
Title
Development of artificial intelligence model for
supporting implant drilling protocol decision
making

Author(s) Sakai, Takahiko; Li, Hefei; Shimada, Tatsuki et
al.

Citation Journal of Prosthodontic Research. 2023, 67(3),
p. 360-365

Version Type VoR

URL https://hdl.handle.net/11094/93098

rights © 2023, Japan Prosthodontic Society. All rights
reserved.

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Received 20 February 2022, Accepted 12 July 2022, Available online 25 August 2022

1.  Introduction

Dental implants have become a significant alternative to re-
construct missing teeth and have revolutionized oral rehabilitation 
in partially or fully edentulous patients. Implant success depends 
on biological tissue response and primary stability [1-3]. Primary 
stability is an important determinant of osseointegration [4,5]. 
The goal in implant treatment is to obtain the appropriate implant  
osseointegration to achieve a high rate of long-term success [6-8]. 
The acquisition of primary stability is important for a better long-
term prognosis of implant treatment. Moreover, the volume of bone 
available for the implant and its quality are highly associated with 
the type of surgical procedure and the type of implant to be used, 
and both factors play a vital role in the success of dental implant sur-
gery [9]. The most popular assessment of bone quality was proposed 
by Zarb [10]; this assessment uses a scale of four classes based on 
both radiographic assessment and the sensation of resistance ex-

perienced by the surgeon. However, this classification has recently 
been questioned because of its poor objectivity and reproducibility 
[10,11].

Cone-beam computed tomography (CBCT) has allowed clini-
cians to view craniofacial structures in three dimensions with high 
spatial resolution. Computer-assisted surgery (CAS) for implant 
treatment is a recent advancement that uses CBCT imaging [12]. An 
assessment of CAS for implant treatment concluded that preopera-
tive assessment improved procedure precision [13]; therefore, the 
use of CBCT is increasing. In the evaluation of bone quality, Houn-
sfield units are used for medical computed, and gray values (GVs) are 
used for CBCT. GVs do not represent actual density values and differ 
from Hounsfield units [14]. To obtain the appropriate primary stabil-
ity for an implant, clinicians must decide on the drilling protocols to 
use and the surgical techniques used for the installation of implants 
[15,16]. However, it is difficult to determine the best drilling protocol 
before surgery, especially for young dentists without sufficient surgi-
cal experience than senior dentists.

Artificial intelligence (AI) can predict an output from unknown 
input data by pre-learning the relationship between two known da-
tasets. Deep learning is a type of machine learning approach and is 
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a representation learning method with a complex multilayer archi-
tecture. Deep learning derives features from data automatically by 
transforming the input information into multiple levels of abstrac-
tion [17,18]. The success of deep learning in many pattern-recognition  
applications has led to high expectations that deep learning can 
bring about revolutionary changes in healthcare. Early studies of 
deep learning applied to lesion detection and classification have 
reported superior performance to conventional techniques or even 
radiologists in computer-aided diagnosis [18]. As the medical field of 
radiology relies mainly on the extraction of useful information from 
images, radiology is a natural application area for deep learning, and 
research in this field has grown rapidly [19,20].

This study aimed to develop an AI model to determine an ap-
propriate implant drilling protocol using CBCT images.

2.  Method of research

2.1.  Image data sets

This study was conducted in the Department of Fixed Prosth-
odontics, Osaka University Dental Hospital (approval no. R2-E11). 
Anonymized CBCT images (512 × 512 pixels in size) were collected 
from 60 patients who had not received any treatment for bone aug-
mentation or immediate placement of implants (Table 1). Patients 
without sufficient primary stability (30 N/cm), with problems after 

implant placement within 1 year, and with a risk of osteoporosis 
were excluded. All CBCT images were taken using AlphardVEGA  
(ASAHIROENTOGEN, Kyoto, Japan) with a slice thickness of 200 μm 
and voxel resolution of 200 × 200 × 200.4 μm3. For each case, bone 
regions (20 × 20 pixels in size) at the implant site were extracted from 
20 slices of the CBCT images after implant placement by a single den-
tist using ImageJ software (National Institute of Health, Bethesda, 
MD, USA). The regions of interest (ROIs) of the images were extracted 
from the bone margin to ensure that an adequate region of cortical 
bone was included because it has been mentioned in some studies 
that cortical bone is correlated with primary stability [21]. According 
to the actual drilling protocol, the images were classified into three 
categories: A, conventional drilling protocol with a tapping drill; B, 
conventional drilling protocol without a tapping drill; and C, under-
sized drilling protocol (Fig. 1). Actual drilling protocols were decided 
by 14 dentists according to the CBCT images before surgery and their 
hand feeling during surgery. Clinical success was defined as primary 
stability with a torque exceeding 30 N/cm during surgery and no 
trouble after implant placement within 1 year. For each protocol, 400 
images (20 slices, 20 patients) were prepared.

2.2.  Implementation

To implement deep neural networks, the Keras library (version 
2.2.4) in Python (version 3.7.2) with a ThinkPad X280 (Core i7-8650 
CPU, 16 GB RAM, Lenovo) was used. The software was run on a 

Table 1.  Variations of the patients and their implants

Type Patient sex Patient age Position Manufacturer Shape Diameter (mm) Length (mm)

A 12 male, 
8 female 40-80 12, 15, 26, 35, 36, 

37, 46
12 Nobel Biocare,
8 Straumann

9 Straight, 
11 Tapered

3.3, 4.1, 4.3, 
4.8, 5.0

8.0, 8.5, 10, 11.5, 
12

B 6 male, 
14 female 32-70

15, 16, 17, 23, 24, 
25, 26, 27, 35, 36, 
45, 46, 47 

13 Nobel Biocare, 
7 Straumann

10 Straight, 
10 Tapered

3.3, 3.5, 4.1, 4.3, 
4.8, 5.0

8.0, 8.5, 10, 11.5, 
12

C 4 male, 
16 female 19-80

11, 13, 15, 16, 17, 
21, 24, 26, 27, 35, 
36, 45, 46, 47

17 Nobel Biocare, 
3 Straumann

13 Straight, 
7 Tapered

3.3, 3.5, 4.3, 
4.8, 5.5

7.0, 8.0, 8.5, 10, 
11.5 

Fig. 1.  Examples of cone-beam computed tomography images and the extracted regions of interest for a. patient 7, b. patient 27, and c. patient 59 according 
to three categories of drilling protocols. A: the conventional drilling protocol with a tapping drill, B: the conventional drilling protocol without a tapping drill, 
and C: the undersized drilling protocol.



362 T. Sakai,  et al. / J Prosthodont Res. 2023; 67(3): 360–365

Windows 11 Pro 64-bit operating system. The training dataset was 
randomly separated into 64 batches for each epoch, and 50 epochs 
were run at a learning rate of 0.001. An Adam optimizer was used to 
train the LeNet-5-based model.

2.3.  Structure of the LeNet-5-based model

Figure 2 shows the structure of the LeNet-5-based model used 
in this study. A total of 1,200 images were divided into training and 
validation datasets (n = 960 [80%]) and a test dataset (n = 240 [20%]). 
An equal number of images (16 images for training and validation 
and four images for testing) were extracted from each case to avoid 
bias.

2.4.  Assessment

The number of true positives (the number of correctly predicted 
cases of A, B, or C), true negatives (the number of correctly predicted 
cases of B and C, A and C, or A and B), false positives (the number 
of incorrectly predicted cases of A, B, or C), and false negatives (the 
number of incorrectly predicted cases of B and C, A and C, or A and B) 
was obtained for the 80 test images. Accuracy, sensitivity, precision, 
and F-value were calculated according to the following equations for 
each protocol:

In addition, the area under the curve (AUC) and receiver operat-
ing curve (ROC) were obtained for each protocol.

2.5.  Visualization

A heat map generated by gradient-weighted class activation 
mapping (Grad-CAM) [22] was overlaid on a test image to interpret 
the reason for the predicted protocols.

3.  Results

The learning curves are shown in Figure 3. After 50 epochs, the 
accuracy and loss converged. The accuracy of the trained model is 
93.7%. Sensitivities for protocols A, B, and C were 97.5%, 95.0%, and 
85.0%, respectively. The precision results for protocols A, B, and C 
were 86.7%, 92.7%, and 100%, respectively, and the F values for pro-
tocols A, B, and C were 91.8%, 93.8%, and 91.9%, respectively. The 
AUC values for protocols A, B, and C were 98.6%, 98.6%, and 99.4%, 
respectively. The ROCs for protocols A, B, and C are shown in Figure 
4. Heatmaps generated by Grad-CAM overlaid on the test images are 
shown in Figure 5.

4.  Discussion

The AI model based on LeNet-5 developed in this study success-
fully predicted the drilling protocols of A, B, and C using CBCT im-
ages. This is the first step toward predicting the drilling protocol for 
an implant from CBCT images in prosthodontic dentistry. We believe 
that the established AI model is useful for decision-making regard-
ing implant drilling protocols, especially for young dentists without 
sufficient surgical experience.

LeNet-5, developed by LeCun et al. [23], is a classic two- 
dimensional convolutional neural network (CNN) model that has 
been successfully used in Alzheimer’s disease recognition [24] (36,120 
images for two classifications, accuracy: 96.85%), traffic sign recog-
nition [25] (51,839 images for six classifications, accuracy: 99.75%), 
facial expression recognition [26] (981 images for six classifications, 
accuracy: 97.6%), gas recognition [27] (100 datasets for three classifi-
cations, accuracy: 98.76%), pedestrian detection [28] (64,468 images 
for two classifications, accuracy:75.0%), and other fields [29] (4,056 
images for six classifications, accuracy: 86.9%). Compared with these 
conventional studies, the model established in this study (1,200  
images for three classifications, accuracy: 93.7%) achieved high per-
formance even with a smaller dataset. In the case of medical images 
of 512 × 512 pixels in size, 1,000 test images/classifications are suffi-
cient for prediction with high accuracy [30]. In our study, we extract-
ed images as a region of interest (ROI) of 20 × 20 pixels in size, that 
is, a 1/655 reduction from the general size of medical images, such 
as 512 × 512 pixels. The image size used in this study could be one 
reason for the high performance, even with a small dataset. Because 
the LeNet-5 network has a relatively simple structure and powerful 
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 12 
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2.5 Visualization 17 

Fig. 2.  AI model based on LeNet-5. The feature extraction layer consists of two convolution layers and two max pooling layers. The classifier 
performs three-class classification according to the predicted drilling protocol A, B, or C.
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classification capability, LeNet-5 was used for CBCT image classifica-
tion in this study. Recent CNN models, such as GoogleNet [31] and 
AlexNet [32], have also been considered models for predicting the 
three drilling protocols. These models have achieved groundbreak-
ing performance in various sophisticated tasks, especially those re-
lated to images. Their classification ability often matches or exceeds 
human performance. The human classification error rate on a large-
scale ImageNet dataset was reported to be 5.1% [33], while deep 
learning achieved an error rate of 3.57% [34]. However, these CNN 
models were tuned for large color images. Therefore, LeNet-5, which 
is tuned for monochrome images, such as handwritten characters 
[23], was employed in this study.

The current prediction accuracy for the 80 test images was 
93.7%. Some false predictions occurred because the image fea-
tures that affect the accuracy of the developed model were limited 
by the ROI of the implant site, and the ROI could not be expanded 
further. To increase the number of image features within ROI, super- 
resolution techniques [35] have been implemented. In addition, the 
number of cases will gradually increase as data is collected from fu-
ture patients. Furthermore, a voxel-based 3D-CNN [36] on 3D seg-

mented CBCT images will be useful in increasing the number of im-
age features if more cases can be used as input data.

An image augmentation technique is often used to increase 
the number of images required to train a CNN model. For the CBCT 
images, 20 different slices were obtained from each patient, which 
augmented the total number of samples in the training dataset. 
For medical images, images of different slices of one patient should 
generally not be acquired to avoid overfitting because of the simi-
lar structural features of adjacent slices. The original CBCT images 
were 512 × 512 pixels in size; however, the ROIs specified as implant 
sites were only 20 × 20 pixels in size. The specified ROIs had different 
structural features, that is, mutual information [37], even in adjacent 

Fig. 4.  Recursive operating curves according to three categories of drilling 
protocols A, B, and C

Fig. 3.  Learning curves. Rectangular markers indicate accuracy during training. Circular markers indicate the loss of the training data set.

Fig. 5.  Test images and heatmap overlaid on these images generated by 
gradient-weighted class activation mapping (Grad-CAM). Left images of true 
predictions (drilling protocol A: patient 1, patient 2, and patient 3; drilling 
protocol B: patient 1, patient 2, and patient 3; and drilling protocol C: patient 
1, patient 2, and patient 3) and right images of false predictions (drilling pro-
tocol A: patient 63, drilling protocol B: patient 78, and drilling protocol C: pa-
tient 63).
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slices, as shown in the supplemental information (Figs. S1 and S2), 
and hence their use as test images resulted in high accuracy, sensitiv-
ity, precision, F-values, and AUC values. The convex shape to the up-
per left of the ROC curve for each protocol suggests that each drilling 
protocol correctly predicted a low false prediction.

Within the limitations of this study, the AI model based on 
LeNet-5 established in this study demonstrated high performance in 
predicting the three drilling protocols. However, it is still difficult to 
explain the main factor that induced the misprediction in a few cases 
(Table 2 and Fig. 5). Grad-CAM [22] as an explainable AI method [38] 
provided us with one of the reasons to visualize the attention regions 
in the model. The AI model may focus on bone mass in the attention 
region. The dark region is colored red for protocol A, while the bright 
region is colored red for protocol C. Interestingly, both visualized 
patterns were mixed for protocol B. Although it is difficult to clearly 
distinguish cortical bone from trabecular bone, it is considered that 
the model focused on trabecular bone in each classification. Due to 
differences in CBCT equipment, the model in this study was estab-
lished using only images taken by AlphardVEGA at Osaka University 
Dental Hospital. Hence, the performance of the model may be uncer-
tain for images captured using other equipment.

5.  Conclusions

The AI model established in this study was an effective method 
of predicting drilling protocols from CBCT images before surgery, 
suggesting the possibility of developing a decision-making support 
system to acquire primary stability.
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