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Abstract. A differential equation y'=f(χ, y) can be solved by quadrature
if an infinitesimal transformation ξd/dx+ηd/dy leaving y'=f invariant is known.
This theorem is due to Lie. Here, the converse will be proved in the following

form:
Suppose that a one-parameter family of equations y'=θ(x,y;ά) each of

which is left invariant by ξd/dx+ηQ/dy is known. Then the equation ξdy—ηdx
=0 can be solved by quadrature.

Through this theorem we shall give a method different from that of Lie for
integrating y'=f(x, y) by quadratures.

1. Introduction. Consider a differential equation

(1) /=/(*, J).

Suppose that an infinitesimal transformation

8 9

(2) ^X'y^^χ+Ύ1^y>^

leaves (1) invariant. Then the Pfaffian form

is exactly integrable. This theorem is due to Lie [2, p.97].
Here, we shall consider an infinitesimal contact transformation leaving

(1) invariant. Every infinitesimal contact transformation is expressed in the
form

(3) _ .
ox oy
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where z=y' and -ψ is a function of x, y, z. Equation (1) is left invariant by (3)
if and only if #—/(#, y) is a solution of the partial differential equation of the
first order

where p=dz/dx, q—QzjQy. By Jacobi's method of the last multiplier we shall
prove the following (Theorem 1):

Suppose that \(x,y,z)=a is an integral of the system of ordinary differential

equations

( ς ^ dx _ dy __ dz
— Ψ* Ψ— #Ψ* ψ

Then the two Pfaffian forms

( 6 ) ψ-^dy— zdx) ,

( 7 ) (^λ,)-1 {-Ϋ2dy-(γ-

are exactly integrable for each value of parameter a. Here, we replace z in
(6), (7) by its value θ(x,y;a) obtained from \(x,y, z)=a.

In this theorem take ty=η—zξ, where ξ , η are functions of xyy. Then the
infinitesimal transformation (3) is the prolonged one of (2) in the space of line
elements, and we have

= ξ(z) ,

where

The system (5) becomes

dx dy dz
-τr = ~— = ~irr\

ξ -n ?(«)

and the Pfaffian form (7) takes on the form

(9) (γ2\z

Since \=a is an integral of (5), z=θ(x,y\ a) is a solution of (4) for every a.
Hence we can state the converse of Lie's theorem stated above as follows :

The equation ξdy—ηdx=Q can be solved by quadrature if a one-parameter
family of equations y'=θ(x,y;a) each of which is left invariant by (2) is known.

Through this theorem let us give a method different from that of Lie for in-
tegrating (1) by quadratures. An equation y'=θ(x,y) is left invariant by (2)
if and only if θ(x, y) is a solution of
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do e

We try to find such a pair of ξ(x, y), η(x,y) that η/ξ=f and the equation (10) has
a solution of the form θ=θ(f\ a). Suppose that there exists such a pair of ξ, η
that η/ξ=f and each of the coefficients of the quadratic form

is a function of /. Then / is a solution of Riccati's equation

(12) -

derived from (8), since we have the identity

9 9

Hence the general solution θ(f\ a) of (12) can be obtained by quadratures. It
is a solution of (10) for each a. Let us define the class Ω as all of equations (1)
for which we can find such a pair of ξ(x, j>), η(x, y) that/— -ηjξ and each of the
coefficients of (11) is a function of/. Suppose that equation (1) is a member
of Ω and that the pair of f, 97 is given by exp(p(#, j)),/expp. Then p.,, p^ are
determined from z=f(x, y) by

* = βS7-7Sβ+β(Ba-Aγ) ,

'
where

and δ is the operator pd/dy— qd/dx. Suppose that ΔΦO. Then, integrating the
exactly integrable Pfaffian form pxdx+pydy, we have the p by quadrature. For
this p, let λ(/, z)=a be the integral of (8) obtained from the general solution

; a) of (12). Then the Pfaffian form (9) takes on the form

(14) -

Here the integrand (p+^q)~1(q— px— %ρy) is a function of z. Hence, equation
(1) in Ω is solved by quadratures if ΔΦO. For defining Ω, we shall give in
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Theorem 2 such a system of partial differential equations that equation (1) is a

member of Ω if and only if / is a solution of the system.

Let us define the subclass Ω0 of Ω as all of equations for which we can

find such a pair of the ξ, η that ^=0. It is a necessary and sufficient condition
that Riccati's equation (12) be linear. Equation (1) is a member of Ω0 if and only
if z=f(x9 y) satisfies

=

and

(15)
9 ?

sewhere X=( — ) /( — ) . The p is determined by px= — X, py=0. Suppo
\ q /yl \ q / y

that X is an arbitrary function of x. Then each solution z=f(x, y) of (15) gives

a member of Ω0. The equation (15) is of Monge- Ampere's type, since by the

definitions

A = (p+zq)-l{p(s+zt)-q(r+zs)} ,

B = (p+zq)-i(q*r-2pqs+p2t) ,

where r=d2z/dx2, s=Q2z/dxdy, t=Q2z/dy2. This equation can be solved by

Monge's method of integration, and the general solution will be given in a finite
form in Theorem 3. In particular, Ω0 contains the following three equations:

(16) y = *0

(17) y* = X

(18) y = Φι(;y>+φ2(/) (Lagrange's type).

Here, XOJ Y0, X19 X2, φn φ2 are arbitary functions.

2. Infinitesimal contact transformation. To prove the first theorem

stated in §1, let us recall here Jacobi's method of the last multiplier ([1, p. 356]).

Consider a system of ordinary differential equations

dx _ dy _ dz

ι^~~ιr~^'
where P, Q, R are functions of x, y, z. Then a function M of x, y, z is called

the last multiplier of (19) if it satisfies

PMx+QMy+RM2+M(Px+Qy+R2) = 0.

Suppose that M is the last multiplier of (19) and g(x,y, z)=a is an integral of
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(19) satisfying £ZΦO. Then the Pfaffian form g~lM(Pdy—Qdx) is exactly inte-
grable for each a, where we replace z by its value obtained from g(x,y, z)=a.
Effecting the quadrature, we have

H(x,y; a) = ίg7lM(Pdy-Qdx) .

Suppose that PΦO or £ΦO, and MΦO. Then the second integral of (19) is
given by H(xyy;g)=b, and any integral of (19) is expressed in the form

Theorem 1. Suppose that Λ/rφO and \(x,y,z)=a is an integral of (5)
satisfying X^ΦO. Then the two Pfaffian forms (6), (7) are exactly integrable for

each a.

Proof. Since \=a is an integral of (5),

(20) -^*+(^-*^λ,+OK+*^)λ* = 0 .

Consider a system

Then ^K1 is the last multiplier of (21) by (20). Hence the Pfaffian form (6) is
exactly integrable, because \=a is an integral of (21). The function ψ>~2 is the
last multiplier of (5). Hence the Pfaffian form (7) is exactly integrable.

Effecting the quadratures, we have

Suppose tnat Ψ^ΦO or ψ>— ̂ ψ ̂ φO. Then 2(^> y\ λ)=A and Tί(x,y; \)=cgive
the second integral integral of (21) and (5) respectively.

Proposition 1. The transformation xl=^Σ(xy y\ X), y1=\(χy y, z), «1=Π"1

(x, y\ λ) is a contact one, and the infinitesimal transformation (3) is written in the
form d/dxί by the coordinate system (xn yίy z^.

Proof. By (20) we have

Hence xl9yly zλ are functionally independent, and the infinitesimal transformation

(3) is written in the form 9/9^. Since Σ«— Π, we have
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_ = ,
dz Qz

-J^+\dx dy

Hence our transformation is a contact one.

3. Integration ofξdy—tjdx=Q. Suppose that £, η are functions of x, y
and that \(x,y, #)— a is an integral of (8). Then by Theorem 1 an integrating
factor of the Pfaffian equation

(22) ξdy-ηdx = 0

is given by (ψ^λ*)"1. Let us see how it depends on a. Suppose that ω(x,y)=b
is an integral of (22) and σ(x, y) is a solution of ξ<rx-\-ησy=l. Then ω=b is an
integral of (8). The second integral of (8) is obtained as follows. Consider
Riccati's equation

(23) A = ζ(z)
dσ

under the condition that ω— b. Then there exists such a pair of u(σ\ ό), v(σ\ b)
that the general solution of (23) is

z = (u+cζyl(v+cri) .

When the quantity b in u, v is replaced by ω(x, y), the second integral of (8) is
given by

(η—zξ)~l(uz—v) = c .

Let μ denote the left-hand member. Then the integral λ— a of (8) is expressed
in the form A(ωyμ)=a, and the integrating factor (i^X^)"1 of (22) takes on

where we replace μ by its value obtained from Λ(ω, μ)=a.
In the case where λ(#, y, η/ξ) is not constant, we can obtain the integral

of (22) without integrating (9).

Proposition 2. Suppose that \(x,y, z)=a is an integral of (8), and \(x,y,
is not constant. Then the integral of (22) is given by \(x,y, ηlξ)=a.

Proof. Let ω(x, y) denote \(x9 y, η/ζ). Then,

f + λ τ )
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Suppose that there exists such a function w(x,y) that each of coefficients

of (ξWx+ηWy^ζ^) is a function of w. Then we can make an integral λ=# of
(8) from the generzal solution z=θ(w\ a) of Riccati's equation

(24) l = (

solving z=θ(w\ a) with respect to a. In this case λ(#, y, η/ξ) is constant if and
only if w is a function of η/ξ.

EXAMPLE 1. Suppose that ξ=y—x(log x— 1), 77=—(log x— ί)y. Then we
can take w=y/x, and it is functionally independent on -η/ξ. Riccati's equation
(24) is

A? 1 9 y2
Uf& 1 A , Λ

and its general solution is

z = w-\-w2{a—

Hence,

λ =

and the integral of

ydy— (log Λ;— 1) (Λirfy— ydx) = 0

is given by

= α .

4. Integration of equation in Ω. We shall prove the statements on Ω
given in §1.

Proposition 3. Equation (I) is a member of Ω if and only if the system of

two Monge- Ampere's equations

(25) qpxx-ppxy+Aρx+B = o ,

has a solution p(xyy).

Proof. First suppose that p^Φθ. Then we have the identities
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All of them are functions of z if and only if p is a solution of (25), since

Γ'ίί-P,)} = -P?{S+pς\q-p,)T} ,

where S and T are the left-hand member of the first and second equations of

(25) respectively. Secondly suppose that p_y=0. Then we have the identities

They are functions of 2: if and only if p is a solution of

(26) qpxx+Apx+B = 0 ,

since

Proposition 4. Suppose that equation (\)is a member of Ω satisfying CΦO.

j., pj, satisfy (13).

Proof. By the compatibility condition that dS/dy—dTldx=0, we have

(27) ip«-2ip,,+r/>w+ ,̂p,- ,̂p,+5, = 0 .

From the definition, C=qΐr—2pqs-\-pzt. Since CΦO by the assumption, we can

solve (25), (27) with respect to ρxx, pxy, pyy:

(28)
C 9y

C dy q
_

C Qy q '

Let E, F, G denote the right-hand member of the first, second and third equations

of (28) respectively, and Dx, Dy be the operator defined by
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D =-*L + E—+F —
dx dpx dpy'

y 9y dpx dpy

Then we have the identity

(29) [D,,D9]=

where U is a function defined by

(30) U =

Let H be the operator pDy—qDx. Then it is written in the form

oy

by the identities

(31) qE-pF+Apx+B = 0, qF-pG+Apy = 0 .

Operating H on [/, we have the identity

(32) HU-AU= (Sa)px+(δβ)py+8<γ+Ba-Ay .

The two equations U=HU=0 imply (13) by (30), (32).

Proposition 5. Suppose that λ(/, z)=a is the integral of (8) obtained from

the general solution θ(f; a) of (12). Then the Pfaffianform (9) takes on (14).

Proof. Riccati's equation (12) is

df

Since f=z is a solution, we take θ=z+τ~1. Then the equation is changed to the
linear one

Its general solution is

T = exp(—

where

v = (p+zq)-l(q-zp,—pf) .
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Since

the Pfaffian form (9) takes on the form (14).

REMARK 1. (i) Suppose that p+zq=Q. Then equation (1) is Clairaut's

one y=xy'+φ(y'). (ii) Suppose that C=0. Then equation (1) is of Lagrange's
type (18). It is a member of Ω for which we can take p=0. (iii) Suppose
that A=0. Then equation (1) takes on the form

y—lφ(z)zdz = φ0(x-Sφdz) ,

where φ, φ0 are arbitrary functions of z and x—\φdz respectively. Its integral

is obtained by eliminating z from

y— \ φ(z)zdz = φ0(i), x-iφdz = b.

(iv) Suppose that (A/p)x=Q. Then δ{Y~~l(p+zq)} =0, where Y=exp(ί(A/p)dy).
Hence, p-{-zq=φ(z)Y, where φ is an arbitrary function of z. Its general solu-
tion is obtained by elimintaing c from x—$z~1dy=φ0(c), \Ydy—\φ~*zdz=cy

where φ0 is an arbitrary function of c and we replace z in the first equation by

its value obtained from the second equation. This equation y '=f(x,y) is

changed to yι=φ(yι)Y(Xι) by the transformation x1=yj 3>ι=/(#, y)> since j>/
=p+zq.

REMARK 2. The Pfaffian form (14) is exactly integrable if the integrand

v is a function of z. Suppose that ΔΦO and ρx, ρy are defined by (13). Then,
under the condition that za— /3=t=0, we have (px)y—(py)x=δv=Q if and only if

p,, py satisfy (25).

5. Definiing equation of Ω. Let us give a system of partial differential

equations for defining Ω.

Theorem 2. Suppose that ΔΦO. Then equation (I) is a member of Ω if and
only if z=f(x,y) is a solution of the system of two partial differential equations

(33) Oί(βx7y—βy

x p

—+β( γa,-'rjί)—+a(aβ,-aβ)—
q P q
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pq

(34) (/3δγ

+(S2j+δε+BSa-ASγ— Aε)A = 0 ,

where ε=Ba—Aγ.

Proof. We have the identities

(35) D.U

+» - -
(36) D,υ

and

(37) (H-AfU = (S*a)px+(82β)Py

+δ(S<γ+ε)+B8a-A(87+ε)

by (32). Suppose that equation (1) is a member of Ω. Then, DxU=DyU= U

=0 imply (33) by (35), (36), and H2U=HU=U=Q imply (34) by (32), (37).

Suppose conversely that the two identities (33), (34) are satisfied by z—f(x, y).
Then DXU, DyU and H2U are linearly dependent on U and HU, since we as-

sumed that ΔΦO. Let us replace ρxy py by their values defined by (13):

(38) Px = ̂ (βSγ-γδβ+εβ), Py = Δ-'( yδα-αδγ-£α).

Then, U=HU=0, and DxU=DyU=H2U=0. Hence,

(39) a{(p,),-E} +β{(Py)x-F} = UX-DXU = 0 ,

(40) a{(px)y-F} +β{(p,),-G} = Uy-DyU = 0.

By (29) and the identity

[Dx, H] - -tD,+rD,+p[DM Dy],
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we have

DXHU = [Dx, H]U+HDXU = 0 ,

since HDX U= 0. Hence,

DyHU = p-\H+qDx)HU = 0 ,

and

(41) (8α) {(P,)f-E} +(8β) {{py)x-F}

= {(H-A)U}X-DX(H-A)U = 0 ,

(42) (Sα) {(P,),-F} +(Sβ) {(Py)y-G}

= {(H-A)U}y-Dy(H-A)U = 0 .

By (39), (41) we have

(p,), = E, (p,), = F,

and by (40), (42),

Hence, we can integrate (38), and the p thus obtained satisfies (28). By (31), p
is a solution of (25). Therefore, by Proposition 3, equation (1) is a member of
Ω.

REMARK 3. Suppose that Δ~0. Then equation (1) is a member of Ω if and
only if z=f(χ,y) is a solution of the two equations

/?(δγ+£)— γδ/3 = 7δa-a(δ7+ε) = 0 .

REMARK 4. Let ZΊ, Z2 denote

(p+*q)-lpy, (p+*q)~l(q-p*)

respectively. Then equation (1) is a member of Ω if and only if Zx, Z2 are func-
tions of z. We have ρx=q—(pJ

ί-zq)Z2ί py=(p-\-zq)Zl. Hence, Ω is defined
by Monge- Ampere's equation

Zlr+(Zlz+Z,)s+(Zjt-l)t

+(p+zq) (Z/p+Z2

/q)+q(Z1p+Z2q) - 0

involving two arbitrary functions Z1? Z2 of z as parameters, which is the compa-

tibility condition that (ρy)x

:=^(px)y' This equation is the intermediate integral of
the second order of the system of partial differential equations (33), (34) of
the fifth and sixth order.
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6. General solution of defining equation of Ω0. We shall determine
the form of equation (1) contained in Ω0, solving its defining equation. By

Proposition 3, equation (1) is a member of Ω0 if and only if the equation (26) has

a solution p depending only on x. Suppose that equation (1) is a member of

Ω0. Then ρx is determined by

Let X be the right-hand member. Then we have (15). Conversely suppose

that X is an arbitrary function of x. Then each solution of (15) gives a member

of Ω0, for which px= — X, ρy=Q.

Theorem 3. The general solution of Monge-Ampere's equation (15) is

obtained by eliminating c from

(43) y-\χ-*φ(z)dz = ψ(c)

and

(44) c = jXdx- ίz-\φ- l)dz ,

where φ and ψ are arbitrary functions of z and c respectively. Here, we replace

x in the integrand X~lφ in (43) by its value obtained from (44).

Proof. The equation (15) takes on the form

(45) q(X~q)r+ {(zq-p)X+2pq}s-p(zX+p)t

-q(p+zq)X' = 0 .

To this equation, Monge's method of integration can be applied with success as

follows. One of the two characteristics of (45) is

pdx—qdy = dz = (X-q)dp+(p+zX)dq-(p+zq)X/dx = 0 .

The last equation is written in the form

z-1{(p+zX)d(p+zq)-(p+zq)d(p+zX)} = 0

by dz=Q. Hence, the two functionally independent intermediate integrals of
the first order are given by (p-\-zq)~l(p-\-zX) and z. Therefore, the integra-

tion of (45) is reduced to that of the partial differential equation of first order

(46) p+zX-(p+zq)φ(z) = 0

involving an arbitrary function φ of z. The characteristic of (46) is

dx _ dy _ dz

φ — 1 zφ zX
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Hence, the general solution of (45) is expressed in the form stated in our theorem.

EXAMPLE 2. In the intermediate integral (46) let us replace φ or X by
special values, (i) Take φ=0. Then p+zX=Q. Its general solution is #=exp

(— ίXdx+ Y(y)\ and equation (1) is of type (16). (ii) Take φ= 1. Then X=q.
Its general solution is z=-Xy-\-X^(x\ and equation (1) is of type (17). (iii) Take
X=0. Then pq~1=—z(φ—l)~1φ. Its general solution is y— φί(z)x=φz(z),
where φ1=z(φ—ΐ)~lφ. Equation (1) is of Lagrange's type (18).

OSAKA UNIVERSITY

Bibliography

[1] A. R. Forsyth: A treatise on differential equations, 6th ed., Macmillan and
Co., London, 1933.

[2] S. Lie and G. Scheffers: Vorlesungen ϋber Differentialgleichungen, mit be-
kannten infinitesimalen Transformationen, Teubner, Leipzig, 1891; Chelsea, New
York, 1967.




