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Introduction. Let R be a Noetherian integral domain and R [X] a poly-
nomial ring. Let a be an element of an algebraic field extension L of the quo-
tient field K of R and let π : R [X] -> R [a] be the Λ-algebra homomorphism
sending X to a. Let φΛ(X) be the monic minimal polynomial of a over K with
deg φΛ(X)=d and write φΛ(X)=Xd+ηlX

d-1+ - +ηd. Let 7ω:= Π ί,ι(R:R ?,).
Foτf(X)^R[X], let C(f(X)) denote the ideal generated by the coefficients of

f ( X ) . Let/[Λ]: =/[*] C(φΛ(X)), which is an ideal of R and contains /[*]. The
element a is called an anti-integral element of degree d over R if Kerτr=
/[rt] φΛ(^C) R [X]. When a is an anti-integral element over Ry R[a] is called an
anti-integral extension of R. In the case K(a)=K, an anti-integral elemet a is
the same as an anti-integral element (i.e., R=R[a] Γ\R[l/(X\) defied in [5]. The
element a is called a super-primitive element of degree d over R if JιΛ^p for
all primes p of depth one.

For p^ Spec (R), k(p) denotes the residue field Rp/pRp and rank^) R [a]
®R k(p) denotes the dimension as a vector space over k(p). We are interested
in characterizing the flatness and the integrality of an anti-integral extension
R\cί\ of R. Indeed, among others we obtain the following results:
(i) R [a] is flat over R if and only if rank^) R [a] ®R k(p)<d for all p <Ξ Sρec(.R),
(ii) R[a] is integral over R if and only if ra.nik(p)R[a](&R k(p)=d for all

Thus if an anti-integral extension R [a] is integral over jR, then R [a] is flat over
R. Concerning a super-primitive element, we obtain that if R is a Krull domain
and a is an algebraic element over R, then a is a super-primitive element. We
also obtain that a super-primitive element is an anti-integral element. More
precisely, a is super-primitive over R if and only if a is anti-integral over R and
R [a]p is flat over Rp for any prime ideal p of depth one.

Using these results, we obtain the following:
Let Δ(5) denote the set {peSpec(jR) \rankk(p)S(&R k(p)=d}, where S is an

extension of R of degree d and let Dp^R) denote the set of all prime ideals of R
of depth one. Assume that [L: K]=d, and that aίy •••, an^L are anti-integral
elements of degree d, and let A=R[a1, — , an]. If Δ(Λ[αJ)lD<Dpι(/2) (1 <i<ri)
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and Ur^la^lDDp^R), where Ur(A) denotes the set {p^Spec(R)\Ap is unra-

mified over Rp}y then A is integral over R, and Ap is etale over Rp for p^Δ(A).

If Δ(-4)=Spec(l?) in addition to the above assumptions, then A is integral and

etale over R.

Notations and Conventions. Throughout this paper, we use the follow-

ing notations unless otherwise specified.

R: a Noetherian integral domian,
K: = K(R): the quotient field of R,

L: an algebraic field extension of Ky

α: a non-zero element of L,

φΛ(X) = Xdj

ΓηlX
d"l-\ ----- \-ηdy the minimal polynomial of a over K.

Let TT: R[X]-*-R[a] be an jR-algebra homomorphism defined by X^>a and

let AW.= Ker π. Then AM is a prime ideal of R[X] with AM ΓiR=(0). By

definition, AίΰύΊ= iψ(X) <ΞR[X]\ ψ(a)=Q} .

Let /[«,]: = Π di-ι(R:R ^)> which is an ideal of Λ.

:-=the ideal generated by all coefficients o f f ( X ) ,
that is, C(f(X)) is the content ideal of f(X).

] C(9)Λ(Jί)), which is an ideal of R and contains I[Λ \.
We also use the following standard notations:

k(p): = the residue filed Rp/pRp for p<= Spec (Λ) ,

= 1},

= 1}.

Throughout this paper, all fields, rings and algebras are assumed to be com-

mutative with unity. Our special notations are indicated above and our gen-

eral reference for unexplained technical terms is [3].

1. Anti-Integral Elements and Super-Primitive Elements

We start with the following definition.

DEFINITION 1.1. Let / be an ideal of R[X] with / Π -R=(0) and let /(-£)=

aQXn+a1X
n~1J[ ----- h#n be a polynomial in R[X]. We say that/(.X) is a Sharma

polynomial in / if there does not exist t£ΞR with t ^aQR such that £αf 6Ξ#07? for

We give an equivalent condition for a polynomial to be a Sharma polyno-
mial in the following proposition.
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Proposition 1.2. Let f(X) be a polynomial in R [X]. Then f(X) is a Shar-
ma polynomial if and only if C(f(X))φp for any p&Dp^R).

Proof. Letf(X)=a0X
n-i ----- ^an(at^R).

(-Φ ) Suppose that C(f(X))C.p for some p^Dp^R). Then aQ^p, and there
exists t$ΞaQR such that p=(aQR:R t). In this case, a^p implies that a
(\<i<ri)y which asserts that /(.XT) is not a Sharma polynomial.

(<£=) Suppose that f(X) is not a Sharma polynomial. Then there exists
such that t$aQR, ta,.etf0Λ(l <*</*). Since there exists p^Dp^R) such that
(aQR:Rt)C.p, we have ai^(aQR:R t)CLp (\<i<n) and obviously aQ^p. So

C(f(X))=(a09 •••, an)(Ξp, a contradiction. Q.E.D.

Proposition 1.3. The following statements are equivalent:
(i) A[Λ \ is a principal ideal of R [X],
(ii) /[Λ] is a principal ideal of R,
(iii) there exists a Sharma polynomial in A[Λ \ of degree d.

If one of the above conditions holds , then A[Λ \ is generated by a Sharma polynomial.

Proof. (iii)=Φ>(i): Letf(X) be a Sharma polynomial in A[Λ-\ of degree d.
Since degφa(X)= d, this Sharma polynomial has the least degree. So by [6],
A[Λ-\ is principal.

(i) *(ii): Let A^=f(X)R[X]. Then f(X) R[X]^I^φΛ(X)R[X}. Note
ύ\ΆtAιΛ®RK=f(X)K[X}=φJ(X)K[X\ and hence degf(X)=degφa6(X)=d.
Take Λe/ω. Then aφa(X)=bf(X}. Let f(X)=aQXd-] ----- \-ad with a^R.
Then a=ba0) so that IιΛ \^aQR for some ό^Λ. Since baQ-ηi=a'ηi=bai(l <ί<>d),

we have aQηi=ai^R. Hence ^0^^[αj]> which implies that I[Λ \=a^R.
(ii)^(iii): Let Iω=bR. Then I^φ^X) R[X]=bφΛ(X) R[X]dA^ and
b-η^R^^i^d). Suppose that there exists t^bR with tbη^bR^^i^d).
Then t-η^R and hence t^IιΛι=bR, a contradiction. Thus δ^^jίje/ϊfjί] is
a Sharma polynomial of degree d. Q.E.D.

For later use, we quote the following.

Lemma 1.4 ([6, Cor. 3]). Let R be an integral domain and I a non-zero
ideal of a plynomίal ring R [X] such that I (Ί jR=(0). If there exists a polynomial
f(X)^I such that f(X) is of the least positive degree in I and C(f(X))=R, then
I is generated by the polynomial f(X).

DEFINITION 1.5. i) a^L is called an anti-integral element of degree d

over R if AιΛ ]=I\_0^φΛ(X) R[X~\. When a. is an anti-integral element, we say
that R [a] is an anti-integral extention of R.
ii) a^L is called a super-primitive element of degree d over R if J[Λ \(tp for
all p^Dp^R). When a is a super-primitive element, we say that R [a] is a
super-primitive extention of R.
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REMARK 1.6. i) In [5], we studied the anti-integrality which is defined
as follows: An element a^K is called anti-integral over R if R= R[a]Γ\
R[l/a] (:=R(a)). We knew that a is anti-integral over R in this sense if and
only if A[Λ \ has a linear basis, that is,

with di/c—a [5, Proof of (1.9)]. The last condition is equivalent to
φa(X) R[X], where φa(X)=X— a. So a^K is anti-integral over R in this
sense if and only if a is an anti-integral element of degree one over R in the
sense of Definition 1.5, that is, the anti-integrality defined in [5] is equivalent
to the one defined in (1.5) in the case of degree one.
ii) It is immediate that α£ΞL is a super-primitive element of degree d over R if

and only if a is a super-primitive element of degree d over Rp for any p^
Sρec(J?). Thus R[a] is a super-primitive extension if R of and only if R[cc~\p

is a super-primitive extension of Rp for all p^Spec(R), where R[ot\p denotes
the localization 5"1 R[a] with S=R\p.

Lemma 1.7. Let f(X) be an element of a polynomial ring R[X] and let
p e Spec (R). Then p D C ( f ( X ) ) if and only if Rp [X]/f(X) RP[X] is not flat over

RP.

Proof. The implication (<=) follows from [3, (20.F)].

(•*) Since C(f(X))dp,pR[X] contains /(Z), and hence Q=pR[X]/f(X) R[X]
is a prime ideal of B:=R[X]lf(X) R[X]. Suppose that Bp=Rp[X]/f(X) RP[X]
is flat over Rp. Then BQ is obtained from Bp by localizing at QBP. So depth
BQ> depth Bp, and hence depth BQ> depth Rp. It is easy to see that depth BpB

=depth BQ and BpB=R [X]pBιx^/f(X) R [X]pRιx \. Since R is an integral domian,
we have depth BpB— depth R\X]pR[X \—\ = depth Rp— 1, which is a contradiction.

Q.E.D.

Our almost all main results are based on the following theorem.

Theorem 1.8. Assume that a is an anti-integral element of degree d over
R. Then for p e Spec (R), the following are equivalent :

(i) rankjφ R [a] ®R k(ρ) < d,
(ii) rankΛ(,) R [a] ®R k(p)< oo ,
(iii) R[a]®R k(p) is not isomorphic to a polynomial ring k(p) [Γ],

(iv)
(v)
(vi) R\pί\p is flat over Rp.

Proof. Since a is anti-integral, A^Λ-\=I[Λ \ φΛ(X) R[X]>
(iv)=φ(vi): Since Rp=(J^p=(Ii^)p C(φΛ(X))p, (I^)p is a principal ideal bRp
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for some δe/[α>]. So (AM)p=bφΛ(X) RP[X]. It follows that R[ά]p^Rp[X]/
(AlΛi)p=Rp[X]lbφΛ(X) RP[X]. Thus R[a]p is flat over Rp by Lemma 1.7 be-
cause Rp=(Jω)p=C(bφΛ(X))p.
(iv)=Φ>(i): By the same argument as above, we have R [a]p^Rp[X]/(AιΛι)p=
Rp[X]lbφΛ(X)Rp[X]. Since Rp=(Ju)p=O(bφ.(X))p, there exists i(0<i<d)
such that biji$pRp[X]. We take / minimal among such ones. Then bφΛ(X)=
bXt+b^X*-1^ ----- \-bηd=bηiX

d'1^ ----- \-b-ηd = 0 (mod pRp[X]), which means
that rank^) R[a]®R k(p)<d—i<d.
(i)=φ(ii) is trivial.
(ii) *Φ (iv) : Note that R[a]plpR[ά\p^Rp[X]l(pR[X] +AίΰύΊ)p. Since rankk(p)R[a]
®Rk(p)<°o, (pR[X] + Aω)p contains an element f ( X ) e R [X] such that
C(f(X))p=Rp. Indeed, if not, we conclude that R[a]®R k(p)— k(p) [Γ], a
polynomial ring, a contradiction. We may asume that f(X}^A[(Λ \. So the
equality (-4ω),=/ω φJ(X) Rp[X] yields that (JW}P=(IW}P C(φΛ(X))p=Rp.
(vi)=φ(iv): Suppose that/c^C^). Localizing at^>, we may assume that R is a
local ring (R, m). Consider the exact sequence:

0 -> AM -> R[X] ->R[a]->0.

Then [̂̂ 3 is flat over R because R [X] and R [a] are flat over R. The isomor-
phism AM=IM φΛ(X)R[X]^ILβaR[X] yields that IWR[X] is flat over R[X]
and hence /[Λ] is flat over R. Since R is local, I[Λ \=bR for some b^I[Λ \. So
7ω=*C(9»-(JO) and ̂ ω= V W R[X\ So C(VrtW)Cw, and hence R[a]
is not flat over R by Lemma 1.7.
(iv)=^(v): Since J\_Λ \=hΛ \ C(φΛ(X)}<tp, there exists α^/ui such that αC

C(έi^β>(X))c|: j>. Thus aφJ(X)<£pR[X\ and hence ̂ U]Φ^[^]
Since A^^=IιΛjφΛ(X) R[X], there exists a^I[Λ \ such that C(aφΛ

(v)=φ(iii): There exists /(X)e^M with /(JΓ)φj>Λ[jq. So Λ
(Rip) [a']> where α' denotes the residue class of a in R[a]/pR[a], andf(a')=Q.
Thus α' is algebraic over R/p.
(in)=>(v): Suppose that AίoύΊc:pR[X]. Then R[a]/pR[a]==(R]X]IAίβa)/p
(R[X]/Aw)=R[X]/pR(X)=(Rlp) [X\, which is a polynomial ring over R/p.

Q.E.D.

After the definition in [5], we employ the following.

DEFINITION 1.9. Let A be an extension of R and let ρ^Sρec(R). We
say that A is a blowing-up at p or p is a blowing-up point of ^4/jR if the following
two conditions are satisfied:
(i) pAp Π Rp=pRp (equivalently pA Π R=ρ),
(ii) AplpAp is isomorphic to a polynomial ring (Rp/pRp) [T].

Making use of the above definition, we get the following corollary to The-
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orem 1.8.

Corollary 1.10. When a is an anti-integral element over R, the blowing-up
locus {p^Sρtc(R)\p is not a blowing-up point of R[a]} is given by V(JιΛ \), and
is the same as the non-flat locus {p&Sρec(R)\R[<x]p is not flat over Rp}.

Proof. This follows from Theorem 1.8 and Lemma 1.7.

The next proposition gives rise to the relation between Sharma polynomi-
als and the ideal

Proposition 1.11.

(a) R [a] is not a blowing-up at any point in Dp^R) if and only if AIΛ \ contains
a Sharma polynomial.
(b) R[a] is not a blowing-up at any point in Sρec(JR) if and only if there exists a
polynomial f(X) in AM such that C(f(X))=R.

Proof, (a) Take5f

0(X)e^4[α}]\(0). If gQ(X) is a Sharma polynomial, then

we are done. Suppose that go(X) is not a Sharma polynomial. Let {ply •••,/>/}
be the set of all elements in Dpι(R) satisfying C(gQ(X))c:pi. Such pέ exists by
Proposition 1.2. Since A^ct pR[X] for any p^Dp^R), there are gi(X)^AίoύΊ

such that C(gl(X))<tρl (1 <i <t). Put N(Q):=deg(gQ(X)) and N(i):=N(i-l)

inductively. Let f(X):=^gi(X) X"^. ThenC(/(X)H

\~c(gt(x)) BY the choice of pi9 there does not exist p^Dp^R)
such that C(f(X))dp. Hence f ( X ) is a Sharma polynomial. Assume that A[Λ \
contains a Sharma polynomial. Then A^^ pR[X] for any p^ Dp^R) by Prop-
osition 1.2. So a blowing-up does not occur for R[a]/R on Dp^R).
(b) Let Aω=(fl(X)ί ,fn(X))R[X\. Take ptΞ Spec (R). Then A^<tpR
[X]. So there exists ί such that C(ft(X))<tρ. Put ΛΓ(0)=0 and N(i)=N(i-\)
+deg(/,(Z))+l, and let f(X)="Σfί(X) XN". Then C(f(X))=C(f1(X))+-
+C(fu(X))=R. The converse is obvious. Q.E.D.

By the following theorem, we see that a super-primitive element is an anti-
integral element.

Theorem 1.12. Under the above notations , the following statements are
equivalent:
(i) oί is a super-primitive element of degree d,
(ii) a is an anti-integral element of degree d over R and Rp\a\ is flat over Rp for

allp^Dp^R),
(iii) a is an anti-integral element of degree d over R and pR[X]φAιΛι for all

(iv) oί is an anti-integral element of degree d over R and there exists a Sharma
polynomial in
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(v) JwΓl=R, where JwΓl:=(R:κJι i).

Proof. (i)=Φ(ii): It is clear that I^φΛ(X) R[X]dA^y and hence /[*]
R[X}CLφΛ(X^ AM. Put/=^(X)-Mω. Let /ωΛ[jη=01n-nθ. be
an irredundant primary decomposition of the ideal /[Λ] R [X] and let P,-— -s/ζ^
1 <i<ri). Assume that ζ? (resp. P) represents some Q{ (resp. P, ). Since T^j is
a divisorial ideal of R, I[Λ \R[X] is a divisorial ideal of R[X], and hence depth
R[X]P=1. Putp=PΓlR. As/o/ω, we see that^φ(O). Thus we have P=
pR[X] and depth (jR^)=l. Since a is a super-primitive elemnt, J[Λ \<tp by de-
finition. Therefore there exists an element a^I\_Λ \ such that (Aι^)p= aφΛ(X]
RP[X]. Hence we have Jp=aRp[X]CLlω Rp[X]dQRp[X]. Thus we get /C

JR[jη nQjR,[-X]=Q, that is, /C/ω R[X] because Q (resp. P,p) is any Q, (resp.
P.yp.:=P.Γ\R) for \<i<n. This implies that α is an anti-integral element.

Hence the assertion follows from Theorem 1.8.
(ii)<=*(iii)^(iv): It is immediate from Theorem 1.8 and Proposition 1.11.
(iv)=^(i): Since a is an anti-integral element, A[Λ-\—I[Λ \ φcύ(X)R[X]. By Pro-
position 1.11 (a), A[Λ }<$: pR[X] for allp^Dp^R). Hence there exists an element

such that /(-*)=*(£) φΛ(X) and O(f(X))<tρ. Thus/Mctί for any
Therefore a is a super-primitive element.

(i)-*(v): Assume that /ωφί for any p^Dp^R). Then (/r-r^^i^ijT/w^
=(R, ijr (/ωW=(Λ> :jr ^)=/Z, for anyp^Dp^R). Since /^r1 is a divisorial
ideal of /?, we have /?= Γ\RP= Π^ui'^ID/u]""1, where p ranges over prime
ideals of depth one. Thus R—JicA"1. Conversely, suppose that R=JιΛ]~l and
Jt«ι^P for somep&Dp^R). Then/^]"1^)/)-1 and hence Λ=(/ω"1)" 1C(^-1)-1

=/>, a contradiction. Q.E.D.

More equivalent conditions will be seen in the section 2.
By the following result, we see that a super-primitive element is not so

special.

Theorem 1.13. Assume that R is a Krull domain, then any element a whcih
is algebraic over R is a super-primitive element over R.

Proof. Since R is a Krull domian, Dp^^Ht^R). Take
Then Rp is a DVR. Let v denote the valuation corresponding to Rp. Let
φat(X)=XdjrΎjl Xd"l-{ ----- \-ηd be the minimal polynomial of a. Put 170=!.
Then there exists/ such that v(τjj)<v('ηi) for all i. Thus ,̂ /^ — a^b^Rp, where
b^R\p, a^R. In particular, aj=b&p. Hence

φJ(X) = 7/flβ/*/) X'+ +vfafaj) -n*

Hence f(X):=(blη.) φa(X)=aQXd+ +adςΞφΛ(X) K[X]. Since a^b&p,
we have C(f(X))<t.p. Since deg f(X)=d, we conclude that a is a super-
primitive element over R by Theorem 1.10. Q.E.D.
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Once we find one super-primitive element, we can get many such elements.
Indeed we obtain the following.

Proposition 1.14. Assume that a is a super-primitive element of degree d
over R. Then for any unit u of R and any element b^R, β=ua+b is a super-
primitive element of degree d over R.

Proof. We may assume that u=l. It is clear that φβ(X)~φΛ(X— b) be-
cause K(β)=K(a), d=deg φΛ(X—b) and φΛ(X—b) is monic in K[X]. We see

that 7ωc/ω and O(φΛ(X)) = C(φΛ(X-b))=C(φβ(X)). Since (/ω),=(/ω),
C(φΛ(X))p=Rp for wypeDpύR) by Theorem 1.12, Rp=(Juϊ)pC(Jw)p and
hence (J^)P=RP for any p^Dp^R). Thus β is a super-primitive element of
degree d over R by Theorem 1.12. Q.E.D,

Proposition 1.15. Assume that R is a local ring containing an infinite field
k and that JtΛ ]=R. Then there exists an element XEΞ& which satisfies that
(a) l/(α—λ) belongs to R [a],
(b) l/(α—λ) is a super-primitive element of degree d over R,
(c) !/(#—λ) is integral over R.

Proof. Since R is local, there exists an element X in k such that

hΛ \φΛ(XJr\) contains a degree d polynomial g(X] in R[X] of which constant
term is 1. Put£=α-λ. Then£(/?)=0. Let h(X)=Xέ g(l/X)<=R[X]. Then
h(llβ)=(l/β)dg(β)=0. So 1/β is integral over R. Since [K(a): K] = [K(β):
K]=d, we conclude that φl/β(X)=h(X)^R[X]. Thus Iιup\=R and hence
yi i/β]—/d/β] C(φ1/β(X))=R. In particular, 1//3 is a super-primitive element of
degree d over R by Theorem 1.12. Q.E.D.

2. Integrality and Flatness of Anti-Integral Extensions

The following result asserts that the integrality of an extension of R is de-
termined by localizing at prime ideals in Dp^R).

Proposition 2.1. Let A be an integral domain containing R. Then A is in-
tegral over R if and only if Ap (:=A®R Rp) is integral over Rpfor anyp^Dp^R).

Proof. The implication (=Φ) is trivial. Consider the converse and assume
that Ap is integral over Rp for any p^ Dp^R). We have only to show that α is
integral over R. Let R' be the integral closure of R in K. Then R' is a Krull
domain [3, p. 144]. It suffices to show that a is integral over R'. Let R" be
the integral closure of R in K(A) and let O=R" :R» a, a denominator ideal
of R". Then K(R")=K(A) and C is a divisorial ideal of R". There exists
PeD^(#")=£fti(JR") such that CcΓ. Since R"/R' is integral and R' is inte-

grally closed in K, the Going-Down Theorem holds for R"/R'. Thus P Π R' e
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. In particular, P Π R' is a divisorial ideal of Rf. So R" :R' a
=Cf}Rfc:PΓ(R/^Dp1(Rf). By [2, (4.6)], ( P Γ ( R ' ) Γ ( R is a divisorial ideal of
R. HGnceR^ :Ra=(CΓ(Rf)Γ(Rc:(PΓ\R/)Γ(R^Dp1(R). Putρ=(Pf}R')ΓlR.
Then we have p^Dp^R) and 72" :Radpy which is a contradiction. Q.E.D3

The integrality of anti-integral extensions is characterized as follows:

Theorem 2.2. Assume that a. is an anti-integral element of degree d over
R. Then the following are equivalent:
(i) R [a] is integral over R,
(ii) φΛ(X)
(iii) 7W=

(iv) rankA(«) R [a]®R k(q)=dfor any
(v) rankA(g) R[a]®R k(q)=dfor any

Proof. Since a is anti-integral, A[oύι=I[Λ \φΛ(X)R[X]. So the equiva-
lence of (i), (ii) and (iii) are immediate because R[X]/Aιo6^R[a], and impli-
cations (ίi)=Φ>(v)=ts»(iv) are obvious.
(iv)=>(ii): Suppose that /MC/> for somep^Dp^R). Since /ω=/ω C(<pΛ(^))
φ_p by Theorem 1.8, (/[Λ])^ is an invertible ideal of 7?̂  and hence (Ii*i)p is a

principal ideal bRp of Λ, for some b. So (^ω),=(/ω)* <P«(X) Rp[X]=(bφΛ(X))
Rp[X]. Since /[Λ]C_p, έ^^JQe/^j^Γ] is not monic. Hence either -R[α]®Λ

k(P)—k(P) [y]> a polynomial ring or rank^(j>) /?[«:] ®β k(p)<d, a contradiction.
Q.E.D.

By the above theorem, we see that the obstrutcion of integrality of anti-inte-
gral extensions is given by 7̂ ]. Namely, we obtain the following.

Corollay 2.3. Assume that a is an anti-integral element over R. Then

V(h«i)= {p e Spec(Λ) | R [a]p is not integral over Rp} .

Proof. The integrality is a local-global property. So our conclusion follows
from Theorem 2.2. Q.E.D.

REMARK 2.4. Let R be a Noetherian normal domain and let a be an
element in a field L containing R. If a is integral over /?, then it is a super-
primitive element over R. Indeed, when φΛ(X)^K[X] denotes the minimal
polynomial of a. over 7?, it is known that α is integral over R if and only if φΛ(X )
belongs to R[X] ([4, (9.2)]. Since R is normal, pGDρ1(R)^ht(p)=l^Rp is a
DVR. As R[a] is a finite Λ-module, R[a]p is free over Rp for any p^Dp^R).
By Theorem 1.10, a is a super-primitive element over R. Moreover R[a] is flat
over R by Theorems 1.8 and 3.2 because R[a]/R is super-primitive, integral
and flat.

Summing up the results in the preceding argument, we obtain the following:
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Assume that a is an anti-integral elmeent of degree d. Let p be a prime ideal of
R. Then

(1) R[ά\p is flat over Rp if and only if rank*(j) R[a]®R k(p)<d,
(2) R\cί\p is integral over Rp if and only if rank^) R[a]®R k(p)=d.

In particular, we conclude:

Corollary 2.5. Assume that a is an anti-integral element of degree d. If
R[ά] is integral over R, then R[a] is flat over R.

In view of Proposition 1.11, we extend Theorem 1.8 to the following.

Proposition 2.6. Assume that a is an anti-integral element of degree d
over R. Then the following are equivalent :
(i) R[a] is flat over R,

(ii) /[*]=#>
(iii) rank*(j) R[a\®R k(p) < oo for any p e Spec (R),
(iv) rank*(j) R [a] ®R k(p) <dfor any p e Spec (R),
(v) R[ά] is not a blowing-up at any point in Spec(jR),
(vi) R [a] is quasi-finite over JR,
(vii) AIΛ \ contains a polynomial f(X) with C(f(X)}=R.

Proof. The proof follows from Theorem 1.8 and Proposition 1.11 (b).

REMARK 2.7. Let A be over-ring of R (i.e., RdA and K(A)=K). If A is

integral and flat over R on Dp^R), then A=R. Indeed, it is known that R=

Π PGDP^R) Rp F°r P^Dpι(R), Ap is integral, flat over Rp by the assumption. So
Ap is a free ./^-module of rank one. Thus Ap=Rp and hence R=

Relating to this remark, we have the following.

Theorem 2.8. Let a be an algebraic element over R. If R [ά\ is integral
and flat at any point in Dpl(R)ί then R [a] is a free R-module and a is a super-
primitive element over R.

Proof. First, we shall show that /[Λ]=jR. Suppose that /u]Φ/?. Since
/[Λ] is a divisorial ideal of R, there exists p^Dp^R) such that /[Λ]C/>. Since
R [a]p is integral over Rp by assumption, R [a]p is a flat extension of Rp. As
R[a]p is flat over Rp, R[a]p is a free ^-module of rank d. We want to show
that R\a\p=RpJrRpoί-}- "-{-Rp ad""1. For this purpose, we have only to show
that Γ, α', ~ ,a'd-l^R[ά\PlpR\a\p are linearly independent over k(p), where
a' denotes its residue class in R[a]p/pR[a]p. Suppose the contrary. Then

R[a]plρR[a]p^k(ρ)[af] = k(ρ)+k(ρ)a'-] ----- \-k(p)a's for some s<d. But
R[a]p is a free 72^-module of rank d, which asserts that rank^) R[a]p/pR[a]=dy
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a contradiction. Thus we have shown that R[a]p==Rp+Rp a-\ ----- \-Rpa
d~l.

So we have a relation: αrf=λ0+λι &+ +\d-ι α^"1 (\^RP). Since the mini-
mal polynomial φΛ(X) of a, is unique, we have φΛ(X)—Xd—\d-l Xά~l ----- X0.
So ItΛι<ΐp, a contradiction. Thus φΛ(X)^R[X], which implies that AIΛI=
φΛ(X) R [X] and R\cί\ is a free Λ-module. Since C(φΛ(X))=R, we conclude
that Jtai=R. By Theorem 1.12, or is a super-primitive element over R. Q.E.D.

Now we consider a certain over-ring of R which is seen in [5].

DEFINITION 2.9. Let / be a fractional ideal of R. Let <R,(J):=J :KJ,
which is an over-ring of R.

Lemma 2.10. Let J be a divίsorial ideal of R. Then 3H(J)=R if and
only if &(J-l)=R.

Proof. Since J is divisorial, (J^^—J So we have only to prove one of
the implications. Assm Assume that 3ί(J)=R. The implication
is obvious. Take \^3i(J"1). Then λ/^C/-1. Thus R: λ/"
(/-i)-ι=/. On the other hand, we have R: \J~l=\~l R: J-l=\-l(R: J~l)=
\'\J"1)"1=\''1J. Thus \"lJ~Dj, which shows that /Dλ/, and hence \e
SMJ)=R. Q.E.D.

By these arguments, we extend Theorem 1.12 to the following.

Theorem 2.11. The following conditions are equivalent:
(i) a is a super-primitive element over R,
(ii) for each peDp^R), there exists f(X)^A^ with (Aw)p=f(X) RP[X],
(iiϊ) for eachp&Dp^R), there exists a^I[Λ } with
(iv)

Proof. Denote the degree of a by d.
(i)-*(ii): Since /ω=/ω O(φΛ(X))<tp for any p&Dp^R), there exists
vtithf(X):=aφΛ(X)ZΞpR[X]. Note that (AW)KΠRP[X\=(AW)P and f(X)*Ξ
(A^p. By Proposition 1.2, f ( X ) is a Sharma polynomial of degree d in Rp[X].

(ii)=φ(iii): Suppose that (Aw)p=f(X) RP[X]. Then deg f(X)=d. Let a be
the leading coefficient off(X). Then φΛ(X)=(l/a)f(X) by the uniqueness of
the minimal polynomial of cί. So f(X)=aφΛ(X) R[X], and hence Λ€Ξ/[Λ]
Since (Aω)p=f(X)Rp[X], (Iω)p=aRp.
(ίii)«*(iv): We know that 3i(IM)=R if and only if 5l(/ω-1)=jR by Lemma
2.10. So apply a result of [5, (3.2)] and we conclude that (iii) and (iv) are equiva-
lent.
(iii)s=»(i): Since (h(Λi)p is a principal ideal of Rp for any p^Dp^R), there exists

such that degf(X)=d and (Aω)p=f(X) RP[X]. Since f ( X ) is a
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Sharma polynomial in Rp[X] by Proposition 1.2 and depth Rp=l, C(f(X))<ί.p.
Thυs/[Λ]Ct^) for any p^Dp^R) and hence or is a super-primitive element over
R by definition. Q.E.D.

3. Vanishing Points and Blowing-Up Points

Assume that a is an anti-integral element over R. For p e Sρec(J?), rankft(^)
R [&]®R k(ρ)<oo if and only if R[a]p is flat over Rp by Theorem 2.2. So it
may be natural to ask when rankA^) R[a]®R k(p) is infinite or zero.

Let a be an element which is algebraic over R. Recall that φΛ(X)— Xdjr
ηίX

d~1+ -\-ηd is the minimal polynomial of a over K, where d=[K(ά):K]

and /[a5] :=/ω O(^(Jr))=7ω+7ω ηι-\ ----- h/U] rjd. Define BM :=/ω+/ω m
+ +/ω T7rf-ι> which is an ideal of R.

We use this notation throughout §3.

Lemma 3.1. Assume that a is an anti-integral element over R and let A=
R[a]. For q^Sρec(R), the following are equivalent:

ii)

iii) q^BiA and gφ/u] ηd.

Proof. (i)=Φ(ii): Since qAq=Aqy there exist a^q.β^A and

such that 1=Σ #, /3, /V Put ί^Π ,̂ . Then f=Σ α, /St b^qA Γ(R with
where sβ^s^b^A. Thus 04 Π Λ Φ ?.
(ii)«»(i): Take ίe^nΛ with s<£q. Then s^qAq and s is invertible in ^4,.
Thus qAq=Aq.
(m)*=$>(n): Take a^I[Λ \ with a-ηd^q. Put f(X)=aφΛ(X) and aηi=bi^ a=bjy

sothztf(X)=bQXd+b1X'l-1+. +bd. Since /(α)=0,ft0α
rf+ftια'"1+ +*rf=

0. Noting that bd&q, bd is a unit in ^4g. Since &0, , £</_! e g', bd^qAdqAq.
Thus qAq=Aq.

(ii)-^(iii): Sinse qAq=Aq> l=bQ+b1 a-\ ----- h^n α* for some b^qRq. Putf(x)

=bn X"^ ----- h*ι -Ϊ+AO— l Then/(α)=0 and b0—l is a unit in Rq. The ker-
nel of R,[X]-+R [α]f is (7ω)f ^(-Y) Λ f [X]. So /(Z) e(/ω)f .̂(Z) Rq[X] and
C(f(X))q=Rq. Thus it follows that (/ω)f =(/ω)f C(^(X))f =Λf , which means
that R[a]q is flat over Rq by Theorem 1.8. So (7ω)f φΛ(X) Rq[X\ is an invert-
ible ideal of Rq[X] Hence (hΛi)q is a principal ideal of Rq. Let (h«i)q=aRq.
We shall show that all of ayarjί9 •• ,aηd-1 belong to qRq. Note that/(^C)e
α9>Λ(J^) Rq [X] because f(a) =0. So there exists h (X) e Rq[X] such that /(X) =
aφJ(X) h (X) . We have - 1 = aφΛ(X) h (X) (mod qRq [X]). Thus α?, , α e f Λ f ,
for 1 <i<d—l and aηd^qRq. Therefore 7[Λ], 7[Λ] ηly •••, 7[Λ] -ηd^Ciq and 7k] ̂

Q.E.D.

DEFINITION 3.2. Let ^4 be an extension of R and let p^ Spec (J?). We say
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that p is a vanishing point of A/R if pAp=Ap.

Recall that A is a blowing-up at p or p is a blowing-up point of ^4/jR if the
following two conditions are satisfied:

i) pAp Γϊ Rp=pRp (equivalently ̂ 4 Π R=ρ> cf. Lemma 3.1),
ii) Ap/pAp is isomorphic to a polynomial ring (RPlpRp) [T].

By Lemma 3.1, we obtain the following theorem.

Theorem 3.3. Assume that a is an anti-integral element over R and let

A=R [a]. Then the set of vanishing points (i.e., {q^ Sρec(Λ) | qAq =Aq} ) is given

by Π fcj V(Iω n)\V(Iω rjd)} where ^= 1.

Proposition 3.4. Assume that a is an anti-integral element of degree d over

R and let A==R[a]. Consider the following conditions:
(i) A is flat over R,

(ii) /ω=Λ,
(iii) IfpAp=Ap for p e Spec(Λ), then pA=A.

Then we have implications (i) <=>(ii)=^(iii). If moreover R is a local ring and \/B[Λ \
ηd) then (i), (ii) and (iii) are equivalent to each other.

Proof, (i) <=> (ii) was proved in Proposition 2.6. (ii)<=φ(iii) : Take p ̂  Spec (R)

and assume that pAp=Ap. Then p^B\:Λj=Iιc6^+I\:^'η1-\ ----- h ίωtfrf-i and
p φ I[Λ \ ηd by Lemma 3.1. Take a e /[α>] and put /(^Γ) = βφΛ(^Γ) = aXd + β^ JΓ rf - l

Since /(α)=0, we get a ηd^pA and hence I[^ηddpA. So /ω=

d^P A. Since Jι^=R, we conclude that pA=A. We will show the

last part. Since \/ BIΛ \ ΦΛ*3?7rf> there exists ^eSρes(Λ) such that 50 -Be*] but
ίΦ/[Λ]i7</. Thus qAq=Aq and so qA=A. Let m denote the maximal ideal of
JR. Suppose that ml)JιΛ \. Then we have A\mA^=^(R\m) [71], a polynomial ring

(cf. Theorem 1.8). Hence mA=£A. But gCm implies that »t4=^[> a contra-

diction. Thus/ω==Λ. Q.E.D.

REMARK 3.5. Let the notation be the same as in Proposition 3.4.

(1) When d=l (i.e., a is an element of K), then (i), (ii) and (iii) of Proposition

3.4 are equivalent.
(2) pAΠR=p if and only if there exists P^Spec(A) such that PΓ\R=ρ.

REMARK 3.6. Let the notation be the same as in Lemma 3.1. If B^dq,

then q is either a vanishing point (i.e., I[Λ \ηd(tq) or a blowing-up point (i.e.,

IΪΛ\ *7rfc?) So if x/Tui contains \/BιΛ \ properly, there exists a vanishing point.
Thus Spec (A)^> Spec (Λ) is not surjective.

Proposition 3.7. Assume that a is an anti-integral element of degree d over

R and let A=R[a]. Then Spec (A) -> Spec (R) is surjective if and only if %/Jω
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Proof. (=Φ): Since /ucZD-Bu], x/Ji^p VBw If #U3C? for some
there exists QeSpec(yl) such that QΠΛ— ̂  because Spec (^4) -» Spec (72) is sur-
jective. So qAq^Aqί which means that q is not a vanishing point. Thus by
Remark 3.6, q is a blowing-up point, that is, gO/M. Therefore
(<£=): Suppose that Spec (A)-* Spec (K) is not surjective. There exists

Spec(Λ) such that qAq=Aq. So q^VlfaΊ=Vjw'=>JιΛΊ^IϊΛΊi7d> a contra-
diction. Q.E.D.

Proposition 3.8. Le£ the notation be the same as in Proposition 3.7 and
let p G Spec(J?) satisfy pAp=Ap. If qUpA Π R, then q is a blowing-up point.

Proof. Since p e Spec (I?) satisfies pAp=Ap, we have pIDBt^. Thus ηd

ω+ ••• + -̂ι α/ωc 5ω ̂  c.ρA. So ?D^4 n Λ z) Bω+/ω n
which means that ^ is a blowing-up point. Q.E.D.

REMARK 3.9. Let A be a field, #, b indeterminates and R=k[a, b]. Let a
be a root of an equation aX2+bX +a=0 and put A=R [a]. Then JtΛ \=(a, b) R
and grade ((α, b)R)=2 so that α is a super-primitive element by Theorem 1.12.
In this case, Jι^=Bι^=(a, b) R. Thus Spec (A)-> Spec (/?) is surjective, but
not flat. Hence the implication (in) !̂) in Proposition 3.4 does not necessarily
hold.

Theorem 3.10. Assume that a is an anti-integral element over R and let
p^Sρec(R). If R[a] is not a blowing-up at q, then depth R[a]Q=deρihRq

for QeSpec(JR[α]) with QΓ\R=q.

Proof. Since a is an anti-integral element over R and q is not a blowing-up
point, #[tf]tf is flat over Rq by Theorem 1.8. Since R[ct\Q is obtained from
R[a]q by localizing at QR[a]q> R[a]Q is flat over Rq. So we have depth Rq<
depth R[a]Q. As q is not a blowing-up point, there exists a^I[Λ \ such that

aφΛ(X)R,[X] = (Aw)v Putf(X): = aφΛ(X). Since Qe Spec (Λ[α]), there
exists PeSpec(Λ[X]) such that PlD^ω and Q=P/^4ω. Then Qq=PJ(Aί(ΛΊ)q

=Pqlf(X) Rq[X]. So QR [a]Q=PR [X]P/f(X) R [X]P implies that depth R[a]Q

= depth R[X]P—l. Now since P Γ\R=q> we have PlD^)jR[Z]. Suppose that
P=qR[X]. Then }7?[-X']=PlD-4[Λ], which asserts that q is a blowing-up point.
So we have P*qR[X]. Since PΛf [J5Γ|/gΛf [Jϊ] ( c k(P) [^])ΦO, we have
PR,[X\=qR<[X]+g(X)R<[X] for some ^(X)eΛ[^]\^[^]. Hence depth
R[X]P<dtpthR[X]qR[X] + l. We obtain that depth R [a]Q< depth Λ, be-
cause depth R[X]q Jf?[^Γ]-depth Rq. Thus depth Rq = depth R[a]Q. Q.E.D.

4. Unramifiedness and Etaleness of Super-Primitive Extensions

The following result can be proved by using [1, VI (6.8)] but we give a di-
rect proof. If a is super-primitive and integral over R, R [a] is finite, flat over
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R (cf. Proposition 1.11).

Proposition 4.1. Assume that a is an anti-integral element which is inte-
gral over R. Then R [a] is unramified over R if and only if R [a]p is unramified
over Rp for any p e Dp^R) .

Proof. Since A:=R[a] is integral over R, φΛ(X)^R[X] by Theorem 2.2.
For a polynomial/, we denote the derivative of/ by/'. Then φά(a)=dad~1+
(d-\) ^ ad~2-\ ----- h^j-i and let /xΞSpec^). Then φ'Λ(a) A<tP for any Pe
Spec(A) with P Π R=p if and only if Ap is unramified over Rp (cf. [1, VI (6.12)]).
Suppose that φί(a)A=tA. Then there exists P^Ht^A) such that φ'Λ(ά)^P.
Putp=Pf}R. Then depth AP=l implies depth Rp=l because Ap is flat over
Rp. Thus Aq is unramified over RP by the assumption. Hence Ap is unramifi-
ed over Rp, which is a contradiction. So φ'Λ(ά) A=A, which means that A is
unramified over R. Q.E.D.

REMARK 4.2. Let the notation be the same as in Proposition 4.1 and its
proof. Let B=A[l/a]. Then for PeSρec(S), BP is unramified over RR{\B if
and only if PJ)φί(a) B. Indeed, let PC.B be a prime ideal and put Q=P Γ\A
and p=P Π R. When BP/RP is ramified, AQ/RP is ramified. So φ'Λ(d) eζ) CP.
Conversely, if φ'Λ(a)^P, then Q= P^\A^φf

Λ(a). So BP=AQ is ramified over

RP.
It is known that the purity of branch locus holds for a finite flat extension

[1], The following is a result similar to this fact.

Proposition 4.3. Assume that a is a super-primitive element which is flat
over R and that R contains an infinite field k. Then R[cc] is unramίfied over R if
and only if R [a]p is unramified over Rpfor any p

Proof. We have only to consider the case that R is a local ring. So we
may assume that (.R, m) is a local ring. If A:=R[a] is integral over jf?, we have
shown this in Proposition 4.1. Assume that A is not integral over R. Since
Jleύ^=R by Theorem 2.2, replacing a by a— λ for some λe&, we may assume
by Proposition 1.14, that a satisfies that
(a) l/αeΛ[α],
(b) I /a is a super-primitive element of degree d over /?,
(c) 1 f a is integral over R.
Hence we have

Λc/?[l/α]c/Z[α, 1/α] = R[ά\ = A .

Apply Remark 4.2 to B=R[\la} [(l/a)-l]=A. We conclude that for Pe
Sρec(^4), Ap is unramified over RPΠR if and only if Pφφί/Λ(l/a) A. In the
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same way as in the proof of Proposition 4.1, the assumption that Ap is unramifi-
ed over Rp for any _p e Dp^JR) yields that R[θί\ is unramified over R. Q.E.D.

As a consequence of Propositions 4.1 and 4.3, we obtain the following
theorem.

Theorem 4.4. Assume that a is a super-primitive element over R and that
R contains an infinite field k. Then there exist plf •• ,pt^Dp1(R) (t may be 0) such

that the non-etale locus of R[a] is given by F"( /[„>]) U U ί-i V(pi)

EXAMPLE 4.5. Let k be a field, a, b indeterminates and R=k[a, b\. Let
α be a root of an equation aX2+bX-}-a=Q and put A=R[a\. Then /[*]=
(a, b) R. Assume that ^eSpec(Λ) and p3>JιΛ \. When a&p, (2a+bjc) Ap is
the ramification locus. When a^p and b&p, (a+l) Ap is the ramification
locus.

DEFINITION 4.6. Let A be an extension of R with [K(A): K]=d. Define

= d} .

It is easy to see that when a is a super-primitive element of degree d over
R, we have:

e>R[ά] is integral over R

=^R [a] is flat over R .

When A is a finitely generated extension of /?, define :

Ur(A): = ipeSpec(R)\Ap is unramified over Rp} ,

which is an open set of Spec (./?).
Under these preparations, we finally obtain the following.

Theorem 4.7. Assume that [L\k\=d, and that al3 ,an&L are super-
primitive elements of degree d, and let A=R[al9 •••, αj. If Δ(R[ai])l)Dpl(R)
(1 <ί<n) and Ur(R\a ^\)n Dp^R) for some j, then A is integral over R, and Ap is
etale over Rp for any p^K(A). If Δ(-4) = Sρec(jR) in addition to the preceding
assumptions 9 then A is integral and etale over R.

Proof. The assumption Dpί(R)dύ^(R[ai]) implies that ai is integral over
R and Δ(Λ[αJ)=Spec(Jf?) by Theorem 2.2, and hence A is integral gver R.
Take p e Δ(A). Then p e Δ(Λ [αy]) and R [αy] is finite, flat over R as was shown
in Theorem 1.8. Thus R \cί^\q is an Λ^-free module of rank d. Since Ur(R [α;.])
'DDpl(R)ί P[otj] is unramified over R by Proposition 4.1. Hence pR [<XJ]P is a
radical ideal. Noting that A is integral over R[<Xj], we have pApΓ\R[(Xj]p=
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pR [(Xj]p. Thus R [cXj]p/pR [a^p^Ap/pAp. As both of those sides have the same

dimension d as vector spaces over k(p), we have R[<xj]plpR[ctJ]p=AplpAp9 which

means that Ap—R\a^\p-\-pAp. By Nakayama's lemma, we get Ap=R[<xJ\q.

Therefore Ap is unramified and flat (i.e., etale) over Rp for any^>^Δ(-4)

Q.E.D.
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