<table>
<thead>
<tr>
<th>Title</th>
<th>3-dimensional homology handles and minimal second Betti numbers of 4-manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Arata, Yoshiaki; Ohmori, Akira; Okamoto, Ikuo; Ogawa, Hirotaka</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 35(3) P.509-P.527</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9302</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9302</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
1. Introduction

We consider the following problem:
For a given closed 3-manifold M, what is the minimal second Betti number of all compact 4-manifolds bounded by M?

If we add the condition that 4-manifolds are simply connected, then the answer about the above problem in the topological category can be seen from the Boyer classification theorem [1],[2]. The Boyer classification theorem states that for an oriented, closed, connected 3-manifold M, a symmetric integral bilinear form (E, \mathcal{L}) and a presentation P of $H_*(M; \mathbb{Z})$ by (E, \mathcal{L}), there exists an oriented, compact, simply connected, topological 4-manifold with boundary M whose intersection form is isomorphic over \mathbb{Z} to (E, \mathcal{L}) and which represents P geometrically. Furthermore, Boyer gave the result about the uniqueness of such 4-manifolds up to orientation-preserving homeomorphism. Here a presentation P of $H_*(M; \mathbb{Z})$ by (E, \mathcal{L}) is the following short exact sequence with some algebraic data corresponding to the relationship between the linking form of M and (E, \mathcal{L}), spin structures and the Kirby-Siebenmann obstruction;

\[
\begin{array}{c}
0 \rightarrow H_2(M; \mathbb{Z}) \rightarrow E \xrightarrow{ad(L)} E^* \rightarrow H_1(M; \mathbb{Z}) \rightarrow 0.
\end{array}
\]

Hence, in the topological category, we can calculate algebraically the minimal second Betti number of all simply connected 4-manifolds bounded by M. The key to this classification theorem is the Freedman theorem [4], and in particular the fact that every homology 3-sphere can bound a contractible compact topological 4-manifold. In the topological category, it follows from this that the minimal second Betti number of all simply connected 4-manifolds bounded by a given homology 3-sphere is zero. However, the Rohlin theorem and the gauge theory say that in the smooth category, a homology 3-sphere can not always bound a homology 4-ball, and so the minimal second Betti number of all simply connected 4-manifolds bounded by a homology 3-sphere is not always zero in the smooth category.

If we consider the Boyer theorem with the condition that the fundamental groups of 4-manifolds are isomorphic to the infinite cyclic group instead of simply connect-
edness, then the key seems to be orientable closed 3-manifolds M with the same integral homology groups as $S^1 \times S^2$, which are called homology handles [8]. Of course, the situation changes according as the homomorphisms of π_1 induced from inclusion-s are trivial or not. In this paper, we consider the case where such homomorphisms $i_\#: \pi_1 M \to \mathbb{Z}$ are surjective, and under this condition we consider the above problem.

By $\beta^{\text{TOP}}(M)$ and $\beta^{\text{DIFF}}(M)$, we denote the minimal second Betti number of such 4-manifolds in the topological category and in the smooth category, respectively. For example, it is clear that $\beta^{\text{TOP}}(S^1 \times S^2) = \beta^{\text{DIFF}}(S^1 \times S^2) = 0$. But it does not always hold that $\beta^{\text{TOP}}(M) = 0$, since there is a homology handle which can not bound a compact topological 4-manifold homotopy equivalent to S^1 in contrast with the case of homology 3-spheres. In this paper we show that for any positive integer n, there exist infinitely many distinct homology handles $\{M^{(n)}_m\}_{m \in \mathbb{N}}$ with $\beta^{\text{TOP}}(M^{(n)}_m) = \beta^{\text{DIFF}}(M^{(n)}_m) = n$, and furthermore that there exists a difference between β^{TOP} and β^{DIFF}.

In §2, we introduce two operations on framed links to construct compact smooth 4-manifolds which are bounded by given 3-manifolds and whose fundamental groups are isomorphic to \mathbb{Z}. In §§3 and 4, we investigate β^{TOP} and β^{DIFF} of certain homology handles, and in particular homology handles obtained by 0-surgery on knots. In §4, we show that β^{TOP} and β^{DIFF} are functions onto $\mathbb{N} \cup \{0\}$ and there is a difference between β^{TOP} and β^{DIFF}.

Through this paper, we suppose that manifolds are connected and oriented, and we denote the closed interval $[0,1]$ by I. Furthermore, the symbol b_i stands for the i-th Betti number.

2. Two kinds of 2-handle attachings

For a positive integer p, let $\rho: S^3 \to S^3$ be the $(2\pi/p)$-rotation around the z-axis and $B^3_j (j = 0, 1, \ldots, p-1)$ small 3-balls in S^3 with $\rho(B^3_j) = B^3_{j+1}$ ($j = 0, 1, \ldots, p-2$) and $\rho(B^3_{p-1}) = B^3_0$. Moreover, let $D_p = (S^3 - \bigcup_{j=0}^{p-1} \text{int} B^3_j) \times \rho S^1$ be the mapping torus with monodromy ρ. The compact smooth 4-manifold D_p is bounded by $S^1 \times S^2$ and has the fundamental group $\pi_1 D_p$ isomorphic to \mathbb{Z}. The homomorphism $i_\#: \pi_1(S^1 \times S^2) \to \pi_1 D_p$ has index p, where $i: S^1 \times S^2 \to D_p$ is the inclusion.

Let M be an oriented closed 3-manifold. If M bounds an oriented compact 4-manifold V such that the fundamental group $\pi_1 V$ is isomorphic to \mathbb{Z} and the homomorphism of π_1 induced from the inclusion $i: M \to V$ is not trivial, then the first Betti number of M is positive. In this section we shall show that for any given 3-manifold M with $b_1(M) \geq 1$, M bounds an oriented compact smooth 4-manifold V such that $\pi_1 V$ is isomorphic to \mathbb{Z} and $i_\#: \pi_1 M \to \pi_1 V \cong \mathbb{Z}$ is not trivial. To show this, we need the following two operations. Every closed 3-manifold is obtained from S^3 by an integral surgery on a link in S^3. Let M be obtained by a framed link L.

Operation 1. Let K be a component of L with framing n and c a crossing on
a diagram of $K \subset L$. Add a trivial knot O with framing 0 to L at c so that the linking number $\text{lk}(O, K)$ between O and K is zero. See Fig. 1. Let K' be a knot obtained from K by crossing-change at c. Then, by the Kirby calculus (or handle-slide), the resultant 3-manifold obtained by this new framed link $L \cup O$ is orientation-preserving homeomorphic to the 3-manifold obtained by a framed link L' containing a new component O with framing 0 and the component K' with framing n instead of K with framing n. See Fig. 2.

Operation 2. Let K and L be two components of L with framing m and n, respectively. Let c be a crossing of K and L on a diagram of L. Give the framing 0 to a meridional curve O of L. See Fig. 3. Then, by the Kirby calculus (or handle-slide), the resultant 3-manifold obtained by this new framed link $L \cup O$ is orientation-
preserving homeomorphic to the 3-manifold obtained by a framed link \(L' \) which contains a new component \(O \) with framing 0 and which has an opposite crossing at \(c \). See Fig. 4. Note that this operation leaves the knot type of \(K \) invariant, since \(O \) is trivial.

We use Operations 1 and 2 to make a knot trivial and to split geometrically a component of a link from other components, respectively.
Proposition 1. For any positive integer p and for any given 3-manifold M with $b_1(M) \geq 1$, there exists an oriented compact smooth 4-manifold V bounded by M such that

1. π_1V is isomorphic to \mathbb{Z}, and
2. the index, $(\pi_1V : \text{Im} i_\sharp)$, of $\text{Im}\{i_\sharp : \pi_1M \to \pi_1V\}$ in π_1V is p.

Every oriented 3-manifold is obtained from S^3 by an integral surgery on a link in S^3, but this link is not always an algebraically split link. Here, we say that a link $L = K_1 \cup K_2 \cup \cdots \cup K_\mu$ is an algebraically split link if for each pair of distinct components $K_i, K_j (i \neq j)$ of L, the linking number $lk(K_i, K_j)$ is zero.

We use the following lemma.

Lemma 1 ([13]). Any integral symmetric matrix is made diagonalizable over \mathbb{Z} by taking block sums of some 1×1-matrices (p_j).

We can translate Lemma 1 into geometric terms: Let M be an oriented closed 3-manifold. Then, there are some lens spaces $L(p_j, 1)$ ($j = 1, 2, \cdots, k$) such that after taking connected sums of $L(p_j, 1)$ ($j = 1, 2, \cdots, k$), the 3-manifold $M \amalg L(p_1, 1) \amalg L(p_2, 1) \amalg \cdots \amalg L(p_k, 1)$ has a surgery description by a framed algebraically split link.

Proof of Proposition 1. By Lemma 1, there are some lens spaces $L(p_j, 1)$ ($j = 1, 2, \cdots, k$) such that the 3-manifold $M' = M \amalg L(p_1, 1) \amalg L(p_2, 1) \amalg \cdots \amalg L(p_k, 1)$ is obtained by an integral surgery on an algebraically split link L. Let $r(\geq 1)$ be the first Betti number of M. Then, the linking matrix of L is an $(r + n) \times (r + n)$-matrix

$$
\begin{pmatrix}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & m_1 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & m_n
\end{pmatrix}
$$

where $|m_1m_2 \cdots m_n|$ is not zero and the order of the torsion part of $H_1(M'; \mathbb{Z})$. Generators of $H_1(M'; \mathbb{Z})$ are given by meridional curves of the components of L. Let K_i ($i = 1, 2, \cdots, r$) be the components of L with framing 0 and L_j ($j = 1, 2, \cdots, n$) the other components of L. The 3-manifold $L(p_1, 1) \amalg L(p_2, 1) \amalg \cdots \amalg L(p_k, 1)$ bounds an oriented simply connected compact smooth 4-manifold W, for example the \mathbb{Z}-sum of k D^2-bundles over S^2. Then the smooth 4-manifold $(M \times I)\amalg (-W)$ is bounded by $M \amalg (-M')$. We shall make K_1 a trivial knot which is split geometrically from the other components of L.
Step 1. If K_1 is not trivial, then we can make K_1 a trivial knot K'_1 by a finite sequence of Operation 1 at some crossings of K_1. Then the framed link L changes into another framed link L', which is algebraically split. The trivial knot K'_1 has framing 0.

In general, K'_1 is not split geometrically from the other components of L'.

Step 2. By a finite sequence of Operation 2, we can split geometrically K'_1 from the other components of L' keeping K'_1 trivial and without changing the framing of K'_1. By L'' we denote the framed link obtained by the operations as above. Let L''_2 be the link consisting of the other components of L'' except K'_1, that is, $L'' = K'_1 \cup L''_2$. Then the 3-manifold given by the framed link L'' is $S^1 \times S^2 \# N$, where N is the 3-manifold given by L''_2.

Hence it follows that by attaching 2-handles to $M' \times \{1\} \subset M' \times I$ in ways corresponding to Steps 1 and 2, we get an oriented compact smooth 4-manifold X whose boundary is $M' \coprod(-(S^1 \times S^2 \# N))$. Set $Y = ((M \times I) \# (-W)) \cup_{M'} X$. Let W' be an oriented simply connected compact smooth 4-manifold bounded by N, for example, the 4-manifold consisting of one 0-handle and some 2-handles given by the
framed link L''. Then $Z = Y \cup ((S^1 \times S^2) \times I \cup W')$ is an oriented compact smooth 4-manifold with boundary $\partial Z = M \bigsqcup (-S^1 \times S^2)$. See Schema 1. Now let V be the 4-manifold $Z \cup_D p$, which is an oriented compact smooth 4-manifold with boundary $\partial V = M$. By van Kampen's theorem, $\pi_1 V$ is isomorphic to Z. If we let t be a generator of $\pi_1 D_p$, then a loop coming from a meridional curve of K_1 represents $t^\pm p$ in $\pi_1 D_p$, and so $(\pi_1 V : \text{Im} t) = p$.

Example 1. Let m be an integer. Let $M(m)$ be the homology handle given by the following framed link $K_1 \cup K_2$ in Fig. 5. The link $K_1 \cup K_2$ is an algebraically split link. Let $\tilde{M}(m)$ be the universal abelian covering of $M(m)$, that is, the infinite cyclic covering of $M(m)$ associated to the kernel of the Hurewitz homomorphism $\alpha : \pi_1 M(m) \to H_1(M(m); \mathbb{Z}) \cong \mathbb{Z}$. Then $\tilde{M}(m)$ is obtained from the universal covering $q : \mathbb{R} \times S^2 \to S^1 \times S^2$ by 1-surgeries on the preimage of K_2 via q as in Fig. 6. See [14]. By $\Lambda = \mathbb{Z}(t)$ we denote the ring of Laurent polynomials with integer coefficients. Thus $H_1(\tilde{M}(m); \mathbb{Z})$ has a Λ-module structure by the group of deck transformations and is isomorphic to $\Lambda/(mt^{-1} - (2m-1) + mt)$ as Λ-modules. Here $(f(t))$ stands for the principal ideal generated by $f(t) \in \Lambda$. Now attach one 2-handle $h^{(2)}$ to $M(m) \times I$ so that the attaching circle of $h^{(2)}$ is a meridional curve of K_2 and the framiing of $h^{(2)}$ is zero. Let W be the resultant 4-manifold. By Op-
Fig. 6.

eration 1, it is seen that W is bounded by $M(m) \amalg (-S^1 \times S^2)$. See Fig. 7. Thus $V = W \cup_{S^1 \times S^2} D_p$ is an oriented compact smooth 4-manifold bounded by $M(m)$ with $\pi_1 V \cong \mathbb{Z}$, $(\pi_1 V : \text{Im} i_\#) = p$, and $H_2(V; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_p$. In §§3 and 4 we show that in the case of $p = 1$ this 4-manifold V gives the minimal second Betti number of all oriented compact topological 4-manifolds X bounded by $M(m)$ with $\pi_1 X \cong \mathbb{Z}$ and $(\pi_1 X : \text{Im} i_\#) = 1$.

We have the following proposition for a 3-manifold M such that $H_1(M; \mathbb{Z})$ has a torsion subgroup.

Proposition 2. Let p be any positive integer and $L = K_1 \cup K_2$ a 2-component
framed link such that

1. K_1 is a trivial knot,
2. the linking number $lk(K_1, K_2)$ is zero, and
3. the framings of K_1 and K_2 is 0 and n, respectively.

Let M be the resultant 3-manifold obtained by surgery on the framed link L. If $|n| > 1$, then the smooth 4-manifold V constructed in the manner of Example 1 gives the minimal second Betti number of all oriented compact topological 4-manifolds X bounded by M with $\pi_1 X \cong \mathbb{Z}$ and $(\pi_1 X : \text{Im} i) = p$. Note that $H_2(V; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_p$.

Proof. Suppose that $b_2(V) = 1$ is not minimal. Namely, there is an oriented compact topological 4-manifold X as above with $b_2(X) = 0$. By considering the homology exact sequence of the pair (X, M), we have the following short exact se-
sequence;

\[0 \to \mathbb{Z} \to H_2(M; \mathbb{Z}) \to \mathbb{Z}_p \to 0 \to H_1(M; \mathbb{Z}) \to \mathbb{Z} \to \mathbb{Z}_p \to 0. \]

Because of \(|n| > 1\), \(H_1(M; \mathbb{Z})\) has a torsion subgroup. This contradicts that \(H_1(M; \mathbb{Z}) \to \mathbb{Z}\) is injective.

\[\square \]

3. Minimal second Betti numbers for homology handles

Through §§3 and 4, we consider the case of \(p = 1\), namely, the case where the homomorphisms on \(\pi_1\) induced from inclusions are surjective. If \(M\) is an oriented closed 3-manifold with \(H_*(M; \mathbb{Z}) \cong H_*(S^1 \times S^2; \mathbb{Z})\), then we call \(M\) a homology handle. See [8]. Since a homology handle \(M\) has \(H^1(M; \mathbb{Z}_2) \cong \mathbb{Z}_2\), \(M\) admits two spin structures \(\tau_0\) and \(\tau_1\). By \(\mu(M, \tau)\) we denote the Roholin invariant of \(M\) with respect to a spin structure \(\tau\).

Proposition 3. Let \(M\) be a homology handle with spin structures \(\tau_0\) and \(\tau_1\). Suppose that \(\mu(M, \tau_0) = 0\) and \(\mu(M, \tau_1) = 1\). Then, there is no orientable compact topological spin 4-manifold \(V\) bounded by \(M\) such that \(\pi_1V \cong \mathbb{Z}\) and the homomorphism \(i_\sharp : \pi_1M \to \pi_1V \cong \mathbb{Z}\) is surjective.

Proof. Suppose that there would be such a 4-manifold \(V\). Because of \(\pi_1V \cong \mathbb{Z}\), \(V\) admits two spin structures \(\sigma_0\) and \(\sigma_1\). Since \(i_\sharp : \pi_1M \to \pi_1V \cong \mathbb{Z}\) is surjective, \(\pi_1(V, M) = 0\) and so \(H^1(E(\tau_V), E(\tau_M); \mathbb{Z}_2) = 0\). Here \(E(\tau_M)\) and \(E(\tau_V)\) are the total spaces of the principal \(\text{STop}(3)\)-bundle and the principal \(\text{STop}(4)\)-bundle associated with stable topological tangent bundles over \(M\) and \(V\), respectively. From the following cohomology exact sequence of the pair \((E(\tau_V), E(\tau_M))\),

\[0 = H^1(E(\tau_V), E(\tau_M); \mathbb{Z}_2) \to H^1(E(\tau_V); \mathbb{Z}_2) \to H^1(E(\tau_M); \mathbb{Z}_2) \to \delta, \]

if follows that the restrictions of \(\sigma_0\) and \(\sigma_1\) to \(M\) are \(\tau_0\) and \(\tau_1\), say \(\sigma_0|_M = \tau_0\) and \(\sigma_1|_M = \tau_1\). By [5, Chapter 10], we can calculate the Kirby-Siebenmann obstruction \(ks(V) \in H^4(V, M; \mathbb{Z}_2)\) of \(V\) from \((V, \sigma_0)\) and we have that

\[8ks(V) \equiv \text{signature}(V) + \mu(M, \tau_0) \pmod{16} \]

\[\equiv \text{signature}(V) \pmod{16}. \]

From \((V, \sigma_1)\) it follows that

\[8ks(V) \equiv \text{signature}(V) + 1 \pmod{16}, \]

and this equation contradicts that one.
For any given homology handle M, we would like to investigate the minimal second Betti number of 4-manifolds bounded by M.

Let M be a homology handle. By $\beta^{\text{TOP}}(M)$ we denote the minimal second Betti number of all oriented compact topological 4-manifolds V bounded by M such that π_1V is isomorphic to \mathbb{Z} and the homomorphism $i_* : \pi_1M \to \pi_1V$ is surjective. Furthermore, we denote by $\beta^{\text{DIFF}}(M)$ the minimal second Betti number of all oriented compact smooth 4-manifolds as above. Then it is clear that $\beta^{\text{DIFF}}(M) \geq \beta^{\text{TOP}}(M) \geq 0$.

REMARK. If we define $\beta^{\text{TOP}}(M)$ and $\beta^{\text{DIFF}}(M)$ for a general 3-manifold M in the same manner, then it follows from the homology exact sequence of the pair (V, M) that $\beta^{\text{DIFF}}(M) > \beta^{\text{TOP}}(M) > \text{rank}_2 \pi_1(M; \mathbb{Z}) - 1$.

Corollary 1. Let M be a homology handle as in Proposition 3. Then, $\beta^{\text{TOP}}(M) \geq 1$.

Corollary 2. Let $\mathbb{L} = K_1 \cup K_2$ be a 2-component framed link such that

1. K_1 is a trivial knot,
2. the linking number $\text{lk}(K_1, K_2)$ is 0, and
3. the framings of K_1 and K_2 is 0 and ± 1, respectively.

Let M be the homology handle obtained by surgery on \mathbb{L}. If M admits two spin structures τ_0 and τ_1 with $\mu(M, \tau_0) = 0$ and $\mu(M, \tau_1) = 1$, then $\beta^{\text{DIFF}}(M) = \beta^{\text{TOP}}(M) = 1$.

Proof. We can construct a smooth 4-manifold V bounded by M with $H_2(V; \mathbb{Z}) \cong \mathbb{Z}$ in the same manner as Example 1. Hence, it follows from Corollary 1 that $\beta^{\text{DIFF}}(M) = \beta^{\text{TOP}}(M) = 1$. \hfill \square

Example 2. Let $M(m)$ be the homology handle in Example 1. If m is odd, then $M(m)$ admits two spin structures τ_0 and τ_1 with $\mu(M, \tau_0) = 0$ and $\mu(M, \tau_1) = 1$. If m is even, then $M(m)$ admits two spin structures τ_0 and τ_1 with $\mu(M, \tau_0) = \mu(M, \tau_1) = 0$, hence, if m is odd, then $\beta^{\text{DIFF}}(M(m)) = \beta^{\text{TOP}}(M(m)) = 1$.

For what homology handle M does it hold that $\beta^{\text{TOP}}(M) = 0$ or $\beta^{\text{DIFF}}(M) = 0$? Note that $\beta^{\text{TOP}}(M) = 0$ if and only if M bounds an oriented compact topological 4-manifold homotopy equivalent to S^1. Freedman and Quinn give a necessary and sufficient condition to hold that $\beta^{\text{TOP}}(M) = 0$ in [5, Proposition 11.6A and 11.6C].

Theorem 2 ([5]). Let M be a homology handle. Let $C = [\pi_1M, \pi_1M]$ be the commutator subgroup of π_1M. Then, $\beta^{\text{TOP}}(M) = 0$ if and only if C is perfect.
Since the universal abelian covering \tilde{M} of a homology handle M is the infinite cyclic covering associated to the kernel of the Hurewicz homomorphism $\pi_1 M \to H_1(M; \mathbb{Z}) \cong \mathbb{Z}$, Theorem 2 implies that $\beta^{\text{TOP}}(M) = 0$ if and only if $H_1(\tilde{M}; \mathbb{Z}) = 0$. Furthermore, the group of deck transformation of \tilde{M} gives a Λ-modules structure to $H_1(M; \Lambda)$ as Λ-modules. So, one can define the Alexander polynomials $\Delta_M(t) \in \Lambda$ for homology handles M as well as for knots. Kawauchi gave in [8, 9] a characterization of the Alexander polynomials of homology handles and how to calculate the Alexander polynomials. Thus $H_1(\tilde{M}; \mathbb{Z}) = 0$, that is, $\beta^{\text{TOP}}(M) = 0$ if and only if the Alexander polynomial $\Delta_M(t)$ of M is trivial, that is, a unit of Λ.

4. Minimal second Betti numbers for homology handles obtained by 0-surgery on knots

Consider a homology handle M obtained by 0-surgery on a knot K in S^3. Note that the class $\ell \in \pi_1(S^3 - K)$ represented by the preferred longitude for K belongs to the commutator subgroup $[\pi_1(S^3 - K), \pi_1(S^3 - K)]$ of $\pi_1(S^3 - K)$ and that $\pi_1 M$ is isomorphic to $\pi_1(S^3 - K)/\langle \ell \rangle$, where $\langle \ell \rangle$ is the smallest normal subgroup generated by ℓ. Thus we have the following.

Lemma 2. Let K be a knot with exterior $E(K)$, and $\widetilde{E(K)}$ the universal abelian covering of $E(K)$. Let M be the homology handle obtained by 0-surgery on K. Then, $H_1(M; \mathbb{Z})$ is isomorphic to $H_1(\widetilde{E(K)}; \mathbb{Z})$ as Λ-modules. In particular, the Alexander polynomial $\Delta_M(t)$ of M is equal to the Alexander polynomial $\Delta_K(t)$ of K (See Lemma 2.6-(III) in [8].).

Hence, we have the following.

Corollary 3. Let M be the homology handle obtained by 0-surgery on a knot K. The minimal second Betti number $\beta^{\text{TOP}}(M) = 0$ if and only if the Alexander polynomial $\Delta_K(t)$ of K is trivial.

Example 3. Let $M(m)$ be the homology handle in Example 1. In Example 1 we see that $H_1(\tilde{M}(m); \mathbb{Z})$ is isomorphic to $\Lambda/(mt^{-1} - (2m - 1) + mt)$ as Λ-modules. In fact, it follows from the Kirby calculus that $M(m)$ is also obtained by 0-surgery on the following knot in Fig. 8. Thus the Alexander polynomial for $M(m)$ is $mt^{-1} - (2m - 1) + mt$ and $\beta^{\text{TOP}}(M(m)) \neq 0$. Therefore, in the case when m is even, it also holds that $\beta^{\text{TOP}}(M(m)) = \beta^{\text{DIFF}}(M(m)) = 1$, since we can construct a required 4-manifold in the same manner as Example 1. See Example 2.

We can estimate $\beta^{\text{DIFF}}(M)$ by the unknotted number $u(K)$ of a knot K.
Proposition 4. Let M be the homology handle obtained by 0-surgery on a knot K with unknotting number $u(K)$. Then, $u(K) \geq \beta^\text{DIFF}(M)$.

Fig. 8.

Fig. 9.
Proof. Note that by the Kirby calculus the 3-manifolds in Fig. 9. are homeomorphic. Let \(u \) be the unknotting number of \(K \). Then after taking cross-changing at certain \(u \) crossings of a diagram of \(K \), \(K \) becomes a trivial knot \(L_0 \). Hence, \(M \) has a surgery description by a framed link \(L = L_0 \cup L_1 \cup \cdots \cup L_u \) such that all \(L_j(j = 0, 1, \cdots, u) \) are trivial knots, the framing of \(L_0 \) is zero and the framings of \(L_j(j = 1, 2, \cdots, u) \) are \(\pm 1 \). See Fig. 10. If we apply Operation 2 to each \(L_j(j = 1, 2, \cdots, u) \), then we get a new framed link \(L' \). See Fig. 11. The 3-manifold given by \(L' \) is \(S^1 \times S^2 \). By attaching \(u \) 2-handles \(h_j^{(2)}(j = 1, 2, \cdots, u) \) as above to \(M \times I \) and identifying one component of the boundary of the resultant smooth 4-manifold with the boundary of \(S^1 \times B^3 \), we get a 4-manifold \(V \) with second Betti number \(u \) and with boundary \(M \) such that \(\pi_1 V \) is isomorphic to \(\mathbb{Z} \) and the homomor-
phism \(i_2 : \pi_1 M \to \pi_1 V \) is surjective. Hence, \(\beta^{\text{DIFF}}(M) \leq u \).

For example, the knots \(K_m \) in Fig. 8 are unknotting number 1 knots. Hence,
\(1 = u(K_m) \geq \beta^{\text{DIFF}}(M(m)) \geq \beta^{\text{TOP}}(M(m)) \geq 1 \), and so \(\beta^{\text{TOP}}(M(m)) = \beta^{\text{DIFF}}(M(m)) = 1 \).

We generalize Examples 2 and 3 as follows.

Theorem 3. For any positive integer \(n \), there exist infinitely many distinct homology handles \(\{M^{(n)}_m\}_{m \geq 1} \) with \(\beta^{\text{TOP}}(M^{(n)}_m) = \beta^{\text{DIFF}}(M^{(n)}_m) = n \).

To show Theorem 3, we use the local signatures of homology handles, which are introduced by Kawauchi [8] and defined by generalizing local signatures of knots. See also [12]. In [9], Kawauchi considered the embedding problem of 3-manifolds into 4-manifolds. In particular, he gave an estimation of second Betti numbers and signatures of 4-manifolds by local signatures of their boundaries: Let \(M \) be a homology handle.
and X a compact topological 4-manifold bounded by M. Then, he showed that for any $a \in [-1, 1]$,

$$(4.1) \quad \left| \Sigma_{x \in (a,1]} \sigma_x(M) \right| \leq b_2(X) + |\text{signature}(X)|.$$

Here $\sigma_x(M)$ is a local signature of M. Since $b_2(X) + |\text{signature}(X)| \leq 2b_2(X)$, we have

$$(4.2) \quad \left| \Sigma_{x \in (a,1]} \sigma_x(M) \right| \leq 2b_2(X) \quad \text{for any } a \in [-1, 1],$$

and so

$$(4.3) \quad \left| \Sigma_{x \in (a,1]} \sigma_x(M) \right| \leq 2\beta^{\text{TOP}}(M) \quad \text{for any } a \in [-1, 1].$$

Proof of Theorem 3. For each positive integer m, let K_m be a knot in Fig. 8. Then, the Alexander polynomial $\Delta_{K_m}(t)$ of K_m is $mt^2 - (2m - 1)t + m$ up to units in Λ and the unknotting number $u(K_m)$ of K_m is 1. Because of $\Delta_{K_m}(t)/m = t^2 - 2((2m-1)/(2m))t + 1$, it follows from Assertion 11 in [12] that the signature $\sigma(K_m)$ of K_m is ± 2. Hence, it follows that for the local signature $\sigma_x(K_m)(x \in [-1, 1])$,

$$\sigma_x(K_m) = \begin{cases} \pm 2, & \text{if } x = (2m - 1)/(2m), \\ 0, & \text{if } x \neq (2m - 1)/(2m). \end{cases}$$

Let $K_m^{(n)}$ be the connected sum of n copies of K_m, that is, $K_m^{(n)} = K_m \# K_m \# \cdots \# K_m$. Let $M_m^{(n)}$ be the homology handle obtained by 0-surgery on $K_m^{(n)}$. Since $\Delta_{K_m^{(n)}}(t) = (\Delta_{K_m}(t))^n \neq (\Delta_{K_m}(t))^{m'} = \Delta_{K_m^{(m')}}(t)$ ($m \neq m'$), $M_m^{(n)}$ and $M_m^{(n')}$ ($m \neq m'$) are not homeomorphic. Noting that the quadratic form of the universal abelian covering $\tilde{M_m^{(n)}}$ is the orthogonal sum of n copies of the quadratic form of K_m, it follows that for the local signature $\sigma_x(M_m^{(n)})(x \in [-1, 1])$,

$$\sigma_x(M_m^{(n)}) = \begin{cases} \pm 2n, & \text{if } x = (2m - 1)/(2m), \\ 0, & \text{if } x \neq (2m - 1)/(2m). \end{cases}$$

Hence, we have

$$\left| \Sigma_{x \in (0,1]} \sigma_x(M_m^{(n)}) \right| = \left| \sigma_{(2m-1)/(2m)}(M_m^{(n)}) \right| = 2n.$$

Thus, by the inequality (4.3) we have

$$n = \frac{1}{2} \left| \Sigma_{x \in (0,1]} \sigma_x(M_m^{(n)}) \right| \leq \beta^{\text{TOP}}(M_m^{(n)}).$$
By noting that $u(K_m^{(n)}) \leq n$ because of $u(K_m) = 1$, it follows from Proposition 4 that $\beta^{\text{DIFF}}(M_m^{(n)}) \leq u(K_m^{(n)}) \leq n$. Therefore, $n \leq \beta^{\text{TOP}}(M_m^{(n)}) \leq \beta^{\text{DIFF}}(M_m^{(n)}) \leq n$, and so $\beta^{\text{TOP}}(M_m^{(n)}) = \beta^{\text{DIFF}}(M_m^{(n)}) = n$. \[\square\]

Remark.
(1) The unknotting number $u(K_m^{(n)})$ is n because of $n = |\sigma(K_m^{(n)})|/2 \leq u(K_m^{(n)}) \leq n$.

(2) Consider a short exact sequence of Λ-modules

$$0 \rightarrow E \rightarrow F \rightarrow \Lambda/(f_1) \oplus \Lambda/(f_2) \oplus \cdots \oplus \Lambda/(f_n) \rightarrow 0,$$

where E and F are free Λ-modules of the same rank. If each f_{i+1} can be divided by f_i, then $\text{rank}_\Lambda E \geq n$. Let V be an oriented compact 4-manifold bounded by $M_m^{(n)}$ such that $\pi_1 V \cong \mathbb{Z}$ and the homomorphism $i_1 : \pi_1 M_m^{(n)} \rightarrow \pi_1 V$ is surjective. Then we have the following homology exact sequence with local coefficient Λ,

$$0 \rightarrow H_2(V; \Lambda) \rightarrow H_2(V, M_m^{(n)}; \Lambda) \rightarrow H_1(M_m^{(n)}, \Lambda) \rightarrow 0.$$

The homology groups $H_2(V; \Lambda)$ and $H_2(V, M_m^{(n)}; \Lambda)$ are free Λ-modules of the same rank. Since $H_1(M_m^{(n)}; \Lambda) \cong \bigoplus_{i=1}^n (\Lambda/(mt-(2m-1)+mt^{1})_i \cong \Lambda/(mt-(2m-1)+mt^{1}) \oplus \cdots \oplus \Lambda/(mt-(2m-1)+mt^{1})$, $\text{rank}_\Lambda H_2(V; \Lambda) = \text{rank}_\Lambda H_2(V, M_m^{(n)}; \Lambda) \geq n$. Hence it follows that $\beta^{\text{TOP}}(M_m^{(n)}) \geq n$.

Next we give two definitions on sliceness of knots.

Definition 1. If a knot K bounds a smooth disk D in the 4-ball B^4 such that $(B^4, D) \times I$ is a trivial ball pair, then K is a super slice knot. See [7].

For example, untwisted doubles of slice knots are super slice [7].

Definition 2. A knot K is pseudo-slice, if there exists a pair (W, D) for K such that W is a smooth 4-manifold homeomorphic to B^4 and D is a smooth disk in W bounded by K.

Proposition 5. Let K be a super slice knot, and M the homology handle obtained by 0-surgery on K. Then, $\beta^{\text{TOP}}(M) = \beta^{\text{DIFF}}(M) = 0$.

Proof. Let D be a slice disk for K such that $(B^4, D) \times I$ is a trivial ball pair. Let $N(D)$ be a closed tubular neighborhood of D in B^4. Then, M is the boundary of the smooth 4-manifold $V = B^4 - \text{int} N(D)$. The 4-manifold V is homotopy equivalent to $V \times I = B^4 \times I - \text{int} N(D) \times I$. Since $(B^4, D) \times I$ is trivial, V is homotopy equivalent to S^1. Thus V is a required 4-manifold. \[\square\]

Is there a difference between β^{TOP} and β^{DIFF}? Now we answer this question.
Theorem 4. Let K be a knot which is not pseudo-slice and whose Alexander polynomial Δ_K is trivial. Let M be the homology handle obtained by 0-surgery on K. Then, $0 = \beta^{TOP}(M) < \beta^{DIFF}(M)$.

Proof. Since Δ_K is trivial, it follows from Corollary 3 that $\beta^{TOP}(M) = 0$. Suppose that $\beta^{DIFF}(M) = 0$. Then M bounds a smooth 4-manifold V homotopy equivalent to S^4. By attaching to $M \times I$ one 2-handle $h^{(2)}$ whose attaching circle is a meridian of K and whose framing is zero, we get the 4-manifold $(M \times I) \cup h^{(2)}$ whose boundary is $M \bigsqcup (-S^3)$. See Operation 1. Furthermore, by identifying ∂V with one component M of the boundary of $(M \times I) \cup h^{(2)}$, we get a compact smooth 4-manifold W bounded by S^3. Then, since W is simply-connected and $H_\ast(W;\mathbb{Z}) \cong H_\ast(B^4;\mathbb{Z})$, W is homeomorphic to B^4. The co-core of the above 2-handle $h^{(2)}$ gives a smooth disk D in W with $\partial(W,D) = (S^3,K)$. Since K is not pseudo-slice, this is a contradiction.

Example 4. In [3], Cochran and Gompf showed that there are untwisted doubles which are not pseudo-slice. For example, the untwisted double K of the trefoil knot is such a knot. Note that the Alexander polynomials of nontrivial untwisted doubles are trivial and their unknotting numbers are 1. Thus, for the homology handle M obtained by 0-surgery on K, $1 = u(K) = \beta^{DIFF}(M) > \beta^{TOP}(M) = 0$, and so $1 = \beta^{DIFF}(M) > \beta^{TOP}(M) = 0$.

Example 5. Let $K(-3,5,7)$ be the pretzel knot of type $(-3,5,7)$. Then $K(-3,5,7)$ has a trivial Alexander polynomial. Furthermore, in [6] Fintushel and Stern showed that $K(-3,5,7)$ is not pseudo-slice. Thus, for the homology handle M obtained by 0-surgery on $K(-3,5,7)$, $\beta^{DIFF}(M) > \beta^{TOP}(M) = 0$.

It follows from [11] that $K(-3,5,7)$ is not an unknotting number 1 knot. One can make $K(-3,5,7)$ a trivial knot by crossing-change at certain 3 crossings. Hence, $2 \leq u(K(-3,5,7)) \leq 3$. Thus it follows that $1 \leq \beta^{DIFF}(M) \leq 3$. What is $\beta^{DIFF}(M)$?

References

Department of Mathematics,
Faculty of Educations,
Yamaguchi University
Yoshida Yamaguchi, 753 Japan