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Abstract
Let G be a finite p-solvable group and N a normal subgroup of G. Suppose that B is a p-block

of G with defect group D such that |D| > |D ∩ N|. Given μ ∈ Irr(N), we show that the set of
height zero characters in Irr(B) that lie over μ is either empty or contains two or more elements.

1. Introduction

1. Introduction
Fix a prime p and let G be a finite group. Let B be a Brauer p-block of G and denote

by Irr0(B) the set of ordinary irreducible characters in B of height zero. If the defect of B is
positive, then a result of Cliff, Plesken and Weiss [1] asserts that |Irr0(B)| ≥ 2. (See also [7].)

Now let N be a normal subgroup of G and suppose μ ∈ Irr(N). Let Irr(G|μ) be the set of
irreducible characters of G that lie over μ, and write Irr0(B|μ) = Irr0(B) ∩ Irr(G|μ). The aim
of this paper is to prove a relative version of the above result in case G is p-solvable.

Theorem. Let N be a normal subgroup of a p-solvable group G, and let B be a p-block
of G with defect group D such that |D| > |D ∩ N|. Let μ ∈ Irr(N) and suppose Irr0(B|μ) � ∅.
Then |Irr0(B|μ)| ≥ 2.

2. Proof of Theorem

2. Proof of Theorem
Fix a prime p and let B be a p-block of a group G. Let N be a normal subgroup of G and

let μ ∈ Irr(b),where b is a p-block of N. Suppose μ is an irreducible constituent of χN ,where
χ ∈ Irr(B). By [8, Lemma 2.2], we have ht(χ) ≥ ht(μ). If ν is any other constituent of χN ,

then ν is G-conjugate to μ and belongs to a G-conjugate of b. Since G-conjugate blocks of N
have equal defects, the difference ht(χ)−ht(μ) is independent of the choice of the constituent
μ.

If ht(χ) = ht(μ), then the character χ is said to be of relative height zero with respect to N.
We denote by Irrμ0(B) the set of all those characters in Irr(B)∩ Irr(G|μ) having relative height
zero with respect to N. It is clear that χ ∈ Irr0(B|μ) if and only if ht(μ) = 0 and χ ∈ Irrμ0(B).
Now our main theorem is a consequence of the following more general result.

Theorem 2.1. Let N � G, where G is p-solvable and let B be a p-block of G with defect
group D such that |D| > |D ∩ N|. Let μ ∈ Irr(N) and assume Irrμ0(B) � ∅. Then |Irrμ0(B)| ≥ 2.

In order to prove Theorem 2.1, we need a series of preliminary results.
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Lemma 2.2. Let N be a normal subgroup of an arbitrary group G. Let μ ∈ Irr(N) and
suppose χ ∈ Irrμ0(B), where B is a p-block of G. Let T be the inertial group of μ in G and let
θ ∈ Irr(T |μ) be the Clifford correspondent of χ. If B0 is the p-block of T to which θ belongs,
then B0 and B have a common defect group, θ ∈ Irrμ0(B0) and |Irrμ0(B)| ≥ |Irrμ0(B0)|.

Proof. Let b be the block of N such that μ ∈ Irr(b). Then both B and B0 cover b by
Lemma 5.5.7 of [9]. Next, as θG = χ, Lemma 5.3.1(ii) of [9] implies that B0

G is defined
and B0

G = B. By [9, Theorem 5.5.16], we can choose defect groups Q and D0 for b and B0,

respectively, such that Q = D0 ∩ N. Then by [9, Lemma 5.3.3], there exists a defect group
D of B such that D0 ⊆ D.

Since θ lies over μ, we have ht(θ) ≥ ht(μ), and so θ(1)p = |T : D0|p pht(θ) ≥ |T : D0|p pht(μ).

Then χ(1)p = |G : T |pθ(1)p ≥ |G : D0|p pht(μ). On the other hand, as χ ∈ Irrμ0(B), we
have that χ(1)p = |G : D|p pht(χ) = |G : D|p pht(μ). It follows that |D0| ≥ |D|. Now, as
D0 ⊆ D, we conclude that D = D0, thereby proving the first assertion. Then we get that
θ(1)p = |T : D0|p pht(μ), which implies that ht(θ) = ht(μ). Then θ ∈ Irrμ0(B0), as needed.

Suppose ξ ∈ Irrμ0(B0). Then ht(ξ) = ht(μ) and by Theorem 3.3.8 and Lemma 5.3.1 of [9],
ξG ∈ Irr(B) ∩ Irr(G|μ). Next

ξG(1)p = |G : T |pξ(1)p = |G : T |p|T : D|p pht(ξ) = |G : D|p pht(μ),

which shows that ξG ∈ Irrμ0(B). So the correspondence ξ �→ ξG defines a map from Irrμ0(B0)
to Irrμ0(B). Since this map is injective by [9, Theorem 3.3.8], we conclude that |Irrμ0(B)| ≥
|Irrμ0(B0)|. This completes the proof of the Lemma. �

Let π be a prime set with complement π′ in the set of all prime numbers. Suppose G is a
(finite) π-separable group. An irreducible character χ of G is said to be π-special if χ(1) is a
π-number and for every subnormal subgroup H of G, the determinantal order o(θ) of every
irreducible constituent θ of χH is a π-number. (See Section 2A in [2].)

By [2, Theorem 2.2], the product of any π-special character of G times a π′-special char-
acter is irreducible. An irreducible character χ of G is said to be π-factored if χ = αβ, where
α is π-special and β is π′-special. If χ ∈ Irr(G) is π-factored, then the π-special and π′-special
factors of χ are uniquely determined (by Theorem 2.2 in [2]), and are denoted by χπ and χπ′ ,
respectively. In case π = {p}, a single prime, we shall simply write p-special, p′-special, χp

and χp′ instead of {p}-special, {p}′-special, χ{p} and χ{p}′ , respectively.
Suppose now that χ is an arbitrary irreducible character of G. One can associate with χ

a canonical pair (W, γ), where W is a subgroup of G, γ ∈ Irr(W) is π-factored and γG = χ.

This pair, which turns out to be uniquely determined up to G-conjugacy, is called a nucleus
for χ. In case χ is π-factored, then the pair (G, χ) is the single nucleus of χ. (See Section 4A
in [2] for the precise definition of a nucleus of a character.)

Lemma 2.3. Let N � G, where G is p-solvable and let μ ∈ Irr(N) be G-invariant. Choose
a nucleus (W, γ) for μ and let S = NG((W, γ)) be the stabilizer of (W, γ) in G. Then G = NS
and W = N ∩ S.

Proof. This follows from Lemma 3.6 of [4]. �
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Lemma 2.4. Let G be an arbitrary group with normal subgroup N, and let μ ∈ Irr(N) be
G-invariant. Suppose G = NS for a subgroup S and write W = N ∩ S. Assume γ ∈ Irr(W) is
S-invariant and γN = μ. Then

(a) Character induction defines a bijection from Irr(S|γ) onto Irr(G|μ).
Furthermore, assuming χ ∈ Irrμ0(B) where B is a p-block of G, if θ is the character

in Irr(S|γ) such that θG = χ and B0 is the p-block of S to which θ belongs, we have
(b) θ ∈ Irrγ0(B0);
(c) B0 has a defect group D0 contained in a defect group D of B and |D : D∩N| = |D0 :

D0 ∩W |;
(d) |Irrγ0(B0)| ≤ |Irrμ0(B)|.

Proof. Part (a) follows from Lemma 2.11(b) in [2].
Now suppose χ ∈ Irrμ0(B) where B is a p-block of G. Let θ be the character in Irr(S|γ)

such that θG = χ and let B0 be the p-block of S to which θ belongs.
Since θG = χ, [9, Lemma 5.3.1] tells us that B0

G is defined and equals B. Then by Lemma
5.3.3 of [9], B0 has a defect group D0 contained in some defect group D of B.

As ht(χ) = ht(μ), we have χ(1)p = |G : D|p pht(χ) = |G : D|p pht(μ). Also, since θ lies over
γ, we have ht(θ) ≥ ht(γ), and so θ(1)p = |S : D0|p pht(θ) ≥ |S : D0|p pht(γ). It follows that
|G : D|p pht(μ) ≥ |G : D0|p pht(γ), as χ(1)p = |G : S|pθ(1)p. Therefore,

(1) pht(μ) ≥ |D : D0|pht(γ).

Let b be the block of N to which μ belongs, and let b0 be the block of W to which γ
belongs. Since μ is invariant in G and γ is invariant in S, we have that b is G-stable and b0 is
S-stable. It follows by [9, Theorem 5.5.16(ii)] that D∩N is a defect group of b, and D0∩W is
a defect group of b0. Therefore, μ(1)p = |N : D ∩ N|p pht(μ) and γ(1)p = |W : D0 ∩W |p pht(γ).

Since μ = γN , we have μ(1)p = |N : W |pγ(1)p, and hence |N : D ∩ N|p pht(μ) = |N :
D0 ∩W |p pht(γ). Therefore,

(2) pht(μ) = |D ∩ N : D0 ∩W |pht(γ).

Now, in view of (1), we get that |D0 : D0 ∩W | ≥ |D : D ∩ N|, and consequently

(3) |N : W | ≥ |DN : D0W |.
Since W = N ∩ S, and D0 ⊆ S, we have D0W = D0(N ∩ S) = (D0N)∩ S. Also, as G = NS,

it is clear that G = (D0N)S. Therefore, |G| = |D0N||S||(D0N) ∩ S|−1 = |D0N||S||D0W |−1. Now
since |G| = |N||S||W |−1, we conclude that

(4) |N : W | = |D0N : D0W |.
Using (3) now, it follows that |D0N| ≥ |DN|. On the other hand, we know that D0 ⊆ D.
Therefore D0N = DN, and hence, in light of (4), we get that |N : W | = |DN : D0W |. Then
|D : D ∩ N| = |D0 : D0 ∩W |, which finishes the proof of (c).

Next, using (2), we have that

(5) pht(μ) = |D : D0|pht(γ).

Now χ(1)p = |G : D|p pht(μ) = |G : D0|p pht(γ), and thus, as χ(1)p = |G : S|pθ(1)p and
θ(1)p = |S : D0|p pht(θ), it follows that pht(θ) = pht(γ), which clearly proves (b).
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Finally, we show (d). Suppose ξ ∈ Irrγ0(B0). Then ht(ξ) = ht(γ). Also, by (a), ξG ∈
Irr(G|μ). Since B0

G = B, we have that ξG ∈ Irr(B) (by [9, Lemma 5.3.1]), and so ξG(1)p =

|G : D|p pht(ξG). On the other hand, we also have ξG(1)p = |G : S|pξ(1)p. Therefore

pht(ξG) = (|S|p)−1|D|ξ(1)p = (|S|p)−1|D||S : D0|p pht(ξ)

= |D : D0|pht(ξ) = |D : D0|pht(γ) = pht(μ),

where the last equality is (5). We have thus shown that ξG ∈ Irrμ0(B). Now, in light of (a),
part (d) of the Lemma follows. �

Lemma 2.5. Let N � G, where G is p-solvable and let μ be a G-invariant p-factored
character of N. Let B be a p-block of G of maximal defect such that Irrμ0(B) � ∅. Then
|Irrμ0(B)| = |Irrμp′

0 (B)|.
Proof. Since Irrμ0(B) � ∅ and B has maximal defect, Theorem 2.3 in [8] implies that μ

extends to PN for some Sylow p-subgroup P of G. Then, by Theorem 4.1 in [6], μp extends
to a p-special character δ of G, and the correspondence θ �→ δθ defines a bijection from
Irr(G|μp′) onto Irr(G|μ). Now to prove the assertion of the lemma, it suffices to show that the
above bijection maps Irrμp′

0 (B) onto Irrμ0(B).
Let M = Op′(G). Since δ is p-special, then the irreducible constituents of δM are all p-

special, and so, as M is a p′-group, they must all be the principal character 1M of M. It
follows by [10, Theorem 10.20] that δ belongs to the principal block of G.

Suppose θ ∈ Irrμp′
0 (B). Then ht(θ) = ht(μp′) = 0, as μp′(1) is a p′-number. Now, since B

has maximal defect, it follows that θ(1) is a p′-number. Then, in view of [11, Lemma 2.9],
we have δθ ∈ Irr(B). Next, by [11, Lemma 2.10] (for instance), μ belongs to a block of N of
maximal defect. Then

pht(δθ) = (δθ)(1)p = δ(1) = μp(1) = μ(1)p = pht(μ),

and thus δθ ∈ Irrμ0(B).
Now let χ ∈ Irrμ0(B). Then χ = δη for some η ∈ Irr(G|μp′). Since ht(χ) = ht(μ), we have

χ(1)p = μ(1)p. It follows that η(1) is a p′-number, as δ(1) = μ(1)p. Now [11, Lemma 2.9]
tells us that η ∈ Irr(B). Finally, since ht(η) = 0 = ht(μp′), we conclude that η ∈ Irrμp′

0 (B). The
proof of the lemma is now complete. �

Suppose μ is a p′-special character of a normal subgroup N of a p-solvable group G. Two
characters χ, χ′ ∈ Irr(G|μ) are said to be linked if they are linked in the sense of Brauer,
i.e., if there is ϕ ∈ IBr(G) such that the decomposition numbers dχϕ and dχ′ϕ are nonzero.
The equivalence classes defined by the transitive extension of this linking are called relative
blocks of G with respect to (N, μ) (see [3, Section 3]). In particular, if B is any block of G
covering the block of N to which μ belongs, then Irr(B)∩ Irr(G|μ) is a union of some relative
blocks with respect to (N, μ).

We should mention that a notion of defect group associated with a relative block was
introduced in [3, Section 4]. The defect groups of a relative block form a single G-conjugacy
class of p-subgroups of G.

If  is a relative block of G with respect to (N, μ) and D is a defect group of , then the
relative height (with respect to (N, μ)) of χ ∈  is defined as hμ(χ) = χ(1)p|D|(|G|p)−1. It
turns out that hμ(χ) = pn, where n is some nonnegative integer. (See [3, Section 4].)
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Lemma 2.6. Let N be a normal subgroup of a p-solvable group G such that |G : N|p > 1,
and let μ ∈ Irr(N) be p′-special. Let B be a p-block of G of maximal defect and suppose
Irrμ0(B) � ∅. Then |Irrμ0(B)| ≥ 2.

Proof. Let χ ∈ Irrμ0(B) and let b be the block of N to which μ belongs. Since μ has p′-
degree, b has maximal defect and ht(μ) = 0. Therefore ht(χ) = 0, and so, as B has maximal
defect, the character χ has p′-degree.

Now let  be the relative block of G with respect to (N, μ) such that χ ∈ . Then, if D
is a defect group of , we have |D|(|G|p)−1 = hμ(χ) = pn for some integer n ≥ 0. It follows
that D is a Sylow p-subgroup of G.

By Theorem 3.1 and Lemma 4.7 of [3], there exist a group H, a block A of H and a
bijection Ψ of  onto Irr(A) such that hμ(θ) = pht(Ψ(θ)) for every θ ∈ . Also, [3, Theorem
4.2] implies that  has a defect group D′ such that the quotient group (D′N)/N is isomorphic
to some defect group ˜D of A. Since D′, being G-conjugate to D, is a Sylow p-subgroup of
G, we get that |˜D| = |G : N|p > 1. It follows that |Irr0(A)| ≥ 2.

Now let ζ be any character in Irr0(A). Then Ψ−1(ζ) ∈ (⊆ Irr(B)) and hμ(Ψ−1(ζ)) = 1.
It follows that Ψ−1(ζ) has p′-degree, and hence, as a character of the block B, Ψ−1(ζ) is
of height zero. Now, being in , the character Ψ−1(ζ) lies over μ, and we have Ψ−1(ζ) ∈
Irrμ0(B). Finally, since |Irr0(A)| ≥ 2 and Ψ−1 is a bijection from Irr(A) onto , it follows that
|Irrμ0(B)| ≥ 2, as needed to be shown. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We proceed by induction on |G|. Let M = Op′(G) and write
L = MN. Next let χ ∈ Irrμ0(B), and choose a character θ ∈ Irr(L) lying under χ and over μ.
Let b be the block of L to which θ belongs. Since ht(χ) ≥ ht(θ) ≥ ht(μ) and ht(χ) = ht(μ), it
is clear that χ ∈ Irrθ0(B) and θ ∈ Irrμ0(b).

Choose a block b0 of M covered by b, and let ν be the unique character in Irr(b0). Then
both θ and χ lie over ν. Next, let T be the inertial group of ν in G. Then T is the inertial
group of b0, also.

First, suppose T < G. Let B′ and b′ be the respective Fong-Reynolds correspondents of
B and b with respect to b0. Next, choose a defect group D′ of B′. By [9, Theorem 5.5.10],
D′ is a defect group of B, and so |D′| > |D′ ∩ N|. Also, as L/N is a p′-group, we have that
D′ ∩ L = D′ ∩ N, and it follows that |D′| > |D′ ∩ (T ∩ L)|.

By [9, Theorem 5.5.10], there is a unique character θ′ ∈ Irr(b′) such that (θ′)L = θ and
ht(θ′) = ht(θ). Similarly, there is a unique character χ′ ∈ Irr(B′) such that (χ′)G = χ and
ht(χ′) = ht(χ). Since χ′ and θ′ both lie over ν, and χ lies over θ, it follows by [5, Lemma 2.6]
that χ′ lies over θ′. Now, as χ ∈ Irrθ0(B), we get that χ′ ∈ Irrθ

′
0 (B′). Therefore, in particular,

Irrθ
′

0 (B′) � ∅.
Since T < G and |D′| > |D′∩(T ∩L)|, the inductive hypothesis guarantees that |Irrθ′0 (B′)| ≥

2. It follows by [9, Theorem 5.5.10] and [5, Lemma 2.6] that |Irrθ0(B)| ≥ 2. Now, as θ ∈
Irrμ0(b), we conclude that |Irrμ0(B)| ≥ 2, as desired.

We may now assume that T = G. Since χ lies over ν and χ ∈ Irr(B), Theorem 10.20 in
[10] tells us that the defect groups of B are the Sylow p-subgroups of G.

Let I be the inertial group of μ in G and let θ ∈ Irr(I|μ) be the Clifford correspondent of
χ. Next, let B0 be the block of I to which θ belongs. Then by Lemma 2.2, B and B0 have
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a common defect group D0, θ ∈ Irrμ0(B0) and |Irrμ0(B)| ≥ |Irrμ0(B0)|. Also, note that D0 is a
Sylow p-subgroup of I and that |D0| > |D0 ∩ N|.

Choose a nucleus (W, γ) for μ and let S be the stabilizer of (W, γ) in I. Then μ = γN

and by Lemma 2.3, we have I = NS and W = N ∩ S. Next, by Lemma 2.4(a), there is a
unique character ξ ∈ Irr(S|γ) such that ξI = θ. Let B1 be the block of S to which ξ belongs.
Since θ ∈ Irrμ0(B0), Lemma 2.4 implies that ξ ∈ Irrγ0(B1), B1 has a defect group D1 with
|D1 : D1 ∩ W | = |D0 : D0 ∩ N|, and |Irrγ0(B1)| ≤ |Irrμ0(B0)|. We claim that D1 is a Sylow
p-subgroup of S.

Since D0 is a Sylow p-subgroup of I, we have

|D1 : D1 ∩W | = |D0 : D0 ∩ N| = |D0N : N| = |D0N|p/|N|p = |I|p/|N|p.
Since I = NS and W = N ∩ S, we have that S/W � I/N, and hence |I|p/|N|p = |S|p/|W |p. It
follows that

(1) |D1 : D1 ∩W | = |S|p/|W |p.
Let A be the block of W to which γ belongs. Since γ is p-factored, [11, Lemma 2.10] tells
us that the defect groups of A are the Sylow p-subgroups of W. Next, as ξ lies over γ, the
block B1 covers A and [9, Theorem 5.5.16(ii)] implies that |D1 ∩W | = |W |p. It follows from
(1) that |S|p = |D1|, thus proving our claim.

Since γ is an S-invariant p-factored character of the normal subgroup W of S, Irrγ0(B1) � ∅
and B1 has maximal defect, then, in light of Lemma 2.5, we have |Irrγp′

0 (B1)| = |Irrγ0(B1)| > 0.
Furthermore, as |S : W |p = |D0 : D0 ∩ N| > 1, Lemma 2.6 says that |Irrγp′

0 (B1)| ≥ 2. Finally,

|Irrμ0(B)| ≥ |Irrμ0(B0)| ≥ |Irrγ0(B1)| = |Irrγp′
0 (B1)| ≥ 2,

and the proof of the theorem is complete. �
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