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Abstract

Isogeometric analysis (IGA) is a computational method that uses the same basis func-
tions for both geometry and analysis. In particular, non-uniform rational B-Spline (NURBS)
functions which are common in computer-aided design (CAD) are used to represent the
solution fields. This allows for a seamless transfer of geometry data to numerical anal-
ysis. First invented by Hughes et al. in 2005, IGA has been widely applied in various
engineering fields such as structural analysis, fluid dynamics and electromagnetism due
to its high efficiency. But the study and application of IGA in the field of structural health
monitoring (SHM) is still in its infancy.

SHM is a process of monitoring the real-time structural state using on-site sensors,
data processing and numerical algorithms. Unlike non-destructive testing (NDT) which
usually requires human expertise, SHM relies on permanently mounted sensors and
digital models to continuously analyze the operational conditions. Among the types of
sensors used in SHM, fiber optic sensors are gaining popularity due to their small size,
high sensitivity, ease of use and immunity to electromagnetic interference. Distributed
fiber optic sensors (DFOS) use laser light and backscattering phenomena to detect strain
and temperature along the entire length of the fiber. The length of the fiber can be up to
tens of kilometers and the spatial resolution can be as small as a few centimeters, which
makes DFOS an excellent choice for distributed sensing. But the sensing system needs
to be paired with a digital model to calculate useful information from the raw data.

Inverse sensing is a process of using sensor data to estimate unknown parameters
of the structure such as deformation, stress distribution or loading conditions. In the
first part of this thesis, an inverse sensing method of IGA and DFOS is developed to
combine the efficiency of IGA and versatility of DFOS in an integrated framework. The
method consists of two components: the fiber model to represent the properties of DFOS
fiber, and the formulation to solve the inverse problem. The fiber model is based on
the parametric NURBS geometry and strain projection equations are derived to map
the surface strains to one-dimensional fiber strains. The properties of the fiber model
are validated with a numerical model and simulated fiber strains are compared with



experiment data. A case study to estimate loading conditions from measured fiber strains
is also presented.

The analytical formulation of inverse IGA is derived from the least-squares func-
tional and minimum strain energy principle. The resulting equations are used to solve
unknown displacement and stress fields from input fiber strains for linear elastic struc-
tures. The proposed formulation is validated with four numerical examples and then
sensitivities on sampling resolution and measurement noise are investigated. Finally,

the method is applied to an experimental model of a rotating impeller plate.

Accurate material modelling is essential for large deformation analysis such as metal
forming or automobile crash simulations. The second part of the thesis focuses on the
nonlinear material modelling for elastoplastic IGA. Specifically, the mechanical response
of high strength steel DP980 after it was subjected to prestrain is experimentally stud-
ied. The observed history-dependent anisotropic hardening behavior is modelled with
an empirical formula and implemented as a constitutive model in IGA. The model is val-
idated with numerical simulations and comparison with experiment data. The proposed
methodologies in this thesis are implemented in the in-house IGA code JWRIAN-IGA and
as user-subroutines for commercial software LS-DYNA.

ii
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Chapter 1

Introduction

1.1 Background

1.1.1 Geometry and analysis

The Finite Element Method (FEM) is a crucial tool for numerical analysis in various fields
such as solid mechanics, fluid mechanics, heat transfer, electromagnetism, and so on. It
involves developing a mathematical model of the physical system based on fundamental
laws of nature and verification with experimental data. The model is expressed as par-
tial differential equations (PDEs) or boundary value problems (BVPs) that describe the
system’s behavior. However, solving these equations analytically is often complex or im-
possible for general cases and hence numerical methods are employed. FEM discretizes
the system into smaller constituents called elements, which follow simpler equations
compared to the parent domain [1]. The contributions of these elements are combined
into a global system of equations that are solved to obtain the solutions. This allows for
the approximation of the continuum from the discretized variables.

The development of the Finite Element Method and its variants dates back to the late
19" century for aerospace applications and later expanded into other engineering fields.
Nowadays, FEM is used as an analysis tool in conjunction with other tools in Computer
Aided Engineering (CAE) workflow for the design cycle and/or maintenance after con-
struction. Another essential tool in engineering is the Computer Aided Design (CAD),
which helps in conceptualization, geometrical modeling, assembly and refining designs.
Historically, CAD and FEM have evolved separately and only recently, some software
packages include both in the same suite although they are still separate programs [2].
To represent and store geometries, CAD uses a variety of parametric and non-parametric
forms such as primitive shapes, boundary representation (B-Rep), Non-uniform Rational
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Geometry decomposition

Analysis model
creation and/or edit

Design model
creation and/or edit
T 4%

Post-processing 5%

o Meshing and
20% \ mesh manipulation

Run simulation

Set-up simulation model /

Figure 1.1: Decomposition of the time required for a typical FEM analysis. The prepro-
cessing of geometry and mesh takes up a significant portion. [4]

B-Splines (NURBS) and trimmed surfaces. On the other hand, FEM uses shape functions
to describe the geometry of elements, the most commonly used shape functions being
Lagrange polynomials. An FEM “mesh” includes the positions of nodes and how they
are connected together to form elements. The differences in geometry representation
between CAD and FEM systems require conversions and preprocessing to create analysis
meshes which can be tedious and time-consuming. In fact, the preprocessing step usu-
ally takes up a significant portion of the analysis time as shown in Fig. 1.1 and can create
bottlenecks in the process, especially when multiple design iterations are required [3].

Isogeometric Analysis (IGA) is a relatively new numerical method that aims to
bridge the gap between CAD and FEM. It was first proposed by Prof. Hughes et.al. in
2005 [4] and has since been developed by many researchers. IGA uses the same basis
functions as CAD, namely Non-Uniform Rational B-Splines (NURBS), to represent the
geometry and the solution fields. This allows the direct use of CAD geometry in the
analysis without the need for conversion or preprocessing. The use of the same func-
tions also ensures the perfect geometric accuracy in the analysis mesh regardless of mesh
size. In addition, IGA offers several advantages over traditional FEM such as higher or-
der continuity (smoothness) in the solution between element boundaries, fewer degrees
of freedom for the same mesh size, and the ability to incorporate design changes from
CAD. These advantages lead to more accurate results with reduced computational cost

[51-[71.

An example of IGA and FEM meshes are shown in Fig. 1.2. A visible difference is
that IGA mesh uses control points which may not exist on the surface of the geometry.
The discretized solutions in IGA is computed on the control points in contrast to node
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(a) FEM Mesh (b) IGA Mesh

Figure 1.2: A simple example of IGA and FEM meshes

points in classical FEM.

1.2 Distributed Sensing and Structural Monitoring

At design stage, an engineering structure needs consideration of many factors such as
mechanical strength, shape, material, cost and operating conditions. These can be called
as known factors. The risk of failure after construction could be overloading, corrosion,
environment and unpredicted events of impact or natural disasters. Countermeasures
for these risks are based on the “best effort spirit”, experience and a reasonable safety
factor. Moreover, maintenance costs are often higher than initial construction costs, and
the costs of maintenance are related to the how correctly the structure is deformed and
aged [8].

Structural Health Monitoring (SHM) is an increasingly important concept in today’s
industry for maintenance and lifecycle management of engineering structures such as
bridges, buildings, wind turbines, ships, airplanes, etc. Combining state-of-the-art sen-
sors and analysis methods, digital twin and digital transformation are paid great at-
tention not only for safety and maintenance but also for future design improvements.
Digital Twin (DT) is a virtual representation of a physical system, which can be used
to predict its current and future behavior without doing costly experiments or destruc-
tive testing. SHM paired with DT and a global network enables remote sensing which
facilitates early detection of anomalies or deviation from the designed operation and
prevents catastrophic failures by enabling interventions such as repairs or changing op-
erating conditions [9]-[12].

In this context, IGA has a high potential to be a perfect SHM tool for its tight inte-
gration with CAD and FEM. That means a single model can be used for design, analysis
and monitoring purposes, benefiting both design cycle and operation phase. However,

3
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conventional IGA needs further development for SHM since it has to incorporate the
real-world sensing data into the digital model. This is where the distributed fiber optic
sensing (DFOS) technology fits the requirement.

DFOS is a sensing technology that uses an optical fiber and laser light to measure
strain and temperature distribution along the fiber length [13]-[15]. There are sev-
eral types of optical strain sensing technologies, namely fiber Bragg grating (FBG), or
backscattering based sensors such as Brillouin, Rayleigh and Raman [14], [16]-[18].
FBG sensors have been widely used in the past studies, but backscattering based sensors
have recently received attention for their improved spatial resolution. In addition, a
backscattering based instrument can utilize an ordinary telecommunication type glass
fiber without the need for any modification.

The sensing principle of backscattering-based DFOS is as follows. The interrogation
instrument transmits a coherent laser pulse into the fiber which is backscattered by the
Rayleigh scattering effect. A strain or temperature event on the fiber causes a shift
in the backscattered light spectrum. The location of the event is determined from the
time difference between the transmitted and backscattered light, and the speed of light
in glass. All measurements are collected simultaneously along the fiber up to tens of
kilometers in length which makes DFOS a distributed sensor.

Recent DFOS instruments can measure strain in centimeter spatial resolution with
precision below 0.1 microstrain depending on the sensing cable, fiber interrogation and
sample averaging counts [19]-[23]. Fiber optic (FO) cables are small, lightweight and
resistant to electromagnetic radiation. Moreover, a fiber optical sensor does not need
a power supply and has the ability for self-diagnostics in the case of breakage, which
are the key factors of the cost in current systems. For these reasons, DFOS systems have
been used in studies for monitoring concrete structures, power plants, aircraft wings and
more [24]-[28].

1.2.1 Integration of IGA and DFOS

The physical sensing system is crucial in general but needs many other components apart
from installing a FO sensor. Due to access conditions and FO bending properties, etc.,
the FO route cannot be freely designed and a CAD plan is necessary for installation. In
addition, there is a gap in information between directly measured strains and necessary
engineering data. The measurement data are usually sparse and limited in type of in-
formation, demanding the use of numerical analysis and finite element tools in order to
translate data into insights [29]-[31]. For example, DFOS can be used to obtain dis-
tributed strain measurements along the optical fiber, and numerical tools are used to
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estimate deformation, loading conditions and stress distributions in the structure [32]-
[35].

The existing methodologies for structural monitoring mainly employ traditional
FEM as a numerical tool [9]. But the application of IGA for SHM is very limited and there
is no existing method which utilize both DFOS and IGA. Hence, there is prospect for ef-
ficiency improvement because CAD related data are standard for communication among
different clusters of design and maintenance engineers. The utilization of CAD data re-
source is an elegant route which results in the focus on the IGA method. Combining the
real-time distributed sensing capabilities of DFOS and high efficiency of IGA, a remote
structural monitoring system can be developed as shown schematically in Fig. 1.3.

Design factors

« Structural strength
+» Shape and design
* Material properties
* Cost

« Estimated loads
* Environment
« Corrosion

« Risk factors <. e D [Remote monitoring and }

oo signal processing

. [ DFOS instrument units ]—T’/' v
\\\ yd Deformation, load and stress
e ,,/' _.-{ including portions where
----------- .;{ Management of safety, function, Jz_——"' FO is not installed
residual life and maintenance plan

NURBS model
DT

IGA model, DFOS model ]

A

Figure 1.3: Block diagram of remote structural monitoring by DFOS and IGA. The solid
lines indicate direct actions, and the dashed lines illustrate the links of solutions to the
factors of concern.

Based on this status quo and literature gap, the first part of this thesis is dedicated
to the development of a new DFOS-based IGA methodology for SHM. The developed
method is based on the concept of inverse IGA, which is inspired from inverse FEM
(iFEM) [32]. The inverse IGA reconstructs the deformation, strain and stress distribution
in the structure from measured DFOS fiber strains. There are two main components of
this method: the first one is the development of a fiber mesh model which represents the
properties of optical fiber used for sensing, and the second is the inverse IGA algorithm
which efficiently solves the aforementioned inverse problem.

The primary objective of the fiber mesh model is to simulate the DFOS measure-
ments numerically. Firstly, the fiber route is defined in the geometry model from which
the fiber mesh is generated. The fiber mesh consists of discrete sampling points along the
fiber route and associated coordinate mappings to the surface of the host structure. It is
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then is used to compute the fiber strains using IGA shape functions and the principles of
DFOS sensing.

Based on the simulated fiber strains from fiber mesh model, a formulation of inverse
IGA can be devised from the relationship between fiber strains and displacement field.
The inverse problem is generally ill-posed, meaning that the number of unknowns is
much larger than the number of observables, which makes calculation of exact solutions
impossible. Hence, minimum energy principle is used as a regularization scheme to
solve a constrained optimization problem in least-squares sense. This results in a general
formulation which does not depend on the type of structure or fiber layout.

1.3 Nonlinear Material Models

IGA has been applied in nonlinear elastoplastic deformation and crash simulations of au-
tomobiles and ships, for example in commercial software LS-DYNA [36]. In elastoplastic
simulations, not only the numerical method but also the material model is important for
accuracy. Accurate material model is especially important for crash simulations, where
the material is subjected to large deformation and high strain rate. Automobile struc-
tural parts are often made by press forming sheet metals. This process introduces large
directional strains in the sheet metal. Hence, the properties of metal after forming may
be different from those of the original metal due to strain history effects [37], [38]. The
history dependent material properties are especially important for high strength steels
used in automobile structural parts since they are subjected to large deformation and
high strain rate during crash simulations.

In the second part of this thesis, a new material model is proposed which can capture
the effect of unidirectional tensile prestrain in the sheet metal. Specifically, this model is
intended to reproduce the differences in stress-strain response in orthotropic directions
(anisotropic hardening) after the metal is subjected to prestrain. The anisotropic hard-
ening effect is firstly investigated by tensile tests of prestrained specimens in different
prestrain and reloading directions. The observed anisotropic hardening effect is then
modelled using a modified Swift equation and anisotropic yield function.

The developed material model is implemented in the elastoplastic part of the in-
house IGA code and validated with a comparison of numerical simulation and experi-
mental results.

1.4 Structure of the Thesis

The remainder of the thesis is structured as follows.



Chapter 1 1.4. Structure of the Thesis

Chapter 2 gives a theoretical background on isogeometric analysis method and nec-
essary formulae for the later parts of the thesis. Specifically, it covers the main aspects
of geometry representation, basis functions, IGA mesh generation, multi-patch coupling,
Jacobians and numerical integration. This chapter also serves as the theoretical intro-
duction for the in-house IGA code JWRIAN-IGA.

Chapter 3 presents the development of a fiber mesh model which is a first step to
integrate IGA and DFOS. The proposed fiber model is used with linear elastic IGA to
simulate DFOS measurements. The properties of the model and their effects on the
measurability are studied and numerically computed fiber strains are compared with
experiment data. Finally, a case study on estimating unknown loadings on a structure is
illustrated.

Chapter 4 proposes an analytical method of inverse IGA in which the displacement
field is reconstructed from measured fiber strains. A detailed literature review on the
existing inverse finite elements is given and the differences with the proposed method
are explained. The developed method is validated with simulated examples, and sensi-
tivity to practical DFOS parameters is studied. Then, the inverse IGA-DFOS is applied to
estimate the deformation of a rotating impeller plate from the experimentally measured
fiber strains.

Chapter 5 presents the experimental findings of anisotropic hardening behavior of
prestrained high strength steel and formulation of a mathematical model the observed
phenomena. The model is implemented in elastoplastic IGA code and validated with
experimental data.

Chapter 6 summarizes the main outcomes of the research and gives an outlook on
the future research directions.



Chapter 2

Theory and Development of
Isogeometric Analysis

In this chapter, the detailed formulation of IGA will be described. We will begin with the
parametric representation of geometry and fields, followed by the basis functions and
their properties. Then, the concept of isogeometric analysis will be introduced in the
context of solid mechanics by Galerkin method. We will also discuss important aspects
of IGA such as coordinate systems, multi-patch coupling and material nonlinearity.

2.1 Geometry representation

The types of geometries used in IGA are based on splines which are commonly used for
efficient representation of complex free-form shapes in CAD. The most common spline
types are B-Splines and Non-Uniform Rational B-Splines (NURBS). There are other
types of experimental splines in literature for unstructured meshes such as T-Splines
[39], [40], S-Splines [41], LR-Bsplines [42], and truncated hierarchical B-splines (THB-
splines) [43]-[45]. However, NURBS remains the simplest and most stable basis with
well-studied properties [46] and hence it will be used for IGA in this research.

NURBS geometries are parametric, which means that the geometry is a function of
parameters. Consider a curve c(§), where ¢ is the parameter as illustrated in Fig. 2.1.
The curve is defined by the product of univariate basis functions N; and control point
coordinates C; of the following.

n

c(&) =)  Ni(€)Ci, E€R; ¢,Ci € R, (2.1
i=1
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®-- Control points
B-Spline curve
O Mapped knots

Figure 2.1: An example of a parametric spline curve

where n is the number of basis functions/control points and ¢ is the curve point at
parameter £. Likewise, the parametric surface and volume can be expressed as:

n) = Z Z N;;Cij, 2.2

i=1 j=1

n m 1
57% ZZZ z]kak (23)

=1 j=1 k=1

IGA is an isoparametric formulation which means the same basis can be used to rep-
resent fields such as displacement or strain. In such case, the control point coordinates
C are replaced by the respective control point values. For instance, the displacement
field is expressed using control point displacements d as follows:

=> Ni()d;, 2.4
=1

Before giving the explicit form of B-Spline and NURBS basis functions, the different
types of coordinate systems in IGA must be introduced to provide relationship between
the parameters and knot vectors.

2.2 Coordinate systems

The geometry and solution fields are interpolated by the same parameters as previously
mentioned. Regardless of the physical dimensions of the geometry, the parametric di-
mensions are normalized between O and 1 by convention (although it is common to
see unnormalized parmeters in CAD). The parametric space dictates the topology of the

9



Chapter 2 2.2. Coordinate systems

geometry, i.e., whether it is a curve, surface or volume. A curve is defined by a single
parameter, hence univariate, whereas a surface is bivariate and a volume is trivariate.
The parent element refers to the parametric domain of a NURBS geometry, which is a

unit square for a bivariate geometry and a unit cube for a trivariate geometry.

In FE computations, there is a need for numerical integration throughout the struc-
ture domain (surface or volume). Gaussian quadrature is commonly used for this pur-
pose; however the Gauss points are defined within the interval [—1,1] and the basis
functions are defined in the parametric space. Therefore, there are primarily three types

of coordinate systems (or spaces) in IGA:
1. parametric space, where the basis functions are evaluated,
2. Gauss space, where the Gauss integration points are defined, and
3. physical space, in which the actual geometry and control points exist.

These are illustrated in a univariate example in Fig. 2.2. The dimensionality of physical

L’ ~ _- - S < ~ o .
e ’ 5 /s - 5 s /,/\ N
‘ = S I B
—t } +— -— —t ' +—o
-1 0 1 0 & Git1 1
Gauss space Parametric space Physical space

Figure 2.2: Coordinate systems and mappings

space is defined by the control points and is independent of the parametric dimensions.
In this thesis, parametric coordinates will be designated by {&,n, (} or €. The cardinality
of the physical space is written as 1D, 2D or 3D, and represented by {X,Y, Z} or {z,y, z}

axes.

The integration domain can be converted from one space to another using partial
derivatives or Jacobians. The Jacobian from physical to parametric space can be derived

as follows.

_8:13_ ox O 8zT
Jlfa—([a—E o oz (2.5)

2 2 2
s [ @ G

10
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For bivariate surfaces and trivariate volumes, the Jacobian matrices are:

dz Oz 4
o On

J = g—g g—g 1| for bivariate surfaces, 2.7)
9z 0z 4
o On
9z  dx Oz
98 On o

— |% 9y Oy ivari

J = 5% o0 oc for trivariate volumes, (2.8)
9z 9z 9z
o0&  on O

where the partial derivatives are calculated from the basis functions and control points

ox - 6NZ~ By - 8N,~ ox - 8Ni
22=2_7:Cui» 5, =D 77Cvi» 32 =) _ 7 Chui, . (2.9)
o ;;; e T b ;;; e 7 ;;; an

as

The transformation from Gauss space to parametric space follows a linear mapping:

§= %[(&'H —E)E+ (Ci1 + &), (2.10)

where &;, &;11 is known as a knot span. Hence, the Jacobian J5 from parametric space to
Gauss space is

9¢

Jy = Y for univariate, (2.11)
Jy = a—ga—? for bivariate, (2.12)
o€ 01
Jy = %a—?a—g for trivariate. (2.13)
& 0N ¢

2.3 Basis functions and their derivatives

B-Spline basis functions of order p are defined recursively from Cox-de Boor equations

as follows [46].
if g < :

0, otherwise
NP () = ;;f"&Nf‘%s) n f:_gim (©), 2.14)

where ¢ is the parameter value and &; denotes i*" knot value in the knot vector & =
{&, &2, -+, &ntpr1}. Aknot vector is a non-decreasing set of real numbers in the param-
eter space and normalized to [0, 1] (more explanation in Section 2.4.1).

11



Chapter 2 2.3. Basis functions and their derivatives

The first derivatives of B-Splines basis functions are given by:

VO =g NN O - N (2.15)

Non-Uniform Rational B-Splines (NURBS) basis functions are generalized case of B-
Spline basis functions to permit exact representation of conic sections which are widely
used in lines plans of ships. NURBS basis functions are calculated by projected transfor-
mation of B-Splines by adding an additional weight parameter to each control point and
taking the weighted average of B-Spline functions as shown in Eq. (2.16).

e e @.16)

Z:‘L:1 Ni,p(g)wi
where w; is the weight vector with dimension equal to number of control points.

Bivariate and trivariate NURBS basis functions are defined by projection of tensor

products of B-Splines basis functions, as shown in Eq. (2.17) and (2.18).

N p(§) M q(n)wi ;
RPI(E ) = — P Jq J 2.17
CRNCI >N > Y TR o
AUNOE Nip(§)M;q(1) Lir (Q)wi gk (2.18)

1
> i Z;n:1 >t Nip(€) Mg (1) Ligr (§)wi ok
If all the weight values in w vector are equal, NURBS basis degenerates into B-Spline
basis.!

The first NURBS derivatives can also be derived from the B-Spline derivatives as
follows [3]:

(;ifR?(&) _ wiW(f)N{,p((fIZVZ;)/I;({)Nz‘,p(f)’ 2.19)
where N/ (€) = £ Nip(€) and
W) = SN (€. (2.20)
j=1
The derivatives with respect to physical coordinates can be calculated by the chain rule
h L Npl) = ngg@ % - ngg(@ 7. (2.21)

A note on the notation: N; may also be used to denote a general basis function without a strict reference
to B-Spline or NURBS, univariate or multivariate. Its definition should be clear from the context.

12



Chapter 2 2.4. IGA mesh and refinement

2.4 IGA mesh and refinement

2.4.1 Knot vectors

Although control points are analogous to nodes in traditional FEM, knot vectors define
the element or mesh boundaries instead of control net in IGA. A knot vector is a non-
decreasing set of real numbers in the parametric space. For example, in £ parametric
direction, the knot vector is defined as = = {{1,&2, -+, &ntpt1},& € R. In standard
IGA formulations, knot vectors are normalized between 0 to 1. Knot vectors in CAD are
usually not normalized but they can be simply normalized by dividing all knots by the
largest knot value and adding the offset. A knot span is defined as the difference between
two consecutive knots. The mapping from knot spans (parametric dimension) to mesh
span (physical dimension) only depends on the relative size of knot spans and hence
normalizing knots does not change the physical geometry. For surface and volumes, the
lines of constant knots define the physical mesh lines. Therefore, an IGA mesh consists
of knot spans and associated control points as illustrated in Fig. 2.3.

Knot spans

\ m
j SEn = zRf}q(fln)Bi,j

n
i=1j=1

7 >
I o . Mapping

Parametric space Physical space

Figure 2.3: Parametrization for a bivariate surface. The knot spans comprise the sub-
divisions of the parametric domain and mapped knot spans mark the subdivisions in
physical space which make up the IGA mesh.

Knot multiplicity is defined by the number of times a knot is repeated. If a knot is
repeated m times, the number of continuous derivatives of the basis functions become
(p — m — 1). Hence, the continuity of geometry (or fields) can be controlled by the
number of repeated knots. In Fig. 2.1, each ‘segment’ can be identified by the mapped
knots. Note the C° continuous kink at the 5 knot. The knot vectors in IGA are open
which means the first and last knots are repeated p + 1 times. This has the effect of
making boundary knot lines (or surfaces) isolated to the terminal control points. The

13



Chapter 2 2.4. IGA mesh and refinement

following equation shows an open knot vector.

E= §07 o 7§pa )gp-f—l? Tt 7€n+17 o 7§n+p+1 (222)
—_———
p+1 equal terms p+1 equal terms

The open knot vector facilitates easy extraction of boundary surfaces from a volume by

simply copying the desired knot vectors and associated control points.

2.4.2 Mesh refinement

In traditional FEM, each element has its own parametric space or parent element. The
IGA parameter space however, maps to the entire patch. A patch is the unique mapping
from the parent element to the physical space.

The NURBS data (i.e. control points and knot vectors) in each patch can be used as
an analysis mesh in IGA. However, refinement of the original mesh is usually required
for higher solution accuracy. In principle, there are three types of mesh refinement in
IGA:

* h-refinement, which subdivides the physical mesh by adding knots and control
points,
 p-refinement, which increases the order of the basis functions, and

* k-refinement, which combines h-refinement and p-refinement.

In all cases, the original geometry is unchanged by the refinement process. In this re-
search, h-refinement is primarily used for mesh refinement since it is the most reliable
method to increase accuracy [47].

The h-refinement is a method of subdividing a NURBS patch by adding knots (and
hence more control points) while keeping the original geometry unchanged. This can
be done by knot insertion algorithm [3], [46]. In this process, new knots ¢’ are added to
the existing knot vector = to create more knot spans. Inserting unique knots preserves
the continuity of the original geometry whereas knot multiplicity reduces the continuity.

Let the existing knot vector = = {1, &2, -+ , {ntp+1 }- If the added knots are &1,
there will be n 4+ m basis functions after refinement. The new control points C =
{C1,Cs,- -+ ,Cpim}T can be found by:

c=T"C (2.23)

14

7£m;



Chapter 2 2.4. IGA mesh and refinement

1 if& e &5,
Ti(;‘ _ if £ [f] §J+1) and (2.24)
0 otherwise

o1 Eirg =& 7a . Siter1 — Eitq g _

avh =>4 Sy pd  SITAT T pd g —=0,1,2,--- ,p—1 (2.25)

K $irqa— & 7 G — & I

A 2D example of h-refinement by knot insertion is illustrated in Fig. 2.4 where two

knots are inserted to = and one knot is inserted to /. Knot lines in physical space are
added accordingly and new control points are computed from Eqn. (2.23).

Nas.e6

N1,2,3
$123  $a $5.6.7

Ns.6,7

4 —

N1,2,3

1 $123¢4 §5 $6 $789 Y
LE X

Figure 2.4: Tllustration of h-refinement. The knot spans are subdivided and correspond-
ing control points are generated by the h-refinement algorithm.

2.4.3 Applying boundary conditions

Detached control points from the physical mesh makes the application of Dirichlet bound-
ary conditions (BC) non-trivial. If the boundary is on C° continuous edges or surfaces,
homogeneous BCs (zero displacements) can be directly applied to control points. In
general however, BCs cannot be applied directly to control points since NURBS basis
functions do not satisfy Kronecker delta property. It is illustrated in Fig. 2.5 where ap-
plying a certain displacement to a control point does not move the geometry by the same
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Chapter 2 2.4. IGA mesh and refinement

amount. In this case, the enforcement of prescribed boundary can be done by deriving
control point values by one of the two methods: interpolating points or least-square fit

[48]:
/— Control point on geometry

— Control point detaches
RN from geometry

/
CE e Y  ep———

Figure 2.5: Different displacements of control points and geometry

Interpolating points

In this method, sampling points U are chosen on the desired boundary curve or sur-
face. The number of sampling points is equal to the number of control points which
has influence on the boundary. Then basis functions are evaluated on the correspond-
ing parametric coordinates of the sampling points to get the basis functions matrix M,
where M;; is the basis function value of j* control point for the i'* sampling point.
Finally, the control point values are calculated by the inverse relation.

U=MC (2.26)
C=M'U (2.27)

The sampling points should be fairly distributed on the boundary to prevent singularity
of M and to keep numerical stability.

Lease square fit

In contrast to finding the exact inverse in interpolating points, this method uses a least
square fit of the boundary over the sampling points. This is advantageous when the
sampling points have noise or the NURBS boundary cannot admit all the points. The
number of sampling points is more flexible in this method since it does not need to be
equal to the number of active control points [49]. The fitting can be done by solving the
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Chapter 2 2.5. Linear elastic IGA

least-squares matrix:

Cc=[M"M]" [MTU]. (2.28)

2.5 Linear elastic IGA

The weak form of the governing equations in a structural system can be derived from
the minimum potential energy principle or the virtual work principle. The total strain
potential energy of a structural system is given by:

1
= /aTsdQ—/bTudQ—/hTudF, (2.29)
2 Jo Q r

where u, e, o, b, h are displacement, strain, stress, body force and traction force on the
boundary T, respectively. The first term in Eq. (2.29) is the strain energy, the second
term is the work done by the body force and the third term is the work done by the
surface traction. After discretization of the domain (2, displacement distribution can be
expressed in terms of interpolation functions NV and discretized displacements d:

w(€) =Y Ni(&)d, (2.30)
=0

where £ = (&,7,() are the parametric coordinates, and d; = [diz, diy, diZ]T is the dis-
placement vector of i’ control point. The symbol N; is used here instead of R? oy for
brevity and to be consistent with conventional notation. Strain and stress distributions

can be obtained using the strain-displacement matrix B and constitutive relation:

e(§) = B(§)d, (2.31)
o(§) = De(§), (2.32)
[Nie 0 0 Noya 0 0]
0 Ny, 0 -+ 0 Ny, 0
|0 0 Ne o 00 Neof 2.33)
Niy, Nz O -+ Nuoy Nup O
0 Ni. Ny 0 Nn. Ny
Ni. 0 Nig No: 0 Nyg|
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Chapter 2 2.5. Linear elastic IGA

where N; ¥ means Q])\Q' and D is the elasticity matrix. Here, € and o are expressed in

vectorized form using Voigt notation:
T
€= [zsm Eyy €2z 26zy 26y, 25234 , (2.34)
T
O'Z[Um Oyy Ozz Ozy Oy am} . (2.35)

Then, the potential energy can be approximated from the discretized variables by piece-
wise integration on element e with its domain 2, and boundary I',.:

Ne 1
I~ Z - | B'd"DBddO. - | NTd'bdQ, —
e=1 2 Qe Qe

NTdTh dFe} ) (2.36)
Te

The stationary condition (611 = 0) requires that the variation of potential energy is
zero with respect to each free variable d.

o1l
= =0 2.3
9d ) (2.37)
Z [( B"DB dQe> d— / NTpdQ. - | NTh dl“e} =0. (2.38)
Qe Qe Fe

e=1

Then element stiffness matrix K. and external force vector f. can be defined as:
K, = / BT"DBdQ,, (2.39)
Qe

f. = / NTbdQ, + / NThdT, (2.40)
Qe

e

and global stiffness matrix and force vector as:
K=) K., f=) fe (2.41)
e=1 e=1

Then, Eq. (2.38) becomes:
Kd=f. (2.42)

The integrals in Eq. (2.39) and Eq. (2.40) can be numerically evaluated using stan-
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Chapter 2 2.6. Coupling of multi-patch geometries

dard Gauss-Legendre quadrature:

nipt
K.~ B"DB|Ji||J2|w;, (2.43)
nipt nipt
fom Y NTbI|Jo|wi + > NTh|Jy||J2|w;, (2.44)
i J

where nipt is the number of integration points and wj is the Gauss weight of i** integra-

tion point.

2.6 Coupling of multi-patch geometries

While NURBS geometries can accurately represent free-from surfaces and volumes, their
grid-like tensor product structure is not suitable for geometries with complex morphol-
ogy. In such cases, the geometry is divided into multiple patches and the patches are
coupled together for analysis. Each patch has its own parametric space and hence inde-
pendent of other patches in terms of topology. Therefore, the patches must be coupled
or ‘glued’ together in physical space for structural analysis in IGA. The coupling can be
achieved by either weak or strong coupling. In weak coupling, the continuity is enforced
by the continuity of the basis functions. In strong coupling, the continuity is enforced
by merging the shared control points and knot spans. However, creating a compatible
control point mesh between two patches is cumbersome or even impossible in practice.
Hence, weak coupling is preferred in practice. It can be achieved by the Nitsche penalty
method [50] which is used in this research. The penalty method is applied for the weak
enforcement of Dirichlet boundary conditions without increasing the number of equa-
tions in the system. It is a variational method that adds a penalty term to the weak form
in Eq. (2.29). The penalty term is weighted by a penalty parameter /3 as follows.

1 1
o= / aTsdQ—/bTudQ— / hTudl + =8 | wludly. (2.45)
2 Ja Q r 2" Jry

penalty term

The continuity term for displacement between two patches is simply:

u® —u® =0onTy, (2.46)

Continuity for stress field can be enforced by the flux equilibrium condition on the
shared surface.
(1 —=7)oWn® —y@n? =0 onIy. (2.47)
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Chapter 2 2.6. Coupling of multi-patch geometries

However, the stress continuity is not considered in this thesis due to additional complex-
ity for the calculation of «. The error in breaching stress continuity is expected to be
negligible in the overall solution.

After discretization and numerical quadrature, the governing equation for multi-
patch problems can be written as follows.

(K+ K.)d=f, (2.48)

where K, is the coupling matrix with coefficients derived from the basis functions of
the shared surface. From Eq. (2.45), the coupling matrix is assembled from the basis
functions as follows.

K.=>» BN'N. (2.49)
I

The penalty parameter 5 can be interpreted as the stiffness of the coupling as illustrated
in Figure 2.6. It should be chosen carefully to avoid ill-conditioning of the system matrix.
As a rule of thumb, it can be estimated to be on the same order of magnitude as the
Young’s modulus or mean diagonal of stiffness matrix K.

(1) (2)

(1) (2)

Figure 2.6: (above) Patch (1) and (2) with a shared interface I'yy. (below) Collocation
points on the two patches with the interpretation of penalty parameter as stiffness.

For the coupling of NURBS volume patches, the shared surface is extracted from
one of the volumes. The patches are designated as master and slave, and the surface is
extracted from the slave patch. A trivariate volume patch consists of six surfaces patches
which can be individually extracted using respective knot vectors and control points.
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Chapter 2 2.7. Summary

The collocation points are taken from physical mapping of Gauss points on the extracted
surface, and the integration is performed on that surface to obtain the coupling matrix
K..

For nonlinear problems, K is assumed to be constant and is calculated only once
at the beginning of the analysis. It is added to the tangent stiffness matrix K; in each
iteration of the Newton-Raphson method.

2.7 Summary

The mathematical background for isogeometric analysis in the context of solid mechan-
ics was presented in this chapter. The form of B-Spline and NURBS basis functions
are given along with the representation of geometry and field variables using the basis
functions. Different coordinate systems and Jacobians were introduced. IGA mesh gen-
eration for numerical analysis and mesh refinement was explained from the perspective
of knot vectors. Finally, the coupling of multi-patch geometries was explained using the
penalty method. These concepts lay the foundation for the following chapters in which
new methodologies are developed based on NURBS, multi-patch IGA and variational

principles.
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Chapter 3

Integration of IGA and Distributed
Fiber Optic Sensing

3.1 Introduction

This chapter presents the extension of IGA to utilize distributed fiber optic sensing
(DFOS) through the development of a mathematical model to represent the optical fiber.
This is the first step towards using DFOS in IGA in a unified framework. The proper-
ties of the fiber mesh are analytically studied and simulated fiber strains are compared
with measurements in an experimental model. Then, the developed model is applied to
estimate the deformation and loading condition from DFOS data.

3.2 Development of Fiber Mesh Model for IGA

The quantities of interest of a DFOS fiber in the context of numerical analysis include
¢ fiber geometry,
* fiber arclength (1D coordinates),
* fiber strain sampling interval, and
* averaging window length.

The fiber geometry is crucial because the fiber coordinates from DFOS measurements are
strictly one-dimensional and measured along the arclength. However, the actual fiber
exists in a three-dimensional space, is rarely a straight line, and attached to the host
structure. The fiber strain sampling interval is the distance between two consecutive
strain measurements. Calibration of fiber coordinates can be done on a few points but
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Chapter 3 3.2. Development of Fiber Mesh Model for IGA

translating all measurement points to spatial coordinates is not straightforward. The
geometry of the fiber is also important to know the strain sensing direction (or tangential
direction) at the sampling position. In addition to these quantities, the relation of fiber
sampling points to the deformation of host structure must be considered in order to map
the to surface strains 1D fiber strains.

Considering the above factors, the fiber mesh model was developed as an extension
of univariate NURBS curve. Hence, the fiber geometry is a parametric curve in 3D
space, and the fiber strain sampling interval is the arclength between two consecutive
sampling points. Likewise, the fiber coordinate is the arclength of the fiber curve from
origin to the sampling point. In accordance with the convention of IGA (as described in
Section 2.2), the parametric coordinates are normalized to [0,1] with its associated knot
vector = = {¢ | £ € [0,1], &1 > & ). However, further formulations such as mapping
from the fiber to the base structure in terms of global coordinates and calculation of
fiber strains still remain. The following section details the mathematical formulation of
the fiber based on this foundation.

3.2.1 Fiber curve

An example of a second order NURBS curve and tangent vectors are illustrated in
Fig. 3.1. The physical coordinates x of the fiber at the parametric coordinate £ can
be calculated from the basis functions and control points:

z (§) :ZNi &) C;. 3.1
=1

2C,

* ’

Y
Ca'a’

3@

Figure 3.1: A second order NURBS curve showing control points (C;, Cs, C3,Cy4) and
tangent vectors ¢.

The fiber coordinate s is equal to the arclength of the curve from origin, which can
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be found as:

s 13
$(6) = /O ds = /O T e, (3.2)

where J; is the Jacobian from parametric to physical space (see Section 2.2).

Since DFOS measurements are given in terms of fiber coordinates, it is also necessary
to convert the physical fiber coordinates to parametric coordinates (i.e, s — £). This can
be performed using Newton-Raphson iteration or golden section search since s and ¢
have a monotonic relationship as ||Jz| > 0 .

In the calculation of fiber strains described in the following section, tangent vector
at the fiber sampling point is required. The tangent vector ¢ of the fiber at parameter ¢
can be derived as:

. d " dN;
(e - 2 -y B, (33)
i=1
and the unit tangent vector is given by:
~ t(¢)
t() =-— . 3.4
=@ .

3.2.2 Conversion from strain tensor to fiber strains

The fiber mesh model is based on the assumption that the fiber strains are linearly
related to the displacement field in the solid structure. It is also assumed that mass and
stiffness of the optical fiber have negligible contribution to the structural system.

Let the distribution of strain tensor E of the base structure have been obtained from
a numerical simulation. In order to calculate one-dimensional fiber strains, the strain
tensor on the structure’s surface can be projected along the fiber tangent direction at
the sampling point [51]. The fiber strain at the sampling point s, which corresponds to
global coordinates «, can be computed by:

er(s) =t'Eft, (3.5)
Exx Ez’y Exz t;c

Elx(s)) = |eoy ey eyz| - t(s)= |ty |- (3.6)
Exz Eyz Ezz t,

To allow the use of vectorized strain tensor in Voigt notation, Eq. (3.5) can be rewritten

!Since the basis function derivatives can be undefined at multiplicative knot positions, the implementa-
tion of Newton-Raphson iteration should mitigate this scenario.
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in vector form exploiting the symmetry of the strain tensor:

e =tle, (3.7)

T
€= [&tm Eyy Ezz 2Emy 2€y, 25m] , (3.8)
t= [tﬁ 12 tuty byt txtz}. 3.9

Figure 3.2: Illustration of fiber strain sampling points with sampling interval As; sam-
pling resolution is numerically the same as the moving average window.

In practice, fiber strains are not measured as point strains but averaged over a dis-
tance As as illustrated in Fig. 3.2. Hence, the moving average fiber strain at the mid
sampling location s can be expressed as the following.

1y
2/(s) = / £/ (s) ds, (3.10)
As Js_as
1 nipt
Er(s) = p Z5f (s:) [Juil [Jail vis (3.11)
i=1

where ~ is the weighting function to adjust the shape of the moving average window
(v = 1 for rectangular window).

A flow chart which summarizes the elastic stress analysis and fiber strain calculation
at all sampling points, is shown in Fig. A.1.

3.2.3 Validation of the numerical code

In order to validate the numerical implementation of the fiber model in JWRIAN-IGA
and investigate the relation of fiber strains to surface strains, a circular fiber on a simply

25



Chapter 3 3.2. Development of Fiber Mesh Model for IGA

y N S 7
X

2() cm

Figure 3.3: Simple validation model for fiber strain calculation

supported plate is devised as shown in Fig. 3.3.

The parametric equation for a unit circle is
s(0) = (cosb,sinf), (3.12)

and the tangent vector is
t(0) = (—sin6, cos ). (3.13)

Firstly, a uniform strain of ¢,, = 100 x 1076 = 100 ue is applied to the plate with
other strain components equal to zero?. This simplifies the analytical solution of fiber
strains to ey = €4, sin? #. Figure 3.4 compares the fiber strains from the numerical model
with the analytical solution. Note that the total fiber length is 7 x 0.1 ~ 0.3 m. The plot
also shows the moving average fiber strains with 5 cm and 10 cm window lengths. Five
integration points were used for numerical quadrature in Eq. (3.11). The analytical
and numerical results for continuous (on-point) fiber strains are identical within the
numerical precision. There are a few small deviations in moving average fiber strains
due to the numerical integration error. The zero fiber strains correspond to the points
where the fiber is perpendicular to the strain direction (6 = 90°,270°).

Next, the plate is subjected to a biaxial strain state with ¢,, = 100 ue and ¢,y =
—30 e, the analytical solution being £ = &, sin? @ + ,, cos? §. From the fiber strain

2The unit (ue) refers to micro-strain (pm/m) which is a common unit for fiber strain measurements
although strain is dimensionless.
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Figure 3.4: Fiber strains from uniform strain ,, = 100 us. The plot shows analytical
and numerical solutions for continuous (on-point), and moving average with 5cm and
10 cm windows.
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Figure 3.5: Fiber strains from biaxial strain €., = 100 xe and e,,, = —30 pe.

results shown in Fig. 3.5, two important observations can be made. Firstly, since the fiber
strains vary from —30 e to 100 ue, they have to pass through zero at some points. Those
points are where positive and negative terms cancel out even though the surface strain is
nowhere zero. Secondly, it can be seen that the moving average fiber strains with 10 cm
window are all positive which illustrates that relatively large averaging windows cannot
resolve quick variations in the underlying surface strains.

What about shear strains? Equation (3.7) shows that shear strains can be detected
by the fiber. To verify that, a pure shear of ¢,, = 100 uc is applied to the plate. The
analytical solution for fiber strains is ey = —2¢,, sinf cosf and the results are shown
in Fig. 3.6. In fact, all shear strains (and all strain states) can be mapped into normal
strains in the principal coordinate system. For the current case of pure shear, the two
principal strain directions are 45° and 135° to X-axis. The fiber points in these directions
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Figure 3.6: Fiber strains from pure shear ., = 100 pe.

correspond to maximum and minimum fiber strains with their magnitude matching the
absolute value of shear strain. In all scenarios, fiber is the most sensitive to the normal
strain component that is parallel to the fiber direction.

3.2.4 Merits of Integrated IGA-DFOS

One might wonder what is the advantage of using IGA-DFOS over existing methods. As
described in the previous chapters, the merit of IGA is the ability to use exact CAD data
directly and the lower effort of setting up the analysis model. The benefits of DFOS are
also discussed in Section 1.2 and summarized in Table 3.1. The integrated IGA-DFOS
model combines the advantages of both since the fiber model is developed under the
same principles as IGA while keeping the practical considerations in mind.

DFOS Strain Gauge
Distributed measurement data Discrete sensors for multiple locations
High spatial resolution Single point measurement

Long range (25 km) in a single fiber Needs signal multiplexers
Stable in harsh environments

Table 3.1: Comparison of DFOS and strain gauges

The existing SHM methods, even the ones using IGA, are based on strain readings
from point sensors (strain gauges) [32]. This requires accurate positioning of strain
gauges between the digital model and real world. In models which assume strain gauge
at the center of each element, the structure mesh is tied to the strain gauge positions
making mesh generation cumbersome. To relax this constraint, the strain gauge readings
can be interpolated to element centroids [52] but it is not straightforward if the direction
of strain gauges is changing. Complexity of sensor instrumentation is another problem
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as the number of sensors increases. Some studies suggested the optimization of sensor
placement to minimize the number of sensors based on predicted deformation modes
[53] but it usually requires large mesh sizes to accommodate fewer sensors.

The IGA-DFOS model is independent of the structure mesh and the fiber. The sam-
pling point locations are calculated automatically based on fiber geometry and sampling
interval. It is also easier to calibrate the fiber coordinates from a few known distances.
Sensitivity of the fiber can be studied during the design cycle from the IGA simulations.
Hence, the isogeometric approach combined with high efficiency of IGA offers a poten-
tial for a design-analyze-refine workflow.

3.3 Application of Integrated IGA and DFOS

In this section, an application example of the fiber model and IGA for elastic stress-
strain analysis is presented to demonstrate the feasibility of the integrated IGA-DFOS
model. The DFOS fiber strains are experimentally measured from the deformation of a
cylindrical pipe, and then simulated fiber strains are compared with experiment results.
The objective of this study is to predict the amount of ovalization (deviation from circular
cross section) of the cylindrical pipe using the fiber strain measurements.

3.3.1 Experimental setup

The schematics of the experimental setup is illustrated in Fig. 3.7, and the actual model
is s hown in Fig. 3.8. The pipe has a 300 mm outer diameter with 5 mm thickness, and
made of PVC material with a Young’s modulus of 2.8 GPa and Poisson’s ratio of 0.3.
The DFOS fiber is wrapped around the pipe’s outer surface in four loops with a pitch of
33mm and a protective tape was placed over it. The horizontal loading was applied by
turning a threaded rod at the mid-section of the pipe, and a pair of rectangular beams
distributed the load along the pipe’s length as shown in Fig. 3.8. This loading causes
an oval deformation which induces surface strains on the outer surface of the pipe. The
applied displacements were measured using two dial gauges on the opposite sides of
the pipe. DFOS strain data was measured by a Neubrescope (NBX7031) instrument us-
ing Rayleigh backscattering (RBS) in 1 cm intervals under Tunable Wavelength Coherent
Optical Time Domain Reflectometry (TW-COTDR) mode [21] for temperature compen-
sated strain measurements.

In order to calibrate the fiber coordinates in the simulation, four fiber locations on
the top surface of the pipe were marked from the initial calibration measurements. The
fiber coordinate at a particular point was obtained by spot-heating the desired location
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PVC Pipe

Dial gauge
Neubrescope Threaded rod
DFOS Instrument
\ Optlcal fiber

Figure 3.7: Schematics of experiment setup

Figure 3.8: The pipe dimensions and experiment setup showing optical fiber, displace-
ment sensors and threaded rod

which can be detected as the change in backscattering frequency at the corresponding
coordinate.

3.3.2 Experimental procedure

The experiment was performed at five different prescribed displacements (designated as
M1 to M5) from the threaded rod to evaluate the response of the fiber strains with re-
spect to the deformation of the pipe. Table 3.2 shows the experimental parameters such
as sampling interval. The spatial resolution determines the length of moving average
window between consecutive fiber strain measurements.

Before the experiment, a calibration reading was performed to establish the ref-
erence fiber strain distribution in undeformed state of the pipe. Next, the required

Optical technology TW-COTDR

Fiber type Single mode optical fiber
Sampling interval 1 cm

Spatial resolution 2 cm

Averaging count 16
Strain range —15000 pe to 20 000 pe
Repeatability +0.2 ue/0.01°C

Table 3.2: Measurement parameters in the experiment
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amount of displacement was applied incrementally by turning the threaded rod. The
net prescribed displacement was taken as the average of the two dial-gauge readings.
This displacement caused the pipe to deform in an oval shape, which was detected by
the optical fiber as 1D fiber strains. The fiber strain readings were recorded and the
reference strain was subtracted from the measured fiber strains to obtain the net fiber
strains (strain change). This process was repeated for all load cases by increasing the
stroke to obtain the respective fiber strain distributions [54].

3.3.3 Experimental results

Figure 3.9 shows the experimentally measured fiber strains plotted against the fiber
coordinates for five load cases. The data shows the net strains which is the difference
between loaded and reference strains. Only the data in the region of interest, fiber length
from 2.5 m to 6.5m are plotted. It can be clearly seen that the strains oscillate between
positive and negative since the oval deformation causes tensile and compressive surface
strains on outer surface of the pipe. As expected, bigger displacements produce bigger
magnitude of fiber strains. We can also see the experiment data has some noise around
10 e which is expected at the high resolution mode. Although the noise error can be
improved using larger averaging windows, the small scale of the model warrants high
spatial resolution.
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Figure 3.9: Fiber strain measurement data from experiments. A-E corresponds to the
approximate locations on the pipe.

In order to check whether the fiber strains have a linear response to applied displace-
ments, the absolute maximum values are plotted against the displacements in Fig. 3.10.
It can be seen that the magnitudes of fiber strains follow the linear trend with respect to
the displacements within the range of the experiments. This justifies the use of a linear
model for the prediction of fiber strains.
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Figure 3.10: Response of fiber strains on applied displacement to the pipe

3.3.4 Simulation model

In this section, the displacement-induced fiber strains will be predicted using linear elas-
tic IGA and developed fiber mesh model. The numerical model includes the pipe ge-
ometry, fiber curve, boundary conditions, material properties and DFOS measurement
parameters.

The basic NURBS geometry for the pipe, a hollow cylinder, is shown in Fig. 3.11(a).
It is a second order, single patch solid with 81 control points (27 in radial direction
and 3 in axial direction). Due to the tensor product structure of NURBS, it can be
imagined as bending a plate until the two edges meet to get a cylinder. The basic
geometry is subdivided by h-refinement to create a finer IGA mesh as in Fig. 3.11(b)
which increases the number of control points to 2205 and hence the total DOF to 6615.
The fiber geometry is a second order helix-shaped NURBS curve with 33 control points.

) ncp=81 ncp=2205

Figure 3.11: (a) Pipe geometry and control points (red points). Black lines show C°
continuity; (b) Analysis mesh and control points after h-refinement; (c) fiber curve (in
blue) with its control points
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The pipe model is fixed at YZ plane along the C° continuous bottom edge as shown
in Fig. 3.12 to prevent rigid body motion. Radial unit displacement u, = £0.5 is applied
symmetrically across the diameter of the pipe. The prescribed displacements can be
directly applied to the control points at such locations since they are interpolatory at C°
lines/surfaces. The DFOS parameters, sampling interval and spatial resolution, are the
same as Table 3.2.

Figure 3.12: Idealized Boundary conditions for the pipe model

The input file for elastic JWRIAN-IGA includes the basic geometry information of
control points, knots, boundary conditions and control parameters for mesh refinement.
The linear elastic IGA computation is followed by the fiber strains calculation using the
methodology described in Section 3.2.2.

3.4 Results and Discussion

Figure 3.13 shows the simulated normal strains ¢,, and ¢, distribution in the pipe, and
the 1D fiber strain distribution along the fiber. The magnitude of fiber strains have strong
correlation with normal strain components near (£r,0) and (0, £r) intercepts where the
fiber tangent is nearly parallel to the coordinate axes. However, they are not identical
because the fiber is not perfectly parallel to the axes and because of the moving average
effect.

Figure 3.14 and Fig. 3.15 shows the comparison of fiber strains between simulation
and experiment for case M3 and M4, respectively. Exploiting the linearity of the solu-
tion, the solution from the unit load was multiplied by the actual displacement value to
obtain the corresponding fiber strains. The fiber coordinates from the experiment were
adjusted to match those of the simulation. The plots show that the simulated data closely
follows the experiment’s trend, but the peak values of tensile strains in the simulation
are slightly higher than those in the experiment. The reason for this discrepancy may
be the idealized concentrated loading in the simulation in contrast to more distributed
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loading in the experiment. The concentrated loading caused a sharp peak in the strain
distribution, which consequently affected the one-dimensional fiber strain. Moreover,
the loading may not have been uniform along the length of the pipe as assumed in the

simulation.
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Fiber Strain (ue)

Figure 3.13: Normal strains distributions on the pipe from IGA: (a) strain-XX and (b)
strain-YY; (c) simulated fiber strain distribution
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Figure 3.14: Comparison of fiber strains between simulation and experiment for u, =
534 pm

3.5 Estimation of loading conditions from DFOS measurements

A potential application of integrated DFOS and simulation model is the estimation of
loading conditions in real time using measurement data. This can be achieved by match-
ing the observed fiber strains with simulated ones by various candidates of loading con-
ditions. This section presents a preliminary study on the estimation of loading condi-
tions from DFOS measurements. An optimization approach can be used to estimate the
boundary conditions by minimizing the discrepancy between observed and simulated
fiber strains. It’s important to note that an exact reproduction of loading conditions is
not achievable since Eq. (3.5) used for calculating fiber strains is irreversible.

To estimate the loading conditions on the pipe, a pressure distribution was assumed
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Figure 3.15: Comparison of fiber strains between simulation and experiment for u, =
755 pm

on the surface area of the pipe that is in contact with the rectangular bars (Fig. 3.8).
The variation of pressure along the length (Z) direction of the pipe was represented
with a second order B-spline function with five coefficients as free parameters, as shown
in Fig. 3.16. A prescribed pressure is preferred over prescribed displacements because
the latter imposes hard constraints on the flexibility of a structure, which could lead to
spurious local strain concentrations.

Figure 3.16: (a) Pressure application and loading zone; (b) Parametrization of the
pressure distribution function along Z-direction; p; are free parameters which influence
the shape of p(z)

The objective function E for the optimization problem is defined as the sum of
squared errors between the observed and simulated fiber strains at the measurement
locations:

E=Y (e} —epn)”, (3.14)
=1

where £%; and ey, refer to measured and simulated fiber strains respectively, and n; is
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the total number of sampling points. The error function F was minimized by optimizing
the parameters p; of the pressure distribution function to obtain the best-fit solution. Se-
quential least squares programming (SLSQP), a gradient-based quadratic optimization
method suitable for a small number of parameters, was used to solve the minimization
problem. The termination criterion for the optimization was set as AE < 107* (ue)?
between successive iterations.

As a representative case study, the measured fiber strains from the case M3 were
used to run the optimization. Convergence was quickly achieved after fifth iteration and
involved a total of 31 objective function evaluations including numerical finite difference
calculations. Figure 3.17 shows the resulting pressure distributions after optimization,
and Fig. 3.18 shows the fiber strains obtained from the simulation with the optimized
pressure. The optimized pressure was found to be higher in the middle part of the pipe
which is reasonable from the experimental conditions. This can be attributed to the
bending of the rectangular beams during the experiment (Fig. 3.8), which could have
resulted in non-uniform loading along the pipe.
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Figure 3.17: Optimized pressure distribution along the longitudinal direction of the pipe

Table 3.3 shows the root-means-square (RMS) and maximum error statistics be-
tween uniform and optimized loadings. The optimized loading conditions result in half
of fiber strain errors from the idealized uniform loading in the previous section. The
average displacement error from optimized loading and the ground truth was less than
4%, which demonstrates the efficacy of using the IGA-DFOS model for estimating the

unknown loading conditions.

The parametrization of the loading (pressure distribution) from Fig. 3.16 is not
unique since a different number of coefficients could be used. The choice of parametriza-
tion can affect the search space of possible loading distributions and hence must be
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Figure 3.18: Fiber strains reproduced using the optimized pressure distribution

Uniform loading Optimized loading

RMS fiber strain error 13.421 pe (7.32 %) 5.863 ue (3.19 %)
Max fiber strain error 30.539 pe (16.65%)  16.25 ue (8.86 %)
Average displacement error - 3.91%

Table 3.3: Comparison of errors between uniform and optimized loading conditions

chosen considering practicality and computation time. In the present model, it was
found that five coefficients were adequate to replicate the optimal loading distribution
in Fig. 3.17. Another caveat of this approach is the requirement of the initial knowledge
of the loading zone. If such information is not available, the loading zone has to be
inferred from the observed fiber strains when setting up the optimization problem.

3.6 Summary

In this chapter, a conceptual and numerical model of DFOS fiber was presented and in-
tegrated with isogeometric analysis to derive the analytical fiber strains. The developed
fiber model combines the geometric accuracy of IGA and versatility of DFOS into a sin-
gle framework. The properties of the numerical fiber strains were investigated with a
validation model under simplified strain states. An experimental model of a cylindrical
pipe was used to measure fiber strains during deformation and the results are compared
with the numerical simulation. The simulation results with assumed loading conditions
showed that the numerical model can closely replicate the experimentally measured
fiber strains except in the peak regions.

The numerical model was then used to estimate the loading conditions from the
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measured fiber strains via optimization. The fiber strain errors reduced in half (from
7% to 3%) after optimization and the resulting displacement error is less than 4 % to
ground truth. The results show that the methodology can estimate loading conditions
with good accuracy in real time, which can be used for structural health monitoring and
damage detection. The estimation of loadings however require the prior knowledge of

possible loading zones so that proper parameters can be used in optimization.
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Chapter 4

Development of Inverse IGA for
Structural Monitoring

4.1 Introduction

The previous chapter illustrated that the structural response and loading conditions can
be estimated using an optimization approach. However, constructing such an optimiza-
tion model requires prior knowledge of loading conditions such as the location and
direction of applied forces. In addition, setting up and iteratively solving the optimiza-
tion problem can be time consuming for complex structures. In this chapter, a one-step
inverse IGA method for the estimation of deformation and stress distribution from DFOS
fiber strains for linear elastic structures will be presented. ‘One-step’ refers to the type
of inverse solver which calculates the solution in single flow (i.e, non-iteratively). The
following literature review and the comparison with state-of-the-art will show that the
proposed method is a logical step in terms of versatility and accuracy.

This chapter is organized as follows. Firstly, existing literature on inverse methods
with FEM/IGA under the context of solid mechanics/structural analysis will be reviewed.
Then, the overview of the proposed inverse IGA and merits over the existing methods
will be explained. Next, the mathematical formulation of the method is described fol-
lowed by numerical validations. The fiber mesh model from the previous chapter is used
as a base for the development of this method. Finally, the new inverse IGA-DFOS is
applied to a practical example to predict the deformation of a flat-plate impeller under
rotation.

Numerous techniques for determining the structure state based on measured strains
can be found in literature. One such approach, called Ko’s Displacement Theory, was
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developed by Ko et al. is based on Euler-Bernoulli beam theory [55]. Ko’s theory has
been applied to aerospace structures such as beams, wing boxes and slender plates [56],
[57]. This model calculates deflections along a beam by integrating axial strains mea-
sured along a line at a known distance from the neutral axis. Another approach for find-
ing beam deflections is the Modal Method, which fits the coefficients of known mode
shapes to observed axial strains [58], [59]. The accuracy of this approach is influenced
by sensor placement and number of modes, and requires generating mode shapes in
advance from experiments or FEM simulations. On the other hand, a type of transfor-
mation methods based on Neural Networks have also been proposed for inverse shape
reconstruction from measurements but they are not as prominent because of the need
for large amount of training data and the lack of generality [60], [61].

4.1.1 Inverse Finite Element Method

A promising methodology for the generalized inverse analysis of structures is to utilize
finite element method and extend it to use measured strains instead of prescribed load-
ing conditions. It can be done in principle by modifying the variational equations at the
heart of FEM. One such method is the inverse Finite Element Method (iFEM) invented
by Tessler and Spangler et al. [33], [62]. This method, initially developed for plate
and shell structures, uses C°-continuous finite element shape functions and a weighed
least-squares variational functional to minimize the error between the analytical and
measured surface strains. Since iFEM is based on finite element formulation, several
variations of inverse finite elements have been proposed such as-

* three-node inverse shell element iMIN3 with six degrees-of-freedom per node [32],
e quadrilateral shell iQS4 [63],

* eight-node second-order curved shell element using curvilinear coordinates iCS8
[64],

¢ inverse Timoshenko beam [65], and
* refined zigzag theory for composite structures [53], [66].

A comparative study of iMIN3, iQS4 and iCS8 elements were conducted by Abdol-
lahzadeh et al. using numerical benchmark problems [67]. The iFEM elements have
been applied to full-surface field inverse displacement reconstruction of wing shaped
plates [30], [31], [53], cylindrical structures [64], wind turbines [68], plate structures
[52] and frame structures [69]. Prior studies have shown that iFEM outperforms other
competing methods such as Ko’s theory, Modal Method, and Neural Networks [70]. The
iFEM approach is adaptable to any geometry and sensor placement, with strain rosettes
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and Fiber Bragg Grating (FBG) as commonly used sensors. The standard iFEM formula-
tion assumes at least one strain sensor on each element’s centroid but it is not feasible
in practice to put strain sensors or rosettes on every element in the FEM mesh. To solve
this issue, iFEM employs a weighted least-squares method and assigns very small weight
values where strain measurements are absent in order to regularize the solution.

4.1.2 Drawbacks of iFEM, IGA as savior

The drawbacks of iFEM as opposed to other shape sensing systems are complex sensor
configuration and time-consuming development of analysis models due to coupling be-
tween FEM mesh and actual sensor placement. Isogeometric Analysis (IGA) is a perfect
candidate to tackle these issues since it utilizes Computer-Aided Design (CAD) geometry
to streamline the preprocessing of finite element analysis (FEA) models.

Despite the rising popularity of iFEM and IGA by themselves, application of IGA for
shape sensing purpose has been relatively few. Kefal et al. [71] extended iFEM formula-
tion using NURBS basis functions in the Isogeometric iFEM method with strain rosettes.
The developed IGA-iIFEM method was recently applied to cylindrical marine structures
[64]. Furthermore, IGA-iFEM has been applied to shape sensing of beam structures.
Zaho et al. [72] used NURBS based functions for shape sensing of variable cross-section
beams and Chen et al. [65] applied IGA to derive inverse equations for Timoshenko
beams under complex loading. The aforementioned iFEM and IGA formulations com-
monly use point sensors such as strain rosettes attached to each element.

4.1.3 Proposed method

This study presents a new integrated framework for inverse Isogeometric Analysis (IGA)
and Distributed Fiber Optic Sensing (DFOS) fiber model to calculate full-field inverse
displacement for linear elastic structures. The method uses a least-squares variational
formulation and NURBS functions to model both the structure and strain fiber geometry.
Displacement variables are discretized using standard IGA formulation with rotation-
free control points. Then, strain-displacement relations are used to find constraint con-
ditions to measured strain data along the fiber. Unlike existing iFEM formulations, this
approach does not require weight values and uses minimum potential energy principle
to regularize the structure’s shape.

The proposed method has two main benefits: it allows for the input of structure and
fiber geometries from CAD models and can adapt to the distributed sensing parameters
such as spatial resolution and sampling locations to match the measurement mode of
DFOS instrument. This isogeometric approach is advantageous as the CAD data of the
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structure and DFOS fiber should already be available after the design and planning
phase. Moreover, the sensing parameters can be adjusted based on the required spatial
resolution, accuracy, and sampling frequency without changing the inverse IGA model.
This greatly enhances the practical application of Structural Health Monitoring (SHM).

4.2 Formulation of Inverse IGA-DFOS

The inverse IGA-DFOS is formulated as an optimization problem which minimizes the
difference between measured and reproduced fiber strains. The variables to be opti-
mized are the displacement DOFs of the control points in the inverse IGA mesh. The
control point displacements are then used to interpolate the full displacement field and
strain/stress field in the monitored (solid) structure.

4.2.1 Revisiting DFOS fiber mesh model

The formulation and verification of the DFOS fiber mesh is described in the previous
chapter (Section 3.2.1). Two important equations for fiber strain projection Eq. (3.7)
and moving average fiber strains Eq. (3.10), are repeated below for convenience:

gf = th, 4.1
1oy
gf(s) = AS/ N Ef (8) ds. 4.2)

2

4.2.2 Least-squares objective

The objective function of the inverse IGA-DFOS is defined as the sum of squared differ-
ence between the measured and reproduced fiber strains.

Ns

1
L= 3 Z (5 — Efi)2 , (4.3)

i=1

where n; is the total number of fiber strain sampling points, €%, is the measured fiber
strain, and ey; is the analytical fiber strain at the ' sampling point. The reproduced
fiber strain is calculated from the displacement field in the solid structure using the
inverse IGA mesh. From Eq. (4.1), the reproduced fiber strain is given by:

e =t Bd, (4.4)
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which, after substituting into Eq. (4.3), gives the objective function in terms of optimiza-

tion variables d:
i I, , 2
Pt =g 3 ki (0B “s)

Differentiating Eq. (4.5) with respect to d and setting the derivative to zero,

gj =0, (4.6)
ZS (BTt)i [5}2 - (tTBd)J =0, (4.7)

i=1

Ns Ns
(B"tt"B),d =) (B"tc})

=1 i=1

. (4.8)

(2
Eq. (4.8) represents the optimality conditions which must be satisfied in order to solve
the least-squares objective in Eq. (4.3). The locality of basis functions implies that each
term in the summation can be evaluated element-wise and assembled into the global

system using connectivity information.

4.2.3 Isogeometric least-squares fit

The Isogeometric least-squares fit estimates the deformation of a structure from mea-
sured surface strains without the information of loading conditions. This is done based
on isogeometric framework of structure and fiber as described in Section 4.1.3. In this
section, the least-squares objective with analytical fiber strains is combined with isogeo-
metric analysis to derive the global system of equations.

The total potential energy in a structural system has been given in Section 2.5. This
equation includes terms for internal energy and external work done by body forces and
surface tractions. The least-squares objective can be added to the total potential energy
as a constraint to form a new functional:

1 1
H:Q/aTsdQ—/bTudQ—/hTudF+2)\Z(€}i—€fi)2, (4.9)
Q Q r Py

where )\ is the penalty parameter for the constraint. For multi-patch problems, it is
extended to include the coupling terms between patches (Section 2.6). Then, the new
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functional is given by:

1 1

H—Q/o-TsdQ—/bTudQ—/hTudP+25 wudly + AZ €% — Efl) :
Q Q r izl

(4.10)

Minimizing this functional will simultaneously minimize the potential energy and
fiber strain differences assuming appropriate value of X is used. One might be curious
why it is necessary to minimize the potential energy on top of least-squares objective.
The reason is that the least-squares objective alone is not sufficient to determine the
displacement field. It is a necessary condition which must be satisfied by the displace-
ment variables. However, the displacement field can be any arbitrary function which
satisfies the constraint. Therefore, total potential energy is added to the functional to
ensure that the displacement field is physically meaningful. In other words, limited mea-
surements from strain rosettes or optical fibers create an ill-posed and unstable system
which necessitates a regularization method to prevent undesirable displacement dis-
tributions. Previous approaches employed weighting coefficients which were adjusted
based on the availability and reliability of the measurements [33], [64]. This required
pre-determining weight values in order to accurately interpolate the known data points.
In this study, the minimum strain energy principle is applied as an alternative approach.

Following the usual discretization scheme and differentiating with respect to the
displacement variables d, the final form of matrices is obtained:

K+XY (B"#"B),|d=)>_ (B"te}).. (4.11)
i=1 i=1
The unknown external force term is removed from the equation by setting f =
Eqg. (4.11) is the coupled system of equations which must be solved to obtain the dis-
placement variables d. Using the solution from Eq. (4.11), the full field displacement,
strain and stress distributions can be calculated from Egs. (2.31) and (2.32). If the
moving average effect from Eq. (4.2) is considered, the equations become:

Ast

AsT
K+—Z / (B"t#t"B), ds] d=—— Z / (B"te}), ds. (4.12)

4.3 Validation of Inverse IGA-DFOS with Simulated Examples

In this section, the proposed inverse IGA-DFOS methodology is validated using four nu-
merical examples of plate, hemisphere and cylinder geometries under various boundary
conditions and loading conditions. In these examples, the reference solution and input

44



Chapter 4 4.3. Validation of Inverse IGA-DFOS with Simulated Examples

fiber strains were computed in prior using high-fidelity IGA simulations. The computed
fiber strains and essential boundary conditions were then used as input for the inverse
analysis. The benchmark examples were designed to examine the robustness of the
formulation when applied to different geometries, loading conditions and deformation
modes. Gravitational forces were ignored in the simulations but this did not affect the
generalization of the conclusions drawn from the study. The linear elastic material model
with Young’s modulus of 200 GPa and Poisson’s ratio of 0.3 was used in all simulations.

4.3.1 Plate under twisting load

The first example used for verification involves a flat plate that is clamped at one end
and subjected to a twisting load at the other end as shown in Fig. 4.1 [73]. The plate
and the DFOS fiber were modeled as second-order solid and curve NURBS geometries,
respectively. A single continuous fiber is attached to both top and bottom sides of the
plate to capture the bending and membrane strains. The fiber’s complex shape can be
modeled using only 20 control points for each side of the plate. The reference displace-
ment field of the plate was computed using conventional IGA with a high-fidelity mesh
of 20 mm subdivision size by knot insertion along X- and Y-axes. Then, fiber strains were
computed using Eq. (4.4) from the forward solution’s strain distribution and used as in-
put for the inverse analysis. In the inverse analysis, only geometric boundary conditions
were prescribed since the loading conditions were assumed to be unknown.

Fixed edge—\

Optical fiber 4 uz=20mm

thickness=5mm

uz=-20mm
Figure 4.1: Plate with attached optical fiber, boundary conditions and prescribed dis-

placements. The top side of the plate can be seen with the optical fiber running to the
bottom side.

The sampling interval of the fiber was set at 50 mm and the mesh size of the inverse
model was 100 mm. There were 117 strain sampling points on each side of the plate.
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Figure 4.2: Solutions of plate twisting problem: (a, b) Displacement and stress fields of
reference solution, (c, d) Displacement and stress fields of inverse solution, (e, f) Error
distributions for displacement and stress of the inverse solution. The solutions were
computed using fiber strain sampling interval of 50 mm.
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The inverse mesh size was selected to ensure the stability of the least-squares solution,
with the number of displacement DOF in the IGA mesh being of the same order of
magnitude as the number of strain sampling points. Figure 4.2 shows the comparison
of the displacement and stress fields between the reference and inverse IGA. The results
indicate that the twisting deformation and stress distribution can be reproduced with
high accuracy by the inverse analysis. The Z-displacements at the loaded tips from the
inverse solution are —19.87 mm and 19.72 mm, which translate to the errors of 0.65 %
and 1.4 % respectively.

In order to check the accuracy of least-square fitting, the input and reproduced fiber
strain distributions along the length of the fiber are plotted in Fig. 4.3. The comparison
shows little difference between the two which means the fiber strains can be reproduced
very well from the inversely computed displacement field. In practice, the true solution
is generally not available and the accuracy of inverse solution can be judged from the
fiber strain fitting.

The majority of computational effort in this method is dedicated to solving the si-
multaneous equations outlined in Eq. (4.11), which has the same level of complexity as
solving the FE equations. The assembly of fiber strain matrices was a relatively quick
process, taking only a few seconds on an Intel Core i7 machine. In contrast, the prepa-
ration of the FE model from CAD design and meshing is time consuming and the setup
to calibrate strain gauges in conventional iFEM requires additional effort. Additionally,
the measurement time of DFOS instruments increases proportionally with the number
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Figure 4.3: Comparison of reference (input) and reproduced fiber strains distributions
at the bottom surface of the plate for the plate twisting problem. The jumps in fiber
strains correspond to the rapid changes in tangent direction of the fiber curve. The
fiber continues to the bottom side of the plate after 6 m with symmetric fiber strain
distributions as the top side.
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of sampling points, typically taking several minutes for a fiber of around 100 m in length
with 2 cm intervals. Therefore, the current method has a comparable computational cost
to the existing iFEM methods, but offers greater flexibility and a more efficient workflow
due to its fully isogeometric framework.

4.3.2 Plate under bending load

In order to investigate the robustness of the inverse IGA-DFOS under different deforma-
tion modes, the boundary conditions on the previous model of plate and fiber geometries
are changed to clamped edges on all sides and a uniformly distributed pressure of 10 kPa
was applied to the top surface of the plate as shown in Fig. 4.4.

Clamped edges
DFOS fiber

Figure 4.4: Geometry and boundary conditions of the plate bending problem. The plate
is clamped (fixed) at all sides and a uniformly distributed pressure of 10kPa is applied
to the top surface. The fiber layout is the same as in Fig. 4.1.

The reference solution for this problem was calculated using a mesh size of 20 mm.
The fiber strain sampling interval was 20 mm and the inverse IGA mesh size was 100 mm.
The reference and reproduced fiber strains are plotted in Fig. 4.5. The fiber strains
show a very different distribution from the twisting mode, with less regularity due to
oscillating surface strain between tension and compression.

Figure 4.6 shows the comparisons of reference and inverse solutions for the dis-
placement and stress fields. The RMS relative displacement error and relative fiber
strain error are 0.679 % and 0.715 % respectively. Hence, the results show that the in-
verse IGA-DFOS can accurately reproduce the fiber strains and displacement fields under
different deformation modes. The average deviation in ox x between the inverse and
reference solution is 3.77 MPa which is within 2.8 % of the absolute maximum stress,
and the maximum error is —34 MPa or 25 % of the absolute value. The maximum stress
errors however are located near the edge of the plate where the fixed boundary induces
high local stresses as can be seen in Fig. 4.6 (b, d). The absence of strain sampling points
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near the vicinity of the local strain zones results in a large local error in the inverse solu-
tion. The distribution of stress errors are shown as a histogram in Fig. 4.7. The majority
of the errors are within 10 % of the absolute value.
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Figure 4.5: Comparison of input and reproduced fiber strains distribution for the plate
bending problem (rendering shows the bottom side of the plate). The fiber continues to

the top side of the plate after 6 m with symmetric fiber strain distributions as the bottom
side.

4.3.3 Pinched hemisphere

The third validation model is a hemispherical shell under symmetric concentrated loads
at the equator as shown in Fig. 4.8. The hemisphere has a thickness of 40 mm and a
radius of 10m. It is fixed at the uppermost point to prevent rigid body motion. This
model is considered as a benchmark problem for assessing the accuracy of IGA since
FEM models for thin curved structures are prone to geometric imperfections which can
be addressed by using exact geometry [4]. The hemisphere was modelled using third
order functions along the surface and second order through thickness. The use of a
mixed-order solid mesh helps prevent the locking phenomenon while maintaining the
accuracy of through-thickness strain variation. Previous studies have shown that a single
second order element through thickness is sufficient for IGA [3].

49



Chapter 4 4.3. Validation of Inverse IGA-DFOS with Simulated Examples

(a) Reference (c) Inverse (e) Error = Inverse - Reference
[ 0.00 0.102
-1 [ £
- 0.08 £
i - 3 —0.06
s €
. N —0.04 %
[ 4 > —002 £
o 3
-5.49 -0.017
134.98 33.42 3
100 §
K 0 =
_ 50 o [
s ~10 ¢
-0 % & 0 g
50 8 -0 3
-100 * [ -20 ;
- [
134.99 34008
150
04 —— Reference — —— Reference 4
A = = |nverse B g 100 = = |nverse
E -2 =
32: § 50
(2]
3 4] E 0
7]
-6 -50
0.0 02 04 06 08 10 00 02 04 06 08 10
Distance from A to B (normalized) Distance from A to B (normalized)

Figure 4.6: Solutions of the plate bending problem: (a, b) Displacement and stress
fields of reference solution, (c, d) Displacement and stress fields of inverse solution, (e,
f) Error distributions for displacement and stress of the inverse solution. The bottom
plots compare the cross-sectional profile and x-component stress along the section A-B
in Fig.(c).
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Figure 4.7: Distribution of stress-XX and stress-YY errors for the plate bending problem.
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Figure 4.8: Geometry and boundary conditions of the pinched hemisphere problem.
The hemisphere is clamped (fixed) at the bottom and a uniformly distributed pressure
of 10kPa is applied to the top surface. The fiber layout is the same as in Fig. 4.1.

The DFOS fiber is wrapped around the hemisphere in a helical pattern from the
bottom to top with a pitch of 1m. The numerical analysis utilized a quarter model
of the hemisphere exploiting the axial symmetry. Although the fiber layout is not per-
fectly symmetrical, the variation is insignificant compared to the size of the model. For
both forward and inverse models, a mesh size of 500 mm was used with a single mesh
through-thickness, resulting in 2208 control points. Three different fiber sampling inter-
vals were used for the inverse analysis to investigate the variability: 50 mm, 500 mm and
1000 mm.

The solutions from the forward and inverse IGA for the pinched hemisphere prob-
lem are compared in Fig. 4.9. The rendering of the inverse solution in the figure were
computed with the sampling interval of 500 mm whereas the line plots compare the
different sampling intervals. As expected, 50 mm resolution has the highest accuracy
closely followed by 500 mm and least accurate being 1000 mm. It is evident that using a
very coarse sampling interval leads to an underestimation of displacements, particularly
in the vicinity of loaded points. This outcome is not surprising since the minimum strain
energy constraint will favor less deformation when measurement data is too sparse.
This phenomena is also consistent with that of existing iFEM elements, which predicted
smaller displacements with coarse mesh and measured strains [71]. Hence, it is impor-
tant to investigate the effect of sampling interval and expected deformation magnitudes
for a given structure and fiber configuration to estimate the upper bound of errors.

4.3.4 Pinched cylinder

The final validation model is a slender cylinder subjected to two concentrated loads, as
depicted in Fig. 4.10. The cylinder has a length of 600 mm, a radius of 300 mm, and
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Figure 4.9: Solutions of the pinched hemisphere problem: (a, b) Displacement and stress
fields of reference solution, (c, d) Displacement and stress fields of inverse solution, (e,
f) Error distributions for displacement and stress of the inverse solution. The bottom

plots compare the X-displacement and Mises stress along the line A-B in Fig.(c) under
various sampling intervals.
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Figure 4.10: (left) Pinched cylindrical pipe with optical fiber, (right) symmetrical model
with CO lines; concentrated load is applied at the mid-span and the symmetric boundary
conditions are applied at XZ-plane (dotted blue line)
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Figure 4.11: Solutions of the pinched cylinder problem: (a, b) Displacement and stress
fields of reference solution, (c, d) Displacement and stress fields of inverse solution,
(e, f) Error distributions for displacement and stress of the inverse solution. The bottom
plots compare the Y-displacement and X-stress along the line A-B in Fig.(c) under various
sampling intervals.

thickness of 3mm. It is supported by rigid diaphragms at both ends and point loads
of 1kN are applied on the opposite sides of the cylinder, resulting in a highly localized
deformation near the point loads. The DFOS fiber is wrapped on the outer and inner
surfaces of the pipe with a pitch of 70 mm. A half symmetrical model was used in
the analysis. A C° line was added at the mid-span via knot multiplicity to enforce the
lengthwise symmetry. The cylinder’s geometry is second-order throughout and the mesh
size is 20 mm, with no subdivision in the thickness direction.

The displacement and stress contours for the reference and inverse solutions using a
fiber strain sampling interval of 10 mm are shown in Fig. 4.11. Another inverse analysis
with a larger 30 mm sampling interval was also performed and the results along the
section A-B are compared in the line plots. The inverse solution is nearly identical to the
reference solution except in the vicinity of the point load. The concentrated load caused
highly localized strains that were difficult to capture even with centimeter resolution. It
is noteworthy that this loading condition is an extreme scenario that is unlikely to occur
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in real-life situations. Nonetheless, the inverse solution exhibits good accuracy even in
unfavorable conditions. Furthermore, these findings demonstrate that the distributed
nature of DFOS sampling allows for the detection of local deformations with reasonable
accuracy in any location as long as the spatial resolution is sufficient relative to the size
of deformation zone.

4.4 Sensitivity analysis

The inverse solutions in the previous section show excellent accuracy but they do not
take into account the possible measurement noise. In other words, the input fiber strains
were directly fed from the reference solution. In reality, DFOS measurements have a
noise floor which depends on the instrument setup, sampling interval, averaging count
and the environment. Hence, a study of the robustness of the inverse predictions with
respect to measurement noise is necessary. This can be done by adding simulated white
noise to the input fiber strains. For each fiber strain data, the noise is randomly sampled

from a normal distribution with mean 0 and variance o2:

ef =ep +N(0,07) (4.13)

where ¢ is the computed fiber strain using forward IGA. Zero mean indicates there is
no systemic bias and variance represents the magnitude of noise.

DFOS sensing has the advantage of being able to adjust spatial resolution to opti-
mize measurement time and accuracy. A large number of sampling points can increase
readout time and hence may not be suitable for monitoring dynamic responses. On the
other hand, fine sampling provides more information about local strain variation but
increases measurement noise due to shorter averaging span. This is further complicated
by the fact that changing the sampling interval generally alters the location of sampling
points. Common sense tells us that the more data points we have, the more accurate the
solution will be. However, a quantitative analysis is needed to determine the optimal
sampling interval for a given structure and fiber configuration.

The following is the study of sensitivity on the sampling interval and measurement
noise for the four numerical examples in the previous section, namely plate twisting,
plate bending, pinched hemisphere and pinched cylinder. The quantitative errors for
the reproduced fiber strains and displacement distributions can be evaluated by the root
mean square error (RMSE) between the reference and inverse solutions. The RMSE and
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Model As e?MS (pe) e} eBMS (mm) e
Plate twisting 50mm  4.349 x 107%  3.327 x 107%  8.091 x 107° 4.045 x 1073
Plate bending 20mm  1.493 x 107%  6.792 x 1073 3.926 x 107> 7.146 x 1073

Pinched hemisphere 50mm 5.900 x 107% 2.664 x 10~% 8.798 x 107° 3.261 x 1073
Pinched cylinder 10mm 1.567 x 1078  1.758 x 107® 3.922 x 1076 8.610 x 1073

Table 4.1: Error matrices for the numerical examples with pure fiber strain inputs

relative RMSE of the fiber strains are defined as

Ns

1 2 e
el}MS = | — Z (5}1 — z-:fi) , e} = fi*‘ (4.14)

n
S =1

Similarly, the RMSE and relative RMSE of the displacement distributions can be as

1
RMS 1 * T/, * 2 r egMS
where u* and u refer to the reference and inverse displacement fields respectively.

Table 4.1 shows the quantitative errors for the previous analyses (without added noise).

4.4.1 Sensitivity to sampling interval

Figure 4.12 shows the relative displacement errors with respect to the sampling inter-
vals for the validation models. Figure 4.12(a) shows the results for the plate twisting
problem from 10 mm to 150 mm. At sampling intervals greater than 120 mm, the relative
displacement errors fluctuate between 3 % to 6 %. This behavior shows that the accuracy
of the inverse solution cannot be readily predicted for sparse data points. This can be
explained by fiber strain sampling points having different weights on the accuracy. The
sampling points which are closely aligned with principal strain directions at the mea-
surement site contribute more information to the system and hence are more critical in
terms of sensing sensitivity. For example, if the fiber tangent direction is perpendicular
to the principal strain direction at a sampling point, the principal strain component can-
not be measured. On the other hand, if the fiber is parallel to that component, it can
fully determine the principal strain (see Section 3.2.3). Therefore, the position and di-
rection of measurement points are critical for sparse sampling conditions. The sampling
interval not only affects the position of the sampling points but also changes the strain
projection direction, and it has a more significant impact on accuracy at coarse spatial
resolutions. At finer sampling intervals (< 100 mm), influence of ineffective data points
decreases and the inverse solution converges to the reference solution.
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Figure 4.12: Relative RMS displacement errors with respect to sampling interval for
(a) plate twisting, (b) plate bending, (c) pinched hemisphere and (d) pinched cylinder
problems
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The same can be observed for the bending problem in Fig. 4.12(b) and pinched
hemisphere problem in Fig. 4.12(c). For the pinched cylinder problem however, the
error trend tells a different story. The errors are relatively high for all intervals greater
than 30 mm and then rapidly drops near zero. This is because the model has a highly
localized deformation and strain concentration near the point load (Fig. 4.11). The
radius of the local deformation zone is about 50 mm which matches the critical point
in the error plot. It is reasonable that large sampling intervals cannot capture the local
strain concentration. Although this scenario is unlikely to occur in real word, it shows
that caution should be exercised when choosing the sampling interval.

4.4.2 Sensitivity to noise

State-of-the-art DFOS interrogators have typical uncertainty around 5 ue to 20 pe de-
pending on the measurement parameters [51]. Hence, variance from 5 pe to 20 ue at 5 ue
steps were used for the simulated noise magnitude while keeping a constant sampling
interval. Since the noise added to each sampling point is stochastic, inverse simulations
were repeated 500 times for each noise value to obtain the error distribution.

The error distributions for each noise level are summarized in box plots in Fig. 4.13.
In all cases, mean displacement errors increase linearly with respect to the noise mag-
nitudes. The variance of errors also increases as noise increases. Since the sampling
interval was fixed, the wider spread of displacement errors supports the previous claim
that certain sampling points have a greater impact on solution accuracy. The plots also
have different error scales on the Y-axis which is the result of different signal-to-noise
ratio in each problem.

4.5 Application of inverse IGA-DFOS to an impeller plate

In this section, the inverse IGA-DFOS is applied to predict the deformation of a flat-plate
impeller blade under rotation. The impeller is a device used to mix fluids in a vessel for
homogeneity. In addition to monitoring mechanical response of the impeller, changes
in fluid viscosity can be inferred from the deformation of the impeller. In this study, a
flat plate impeller will be used as a lab model to facilitate simple installation of optical
fibers.

4.5.1 Experimental setup

The experiment setup of the mixer and impeller is shown in Fig. 4.14. The impeller plate
is 2.5 mm thick and made of stainless steel SUS304. The CAD drawing of the impeller
plate is shown in Fig. 4.15.
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Figure 4.13: Relative RMS displacement errors with respect to noise level and total
number of samples (a) plate twisting problem, (b) plate bending problem, (c) pinched
hemisphere problem and (d) pinched cylinder problem
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Figure 4.14: Experimental setup of the mixer. The DFOS fiber (under white protective
coating) is attached to the front and back sides of the impeller plate. The yellow arrows
show the direction of the fiber from the instrument. The dotted blue line is a placeholder
for the vessel which holds the fluid.
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Figure 4.15: Dimensions of the impeller plate. Blue and orange lines show the trace for
strain fiber, red line shows the trace for temperature fiber.
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The DFOS optical fiber is attached to the front and back sides of the impeller plate
with glue which also protects the fiber from the fluid. When the plate rotates with
40 RPM to 60 RPM, the resistance of the fluid causes the plate to deform. This de-
formation induces surface strains and fiber strains which are measured by the DFOS
instrument.

The fluid used in the experiment was Carboxymethyl cellulose (CMC) solution with
viscosity ranging from 5800 mPas to 10000 mPas. The vessel was heated with electric
furnace to simulate the industrial mixing process. The temperature of the fluid was
measured using thermocouples. Before the experiment, the mixer was run for several
hours to distribute the heat and allow the fluid to become homogeneous. After the
initial run, the rotation was stopped to take the reference strain readings. Then, the
impeller was rotated and the DFOS measurements were taken at 40, 60 and 80 motor
RPMs. Each measurement was repeated twice while keeping the motor RPM constant.
The sampling interval of fiber strains in all cases was 1 cm. The DFOS instrument gives
raw readings in term of frequency shift in GHz which can be converted to strain change
after temperature compensation.

4.5.2 Experimental Results

Figure 4.16 shows the fiber strains for two trials using viscosity 5800 mPas and 60 RPM
at 30°C. The fiber strains on the impeller’s front and back sides show similar trends.
In order to better understand the fiber strains corresponding to physical locations on
the impeller, the fiber strains are visualized on the actual fiber geometry in Fig. 4.17.
Since the direction of fiber is opposite on the front and back side of the plate, the fiber
coordinates are flipped and superimposed on their relative distances. From this figure,
the following observations can be made:

* The magnitude of fiber strains are largest near the centerline of the plate and
decreases towards the edges.

* On the top part of plate, fiber strains are tensile on one side and compressive on
the other side of the centerline.

* The front-side and back-side fiber strains are mirror image of each other as evident
from the line plot.

* The fiber strains on the top part of the plate are larger than those on the bottom
part.

These observations can be easily explained by the bending deformation of the plate
due to rotation. Bending induces tensile and compressive strains on the opposite sur-
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Figure 4.16: Fiber strain difference for the first case with viscosity 5800 mPas at 60 RPM.
The vertical dotted lines mark the portion of fiber corresponding to the front and back
sides of the plate.

faces through thickness with equal magnitude (assuming the middle neutral axis). Since
the plate is free on the bottom edge, bending strain is highest near the top center where
it is attached to the shaft and weaker at the bottom.

4.5.3 Inverse IGA Model

The geometry of the impeller plate is too complex to be modelled with a single patch
NURBS structure. Hence, eight second order solid patches are individually modelled as
shown in Fig. 4.18. The patches are coupled at their shared interfaces using Nitsche
penalty method described in Section 2.6. The plate is fixed at the top-center joint as
essential boundary conditions. The fiber curves for front and back side are also modelled
with second order geometries after the experiment design.

The coupled impeller plate geometry is then subdivided using h-refinement to create
the IGA mesh with 5 mm mesh size. Since the inverse analysis is linear static and purely
mechanical, interaction between the impeller and fluid is assumed to be steady state.
The temperature effects on the impeller plate are ignored in this study since the fiber
strain measurements were obtained near room temperature. The Young’s modulus of
the plate is 200 GPa and Poisson’s ratio is 0.3.

4.5.4 Results and Discussion

Figure 4.19 shows the contours of predicted deformation from the inverse analysis for
different RPMs under constant viscosity. A key observation is that the deformation is
smooth everywhere although the fiber is only a single line near the edge (Fig. 4.15).
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Figure 4.17: Fiber strains at the same positions on the front and back sides of the plate
are plotted on the same axis to enable comparison.
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Figure 4.18: CAD model of the impeller plate and fiber geometry. The NURBS patches
are color-coded. Shared surfaces are shown in red rectangles.
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It shows that the inverse algorithm can infer the unknown displacement DOFs even
for the patches with no fiber strain measurements by solving the global least-squares
problem. Quantitatively, the inverse model has 4434 control points and 170 total fiber
strain measurement points, making known/unknown ratio to be 26. The figure clearly
shows the bending deformation mode of the plate and the anti-symmetry on the vertical
axis. The shape is the outcome of rotation under fluid resistance. It can be seen that
the bending is prominent at the top edge of the plate where it receives torque from
the motor shaft. In contrast, the bottom side shows little bending but rigid rotation
about the center axis. This is also reasonable since the bottom edge is free and the
fiber strains along the bottom are much smaller than those at the top edge (Fig. 4.17)
which indicates the bending is much less. As expected, the displacement magnitudes
increase monotonically with RPM while the overall shape stayed similar. Interestingly,
the magnitude of bending is not linearly proportional to the RPM as can be seen from
the displacement magnitudes in Fig. 4.19.

Figure 4.20 compares the measured fiber strains from the experiment and repro-
duced fiber strains from the inverse analysis for the case with viscosity 5800 mPas and
40 RPM. The reproduced fiber strains show very good agreement with the experimental
data with the average deviation less than 1 pue. It shows that the inverse analysis can
be efficiently performed with NURBS model and measured fiber strains with minimal
human intervention.

Figure 4.21 shows the horizontal stress contours from the inverse analysis for the
case with viscosity 5800 mPas and 40 RPM. Similarly to displacements, the bending
stresses are anti-symmetric along the centerline with the highest magnitudes (~10 MPa)
near the fixed edge. The upper two arms experience the highest stress since they trans-
fer the torque to the side faces. The four webs connected to the primary frame also
experience relative low stresses (1 MPa to 2 MPa) except at the joints where stress con-
centrations occur. The stress color contour shows some irregularities around the corners
of the frame where spurious local stress concentrations can be seen. They are most likely
numerical anomalies due to the absence of reliable fiber strain measurements in these
regions since the fiber direction is rapidly changing in a small length. These anomalies
should disappear as the model size gets larger than the fiber length scale.

In this experiment, the inverse analysis was used to calculated the structural re-
sponse of the impeller plate from the fiber strain measurements. From the outcomes,
one can envision a monitoring system which not only gives insight during the opera-
tion but also provides feedback for the future design. Structural state such as defor-
mation, stress distribution and stress concentrations can be tracked near real-time since
the computational cost of the inverse analysis is quite low after solving the initial prob-
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Figure 4.19: Deformation profiles from the inverse IGA-DFOS for variable RPMs (viscos-
ity = 5800 mPas). The middle figure shows the shape of deformation (x200 times) in
3D under 80 rpm. The line plots show the displacements of top, side and bottom edges.
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Figure 4.20: Experimental and reproduced fiber strains from inverse analysis for viscos-
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lem. Moreover, operational loads (such as fluid viscosity in the current problem) can
be indirectly calculated from the mechanical response of the structure. In addition, the
remaining fatigue life of the structure can be predicted by continuous monitoring of the
stress history. The information from the inverse analysis of the current design can also
be used to optimize the design of the next generation of the structure. Hence, the design
process is no longer open-ended but utilizes real world data. The connection of IGA with
CAD is beneficial for the iterative design since modifications to the CAD model can be
easily incorporated into the IGA model.

4.6 Summary

In this chapter, a novel inverse analysis method was developed using IGA and DFOS for
linear elastic problems. The integrated fiber model was applied to derive an efficient
single-step method for the reconstruction of displacement, strain and stress fields from
fiber strain measurements. The methodology used a least-squares variational formula-
tion to add a penalty term which supplements the total potential energy of the system.
The constraint conditions were derived by solving the least-squares functional which
resulted in a coupled system of equations.

The method was verified using four numerical examples of plate, hemisphere and
cylinder geometries with different deformation modes and loading conditions. The re-
sults show that the inverse IGA-DFOS can accurately reproduce the displacement field
and fiber strains with high accuracy. In addition, sensitivity analysis was performed to
investigate the effect of DFOS sampling interval and measurement noise on the accu-
racy of the inverse solution. While the optimal sampling interval depends on the struc-
ture and fiber configuration, the results indicate that the inverse IGA-DFOS is robust to
measurement noise and maintains a reasonable accuracy without human intervention.
Combined with the modelling benefits of IGA and flexibility of DFOS, this illustrates the
potential of the inverse IGA-DFOS method for real-world applications.

In the last part, the method was applied to predict the deformation of an impeller
plate under rotation. The inverse IGA-DFOS was able to accurately reproduce the mea-
sured fiber strains and predict the deformation of the impeller plate. The deformation is
smooth and matches the expected bending mode even though the input data is sparse.
The stress distribution shows that there are several stress concentrations under loading
in the current design. There are a few anomalies in the stress results due to difficulty
in measuring local strains in small length scales. Overall, the results show that the in-
verse IGA-DFOS can be used to monitor the structural response of the impeller plate
and provide information for the future design. Although temperature effects were not
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considered in the current study, it may be advantageous to integrate the temperature
dependency of the fiber in the model.

The creation of NURBS model for the complex geometries such as the impeller plate
in the study is rather difficult and hence could be improved by using more advanced
techniques such as T-spline or trimmed surfaces [74]. While the current formulation is
for linear elasticity, it can be extended to nonlinear problems by successive linearization.
Further investigations on the systemic estimation of errors and optimal fiber layout are
also recommended. Other research directions include hybrid inverse analysis by incor-

porating known information such as sensor fusion to improve accuracy.
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Chapter 5

Extension of IGA for Nonlinear
Material Models

5.1 Introduction

The material model is a crucial part of elastoplastic simulation especially for large de-
formation problems. In this chapter, the mechanical behavior of a high strength steel
after it has been subjected to plastic strain is experimentally investigated and observed

behavior is modelled using an empirical model.

5.2 Mechanical properties of the raw material

The nominal material properties of JSC980YL dual phase high strength cold-rolled steel
are listed in Table 5.1 [75]. The uniaxial tensile tests of the raw material specimen were
conducted in two directions: the rolling direction (L) and the transverse direction (C).
All specimens were cut from 1.6 mm thick steel sheet and the tensile test specimens had
a gauge section of 10 mm x 20 mm. Additionally, an in-plane shear test was performed
with the ASTM B831-14 specimen shown in Fig. 5.1. The results from these three tests
were utilized to calculate the stress ratio coefficients with respect to L direction. These

tests determine the degree of initial anisotropy in the stock material.

Pulling
mi
5 mm § direction

Figure 5.1: Shear test specimen
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Quantity Value Unit
Yield stress 681 MPa
Tensile strength 1045 MPa
Elongation 14 %
Young’s modulus 210 GPa
Poisson’s ratio 0.3

Table 5.1: Mechanical properties of JSC980YL steel

The stress-strain curves from uniaxial tensile tests of the raw material are shown in
Fig. 5.3. There is a 2% offset between L and C directions. Shear stress is calculated as
F/(bt) where F' is the measured force and bt is the sectional area. Shear strains on the
gauge section were measured using a digital image correlation (DIC) system. Assuming
pure shear, equivalent stress and equivalent plastic strain is:

2
5= ﬁay, A5, =~ Ryyde?,, (5.1)

Ry V3

where R, is the shear strain ratio defined as the ratio of shear strain to axial strain.

Shear stress-shear strain and equivalent stress-strain curves from the shear test are
shown in Fig. 5.2. It can be seen that R,, = 1.01 gives a good agreement with the
equivalent stress-strain curve measured in the rolling direction. The stress ratios and
Swift parameters of the reference Raw L curve are shown in Table 5.2.
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Figure 5.2: Shear stress-strain and corresponding equivalent stress-strain curves
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ol (MPa) K (MPa) g n Ry, =% R) =% R =V3T:

(s} g0

663 1447 2.74 x 107*  0.102 1.00 1.02 1.01

Table 5.2: Initial yield stress and Swift parameters of the reference (Raw L) hardening
curve, and initial yield stress ratios relative to the reference
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Figure 5.3: Uniaxial stress-strain curves of the raw material in L. and C directions (3 test
pieces)

5.3 Uniaxial Tensile Tests of Prestrained Specimens

To investigate the effect of prestrain on the mechanical behavior of dual-phase high
strength steel DP980, uniaxial tensile tests of prestrained specimens were conducted.
The prestrained specimens were prepared by pulling a large tensile test piece and cut-
ting small tensile test pieces after elongation as illustrated in Fig. 5.4. The axial strain
during prestraining was monitored with a strain gauge at the middle of the specimen.
After a predetermined plastic strain was achieved, the test piece was unloaded and defor-
mations of five inscribed circles on the surface were measured. Then, equivalent plastic
(pre)strain was calculated from the average elongation. The direction of prestrain and
measured elongations from the experiments are shown in Table 5.3.

Elongation (%)

Specimen 1 5 3 4 5 Average ¢.4(logarithmic)
2% plane strain (L) 2.0 2.0 2.0 2.0 2.0 2.0 0.022
5% plane strain (L) 5.2 54 54 52 52 5.28 0.059
5% plane strain (C) 4.8 5.2 5.2 5.0 54 5.12 0.055

Table 5.3: Measured elongation and equivalent plastic strain values after prestraining
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(a) Prestrain big specimen (b) Cut small specimens
X&Y strain measurement (5 mmd circle)

Prestrain restrain

« Strain gauge o 100
o (:] o
4 A\
L 200

(c) Tensile test of
small specimens

16 10| Y
—1

12 5 20

Figure 5.4: Preparation of prestrained specimens for L-prestrain. (a) A big specimen of
raw material was pulled. Elongation was measured by the strain gauge at the center and
X,y strains were measured using inscribed 5 mm diameter circles. (b) Small test pieces
were cut from the large prestrained test piece in L and C directions. (c) Dimensions of
small prestrained specimens.

Nominal Prestrain Reloading Case
prestrain elongation direction direction designation
2% L L 2LL
2% L C 2LC
5% L L S LL
5% L C 5LC
5% C C 5CC
5% C L 5 CL

Table 5.4: Designation of experiment cases
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5.3. Uniaxial Tensile Tests of Prestrained Specimens

Since there are four combinations of prestrain and reloading directions, the spec-

imens can be designated according to the prestrain amount, prestrain direction and

reloading direction. This resulted in six unique cases as shown in Table 5.4 and each

case was repeated twice.

5.3.1 Experiment results

The stress-strain curves from the reloading uniaxial tensile tests of prestrained samples

are shown in Fig. 5.5. The following observations can be made from the nonlinear part

of the curves:

¢ vyield stresses of LC & CL specimens are lower than predicted by monotonic (raw)

S-S curves,

* yield stresses of LL & CC specimens are slightly higher than monotonic S-S curves,

* LC & CL show a wider range of softening after yielding than LL & CC,

* at large plastic strains, flow stresses of LL & CC converge to raw curve, while lower

saturation stresses are observed for LC.
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Figure 5.5: Stress-strain curves of (a) LL, (b) LC, (c) CC and (d) CL prestrained samples.
The two test pieces with the same case designation are shown in the same color.
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It has been reported that dual-phase steels exhibit a temporary increase or decrease
in subsequent yield stresses and permanent softening behavior [76], [77]. Comparing S-
S curves reveals distinct differences in both reloading yield stress and hardening regions
depending on the relative directions of prestrain and reloading. This behavior is known
as strain-path dependent anisotropic hardening behavior. Research shows that such
history effects are caused by changes in microstructure, such as crystallographic texture,
intragranular hardening, the creation of new slip systems, and the rearrangement of
dislocation substructure [78], [79].

The traditional yield functions model material anisotropy from initial yield stress ra-
tios or strain ratios but they cannot adequately describe the observed anisotropic hard-
ening phenomena from prestraining. To overcome this limitation, several continuum
plasticity models have been proposed for history dependent hardening. Vieira et al.
proposed an empirical formula to predict the occurrence of the early plastic instability
during reloading [80]. A modified Swift law was proposed by Fernandes et al. for the in-
crease of subsequent yield stress (back extrapolated stress) and reduced hardening rate
in uniaxial reloading of prestrained materials [81]. Yoshida et al., [82], [83] modelled
the plastic strain induced anisotropy by the nonlinear interpolation function of two yield
surfaces. Similarly, He et al. proposed a fourth-order polynomial function to interpo-
late anisotropy parameters of Yld2000-2d yield criterion at different equivalent plastic
strains [84]. Larsson et al. used a non-quadratic yield function Yld2003 [85] with op-
timized hardening parameters to model the anisotropy evolution of high strength steels
[86]. Hu et al. introduced an alternative fourth-order yield function with direction
dependent hardening constants to replicate hardening-induced anisotropy [87]. Other
approaches such as Teodosiu-Hu [88], Suprun [89], modified Qin-Holmedal-Hopperstad
(QHH) [90], Homogeneous Anisotropic Hardening (HAH) [91], manipulate the evolu-
tion of yield surface during plastic deformation to connect anisotropic hardening and
anisotropic yielding. For example, original HAH yield function coefficients were mod-
ified to include latent hardening effects such as overshoot of the reloading yield stress
[92], multiple load changes [93] and permanent softening [94]. However, these for-
mulations are complex and require extensive experimental data obtained from uniaxial

tensile/compressive tests and biaxial tensile tests.

In this study, a simpler and more practical approach to predict the strain path-
dependent anisotropic hardening behavior is presented. The primary objective of this
model is to precisely predict different hardening behaviors following a change in strain
path, while also fitting the stress-strain curves during reloading of prestrained speci-
mens. This approach is inspired by the work of Fernandes et al. [81], where the Swift
equation is supplemented with additional parameters to account for anisotropic harden-
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ing. This method uses the data from uniaxial tensile tests with L and C prestrains and
a heuristic algorithm is combined with the widely used anisotropic yield function Hill48
for plane stress.

5.4 Development of Prestrain Induced Anisotropic Hardening
Model

In this section, an empirical equation for the prestrain-induced anisotropic hardening
will be derived. The model is based on a modified Swift equation [81] and with extra

coefficients from the prestrain history.

Firstly, let us define the unit vectors of prestrain and reloading directions. It is
assumed that the unit vectors are aligned with one of the material orthotropy directions.

p

er, ezz >0 .

epre = ’ ff , after prestrain. (5.2)
ec, Eyy > 0

The S-S curves for 0-degree reloading (LL/CC) and 90-degree reloading (LC/CL)
can be categorized into two types of curves as shown in Fig. 5.6. Let us assume both
curves have the form shown in Eq. (5.3):

o* =gK (50 + epred + 52)” , zs; < Esats (5.3)

0= €pre - €. (5.4)

5.4.1 Derivation of g and n*

The two unknowns g and n* can be determined by the following two conditions: reload-
ing yield stress and saturation stress points which are illustrated as point A and B re-
spectively in Fig. 5.6.

At point A (end of elastic reloading), the plastic strain is equal to the prestrain since
no additional plastic strain is accumulated. Hence, €, = €, and €, = 0. The reloading
yield stress is given by:

gK (50 + 5pr66)n* = Y;” K (50 + 6;m"e)n y (56)
(50 + 5pre)n

T T 5.7)
(g0 + pred)”
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(a) 90° reloading (LC/CL) (b) 0° reloading (LL/CC)
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Figure 5.6: Schematic illustration of reloading curves and model parameters for (a)
LC/CL and (b) LL/CC

At point B, €, = €ppe + €5at, and €y = Esats where the saturation strain e, is defined
as the plastic strain offset where the reloading curve converges to the raw Swift curve.

The saturation stress o7}, is controlled by the saturation stress ratio parameter Ry, such

that U:at = Rsatasat-

U:at = Rsat0sat = Rsat K (50 + Epre + Esat)n . (5.8)
But,
U:at = gK (50 + 6107"65 + 6sat)n* 5 (5.9)
n
O'* =Y (a)+—€zw)>i<K (EO + Ep?“eé + Esat)n* 7 (5.10)

sat T (60 + 5pre(s)n

. 0+ Epred + Esat \ "
Taat = Yr K (€0 + €pre)” ( - = ig 5 S‘”) : (5.11)
pre
N . €0 + Esat + Epred
log ota; = 108 [V, K (€0 + £pre)"] + 1 log ( 1T ) (5.12)
pre
n* _ log U:at - lOg [K'K (50 + €PT€)n] ) (513)

log (50+55at+5p7'66)

50+5pre(5

Substituting ¢ from Eq. (5.7) and n* from Eq. (5.13) into Eq. (5.3) gives the reloading
hardening curve after prestrain which satisfies the conditions shown in Fig. 5.6.

After the saturation point, the reloading hardening curve follows the raw curve by
the factor Rgq;:

o= Rsat0raw = Rsat K (EO + Epre + 5;)n ) E;; > Esat- (5.14)
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Y;“ Esat Rsat
LL 1.03 0.06 1.00
LC 0.70 0.035 0.94-0.98
CL 0.72 0.035 1.00
CC 1.04 0.08 1.00

Table 5.5: Fitted parameters for the anisotropic hardening model

Hence, the reloading curve for full strain range can be obtained by combing Eq. (5.3)
and Eq. (5.14):

n*
o { gK (50 + 5p're(5 + 5;) ) 5;; < Esat (5.15)

— " .
Rsat K (50 + Epre + 5;;) ) 5;; > Esat

5.4.2 Input parameters

In addition to the raw Swift parameters (K, eo,n*), three additional parameters are
needed to determine g and n* in Eq. (5.15), namely {Y;, €s4t, Rsat }- The parameter set
was defined for each prestrain-reloading pair, namely LL, LC, CL and CC, resulting in a
total of 12 parameters. Putting them into a matrix H allows the use of vector notation
for the hardening law:

Yoo  Yeoe Yreer Yrecco
H = EsatLL  €satLC  EsatCL EsatCC (5.16)
RsatLL RsatLC RsatCL RsatCC .

The parameters are found by fitting the experimental stress-strain curves to Eq. (5.3).
Each parameter has its physical meaning and can be easily identified without compli-
cated inverse optimization analysis. The fitted parameters to the current data are shown
in Table 5.5.

5.4.3 2D plane stress condition

In order to implement the anisotropic hardening model in the finite element code, the
multiaxial stress state need to be considered. Since the formulation up to here is based
on uniaxial loading, it has very limited applicability. The multi-axial stress state (such as
biaxial loading) can be commonly converted to an equivalent uniaxial stress by using a
yield function such as Mises, Tresca or Hill functions.

Oeqv = f(a, 90)7 (517)
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where ¢ is the set of parameters describing the material properties. For plane stress,
the independent stress components are o,,,0y, and o,,. In this section, Hill48 yield
function is used to convert the multi-axial stress state to equivalent stress with material
parameters derived from the anisotropic hardening law in Eq. (5.15).

First, the unit directional vectors for material orthotropy axes e,, e, and the pre-
strain direction e,,. which can be determined in priori or during the unloading state of

1 0 €y
e, = , €y = , €pre = , 5.18
<0> ’ <1> ’ {ey G189

and coefficient matrices for L-prestrain and C-prestrain,

the simulation:

MPTGaL = ) Mpre,C = (5.19)

o o o =
o o = o
o~ o o
_ o o o

The new parameter matrix H* can be calculated depending on the prestrain direc-
tion (L or C),

H*=HM] 0, (5.20)
Y, Y,
Hi=H'e;=|csu | . Hi =H'ey= | 50 | - (5.21)
Rsat z Rsat

0 is calculated from the dot product of material direction vectors and the prestrain
direction vector:

0p = €1 €pre, Oy = €y €pre. (5.22)

Let the right-hand side of Eq. (5.3) represent by function alias f;. Then, saturation stress
is calculated using H; and H,, parameter sets:

U:at7x =h (H;) ) U:at,y =h (H;) ’ (5.23)
Then, n; and n;, can be calculated from Eq. (5.13) which is represented by fa:
n;’ = f2 (H;a 6ma O-;kat,a;) ) n;; = f2 (nga 6y70-:at7y) . (524)

Likewise, g, and g, can be calculated from Eq. (5.7) which is represented by f3:
9z = f3 (H;,0z,m), gy =J3 (H;, 5y7n2) . (5.25)
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Finally, o and o, can be calculated from Eq. (5.3) for each Ep'

0-;; = f4 (gm;n;75m7€;) ) 0-; = f4 (gyan275y75;) . (526)

Equation (5.26) is used to update the anisotropic parameters of the yield function for
each strain increment step during the numerical simulation. In this study, Hill quadratic
[95] yield criterion was used as it allows the determination of its parameters based
solely on two uniaxial tensile tests conducted along the orthotropic axes and an in-plane
shear test. In addition,it is a simple and widely accepted representation of the material’s
anisotropy state in terms of stress ratios in two perpendicular axes (R, R,,) and one
shear axis (R,,). Moreover, the Bauschinger effect can be accounted for by incorporating
a back stress formulation using data from tension-compression tests. While there are
more complex anisotropic yield functions, Hill48 has the advantage of being concise
and easy to use, which allows fast adoption of the model in the industry. The equivalent
stress for this yield criterion is defined as:

= \/Fagy + Go2, + H (04 — 0yy)° + 2NTZ, (5.27)
G:;_RIZZJFRl?m_Rliy_’ (5.29)
H_;_ngx+R15y_];22_, (5.30)

L:%,M:MZC,N:%E, (5.31)
R %2 @0 R = TV R0 B 05 (Ruwt Ryy), (5.32)
o(p) o(gp) ¥

where £, is the equivalent plastic strain. The equation for R,, is an assumption which is
validated by fitting the uniaxial tensile tests of 45° specimens to the material axis in Sec-
tion 5.6.4. Using the proposed hardening model, the anisotropy parameters (R, R,,)
are dynamically updated in each strain increment step.
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5.5 Validation of the Material Model with Simple Nonlinear
IGA
A simple IGA model of a thin plate shown in Fig. 5.7 is used to verify the developed ma-

terial model using JWRIAN-IGA. The strain history is prescribed to match the experiment
cases listed in Table 5.4.
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Figure 5.7: Validation model, boundary conditions and loading histories

The traditional return-mapping algorithm is used to calculate trial stress and plastic
strain increments in each load step. Once the return-mapping iterations have converged,
the prestrained-hardening subroutine uses each integration point to calculate the up-
dated stress in each material axis based on Eq. (5.15). The updated stresses are then
used to modify the stress ratios of the Hill48 yield function in which are saved as history
variables for the next load step. To ensure the numerical stability of the algorithm, the
stress ratios are kept constant during return-mapping iterations, meaning that the yield
surfaces can only expand isotropically in each iteration. During highly anisotropic states
(just after yielding), the strain increments must be small (0.02% to 0.1 %) to prevent
large deviation from the actual yield surface.
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5.6 Results and Discussion

5.6.1 Simulation time history for LC configuration

Figure 5.8 shows the evolution of various state variables in the numerical simulation
for 5LC case. The time history can be divided into three phases: prestraining, elastic
unloading and reloading. During the prestraining phase, a prescribed displacement in
the X-direction was incrementally applied until the desired plastic strain was reached.
Subsequently, the plate was elastically unloaded until the stress-XX reached zero in the
unloading phase. In the reloading phase, a prescribed displacement was applied in the Y-
direction to induce stress-YY. Although the specimen cutting operation was not explicitly
simulated, the strain paths replicate those of the experiment.

From Fig. 5.8(a) and (c), anisotropic hardening was activated following unloading,
as R, and R, promptly became equal to Y, ;7 and Y, ;c, respectively. In the reload-
ing phase, R, increased and saturated at R, c-RY, while R, saturated at Roar, 1, L-RY
at their respective saturation strains. As a result, the anisotropic uniaxial stress-strain
curves can be seen in Fig. 5.8(b).

The equivalent plastic strain which corresponds to the energy conjugate of equiva-
lent stress monotonically increases while individual plastic strain components may de-
crease. The hardening equation in Eq. (5.3) employs the equivalent reloading plastic
strain as its argument. In this case, the reloading plastic strain, denoted as ¢}, is calcu-
lated as the difference between the total plastic strain (¢,,) and the prestrain (e,,.) which
starts from zero during the reloading phase. Since equivalent plastic strain is a scalar,
the algorithm necessitates tracking the direction of the prestrain load to correctly calcu-
late the e,,. and M,,. vectors. Alternatively, if the prestrain direction and pre-plastic
strain value are known in advance, they can be manually input into the algorithm.

5.6.2 Simulation time history for LL configuration

Figure 5.9 shows the simulation time history for S5LL case. Following the prestrain phase,
the values of R, and R, were identical to those of the 5LC case as both cases underwent
the same prestrain loading. However, the reloading curve for o, shows a slight overshoot
as Y, = 1.03 and then converges to the raw curve at saturation. This is in contrast to the
slower work hardening of o, observed in Fig. 5.8(b).

5.6.3 Comparison with experiments

Figure 5.10 shows the comparison between the stress-strain curves from experiments
and simulations for each load case. The dashed curves defining reloading yield stress
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Figure 5.8: Simulation results for 5LC case; (a) Simulation time history of displace-
ments, plastic strain, yield function parameters and stress state, (b) stress-strain curve
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for LC & CL cases are extrapolated from the experiment data for all strain ranges. The
anisotropic hardening model with calibrated parameters show good agreement with the
experimental results, capturing essential characteristics such as high-rate, slow work
hardening in LC/CL, and low-rate, abrupt hardening behaviors in LL/CC. In the exper-
imental reloading curves for LC and CL, there is a slight change in the elastic modulus
compared to the initial value from the raw curve. But this effect is not considered in
the current study and hence there are slight differences in the elastic reloading range.
Overall, the simulations successfully reproduced the flow stresses at large plastic strains
using the strain-path dependent anisotropic hardening model. Optimization of input
parameters (Section 5.4.2) is recommended as more experiment data becomes available
to improve the predictive ability of the model.
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Figure 5.10: Comparison of S-S curves from the experiments and simulation results from
the simple validation model

5.6.4 Intermediate reloading angles

The results in the previous section showed that the proposed anisotropic hardening
model can accurately predict the anisotropic hardening behavior after prestrain for uni-
axial loading along a material axis. In order to check the applicability of the model to
stress states other than which the model is calibrated for, two additional tensile tests
of 5% L-prestrained specimen in 45° and 60° reloading directions were conducted as
shown in Fig. 5.11(a). The reloading yield stress at arbitrary loading angles can be then
calculated from the yield function and equivalent stress. The predicted yield stresses in
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Figure 5.11: (a) Tensile test specimens in 45° and 60° to 5L prestrain direction, (b)
Equivalent stress at arbitrary loading angles calculated from Hill48 function. represent
experimental yield stresses at 0.2 % offset strain for reloading in 00/90 and 45/60 direc-
tions, respectively.

Fig. 5.11(b) show good agreement with experimental yield stresses taken at 0.2 % offset
strain. The comparison in Fig. 5.12 shows that the equivalent stress from yield function
with the 5LL and 5LC parameters can reproduce the stress-strain curves of 5145 and
5L60 specimens.
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Figure 5.12: Simulation and experimental reloading curves for 45° and 60° reloading
directions after 5 % L-prestrain

5.7 Summary

In this study, a strain-path dependent hardening model was developed from the exper-
imentally observed anisotropic behavior of prestrained DP980 steel. The anisotropic
hardening occurs due to differences in prestraining and reloading axes. The model ac-
curately replicates key characteristics in the uniaxial stress-strain curves, including the
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variations in reloading yield stress, hardening rates and permanent softening. It has
a straightforward formulation that can be easily implemented in practical applications,
and it requires only a few parameters that can be obtained directly from uniaxial tensile

tests.

The proposed model is validated using a plane stress case with the Hill48 anisotropic
yield criterion in elastoplastic IGA. The results demonstrated good agreement with ex-
perimental data across all load cases and successfully reproduced the anisotropic hard-
ening behavior when the strain path was altered. The anisotropy parameters are used
to predict equivalent stress in intermediate reloading directions and comparison with
experiments showed good accuracy. Future work for this research includes the investi-
gation of Bauschinger effect and evolution of back-stress due to prestraining from cyclic
loading experiments. Application of the material model in more complex geometries
using IGA is also recommended.
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Conclusions and Outlook

6.1 Conclusions

The main objectives of this research are to develop a numerical framework for isogeo-
metric analysis and to investigate the applicability of IGA in the field of structural health
monitoring and nonlinear material models. Specifically, the integration of IGA and dis-
tributed fiber optic sensing is one of the outcomes of this research. On top of that, a
new anisotropic hardening model was developed for high strength steel subjected to
prestrains. All models were implemented in the IGA code and validated with reference
solutions and experimental data.

Firstly, in-house code JWRIAN-IGA was developed for linear elastic and elastoplastic
solid mechanics as a foundation for IGA-related studies. The code is based on original
IGA formulation by Hughes et.al, using NURBS basis functions and was implemented in
FORTRAN. The supporting algorithms such as h-refinement, multi-patch coupling, geo-
metric tools and solution interpolation were also developed. Using the IGA code, newly
proposed methods for distributed fiber optic sensing and nonlinear material modelling
were investigated.

In the first part of the thesis, a method for the integration of IGA and DFOS was
proposed using the numerical fiber model. The numerical properties of the fiber model
and their effects on the measurability of surface strains were studied. The numerically
computed fiber strains were compared with experiment data from the deformation of a
cylindrical pipe. The idealized loading conditions showed discrepancy in the simulated
fiber strains which was improved by using optimized loading conditions. Hence, the
following conclusions were drawn from the study:

* the modelling and analysis of fiber strains is efficient with a few DOF and adaptable
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to DFOS parameters thanks to exact geometry representation,

* DFOS strain measurements with centimeter resolution, combined with the digital
model, can capture the deformation with high spatial resolution,

* unknown loadings on a structure can also be predicted using IGA and the fiber
model with less than 4 % error in the demonstration model,

* the accuracy of predicted loading is dependent on whether the optimization pa-
rameters are set up properly. The optimization parameters can be determined from
the observed fiber strain distribution and prior knowledge about the structure.

In the second part, an analytical method of inverse IGA in which the displacement
field is reconstructed from measured fiber strains was proposed. In this method, no opti-
mization problem setup is necessary which greatly increases the efficiency and reliability
of the solution. The optimality conditions are derived from the variational problem con-
sidering the least-squares constraint between the analytical and measured fiber strains.
The method was validated with four numerical examples where reference solutions were
used to produce fiber strains and to compare against the inverse solutions. The valida-
tion and sensitivity studies showed that:

¢ the inverse IGA-DFOS is accurate (displacement error < 0.1 %) and robust under
various geometry, fiber layout and loading conditions,

* error ceilings dramatically improve when the sampling interval is smaller than
geometric features such as curvature of the fiber,

* local stress concentrations can be detected by the inverse analysis although accu-
racy depends on the relative sampling interval,

* mean displacement errors increase linearly with noise levels,

* signal-to-noise ratio is a crucial factor in determining the error bounds of the in-

verse solution, with maximum errors up to 25 % in the case studies.

The inverse IGA-DFOS was applied to estimate the deformation of a rotating im-
peller plate using measured fiber strains from front and back sides of the plate. The
study showed that the inverse analysis can:

* output a smooth displacement distribution even though input fiber strains are
sparse and noisy,

* give both global deformation shape and local changes,
* reproduce the measured fiber strains with less than 0.1 % maximum error,

¢ estimate stress distribution and stress concentration zones.
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Spurious local stress concentrations were found in the stress results which were not
visible in the displacement field, the reason being the uncertainty of fiber position in
relatively small scales. This is the limitation of the model which can be overcome by
using multiple parallel fibers to reduce uncertainty. Temperature effects on the fiber and
structure can be integrated into the model in the future to make it fully automated.

In the final part of the thesis, anisotropic hardening of prestrained high strength
steel DP980 was experimentally studied and a new hardening model was proposed to
replicate the observed phenomena. The uniaxial tensile tests were conducted for small
prestrained specimens in four categories of prestrain and reloading directions. The non-
linear work-hardening portion of the resulting stress-strain curves are modelled with
modified Swift equation and the input parameters are derived. The proposed model has
the merit of simplicity since all parameters have physical meaning and can be identified
from uniaxial stress-strain curves. Then, the model was implemented in elastoplastic
IGA code and numerical simulations were compared with experiments. The following

conclusions were drawn from the study:

* subsequent yield stress in 90° reloading direction is much lower than 0° reloading

direction,

* the reloading stress strain curves have transient effects such as overshoot or un-
dershoot from the raw curve,

* 90° reloading specimens show wider softening region (higher transient ductility)
than 0° counterparts,

* the reloading curves eventually saturate to the raw curve (or Swift extrapolation)
although some cases show permeant softening,

* the simulation results show good agreement with experiments for both calibrated
cases and arbitrary reloading directions.

The small changes in elastic modulus and evolution of back-stress after prestrain were
not considered in this study. Hence, the model can be further improved by considering

these effects from cyclic loading tests and biaxial tensile tests.

6.2 Outlook

IGA is an advanced numerical method which has been developed for more than two
decades. As it currently stands, the main difficulty in adopting IGA in industry is CAD
data interoperability especially for complex geometries. NURBS has limitations in terms
of topology and multi-patch separation has to be used which may not be the most prac-
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tical approach. There are several proposals to solve this problem using advanced Splines
but there is currently no industry standard. This research is a part of the ongoing effort
to expand the applicability of IGA to structural monitoring and nonlinear materials. The
proposed methods and implementations in this thesis can be modified to utilize different

Spline-based geometries without affecting the major conclusions.

The following research directions are suggested for further development of the pro-
posed methods.

Estimating the error or uncertainty is a salient part of any ill-posed inverse analysis
which uses noisy measurement data as input. Sensitivity analysis was performed in the
current research using numerical case studies. But a posterior error estimator indepen-
dent of the geometry and loading conditions may be preferred for better generalization.
This is not a trivial task since the uncertainty depends on the strain distribution which
in turn relates to the load state. If a reliable general error estimator can be realized,
the optimal fiber layout can be determined by minimizing the error. It is likely that the
uncertainty cannot be estimated using deterministic methods. In this case, probabilistic
methods such as Bayesian inference may be used. Probabilistic methods are increas-
ingly popular in SHM field since they can also provide the error bounds by explicitly
considering the uncertainty sources.

Inverse analysis for nonlinear problems is worth investigating for large deformation
problems. The solving algorithms have to consider the fiber response to the deformation
and nonlinear material behavior. Inverse analysis for non-homogeneous materials is
also a frontier research as there are recently developed theories such as zig-zag element
formulation for composites. Anisotropy in elastic properties prominent in composite
materials can be considered in a modified IGA formulation by taking advantage of high
order continuity.
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Integration of IGA and DFOS

A.1 Modelling of DFOS fiber

The high-level flow chart for the calculation of fiber strains using developed fiber model
is shown in Fig. A.1.

Figure A.2 shows the results of fiber strain calculations from the validation model in
Section 3.2.3.

Figure A.3 shows the comparisons of experimental and simulated fiber strains for
different prescribed displacement values. The experiment setup is described in Sec-
tion 3.3.1.

A.2 Inverse analysis of the impeller plate

Figure A.4 shows the measured fiber strains from the impeller experiment at fixed vis-
cosity and different RPMs. The fiber goes from back side to front side of the plate as
illustrated in Fig. 4.16. In contrast, Fig. A.5 shows the fiber strains at fixed RPM and
different fluid viscosities.

Figure A.6 shows the inverse deformation for different viscosities at fixed RPM. As
expected, higher viscosity results in bigger deformation of the plate but they are not
linearly proportional. By learning this relation, the inverse analysis can be used to infer
the viscosity of the fluid from the structural response.
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A.2. Inverse analysis of the impeller plate
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Figure A.1: Flow chart for the calculation of fiber strains from IGA linear elastic analysis
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A.2. Inverse analysis of the impeller plate
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Figure A.4: Measured fiber strains from the impeller experiment at fixed viscosity
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Figure A.5: Measured fiber strains from the impeller experiment at 40 RPM and different
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A.2. Inverse analysis of the impeller plate
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