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Abstract 

Background: Occlusal overloading causes peri-implant bone resorption. Previous 

studies examined stress distribution in alveolar bone around commercial implants using 

three-dimensional finite element analysis (3D-FEA). However, commercial implants 

contained some different designs and it has been impossible to determine the effect of 

particular design. The purpose of this study was to reveal the effect of the target design 

on peri-implant bone stress and abutment micromovement using original 

computer-aided design (CAD) models. 

 

Methods: Six 3D implant models were created for different implant-abutment joints: 

external and internal models (EM, IM); straight and tapered abutment shapes (SA, TA); 

platform switching (PS) in the IM; modified TA neck design [reverse conical neck 

(RN)]. “Contact” conditions were set at the component interface. A static load of 100 N 

was applied to the basal ridge surface of the abutment at a 45° oblique angle to the long 

axis of the implant. (1) Stress distribution in peri-implant bone, (2) abutment 

micromovement in SA and TA models were analyzed. 

 

Results: Compressive stress concentrated on labial cortical bone and tensile stress on 

the palatal side in the EM and on the labial side in the IM. There was no difference in 

maximum principal stress distribution for SA and TA models. Tensile stress 
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concentration was not apparent on labial cortical bone in the PS model (versus IM). 

Maximum principal stress concentrated more on peri-implant bone in the RN than in the 

TA model. TA model exhibited less abutment micromovement than the SA model. 

 

Conclusions: Internal joint types are more suitable than external joint types regarding 

occlusal overloading. Platform switching decreases compressive stress on labial bone. 

Reverse conical neck types increase peri-implant bone stress. Tapered abutments 

decrease abutment micromovement, but do not influence maximum principal stress on 

peri-implant bone.  

 

KEYWORDS: biomechanics, dental implant, finite element analysis, occlusal 

overloading, micromovement 
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Introduction 

In accordance with their increased success rate, dental implants have become a popular 

treatment option for missing teeth. One of the criteria for a successful dental implant is 

radiographically visualized vertical peri-implant bone loss of <2.0 mm.1 Remodeling of 

peri-implant bone occurs once the implant is exposed to the oral environment by a 

second surgical procedure or immediate placement of an abutment after implant surgery. 

Several factors negatively affect the remodeling process and result in marginal bone 

resorption. They include traumatic surgical technique,2 excessive loading conditions,3 

microbial contamination of the microgap between an implant and an abutment,4-6 

micromovement of an implant and abutment,4,7-9 and repeated screwing and 

unscrewing.10 Exclusion of one or more of these factors is important for a successful 

implant.  

 

Osteoclastic bone resorption occurs in areas where microcracks are produced by 

occlusal dynamic stress and osteocyte apoptosis.11,12 The threshold values of tensile and 

shear stresses that cause resorption of cortical bone have been reported to be, 

respectively, about 30% and 65% more than the threshold value of compressive 

stress.13,14 It has been also demonstrated that peri-implant bone resorption can be 
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effectively controlled by reducing the shear stress caused by occlusal loading.14 

Considering the benefits of eliminating an excessive occlusal loading condition,15-20 

much attention has been paid to biomechanical evaluation of implants. Finite element 

analysis (FEA) is useful for numerical stress analysis of multiple structured materials 

and has been widely used to analyze dental implants.17-19 However, in most previous 

FEA studies, the individual geometries of the commercially available implants were 

transferred to three-dimensional (3D) finite element (FE) models.21 Although these 

transferred models are clinically relevant, the designs of the components of commercial 

implants may differ. Therefore, the effect of a specific difference (e.g., the taper of the 

abutment) in an implant design on peri-implant bone stress has not been evaluated. 

 

Previous studies have reported that severe peri-implant bone resorption was found 

around two-piece implants because of abutment micromovement and microgap 

formation between the implant and the abutment.4,8,9 In addition to the negative effects 

on peri-implant bone remodeling,22 abutment micromovement may also induce 

destruction of the epithelial attachment to the abutment and crown and result in bacterial 

microleakage.10,23 However, it has been impossible to measure micromovement and 

microgap in vivo, so in vitro studies have been conducted.23 Thus, one of the purposes 
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of the current study was to simulate abutment micromovement and assess the effect of 

the taper of the abutment during the micromovement in 3D two-piece implant CAD 

models. 

 

In this study, we focused on specific differences between implants using the CAD 

models. The purpose of this study was to reveal the effect of the implant’s design on 

peri-implant bone stress and abutment micromovement using 3D FEA evaluation of the 

two-piece structured implant models.
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Materials and Methods 

3D CAD Model 

Six 3D computer-aided design (CAD) models were created by SolidWorks software 

(SolidWorks Premium 2012; SolidWorks Corporation, Waltham, MA, USA) (Fig. 1). 

Implant–abutment joints were prepared to investigate the influence of different designs: 

external joint (EM) and internal joint (IM) models; different shapes of the abutment: 

straight abutment (SA) and tapered abutment (TA) models; addition of platform 

switching to the IM model (PS model); and modifying the neck design of the TA model 

to become a reverse conical neck (RN model). Each model had the same shape and size. 

Their only difference was the single alteration in one component of the model. The 

diameter and length of the implant body was φ5×13 mm, and the pitch of the threads 

was 0.9 mm. The shape of the threads and abutment screw were the same in all models. 

The diameter and length of the abutment screw that connected the implant and the 

abutment was φ1.5×11 mm.  

 

Each 3D implant model was placed in a 3D CAD anterior maxillary model with 1.5 mm 

thick cortical bone (top side 9×9 mm) and cancellous bone (Fig. 2A). The mechanical 

properties of the bone and titanium used for the FE models are shown in Table 1.24 For 
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simulations of osseointegrated implants, a “fixed bond” condition was set at the 

interface of the bone and the implant. A “contact” condition that accepts possible 

microscopic sliding was set at the interfaces of the components of the implants. The 

bottom part of the maxillary bone and both sectional surfaces of the bone segment were 

fixed. 

 

Peri-implant Bone Stress 

A static load of 100 N was applied to the basal ridge surface of the abutment at a 45° 

oblique angle to the long axis of the implant (Fig. 2B). Distribution of the maximum 

principal stress in the peri-implant bone was assessed. The distribution of the maximum 

principal stress in the cortical bone was evaluated in the middle section of the 

mesiodistal plane. The elements for FEA were tetrahedrons with 16 nodes. To determine 

the optimal mesh size that offered reliable results within a reasonable computational 

cost (<15 minutes), the number of elements was increased until the maximum principal 

stress converged. The results of convergence analysis are shown in Fig. 3. The total 

number of elements for each model were 42,992 (EM), 42,714 (IM), 42,849 (SA), 

34,786 (TA), 41,231 (PS), and 41,380 (RN). FEA was performed by SolidWorks 

Premium 2012 software (SolidWorks Corporation). 
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Abutment Micromovement 

Abutment displacement distribution was assessed as micromovement. In our previous 

study,25 we confirmed that the taper of the abutment contributed to reducing abutment 

micromovement. Therefore, abutment displacement distribution in the SA model was 

qualitatively compared with that of the TA model in the mesiodistal plane. 

 

Results 

Peri-implant Bone Stress 

Figure 4 shows the maximum principal stress distribution in the mesiodistal half of the 

peri-implant bone. The red areas indicate the tensile stress (positive value of the 

maximum principal stress) and the blue areas the compressive stress (negative value of 

maximum principal stress). Compressive stress concentrated on the labial side of the 

cortical bone and tensile stress on the palatal side in the EM model. In the IM model, 

compressive stress concentrated on the labial side. There was no difference in the 

maximum principal stress distribution in peri-implant bone in the SA and TA models. 

Compared with the IM model, the concentration of the compressive stress in the PS 

model was decreased on the labial side of the cortical bone. Also, more tensile stress 
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concentrated on not only the labial side but also the mesiodistal side of the peri-implant 

bone in the RN model than in the SA model. 

 

Abutment Micromovement 

Figure 5 shows the displacement distribution of the abutment for the TA and SA models. 

The maximum abutment displacements for the SA and TA models were 0.029 mm and 

0.014 mm, respectively. For the SA model, the vector was expressed in a negative 

direction between the x-axis and z-axis. For the TA model, a sum of the displacement 

vectors was mostly directed in a negative direction on the z-axis. 

 

Discussion 

The designs of commercially available implants may differ (e.g., their diameters, thread 

pitches, abutment tapering). Therefore, it has been impossible to determine the effect the 

target design of implants may have on peri-implant bone stress in studies focusing on 

single components of commercial implants using FE models and a 3D scanner. In the 

present study, we created 3D CAD models that restricted the difference in implant 

design to a single alteration in each model to evaluate the effect of the particular design 

change on peri-implant bone stress. 
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Depending on the solidity of a food, the average bite force ranges from 20 to 120 N.26 In 

the present study, we applied a static load of 100 N to simulate an occlusive load, in 

reference to some previous studies.27,28 The maximum principal stress concentration in 

the bone with the two-piece implant occurred around the neck, similar to the results of 

previous reports that demonstrated concentrations of various stresses (e.g., von Mises 

stress, compressive stress, tensile stress, and shear stress) around the neck of one-piece 

implant models.17-19,27 Thus, with the two-piece implant, the abutment screw creates a 

solid connection between the implant body and the abutment. 

 

Regarding implant–abutment joints, the tensile stress was less concentrated in the IM 

model than in the EM model, and the boundary between compressive and tensile 

stresses was clearly shown on the mesiodistal side of the cortical bone. This result 

indicates that the shear stress on peri-implant bone in the direction of the z-axis was 

concentrated on the mesiodistal side of the cortical bone in the EM model.25 It suggests 

that the deep, rigid connections of internal joint implants are less sensitive to stress 

distribution and transmit the load more directly to the labial side of the cortical bone. In 

contrast, the flexible connections of external joint implants transmit the load to both the 
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labial and palatal sides of cortical bone. Thus, internal joint implants have a 

biomechanical advantage over external joint implants regarding implant-supported 

single restoration. In a previous study with radiographic evidence, peri-implant crestal 

bone resorption was significantly greater in the external joint than in the internal joint.29 

 

A clinical study that investigated radiographic records retrospectively demonstrated that 

platform switching effectively minimized marginal bone loss.30 The maximum principal 

stress on peri-implant bone was less concentrated on the labial side of the cortical bone 

in the PS model than in the IM model. Hence, platform switching effectively reduces 

peri-implant bone stress. It is therefore considered that platform switching is helpful for 

preserving peri-implant bone. 

 

Comparing the design of the neck of implants in the RN and TA models, the tensile 

stress was more concentrated on the peri-implant bone in the RN model than in the TA 

model. It is thought that reverse conical neck implants are disadvantageous in regard to 

preservation of labial bone, possibly because it is believed that reverse conical neck 

implants are more technique-sensitive,31, 32 and the implant position requires exquisite 

care to prevent the peri-implant bone resorption. 
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Regarding abutment shape, the maximum principal stress distribution around the neck 

of the implants showed no difference between the SA and TA models, indicating that the 

taper of the abutment has no effect on peri-implant bone resorption.25 In a clinical 

radiographic study, the tapered internal implant had no significant effect on crestal bone 

resorption,32 suggesting that the design of the implant’s neck has a greater effect on 

peri-implant bone stress than does the shape of the abutment. 

 

We carefully evaluated the effect of the shape of the abutment on abutment 

displacement and found that abutment micromovement was less in the TA model than in 

the SA model. A previous FEA study with commercially available implant models 

suggested that the tapered abutment resisted microscopic sliding between the implant 

and the abutment.25 There was no difference in the abutment displacement distribution 

among the models25 because of multiple effects caused by different designs (e.g., 

diameters and lengths of the implant bodies, implant–abutment joints, neck designs of 

the implants). The present study demonstrated that the taper of the abutment reduces the 

abutment micromovement when compared to that in the SA and TA models, with the 

difference restricted to the abutment design. 
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In the present study, the 3D CAD models with singular differences in design were 

useful for evaluating effects strictly related to peri-implant bone stress and the implants’ 

components in three dimensions. One of the limitations of this study was a lack of 

simulation of the inhomogeneous and anisotropic material properties of human bone. 

Although our results with homogeneous and isotropic material properties definitively 

clarified the effect of implant designs on peri-implant bone stress and abutment 

micromovement, further analysis is required with detailed simulation of a more realistic 

bone model and some clinical cases. Selecting the best implant design for each clinical 

situation may help exclude overload and so achieve a better prognosis. 

 

Conclusions 

We used CAD models to investigate different structures of implants. The study revealed 

the effects of the design of specific components on peri-implant bone stress and 

abutment displacement after implant-supported single restoration in the anterior maxilla. 

Within the limitations of an FEA study, the following conclusions were drawn: (1) 

biomechanically, internal joint types are more suitable than external joint types; (2) the 

use of tapered abutments decreases abutment micromovement; (3) platform switching 
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decreases compressive stress on the labial bone; and (4) reverse conical neck implants 

increase peri-implant bone stress. 
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Table 1. Mechanical properties of bone and titanium used for finite element analysis 

 

 Component 

Young’ s modulus

（MPa） 

Poisson’s 

ratio 

Cortical bone 14,000 0.30 

Cancellous bone 1,470 0.30 

Titanium 116,000 0.34 

 

 

Data are from Pessoa et al.24 
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Figure 1. Three-dimensional computer-assisted design models. EM: external joint 

model; IM: internal joint model; SA: straight abutment model; TA: tapered abutment 

model; PS: platform switching model; RN: reverse conical neck model. For SA and TA, 

PS and IM, and RN and TA, the red dotted lines show the differences in the designs 

between models.
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Figure 2. Implant and surrounding maxillary bone used for finite element modeling and 

analysis. (A) Whole assembly of bone and implant models. Green arrows show the 

bottom part of the bone. Both sectional surfaces of the bone segment were fixed. (B) 

Static load of 100 N was applied to the basal ridge surface of the abutment 45° 

obliquely to the long axis of the implant. 
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Figure 3. Results of convergence analysis in terms of maximum principal stress. 

Arrows point to the elements for each model at which the maximum principal stress 

converged. 
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Figure 4. Distribution of the maximum principal stress. White arrows point to the 

concentration of the maximum principal stress. 
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Figure 5. Distribution of abutment displacement.  

 


