAD/CAM 

RCBs to improve flexural strength. Furthermore, even though SiO2 is contained in all 

products, it had little importance for all models. By contrast, as a synthetic amorphous form 

of silicon dioxide, micro-fumed silica had relatively high importance, ranking fourth for 

ET model and fifth for the GBDT model, which suggests that the different size and 

manufacturing process for the same element contributed differently to the flexural strength 

of CAD/CAM RCBs. However, the feature importance could not illustrate whether these 

components demonstrated positive or negative contribution to the flexural strength of 

CAD/CAM RCBs. Therefore, the exhaustive search was conducted to reveal the influence 

in detail in Chapter V.  

The exhaustive search results of GBDT model were analyzed because of its promising 
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prediction performance. In the bottom group of predictions from the GBDT model, the 

filler content in the combinations ranged from 62 to 69 (wt)%, whereas in the top group, it 

ranged from 82 to 85 (wt)%, yielding higher predicted flexural strength values. It has been 

proved that high filler content improves flexural strength [71], which is in agreement with 

the finding in the present study. However, exceptions to this rule were observed for MZ 

100, which obtained a relatively low strength value compared with other materials listed 

in this study, despite its relatively high filler fraction of 85 (wt)%. Furthermore, the same 

predictions were made by the ML models using compositions that varied only in filler 

content. This result suggests that, for CAD/CAM RCBs, the filler content and flexural 

strengths did not always positively correlate. Flexural strength tended to decrease when the 

filler content exceeded 60 (vol)% [5, 72]. Our results suggest that, within a specific range, 

increasing/decreasing the content of fillers does not necessarily improve/decrease the 

flexural strength. 

    For the monomers in the lower predictions group, TEGDMA shared the highest ratio of 

53.5%, This result suggests that TEGDMA could be an essential component that affects 

the predicted flexural strength. This finding is in agreement with that obtained by in vitro 

results [73], where increasing the content of TEGDMA in the experimental RCBs slightly 

reduced the flexural strength.  

    In the higher predictions group for GBDT model, none of the combinations contained 

TEGDMA or Bis-GMA; instead, UDMA and Bis-EMA were the most frequently 

contained monomers. UDMA has a lower molecular weight and exhibits lower viscosity 

than Bis-GMA, and simultaneously demonstrates higher cross linking and polymerization 

activity with light curing [5, 74]. UDMA can be used alone or with other monomers, such 
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as TEGDMA and Bis-GMA, in a matrix. For an in vitro experiment, it was reported that 

when fillers were fixed, UDMA used alone exhibited the highest flexural strength 

compared with the mixture of different ratios of UDMA and TEGDMA [72]. The present 

result was consistent with this finding. Bis-EMA is a monomer analogous to Bis-GMA, 

but without the two hydroxyl groups (-OH). It is more flexible and mobile than Bis-GMA 

[75]. Therefore, it demonstrates a higher overall conversion [76-78]. Another study has 

reported that UDMA/Bis-EMA/TEGDMA monomer mixtures are characterized with 

better flexural strength compared with UDMA/TEGDMA [78]. However, in this study, the 

model failed to identify the underlying collective pattern within these three components. 

This discrepancy could potentially be attributed to the absence of specific monomer 

combinations (as mentioned above) in the original input products.  

    Furthermore, the results of the exhaustive search also indicated that among all the 

combinations containing Bis-EMA, half also included UDMA. These findings suggest that 

Bis-EMA alone may not contribute to the heightened flexural strength; rather, the enhanced 

strength might be a result of the synergistic effects of its combination with UDMA. This 

observation aligns with the feature importance analysis, where Bis-EMA does not exhibit 

a notably high importance score.  

    In the case of fillers, the results demonstrated that ZrSiO4 had a relatively high frequency 

in the lower prediction group for GBDT models’ predictions (59.2%), whereas it halved in 

the higher prediction group. ZrSiO4 is an important component in the ceramic industry 

because of its high chemical stability and excellent coloring performance at high firing 

temperatures [79]. These results suggest that ZrSiO4 may have some effect on the flexural 

strength of CAD/CAM RCBs, which needs to be explored.  
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    It is noteworthy that the maximum flexural strength predicted by the GBDT models was 

269.5 MPa. For the GBDT model’s prediction, the related chemical compositions for the 

maximum flexural strength were SiO2, barium glass, methacrylate mixed filler, with or 

without Al2O3 for fillers, and UDMA alone for monomers. Simultaneously, the filler 

content ranged from 82 to 85 (wt)%. None of these combinations were shown in Table 1; 

therefore, these compositions could be considered for use in the future. 

    BO has become prominent especially as a tool to optimize hyperparameters of ML 

models and has become of interest to the chemical community [80-83]. In Chapter V, a 

Bayesian optimizer and its user-friendly platform (EDBO) were applied to shorten the time 

for exhaustive search to find an effective composition which led to the highest predicted 

flexural strength (269.5 MPa). This optimizer was originally developed for optimizing 

chemical reaction configurations. Shields et al. [47] used the BO method to optimize the 

yield of two reactions in the pharmaceutical field and successfully found unconventional 

compositions and configurations that were not commonly selected by human experts and 

improved the reaction yield within only 40 experiments. Rankovi´c et al. [84] also reported 

that when BO was applied on a 720 additives dataset, the effective additives were proposed 

as evidenced by the high-throughput experimentation in less than 100 iterations. In this 

study, within three different initializations, the Bayesian optimizer proposed the effective 

composition within only 30 composition predictions in minimum (Maximum: 50). 

Compared with searching 393,216 compositions in exhaustive search (48 hours), 

implementing this Bayesian optimizer decreased the time to an average of 5.56 hours. 

These results agree with former studies on the effectiveness of the BO method in reducing 

the search time for effective compositions. 
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    During the process of three different initializations, only the acquisition function EI 

successfully proposed the effective composition within 10 iterations, which suggested that 

balance exploration and exploitation is an effective way in this study. The robust 

performance of EI were also demonstrated by other studies in proposing effective 

molecules, reaction parameters, and structures for different materials [85-87]. Furthermore, 

in this study, the results of MeanMax in the first and second optimization processes did not 

show any improvement even after the second and fifth iterations. This result could be 

explained by the fact that MeanMax (pure exploitation) tends to select the next point near 

the temporary best value, making it easy to be trapped in local maxima. By contrast, 

VarMax (pure exploration) tends to thoroughly investigate the entire composition space. 

However, it may not necessarily find the global minima without searching the entire space, 

which can be very time-consuming. In the second and third optimization process, 

VarMax’s proposed composition close to the 269.5 MPa. Therefore, it is assumed that 

VarMax will finally be converged if iterations are added.  

    Within the scope of this study, Chapters IV and V presented two approaches for 

proposing effective compositions of CAD/CAM RCBs. While BO offers a time-efficient 

means of identifying such compositions, an exhaustive search provides a wealth of 

information that can be analyzed. Specifically, it elucidates the influence of each 

component on the flexural strength of CAD/CAM RCBs by examining and comparing the 

compositional differences of compositions in the high and low predicted flexural strengths 

groups. Hence, an exhaustive search can be recommended under the scenario that deals 

with a small compositional space and enables calculations to be completed within a few 

days, and also when the influence of each descriptor on the target property is needed. 
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However, if the goal is only to discover effective formulations, it is advisable to employ 

the BO method.  

    Regarding the limitation of this study, the data used for training the ML models in 

Chapter II were not sufficiently comprehensive to contain all factors that affected the target 

material property. For instance, the detailed concentrations of each component, the 

temperature and pressure used during the manufacturing process, the size and shape of the 

fillers. Therefore, these factors should be considered for further improvement. Even though 

an approach was established to increase the dataset, the information contained was still 

limited; hence, the models developed in this study may not have excellent extrapolating 

ability. Therefore, the newly released products and their compositional information should 

be further added. In Chapter V, the hyperparameters for the surrogate model were chosen 

directly from the literature, as they were optimized specifically for the OHE representation 

and demonstrated satisfactory results in our study. However, if the hyperparameters were 

adjusted using the dataset developed in Chapter I prior to their application, it would further 

enhance the comprehensiveness of the interpretable AI process developed in this study. 

Furthermore, the ML model developed in this study may be applicable for other properties 

of CAD/CAM RCBs, such as hardness and water absorption ability, and they should also 

be considered in the future for enhanced clinical application. 
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VII. Conclusion 

 

    In this study, the interpretable AI process was established, and flexural strength of 

CAD/CAM RCBs were predicted with acceptable accuracy. UDMA and filler content were 

identified by the process to be the major factors to affect the flexural strength during the 

established process. This technology has great potential as an important tool to help modify 

various targeting properties for different dental materials, provided an adequate data set is 

available, which will save time and cost for materials designing. 
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Table 2. The compositional descriptors used.  

No. Descriptors 
1 SiO2 filler 

2 ZrO2 filler 

3 ZrSiO4 filler 

4 Micro-fumed silica filler 

5 Barium glass filler 

6 Al2O3 filler 

7 Methacrylate mixed filler 

8 SiO2-ZrO2 filler 

9 UDMA 

10 Bis-MEPP 

11 TEGDMA 

12 NPGDMA 

13 Bis-GMA 

14 Bis-EMA 

15 Filler content 
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  Table 3. Different fluctuation ranges for 0 and 1.  

Fluctuation range 0 1 
0.1 [0,0.1] [0.95,1.05] 
0.2 [0,0.2] [0.90,1.10] 
0.3 [0,0.3] [0.85,1.15] 
0.4 [0,0.4] [0.80,1.20] 
0.5 [0,0.5] [0.75,1.25] 
0.6 [0,0.6] [0.70,1.30] 
0.7 [0,0.7] [0.65,1.35] 
0.8 [0,0.8] [0.60,1.40] 
0.9 [0,0.9] [0.55,1.45] 
1.0 [0,1.0] [0.50,1.50] 
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Figure 2. The schematic structure of bagging and boosting.   

(a) Bagging: Each basic estimator is independent.  (b) Boosting: Each basic estimator is 

created sequentially based on the former results, trying to correct its shortcomings. The 

three round arrows represent data updating process. 

 

…
 

…
 

Training data Bootstrap sample Basic estimators Final ensemble model (a) 

… 

Training data Updated data 

Final ensemble model Basic estimators (b) 
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Table 4. The R2, RMSE, and MAE values of different fluctuation range dataset for 

RF model. 

Fluctuation range   RF   
R²   RMSE MAE 

0.1 0.972±0.015 5.199±1.277 4.048±1.043 
0.2 0.969±0.009 6.384±1.911 4.283±0.808 
0.3 0.967±0.012 6.192±1.900 4.855±1.505 
0.4 0.966±0.010 5.767±1.304 4.359±1.030 
0.5 0.961±0.037 6.300±1.610 5.034±1.437 
0.6 0.957±0.020 6.688±1.891 5.276±1.796 
0.7 0.928±0.032 9.173±3.380 5.629±1.364 
0.8 0.855±0.058 12.986±4.169 9.227±3.250 
0.9 0.708±0.265 16.263±4.623 11.444±2.303 
1.0 0.729±0.092 17.450±4.697 13.363±3.029 
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Table 5. The R2, RMSE, and MAE values of different fluctuation range dataset for 

ET model. 

Fluctuation range   ET   
R²   RMSE MAE 

0.1 0.995±0.004 2.172±0.900 1.533±0.710 
0.2 0.994±0.004 2.357±0.424 1.810±0.413 
0.3 0.989±0.009 3.100±0.545 2.355±0.533 
0.4 0.984±0.008 4.077±0.910 3.145±0.623 
0.5 0.982±0.009 4.289±0.848 3.344±0.529 
0.6 0.968±0.017 5.729±1.711 4.698±1.408 
0.7 0.894±0.038 11.178±3.222 7.627±1.604 
0.8 0.863±0.037 12.692±3.698 10.301±3.025 
0.9 0.873±0.041 11.913±2.158 9.643±1.725 
1.0 0.832±0.053 13.647±2.206 10.921±1.316 
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Table 6. The R2, RMSE, and MAE values of different fluctuation range dataset for 

GBDT model. 

Fluctuation range 
  GBDT   

R² RMSE MAE 
0.1 0.999±0.001 0.678±0.374 0.435±0.190 
0.2 0.991±0.007 2.939±1.701 1.893±0.941 
0.3 0.998±0.002 1.081±1.062 0.530±0.389 
0.4 0.998±0.001 1.664±0.474 0.781±0.221 
0.5 0.984±0.013 3.108±1.078 2.247±0.649 
0.6 0.997±0.004 1.183±0.826 0.559±0.218 
0.7 0.927±0.058 8.439±5.652 3.918±1.703 
0.8 0.828±0.104 13.625±5.798 7.520±3.075 
0.9 0.705±0.325 15.423±4.698 10.800±2.163 
1.0 0.660±0.333 16.977±4.425 11.550±3.542 
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Table 7. The R2, RMSE, and MAE values of different fluctuation range dataset for 

XGBoost model. 

Fluctuation range 
  XGBoost   

R² RMSE MAE 
0.1 0.956±0.029 6.070±1.919 3.805±1.067 
0.2 0.955±0.046 6.282±2.649 4.303±1.973 
0.3 0.950±0.011 8.023±1.669 5.964±1.176 
0.4 0.948±0.010 7.604±0.928 3.771±0.627 
0.5 0.954±0.031 7.295±2.016 4.823±1.401 
0.6 0.955±0.028 7.330±3.625 5.373±2.585 
0.7 0.898±0.055 11.089±4.850 6.489±1.797 
0.8 0.730±0.030 18.070±4.639 13.310±4.300 
0.9 0.708±0.335 15.404±5.973 11.523±3.663 
1.0 0.635±0.211 18.606±2.326 14.236±2.029 
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Figure 3. The R2, RMSE, and MAE values of different increased sample number 

dataset for RF model. 
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Figure 4. The R2, RMSE, and MAE values of different increased sample number 

dataset for ET model. 
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Figure 5. The R2, RMSE, and MAE values of different increased sample number 

dataset for GBDT model. 
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Figure 6. The R2, RMSE, and MAE values of different increased sample number 

dataset for XGBoost model. 
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Table 9. Prediction performance of the four ML models. 

Model RMSE MAE R2  Percent of predictions within 
(MPa) (MPa)   relative error of 
      1% 2.5% 5% 10% 15% 

RF 5.643 4.753 0.947 20.83 58.33 91.67 100.00 100.00 
ET 1.240 0.725 0.997 95.83 95.83 100.00 100.00 100.00 
GBDT 1.179 0.761 0.998 91.67 100.00 100.00 100.00 100.00 
XGBoost 6.639 4.142 0.927 29.17 75.00 91.67 95.83 100.00 
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Figure 7. Prediction performance of the ML models on the test set.  

The predicted flexural strengths from the four ML models are plotted versus the in vitro three-

point bending test result (observed value). (a) RF model; (b) ET model; (c) GBDT model; (d) 

XGBoost model. The data points within the region of two black dashed lines have relative errors 

less than 5%. 
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0 0.1 0.2 0.3 0.4 0.5 0.6

SiO₂ filler
ZrO₂ filler

Methacrylate mixed filler
Bis-EMA

NPGDMA
SiO₂ -ZrO₂ filler

Al₂O₃ filler
Barium glass filler

Bis-MEPP
UDMA

Micro-fumed silica filler
Bis-GMA

ZrSiO₄ filler
TEGDMA

Filler content

0 0.1 0.2 0.3 0.4

SiO₂ filler
ZrO₂ filler
Bis-EMA

Bis-MEPP
Barium glass filler

UDMA
Bis-GMA

SiO₂ -ZrO₂ filler
Al₂O₃ filler
NPGDMA

Methacrylate mixed filler
Micro-fumed silica filler

ZrSiO₄ filler
TEGDMA

Filler content

Figure 8. Feature importance for each composition calculated by ET and GBDT 

models.  

(a) ET model; (b) GBDT model. 

(a) 

(b) 
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Figure 9. Part of the original output of exhaustive search by GBDT model.  

The original output of the exhaustive search contains three parts: the combination numbers, 

the corresponding compositions and the predicted flexural strengths. The combination 

numbers are from 1 to 393,216, and some of these numbers are displayed in the red square. 

For each combination, it represents a specific composition for the CAD/CAM RCB that 

was formed by 0 ,1 and filler content (62-85) as shown in the yellow square. The predicted 

flexural strength for each composition was shown in the blue square. 

 

…           …                                           … 
212757          (1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 82)         269.4939477 

212758          (1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 83)         269.4939477 

212759          (1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 84)         269.4939477 

212760          (1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 85)         269.4939477 

…           …                                            … 
370753          (1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 62)         132.2225308        

370754          (1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 63)         132.2225308  

370755          (1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 64)         132.2225308  

370756          (1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 65)         132.2225308  

…                …                                       … 
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Figure 10. Flexural strengths of 214 × 24 combinations of descriptors predicted by 

the GBDT model using an exhaustive search.  

The bottom of the figure shows four high-density areas of points as shown by the red 

dotted circle, where the predictions varied from 132.2 MPa to 180.1 MPa, containing 

around 93,135 possible combinations. By contrast, the high predictions group (shown in 

red circle) ranged from 256.6 MPa to 269.5 MPa, containing 4,527 possible combinations. 
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Figure 11. The composition differences in the higher prediction group and lower prediction group 

predicted by GBDT model. 

Filler Frequency(%) 
SiO₂ 100.0 
ZrO₂ 51.1 
ZrSiO₄ 27 
Micro-fumed silica 1.1 
Barium glass 61.6 
Al₂O₃ 51.2 
Methacrylate mixed filler 54.2 
SiO₂-ZrO₂ filler 46.3 
 

Monomer Frequency(%) 
UDMA 53.9 
Bis-MEPP 49.3 
TEGDMA 0 
NPGDMA 50.7 
Bis-GMA 0 
Bis-EMA 53.9 
 Filler content (wt%) 
81-85 
 

Filler Frequency(%) 
SiO₂ 100.0 
ZrO₂ 50.1 
ZrSiO₄ 59.2 
Micro-fumed silica 60.6 
Barium glass 51.3 
Al₂O₃ 50.1 
Methacrylate mixed filler 50.1 
SiO₂-ZrO₂ filler 50.2 
 

Monomer Frequency(%) 
UDMA 52.1 
Bis-MEPP 53.5 
TEGDMA 53.5 
NPGDMA 50.7 
Bis-GMA 50.6 
Bis-EMA 50.7 
 Filler content (wt%) 
62-69 
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Figure 12. Graphical overview of Bayesian optimization.  

One-dimensional example depicting a Gaussian process surrogate model fitted to initialized data 

and the acquisition function is maximized to select the next configurations. The surrogate model 

is plotted as the model mean, with the shaded region showing 95% confidence interval. The 

horizontal axis X could represent the configurations (“chemical composition” in this study). The 

F(x) could represent the target property that needs to be optimized (“flexural strength” in this 

study). 
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Figure 13. Acquisition function performance of three times initialization on finding the 

highest flexural strength and the corresponding compositions predicted by GBDT model.  

(a) First initialization; (b) Second initialization; (c) Third initialization. 
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Figure 14. Detailed EI’s performance of three times initialization on finding the 

highest flexural strength and the corresponding compositions predicted by GBDT 

model.  

(a) First initialization: EI proposed one composition led to the highest flexural strength 

(269.5 MPa) on 9th iteration using 6.00 hours; (b) Second initialization: EI proposed one 

composition led to the highest flexural strength (269.5 MPa) on 10th iteration using 6.67 

hours; (c) Third initialization: EI proposed one composition led to the highest flexural 

strength (269.5 MPa) on 6th iteration using 4.00 hours . 
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Figure 15. An example from first initialization of EI.  

BO proposed a candidate composition in the 9th iteration, and the GBDT model 

predicted this composition, which resulted in a flexural strength of 269.5 MPa. By 

checking the descriptors’ name, the composition was illustrated in the upper panel. 

Maximum predicted flexural strength: 269.5 MPa 
Filler: SiO2, barium glass, methacrylate mixed filler, Al2O3 

Monomer: UDMA  

Filler content: 85wt% 

GBDT model predictions from BO 
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Figure 16. Compositions proposed by BO of 10 iterations in the first initialization.  

The proposed compositions were demonstrated in the exhaustive search plot (orange and 

white dots). The white dot represented the composition showed in Figure 15, which was 

contained in the concluded compositions from exhaustive search as shown in the upper 

panel. 

Maximum predicted flexural strength: 269.5 MPa 
Filler: SiO2, barium glass, methacrylate mixed filler, with or without Al2O3 

Monomer: UDMA  

Filler content: 82wt% to 85wt% 

   GBDT model predictions from exhaustive search 


	Table_of_Contents (SI230724)[3094].pdf
	I. Table of contents

	main (SI230724)[3095]2(SY230824).pdf
	I. Introduction
	II. Machine learning model development
	1. Purpose
	2. Materials and methods
	1) CAD/CAM RCBs
	2) Data collection
	3) Investigation of fluctuation range
	4) Hyperparameters adjustment
	5) Algorithm performance on each fluctuation range dataset
	6) Investigation of increased sample number
	7) Model development

	8) ML algorithms basis
	3. Results
	1) Appropriate fluctuation range
	2) Appropriate increased sample number
	3) Tuned hyperparameters
	4) Prediction performance of the four ML models developed

	4. Summary

	III. Feature Importance
	1. Purpose
	2. Materials and methods
	3. Results
	4. Summary

	IV. Exhaustive search
	1. Purpose
	2. Materials and methods
	3. Results
	1) Original output of the exhaustive search
	2) Plot of the exhaustive search
	3) Composition differences between higher and lower predictions group
	4) The maximum prediction by GBDT model and its corresponding composition

	4. Summary

	V. Bayesian optimization
	1. Purpose
	2. Materials and methods
	1) Building composition space
	2) Surrogate model and acquisition functions
	3) Initialization

	4) Bayesian optimization basis
	3. Results
	1) Performance of different acquisition functions
	2) Time reduction by EI
	3) Comparison of the compositions proposed by EI and exhaustive search

	4. Summary

	VI. Discussion
	VII. Conclusion
	VIII. Acknowledgement
	IX. References
	X. Tables and Figures


