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1. Introduction

Recently, a neural network model called the Boltzmann machine is studied
by many researchers [cf. 1,2,3]. One of its motivations comes from the fact
that by this machinery we can approximately solve hard combinatorial optimi-
zation problems and that its processing units have the potential ability to do
calculations locally and to permit massive parallelism.

The sequential Boltzmann machine calculates the Gibbs distribution of the
“energy” function over the configuration space [cf. 3], whence we can solve the
optimization problem of the energy function by a method so called simulated
annealing. However this sequential algorithm does not fully exploit the poten-
tial parallelism of the Boltzmann machine.

When we apply unlimited and full parallelism in a simple way [cf. 3], the
equilibrium distribution is not the Gibbs distribution and we can not use this
to solve optimization problems. Although this parallel algorithm can be modi-
fied, using limited parallelism [cf. 3], to calculate the Gibbs distribution, the
modification heavily depends on the connection pattern of the Boltzmann ma-
chine and needs a preprocessing which is difficult itself.

Does there exist a synchronously parallel algorithm for the Boltzmann
machine, which calculates the Gibbs distribution and is independent of the
connection pattern?

In this paper, we propose new synchronously parallel algorithms for the
Boltzmann machines, which are independent of the connection pattern, and
show that the equilibrium distributions are the Gibbs distributions, thereby
guranteeing that they solve the optimization problems.

The author wishes to thank Professor T. Tsujishita for valuable sugges-
tions and encouragement.

2. Basic Concepts of the Boltzmann Machine

A Boltzmann machine B is defined as a triplet (U, 6, W), where U is a
finite set, @ is a real valued function on U, and W is a symmetric real valued



452 T. Yozawa

function on {(u, v)€UXU|u+v}. An element of U is called a unit of B, the
value 6,:=0(u) (v U) the threshold for the unit %, and W,,:=W(u, v) (4, veU)
the weight between the units # and v. Note that W,,=W,,.

In this paper, the functions § and W are held constant, namely we do
not consider the learning problem of the Boltzmann machines.

Let B=(U, 6, W) be a Boltzmann machine. A function from U to {0, 1}
is called a configuration of B. We denote by & the set of all the configurations
of B, called the configuration space, i.e.

1) 8:= {0, }V.
The energy function E: S—R is defined by

2) ER):=— > 2 }W“'k(“)k(v)+n§q, 0.k(u) ,

1
2 ueU ve U\{u
where k(u) is called the state of the unit % for the configuration k.
We can use the Boltzmann machine B to solve the optimization problem
of the energy E. In the next section, we recall one of such solutions, namely
the sequential algorithm for the Boltzmann machine.

3. Sequential Boltzmann Machine

Let B=(U, 6, W) be a Boltzmann machine. Fix a positive real ¢, called the
control parameter.

The sequential algorithm for B repeats the following two steps until certain
criteria are met:

1. Select randomly a unit acU.

2. Change the current configuration kE S to k, with probability Ay(a, c).
Here k,<S is obtained from & by changing the state of the unit «, i.e.

k(u) if ufa

®) k) = { 1—ku) if u=a,

adn 4,(a, ¢), called the acceptance probability, is given by
1

4 A,, y = ’
( ) (C( C) 1+exp (-—-A:E(k))
where
(5) ALE(R) := E(k)—E(k).

The Markov chain {X({)eS|t=1,2, ...} induced by this algorithm has
the Gibbs distribution as the equilibrium distribution, i.e.
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. _ 1 E(k)
6) lim Pr© (X(1) = k) = 0()etxp< ) for ke,

where Pr© ( X(t)=k) is the probability of entering % at the #-th trial, and
@ No(e) = E } exp (E(l))

Thus, by the annealing process, we obtain the uniform distribution con-
centrated on

(8) Sop 1= k€ S|E(R) = max E(Q)} .

From the point of view of the efficiency this algorithm is unsatisfactory,
since it does not take advantage of the structure of the Boltzmann machine,
which admits parallelism in updating the configurations. In the next section,
we shall recall two parallel algorithms: the one is simple but does not solve the
optimization problem, the other solves it but heavily depends upon the con-
nection pattern.

4. Parallel Algorithms for the Boltzmann Machine

In a simple algorithm which synchronously updates configurations in com-
pletely parallel way, each unit u%U changes the state with the probability
Ay(u, c) for each trial. The equilibrium distribution, calculated in [3], is given

by
9 hm Pr@(X(t) = k) = L I 2cosh (%) exp (h,,(u) +20, k(u))

Kyc)uew 2c

where

_ hy(u) () +20,4(u)
1 —
(10) Kiw) =33 11 2 cosh( i )ex ( 5 )
and
(11) M) = 3 Wak(2)+-0,.

veU\{u}

This distribution does not converge, as the control parameter ¢ tends to
zero, to the distribution concentrated and uniform over the set of optimal con-
figurations &,,,. From teh point of view of solving the optimization problem,
the above parallel algorithm is ineffective.

There exists a parallel algorithm, called limited parallelism, whose equili-
brium distribution is the Gibbs distribution [cf.3]. However, the algorithm
applying the limited parallelism for the Boltzmann machine has the drawback as
is seen from the following: In this algorithm we first do a preprocessing related
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to the connection pattern, namely we partition the set of units U into disjoint
subsets so that the weights between the units belonging to the same subset equal
zero. Then the limited parallelism is realized by selecting one of the subsets
and then by allowing its units to change their states simultaneously for each trial.
If the set of units U is partitioned into a minimal number of disjoint subsets,
this algorithm is most effective, namely it is the maximal speed-up procedure.
But the problem of partitioning U into a minimal number of disjoint subsets is
equivalent to the graph coloring problem, which is a hard combinatorial optimiza-
tion problem.

In the rest of this paper, we explain a new parallel algorithm IPBM-—an
abbreviation of Improved Parallel Boltzmann Machine—which is easily imple-
mented and solves the optimization problem.

5. Algorithm IPBM

In this section we present a new updating procedure. We fix a positive real
constant ¢ as the control parameter. Let G(I) (I € P(U)) be a probability
distribution over the power set of U, called the generation probability distribution.
The algorithm repeats the following two steps unitil certain criteria are met:

Algorithm IPBM. Let kS be the current configuration.

1. Select a subset I of U according to the probability distribution G.

2. Change the configuration k to the configuration k, &S with probability
A1, c), where k; is obtained from k by changing the states of all units

of 1, ie.
k(u if ueel
(12) w={1"
1—k(u) if usl.
The probability 4,(1, ¢), called the acceptance probability, is defined by
(13) Ak(I) C) == II Ak(I) i) C) )
iel
where
AN -1
(14) AL, i, ¢) = {1+exp (*AfE(k)_Sk(I’ ’))} ,
c
and
. 1 . .
15 Sy(I, 1) = —(1—2k 1—-2r(HW;; .
(15) (9 = —( (l))jelz\{i}( UNW;

Note that if I= {i}, then
Sk(l» l) = 0

A, ¢) = {1+exp (_—A’cElk-)»_l .

and
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6. The Markov Chain generated by Algorithm IPBM

Algorithm IPBM in the previous section can be formulated as a time ho-
mogeneous Markov chain on the configuration space S for the fixed control pa-
rameter c:

Let I, be the set of the units whose states for the configuration % differ from
those of /, i.e.

(16) Iy = {usU|k(u)*=l(u)} .

Note that I,,=1,,. Then it is obvious that Algorithm IPBM generates a Mar-
kov chain on & whose transition probability Py(c) from k€S to IS is given by

G(ly)-Alu, ©)  if Ik
(17) Pu@=11- 53 Py if I=k.
heS\{k}

We assume the following condition on the generation probability distri-
bution G:

AssuMPTION. For any k, IE S there exists a number p>1 and ky, k,, ...k, &S
with ky=Fk, k,=1 such that

Gl 5,.)>0 (=0,1,..,p—1).

i+1
It is easy to check that the following examples of the generation probabi-
lity distributions over the power set of U satisfy the above Assumption:
1. The number m of the selected set I is randomly chosen and then the m
units belonging to I are randomly chosen from U, i.e.

(U g
G(I) = VUI“H> 10
0 if I=¢.

2. Probability distributions concentrating on the set of the units of size
[1ul/2].
3. Each unit belongs to the seleated units I with the probability p, i.e.

) = p(1—p) V7.

Note that if p=1/2, then G is the uniform distribution over the power
set of U.

7. Equilibrium Distribution calculated by Algorithm IPBM

In this section we determine the equilibrium distribution of the Markov
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chain constructed in the previous section.
Theorem 1. Let {X(t)S8|t=1,2, ...} be the Markov chain with the tran-

sition probalbility (17). Then its equilibrium distribution is given by the Gibbs
distribution, i.e. '

lim Pr@(X(¢) = k) = ZVIZ—) exp (E(k)) , forany keS§,
t-yoo ofc c

where
Ny(c) = X3 exp (E—(Q> .
leS ¢

First we shall recall a theorem on the stationary distirbution of a Markov
chain.

Theorem 2. (cf.[4]). If a finite Markov chain {X(n)eQ|n=1,2, ...}
with the transition matrix P=(Py,); eq 15 irreducible and aperiodic, then
(a) there exists a unique stationary distribution d=(q;)seq, and

(b)
(18) lim P{y = gq,, forany &, l€Q,

where P§} is the (I, k) component of the matrix P".
Recall that a probability distribution @ is called stationary if

(19) @= > ;P forany kEQ.
leQ

Corollary of Theorem 2. Under the same conditions as in Theorem
2, a distribution which is stationary is the equilibrium distribution.

Proof. By (b) of Theorem 2 we have for any k€ Q)
lim Pr (X(n) = k) = lim 33 Pr (X(n) = k| X(0) = 1) Pr (X(0) = ))
— lim 31 PP Pr (X(0) = )
=S¢, Pr(X(0) =)
—q.

To prove Theorem 1, we need the following two lemmas. The proofs will
be given in Appendix.

Lemma 1. Foranyk,lcS
(20) E()—E(k) = P2 {AER)+Si(Lusd)} -

- Lemma 2. For any k,l€§
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@l)  AER)+S(y, i) = —AE(l)—S(Iu, i), forany icl,.

Proof of Theorem 1. The Markov chain with the transition matrix
(Pri(¢))r1es given by (17) is irreducible by Assumption and aperiodic by the
irreducibility and the following inequality:

(22) Ak(IIzl’ L‘)<1 ’ for any k, lesS

(cf. [3]). Thus, the conditions of Theorem 2 are satisfied and there exists a
unique stationary distribution. Hence, by Corollary of Theorem 2, it remains
only to show that the vector 4(c)=(gx(c))res defined by

) = 5 0 ()

is the stationary distribution.
It is clear that @(c) is stochastic (i.e. 2peg gi(c)=1).
Recall that if @(c) satisfies the detailed balance equation:

(23) 3(©)Pu(c) = @()Pulc), forany &,l€S,

then the vector ¢(c) is stationary. Thus it remains to show that @(c) satisfies
the detailed balance equation. For k=l S, using Lemmas 1 and 2, we ob-
tain

BOPu(e) = Nl( e (20) 6ttt o

— No(c) exp (E(l) ) exp (M) G(1u) A, ©)

= a@CUnexp (~Hiem &L ) 1 44, i

i€l

= 906U I exp (‘(A-'E"”j Sl M) 4,1, 5, o

= (06U IT {1+exp (A,-E(k) —l—cS,.(Iu, z'))}—l

= ()G TI {1+exp (~A.~E(l) — Sidu, i))}-l
icly e
= QI(C)G(IM)ig ALy, i, ©)

= g()GUIw) A, ©)
= q,(c)Ppu(c) .

This completes the proof of Theorem 1.
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8. Discussions and Conclusions

1. Aswe stated at the end of section 5, our algorithm IPBM is-a generaliza-
tion of the sequential algorithm for the Boltzmann machine which select only
one unit to be updated for each trial. In fact if the probability distribution
G satisfies the following condition:

/14| if |[I|=1
0 otherwise ,

G(I) = {

then IPBM is the same as the sequential Boltzmann machine.

2. We may schedule the number of selected units for each trial: For exam-
ple, the number of selected units is large for early trials. As trials go on, it
decreases, and finally it is fixed to one. Then the generation probability dis-
tribution G depends on the time, namely G is different for each trial. Let
G:=G,(t=1,2,...) denote the generation probability distribution over the
power set of U for each trial £. The similar algorithm corresponding to this G
can be formulated as a time inhomogeneous Markov chain whose transition
probability depends on the time. The equilibrium distribution is again the
Gibbs distribution if G, satisfies the following condition:

For any number m>1 and any k,1ES there exists a number p>1 and k,, ...,
k,e8 with ky=Fk, k=1 such that

GusilLap,,,)>0 (=01, ..,p—1).

The above statement can be proved by using the results in the theory of time
inhomogeneous Markov chains (cf. [5,6]).

3. Inregatd to the acceptance probability 4,(I, c), if the number of the selected
units 7 is large, 4,(I, ¢) is small since 4,(1, 7, c)<1 for any i I, whence it is rare
for the states of the units I to be changed. When we replace 4(/, 7, c) with

(24) A1, i, ¢) = min {1, exp ( A"E(k)_:S'(I’ i))} ;

Ay(1, ¢) is larger than the previous one. And by the computation like the proof
of Theorem 2 we can prove that the Gibbs distribution is again the stationary
distribution of the Markov chain which is formulated by this new 4,(, c).

4. Remark on the implementation. A4y(I, 1, ¢) is locally computed by the states
of the units with which the unit 7 is connected and by the weights among their
units, and global informations are necessary only in the computation of the
product A(I, ¢)= Il A1, 1, ¢).

5. In conclusion I guess our algorithm IPBM is useful to solve the problem
whose units and local maximums are many, since the set of the configurations,
to which the current configuration may be changed, is large for each trial, whence
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as compared with the sequential algorithm, the possibility of trapping to the
local maximum seems small.

We are currently testing the effectiveness of our new algorithm IPBM by com-
puter simulation, which will be reported in near future.

Appendix

Proof of Lemma 1. By direct computation we obtain
(25) AE() = (1-2k@) {31 Wak()+6a)
jE€U\{a}
Using this, we have

ED—-ER)=~+ 53 5 W, A(1—kG) 1—k(i) ROk}

2 tEIn jen)\{i}
+ > 2 (Wt W) {(1—Ek@)R(G)—RERG)}

2 icly j&ly

+ .2 0A1—kE)—k@}

-1
2 EIH jely\{s} U(l KE—kI)

+.2 (1= 2k(t)) E k(j)+i621 0,(1—2k(2))

i€ly
=3 a2 _3_Wirirto)
icly
— 2 (1- 2k(l)) 2 . Wik(j)
1€y \ {7}
+?u§,,,;e],,,\{z} W, j(1—k(z)—k(5))
= 3] AE(R)
i€ly
1
2 {i EEIM jE In\{i}(l 2K,
1—-2k
3B A-2HORGW, }
1
+—2—'§I‘”E"\{t W, i(1—k(@)—k(j))
Z AE(R)
i€l u

— W, A(2k(5)—1)k(j
+ ZiEEI,,,jeI,,Z,\{i} i3 (2k(5)—1)k(j)

+(2k()— 1)k(i)-i-(l —k(&)—k(7))}
=2 AERF L 3T 3 (1-2k@)(1-2KG)W,

iely 2 i€l jElu\{i}
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= 3 (st a2 B -2k,
= 3% (ABE+S)du )

iely

Proof of Lemma 2. Using (15) and (25), we obtain forie I},
AiE(k)+Sk(Ikl’ 1‘)

= (1—2k W, k()+0:+ 1-2k
( (z)){jeq%‘.\{i} (+ + i IO }
— (1—2k( W, k() +0i+ i
( (l)){feqz}\fu WO HOH z,-e%{,-} W”}
. 1
— —(1— W..l 6.4+ — W..
a 21(’»{1'5%"\1”, alO)+6:+ 2:‘61%\}{1'} ”}

= — —_— 1 .2 1 : ‘l
=~ B WA+ = A2,

je€ln\{i}
= “'A"E(l)""S’(I,k, i) .
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