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Let Y be a complex algebraic surface. We say that it is Z-acyclic (respectively
Q-acyclic) if its reduced homology with coefficients in Z (resp. in Q) vanishes.
Topologically one can represent Y as a compact 4-manifold with boundary (denote
the boundary by S), attached by a collar S x [0,1). Call S the boundary of Y.
If Y is an affine surface in C™ then S is the intersection of Y with a sufficiently
large sphere. We say that Y is A-acyclic at infinity If S is an A-homology 3-sphere.
(A= Z,Q). If Y is A-acyclic then it is A-acyclic at infinity. If Y is Q-acyclic and
Z-acyclic at infinity, then it is Z-acyclic.

In the paper [ 18] Ramanujam proved that the only Z-acyclic surface bounded by
a homotopy 3-sphere is C2, and he also constructed there the first example of a non-
trivial Z-acyclic (and even contractible) surface. Later on Gurjar and Shastri [7]
proved that all Z-acyclic surfaces are rationnal. Tom Dieck and Petri [1] classifind
all acyclic surfaces which rise out of line configurations on P2. Fujita [5] (resp.
Miyanishi, Tsunoda [11] and Gurjar, Miyanishi [6]) classified acyclic surfaces with
® =0 (resp. —oco and 1), where K denotes the log-Kodaira dimension. Zaidenberg
[21] pointed out the connection of Z-acyclic surfaces with exotic algebraic and
analytic structures on C™, n > 3. Flenner and Zaidenberg [4] studied deformations
of acyclic surfaces.

A Seifert fibration (see [19], [17]) on a smooth compact 3-manifold M is a
mapping onto a 2-manifold = : M — B, which is a locally trivial fibration with
fiber S over B—{pi, ..., pr} and which looks near p; like D?xS! — D2, (21, z2) —
217 /257, where D? = {|z|> < 1} C C, S' = AD? and p;, v; are coprime integers,
p; > 2. The w~Y(p;) are called multiple fibers; M is called Seifert manifold if
it admits a Seifert fibration. Seifert A-homology sphere (A stands for Z or Q)
is a Seifert manifold M with H,(M;A) = H,(S%; A). In this case the base B
is a 2-sphere. The question, when a Seifert homology sphere bounds an acyclic
4-manifold, was studied, for instance, in [3], [15].

Our main result is:

Theorem 1. Let Y be a smooth algebraic Q-acyclic surface of logarithmic
Kodaira dimension 2, bounded by a Seifert Q-homology sphere with r multiple fibers.
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Then:
(a) Y can not be Z-acyclic.
(b) r<1e6.

Let Y be a Q-acyclic surface. Consider an algebraic compactification X of Y
such that Y = X — D, where D is a reduced curve with simple normal crossings
(an SNC-curve). Then all irreducible components of D are rational, and the dual
weighted graph of D (denote it by I'p) is a tree (see [13]). (The dual graph of a
curve is the weighted graph, whose vertices correspond to the irreducible compo-
nents, edges correspond to their intersection points and the weight of a vertex is the
self-intersection number.) A tree is called r-fork if it has one vertex of valence r
and valences are < 2. Suppose that D is minimal, i.e. it contains no (—1)-curve
intersecting one or two others. A Q-acyclic surface Y with (YY) = 2 is bounded by
a Seifert sphere if and only if I'p (with minimal D) is a fork.! Thus, we can reduce
Theorems 1 to:

Theorem 1. Let D be a minimal SNC-curve on a smooth projective surface
X. Suppose that Y = X — D is Q-acyclic, K(Y') = 2 and the dual graph Up is an
r-fork. Then:

(a) Y can not be Z-acyclic.

(b) r<1ie.

REMARK 1. As we mentioned above, acyclic surfaces with K < 2 are classified
[5], [11], [6]. Using this classification and the classification of Seifert homology
spheres [17], one can see that if Y is a Z-acyclic surface which is bounded either
by a Seifert sphere or by a fork, then Y = C2. If Y is Q-acyclic and %(Y) < 2 then
all the possible values for r are shown in the following table:

R(Y) —c0 0 1
dY is a Seifert sphere with r mult. fibers {0,1,2,3} {3,4,5} {4,5,...}
I'p is an r-fork {0,1,...} {3} I

This fact can be easily deduced from the results in [5], [6] and [10]. Note only
that the cases with kK = 0,1 and r > 4 correspond to the surfaces X — D with I'p

. 0 .
of the form .- >o— o o< - . Such a surface is bounded by a Seifert sphere

becuse I'p becomes a fork after a 0-absorption (see [2], [14]).

ITt is so, because when & = 2, the tree I'p satisfies so called Negative Chains Condition: If
the valence of a vertex is < 2 then its weight is < —2. When & < 2, the both assertions “if” and
“only if” are wrong.
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REMARK 2. Zaidenberg asked [22; Question 1.6] if there is only a finite list of
possibilities for the topological type of the dual graph at infinity of an acyclic (resp.
contractible) surface with ¥ = 2. Theorem 1’ can be considered as a very first step
toward the positive answer to this question.

ReMARK 3. The proof of the part (b) of Theorem 1’ is based on the loga-
rithmic Bogomolov-Miyaoka-Yau (log-BMY) inequality [12], strengthened by
Kobayashi-Nakamura-Sakai [9], and Fujita’s computation [5] of the Zariski de-
composition of K + D. The part (a) also can be obtained as a direct consequence
of the elementary formulas from §§1—-3 (most of them needed for the part (b)) using
the rationality of Z-acyclic surfaces [7] and the log-BMY inequality?. However,
these two results are quite non-trivial, while, as the referee of the first version of the
paper has pointed out,

“... a very elementary proof is possible. Using Lemma 4.1 in part I of [7], we
can show: Write Kx ~ aoDo + Y, a;D; where Dy is the central curve. Then
ag > 0 = all a; > 0 and qg <0 = all a; < 0. But if all a; < 0, then
Pg(X) > 0. This is not possible. Hence all a; < 0. But then K + D is eigher trivial
or a strictly negative divisor. In the latter case, K(Y) = —oco. If K + D ~ 0, then
(K+D)-Dp=—-2+7r=0 = r = 2. Hence I'p is linear. This completes the
proof.”

In fact, only the implication “ap < 0 = all a; < 0” is proven in [7, Lemma
4.1]. However, the proof can be easily completed to derive the implication “ag <
0 = all a; < 0” as well. Indeed, if ap < 0 then by [7, (4.1)] all a; < 0. If some
of them were = 0 then (due to connectedness of D) would exist two componets D;
and D; such that a; = 0,a; # 0 and D;-D; = 1. Then, since Df +2 <0, one would
have 0 =g(D;) = KD; + D} +2< KD; = a; + S ki Ak DiD; < aj <O0.

REMARK 4. After the old proof of Theorem 1’(a) was omitted, the propositions
1.4-1.6 remained without applications. However, we decided to leave them because
they are simple but maybe they are of some independent interest.

REMARK 5. The estimate » < 16 in Theorem 1/, requires messy calculations
(see §8). However, the fact that r is bounded from above, can be obtained without
them. Therefore, we presented in §7 a shorter proof of Theorem 1’ with a weaker
estimate for 7.

REMARK 6. The estimate » < 16 still does not seem to be the best possible.
However, a stronger estimate needs other techniques, because an attempt to prove it
by the methods of this paper leads to so huge volume of calculations that the result
does not worth them.

Zsee the preliminary version of this paper in “Mathematica Gottingensis”, 38 (1995).
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1. Weighted trees and their discriminants

We list in this section some well-known elementary facts about discriminants
of weighted trees. A weighted tree is a finite tree (finite graph without cycles) with
an integer weight w(v) assigned to each vertex v. Let I' be a weighted tree and

v1,...,V, be its vertices. The incidence matrix of I is Ar = (a;;), where
ai; =141 if v; is connected to v; by an edge,
0 otherwise.

The discriminant of T is defined as d(I') = det(—Ar). By convention, d(@) = 1.
Clearly, this definition is independent of the order of the vertices and that the
discriminant of a disjoint union is the product of the discriminants of the connected
components.

The following lemma can be easily obtained, using the Cramer rule (see e.g.
[2] for details).

Lemma 1.1. Let T' be a weighted tree with d(T') # 0. Let Br = (b;;) = Ap'
be the inverse matrix. Then

bij = =d(I' = [vi, v5])/d(T),

where [v;,v;] is the minimal connected subgraph of T, which contains v; and v;.

Lemma 1.2. LetI' be a weighted tree, v a vertex of ' and w(v) the weight of
v. Denote by I'1,...,I'. the connected components of T — v, and let T, =T'; — vj,
j=1,...,7, where v; is the vertex of T'j, connected by an edge to v. Then (remind
that d(@) = 1)

r) = (o) [L ;) - 3 () T o))

Jj=1 k#j

Proof.  Expand the determinant of Ar according to the row, corresponding

to v. D
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The valence of a vertex v of a graph is the number of edges, incident to v. A
graph is called a linear chain if its vertices v1,...,v, can be orders so, that v; is
connected to v; iff |i — j| = 1.

Corollary 1.3. Let T be a linear chain with all weights < —2.

a) If v is one of the ends of T then d(T) > d(T —v) > 0.

b) Let u be any vertex of T. Denote by T, and T, the connected components
of T —wu, and let a =d(T), b=d(T1), c=d(Tz). Then a > b+c.

Proof. a) Induction by the number of vertices, using Lemma 1.2.

b) For i =1,2 let u; be the vertex of T;, nearest to u, and 7} = T; — u;. Put
v =d(TY), ¢ =d(Ty) (if T{ = @, put b = 0). Let w be the weight of u. Then by
Lemma 1.2 we have a = —wbc—bcd’ —b'c = (—w—2)be+b(c—c')+c(b—b') > b+e,
because —w —2 >0,and by (a),c—c >1,b—-b > 1. |

The following three propositions will not be used in the rest of the paper.

Proposition 1.4. Let T be a weighted tree; u and v two its vertices. Let
Ao, ..., Ay be the connected components of T' — u, and By,...,B,, be those of
I — v, indexed in such a way that v € Ao, u € By. Denote: a; = d(A;), b; = d(B;),
a=ay ag, b=0by- by, A = d(F), 6= d(AonBo), c = d((AO ﬂBo) - [u,v]).
Suppose that a #0,b#0, § #0. Then

27 8A = agby — abc?.
Proof. Let M be the minor of Ar obtained by deleting the two rows and the

two columns, corresponding to u and v. Clearly, M = fab. On the other hand, by
Jacobi formula for the minor of the inverse matrix,

M buu buv
A N b’U‘ll, b‘U’U ’
where, by Lemma 1.1, by, = aag/A, by, = byy = abc/A, by, = bby/A. O

REMARKS. 1. If v is a linear chain and d(I') = +1 then (1) is the formula
for the “edgede determinant” due Eisenbud-Neumann.

2. In fact, (1) is still true even if any of its ingredients are zeros.

A tree I is called r-fork, if it contains a vertex vo of valence r and the valences
of other vertices are < 2.

Proposition 1.5. Let I" be an r-fork and v the vertex of valence r. Suppose
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that the weights of the other vertices are < —2. Let Qr be the quadratic form,
defined by Ar. Then:

(i) if d(T') > 0 then Qr is negatively definite;

(ii) if d(T') < 0 then Qr has the signature (+,—,...,—).

Proof.  Apply the Sylvester criterium, choosing an increasing sequence 1 =
My, My, ..., M, = d(I') of principal minors of the matrix —A. where M,_; is
obtained from M,, by deleting the row and the column, which correspond to vg. It
follows from Corollary 1.3, that M; > 0 for i < n. O

Proposition 1.6. In the hypothesis of Proposition 1.5 if d(I") = —1 then all the
entries b;; of Br = Ag' are non-negative.

Proof. Denote by T3, ..., T, the coonected components of I'—vp, and by v; the
end vertex of T; (the vertex of T};, whose valence in I' is 1). Denote also: I‘; =I—v;,
T; = T —vj, A} = d(I'}), a; = d(T;), o = d(Tj), e; = a’;/a;(j = 1,...,7), and
p=aj...ar.

By Lemma 1.1 it is enough to show that the descriminant of any connected
proper (i.e. # I') subgraph of I" is non-negative. First, we prove this for the sub-
graphs I";. Indeed, applying 1.4 with u = v and v = vj;, we obtain a} - (-1) =
Alaj — p/a;, or, dividing by aj, A} = p/a? — e;. But p/a? >0 and e; < 1. Hence,
A;- > —1, but A;- € Z, so, A} > 0.

Let I'" be any proper connected subgraph of I'. It is contained in some I‘;-.
Chose an increasing sequence of principal minors which involves d(I'’) as well
as d(I';), and estimate the signature of Qr, by Sylvester criterium. Clearly, the
inequality d(I'"") < 0 contradicts Proposition 1.5. O

2. Some elementary linear algebra on dual graphs

Let X be a smooth projective algebraic surface and D a reduced SNC-curve on
X. Denote by Vp, the subspace of H2(X; Q) generated by the irreducible components
D,,...,D, of D. We shall call elements of Vp by Q-divisors.

Denote by Ap = (D; - D;);; the intersection matrix of D. Let I'p be the dual
weighted graph of D. Clearly that Ap is the incidence matrix (see §1) of I'p. Define
the discriminant of D as d(D) = d(I'p) := det(—Ap).

Suppose that d(D) # 0 (in particular D;’s are linearly independent), and let
Bp = ABI.

Lemma 2.1. For C,,Cy € Vp one has C, - Cy = Zm. bij(C1 - D;) - (C2 - Dj)

Proof.  Any bilinear form defines a homomorphism to the dual space. One
can intepret Ap as the matrix of that for the intersction form. Then the required
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equality is just C; -Cy = (ApC1,Cs) = (Z1,BpZs) for Zy, = ApCi,k=1,2. O

Let Kx be the canonical class of V and let K = K, be its orthogonal projection
onto Vp. Actually, for the main purpose of this paper we need only the case, when
Vp = PicX ® Q, and hence Kp = Kx (it is so if X — D is Q-acyclic). However,
this assumption does not simplify the statements (nor the proofs), in this and next
88, so we do not restrict ourselves by this case here.

For an irrenducible component C of D denote by vp(C) its valence in I'p, i.e.
vp(C) = C - (D —C), and put v; = vp(D;). Let x; be the Euler characteristic of
D;.

Lemma 2.2. (K + D) . Di =V; — Xi-

Proof.  Apply adjunction formula: D;-(K+D) = D;-(K+D;)+v; = v; —X;.
O

Corollary 2.3 (cf. [16]). (K + D) =3, -bi(vi — xa)(vj — X;)-

Following Fujita [5], define a twig of D as a maximal linear rational branch. It
means that T is a twig, if T'= C; U- - - U C, where each C; is a rational irreducible
component of D; vp(Cx) = 1; vp(C;) =2 and C; - Ci41 = 1 for 1 <7 < k; and if
we denote by Cy the component of D — T, which intersects Cy, then either Cy is not
rational or vp(Co) # 2. In this case Cy is called the root of the twig T' (it is not
contained in T'); C}, is called the tip of T. The rational number d(T — Cy)/d(T)
is called inductance of T and is denoted by e(T") (we use the convention: d(&) =
1,e(@) = 0). The twig is called admissible if C2 < —1 for all i = 1,..., k. Clearly,
that if a twig T' is admissible then d(T") > 0 and 0 < e(T") < 1 (see Corollary 1.3)

For a twig T of D with d(T) # 0 we define the bark of T (see [5]) as the unique
Q-divisor Bk(T') in V7 (i.e. Supp(Bk(T)) C T), such that Bk(T) - tip(T') = —1,
Bk(T') - C = 0 for a component C of T, which is not the tip. The following lemma
is an immediate consequence of Lemmas 1.1 and 2.1, applied to the matrix Br.

Lemma 2.4 (Fujita, [5, (6.16)]). Let T be a twig of D, and d(T) # 0. Then

(i) Bk(T)? = —e(T).

(ii) If C is a vertex of a twig T then the coefficient of C in Bk(T) is equal
to d(T¢)/d(T), where T¢ is the connected component of T — C which is between C
and the root of T.

(iii) In particular, if C is the vertex, nearest to the root, then the coefficient of
C is equal to 1/d(T).
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3. Local Zariski-Fujita decomposition

Let, an in §2, D be an SNC-curve on a smooth projective algebraic surface X,
K = Kp be the projection of K x onto Vp, and suppose that D is not a linear chain
of rational components, and that all the twigs of D are admissible.

In this case we define the local Zariski-Fujita decomposition of K + D near D
as K+ D = H + N, where N = Np is the sum of the barks of all the twigs of
D. The Q-divisors H = Hp and Np are called respectively positive and nagative
parts of Kp + D near D. From Lemma 2.2 and the definition of bark we obtain
immediately the follwing properties of the local Zariski-Fujita decomposition:

Lemma 3.1 (Fujita, [5, (6.12)]).

(i) K+D=H+N, where H N € Vp;

(i) Supp(N) is contained in the union of all twigs of D,
(iii) H is orthogonal to each irreducible component of N.

REMARK. It is proved in [5] (we do not use this here), that H and N are
uniquely defined by the conditions (i)—(iii) in Lemma 3.1. Fujita has also proved
(see [5, (6.20—6.24)]) that under certain conditions Zariski decomposition of K + D
coincides with the local one (see Theorem 5.2 below). Even if this is not the
case, it is much more convenient to calculate separately H2? and N? in order to
calculate (K +D)? in terms of discriminants of subgraphs (i.e. via the inverse matrix
Bp = Ap}).

Denote by br(D) the set of all irrenducible components C of D which have
either positive genus or vp(C) > 2, and put

1
i—Xi— Y = fori€br(D
v — X aT) for ¢ € br(D)

0 otherwise.

hi =

where T runs through all twigs, rooted by D;
Lemma 3.2. If all the twigs of D are admissible, then Hp - D; = h; for any 1.

Proof. By Lemma 2.2 we have (K + D) - D; = v; — x;. By Lemma 2.4(iii)
and the definition of bark we have

1 .
Z a1 for i € br(D)

2—-vy; otherwise.

ND‘Di=

It remains to subtract the latter equality from the former one. O
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Corollary 3.3 [16]. If all the twigs of D are admissible, then H% = > i jebr(D)

Proof. Apply Lemmas 2.1 and 3.2 O

4. The formulas from §§2, 3 for the case of a fork

Let D be a rational r-fork on a smooth projective algebraic surface X. This
means that D is an SNC-curve with rational components, and the dual graph of D is
an r-fork. Introduce the following notation. Denote by Dy, ..., D, the irreducible
components of D and by v; = v(D;) their valences. Without loss of generality we
may assume that vy = r (and hence, v; < 2 for ¢ > 0). Let T1,...,T, be the twigs
of D, i.e the connected components of D — Dy, and dy,...,d, their discriminants.
For:=1,...,n put

a; =dj, b;=d(T}), ci= d(T5),

where Tj is the twig containing D; and T;*Z (resp., T} ;) is the connected components
of T; — D;, which does not intersect (resp., does intersect) the “central” curve Dq
(see Fig. 1). Extend this notation for ¢ = 0, putting ag = bg = 1,co = 0.

c; b;
Dy - —— ~ D, - —— N
>—0— — - — —0—0—0——- — — — —0
.
—_——
a;
Fig. 1.

Let Vp be the Q-vector space generated by Dy,...,D,. Denote by V;,j =
1,...,r the subspace of Vp generated by the irreducible components of T}, and let
Vi be the orthogonal complement of @;zl V;. Denote by pry,...,pr, and pry the
orthogonal projections onto Vi,...,V, and Vy respectively. Let K + D = H+ N
be the local Fujita decomosition of K + D near D. Since Vg is one-dimensional,
it is generated by H unless H = 0. Let N; = Bk(Z}) (clearly, that pr;(N) = N,
prg(N) =0and N =} N;). Denote:

r T 1
(28) ngdj; A = d(D); h:r—-2—zi; e = —ph/A.

j=1"7

Lemma 4.1. Let C be a Q-divisor in Vp. Put ©; =C - D;,i=0,...,r and
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Cy = pry(C). Then

n

(a)  H? = eh; d C-D=> uz;
1=1
~ c; + eb; .
(b) C-H=c¢ z—;xa (e) C-K—ZZ;:CZ-< . —1),
c CH2 €
© oN=Y= © cg=C0 E(Z“ )
1=0 =0

Proof.  (a) is an immediate consequences of Corollary 3.3. By Lemma 1.1
the entry by; of the matrix Bp is equal to —(b; - (p/a;))A. Thus, (b) follows from
Lemmas 2.1 and 3.2. (c) follows from Lemma 2.4(ii); (d) id trivial; (e) follows from
(b,c,d) since K = H + N — D; (f) follows from (b) and (a). O

Corollary 4.2. If r > 4 and all twigs of D are admissible then there exists no
smooth rational (—1)-curve C on X such that C-D =1 and C ¢ D.

Proof.  Suppose that such a curve C exists. Then C- K = —-1and C-D =1
implies that for some i we have x; = 1, zx = 0 for k # i. Hence, by Lemma 4.1(e)
we have —1=C - K = (¢; +¢€b;)/a; — 1. But if » > 3 then ¢ > 0. Contradiction.

U

5. Zariski decomposition and refined log-BMY inequality

Let D be an SNC-curve on a smooth projective surface X, and ¥ = X — D.
Remind the following definition (see e.g. [5], [8]). If K(Y) > 0, then there exitst the
Zariski decoposition K + D = H + N, where H, N are Q-devisors in X such that

(i) the intersection form is negatively definite on the subspace Vy generated
by the irreducible components of N (in particular, N2 < 0);

(il) HC > 0 for any complete irreducible curve C C X;

(iii) H is orthogonal to Vv (and hence, (K + D)% = H? + N?).

The main tool, used in the proof of Theorem 1’, is the following refined version of
the log-BMY inequality.

Theorem 5.1 Kobayashi-Nkamura-Sakai [9]. If ®(Y) = 2, then H? <
3e(Y'), where e is the topological Euler characteristic.

The following theorem is a partial case of [5, (6.20)].
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Theorem 5.2 (Fujita). Let Y = X — D be a smooth projective surface with
R(Y) > 0 and D a connected SNC-curve on it. Suppose that all twigs of D are
admissible and D is neither a linear rational chain, nor a 3-fork. Then the (global)
Zariski decomposition of (K + D) coincides with the local Zariski-Fujita decompo-
sition near D unless there exists a smooth rational (—1)-curve C on X, which is not
contained in D and which satisfies one of the following conditions.

(i) D-C=0,i.eDNC=0.

(i) T-C =1 for some twig T of D.

Corollary 53. Let Y = X — D be a Q-acyclic surface with ®(Y) = 2, and D
be a minimal rational r-fork with r > 4. Then Zariski decomposition of K + D
coincides with its local Zariski-Fujita decomposition near D.

Proof. Let C be some smooth rational (—1)-curve on X. Since ®(X) = 2,
according to [5, (6.13)], all the twigs are admissible, so, according to the Theorem
5.2 it suffices to check that C' does not satisfies (i), (ii) of 5.2. The condition (i)

evidently contradicts to Hz(Y) = 0. The condition (ii) contradicts Corollary 4.2.
O

6. Begining of the proof of Theorem 1’

Let D be a minimal SNC-curve on smooth projective X, such that I'p is a
r-fork with r > 4,Y = X — D is a Q-acyclic surface and ®(Y) = 2. Introduce the
notation as in §4. Since K(Y) = 2, it follows from [5, (6.13)], that all twigs are
admissible, so, all a;, b;, ¢; are positive for i > 0.

Lemma 6.1. r < 2h + 4.

Proof. By(2),h=r—-2-1/d1—---—1/d, >r—2-1/2—---—1/2 = (r/2)-2.
U

Due to the refined log-BMY inequality (Theorem 5.1) and Corollary 5.3, we
have (see Lemma 4.1(a))

(29) eh < 3.
Thus, by Lemma 6.1 we must estimate h from above, or, equivalently, £ from below.
Lemma 6.2. If D2 <0 then h < (3 +/33)/2 ~ 4.3722---

Proof.  Denote: d; = d(T}), d; = d(T}), j = 1,...,r, where T} is obtained
from the twing 7; by deleting the component, nearest to Dy. Then, by Lemma 1.2,
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if D% < 0, we have

. d; “d;i—1
—A=p- [ Di+) L] <pe {0+ 2
j=117 =1 7

Thus, (3) implies 3 > he = —ph?/A > h?/(h+2), hence h2 —3h—6 <0. [

) =p-(h+2).

Corollary 6.3. If r > 12 then X is rational.

Proof. If r > 12 then by 6.1 and 6.2 we have D% > 0. Hence, [20; Ch. II, §4,
Theorem 2] implies that X is rational. U

From now on we suppose that » > 12, hence by 6.3, X is rationl, and there
exists a smooth rational (—1)-curve C on X. Hence,

(30) Cc?=-1; C-K=1

Like in Lemma 4.1, put z; = C - D;, i = 0,...,n and Cyg = prgy(C). Put also
Cj =pr;(C), j =1,...,r, Cn = 3°5_, Dj. By Lemma 6.2, C # Do, and from
minimality of D we know that C # D,, i > 0. So, C ¢ D, hence, all z; are > 0.

Lemma 64. —C% > CN.

Proof. LetI; ={i|D; C T;}. Then by Lemma 2.1 and lemma 4.1(c)

c;b; c;ibi c;b; c;
—Cf: E 22— 42 E TiTp—— > E == > E z;— = CNj.
; ai ; ~ a; , a; : a;

i€l i,k€l;;i<k i€l i€l

Lemma 6.5. If C-D > 2 then h < (9++/21)/2~6.7912--

Proof. By Corollary 1.3(b) we have b;/a; + c;/a; < 1, hence, by Lemma
4.1(b,c,d), (CH)/e + CN < CD. Therefore, by (4),

1=—CK=—CH—CN+CD2—CH+%=CH1_E.

€

Thus, CH < ¢/(1 — ¢), hence, by Lemma 4.1(f), C% < ¢)/((1 —€)?h), and by (4)
and Lemma 6.4, 2 = —C? — CK = (C% — CN) - (C4 +CH)+ CD > CD — ¢4,

where
€ 1
=— |14+ —-].
£ 1—5( +(1—e)h)
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Since CD is integer, CD > 2 implies ; > 1, hence 2% — (3 + 1/h)e +1 > 0, hence
€>1/4h (3h+1— vh% +6h + 1), and by (3) it implies h2 — 9h + 15 < 0. O

7. Proof of Theorem 1’ with a weaker estimate

Let all the notation be like in §§4, 6, but in this section we shall suppose, that
CD = 2. Let i and k be such indices that CD; + CDy = CD = 2. Thus, ifi = k
thenz; =2,z =0forl#4,and if i #k then x; =z =1, 2y =0 for | # i, k. In
any case we rewrite the last two formulas of Lemma 4.1 as

2
31) (¢). CK=<ﬂ+c—k>+e<éi—+b—")—2; (). C%,:%(ﬁ+b—'°) .

a; ag a; Qg a; (223

Denote by Q;x, “the predicate of belonging D; and Dy, to the save twig”, i.e. Q;x =1
if D; U Dy, C T for some j, and Q;;x = 0 otherwise. When Q;; = 1, without loss of
generality we can assume that D; is between Dy and Dg. In this notation we have

bic;  bre c;b
1G4 + kCk + 2Qik 1 k'
a; ag a;

(32) —C% =

Using (5), (6) and the fact that C? = C% + C%, we rewrite (4) as

i b; b
(33) (c—+c—’°)+s(—+—k)=1,
a; ag a; Qg
ic; b i b be\’
(34) (55 + ’“—ck) +2Qu S _ € (— + Ji) =1
a; ag a; h \a; ax

Lemma 7.1. Suppose that one of the following conditions holds:
(i) =z > 0; (i) 2o =0 (ie i# 0 and k # 0) and b; > 2, by, > 2. Then
there exists a constant A, such that h > A,.

Proof. In the case (i) without loss of generality we suppose that k£ = 0, and,
putting ap, = by = 1, cx = Qix = 0, into (8), and using ¢;/a; < 1, we see that b; > 1,
hence, b; > 2. Thus, in the both cases (i) and (ii) we have (¢, /a,) - (b, —2) > 0 for
v =1, k. Hence, subtracting (7) multiplied by 2 from (8), we obtain

;b b b
Eu2+25u—1=z:c—"-(bv—2)—+~2Q,-kc’_k20, where u = — + —,

h - a, a; a; ag
v=i,k

Since u < 2 and € < 3/h, we see that h can not be arbitrary big. O
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Lemma 7.2. If zo =0 (ie. i #0 and k # 0), by = 1 and Qi = 1 then
h < (3++/21)/2~3.791---

Proof.  Putting by = Q;x = 1, a; = ar = a into (7) and (8), subtracting (7)
from (8) and multiplying the result by a/(b;+1), we see that c;—e—(e/h)-(1+b;)/a =
0. Hence, using the estivates ¢; > 1 and (b; +1)/a < 1, we get 1 —e — (¢/h) <0,
and applying (3), we obtain h? — 3h — 3 < 0. O

Lemma 7.3. Let Q;x =0 and by = 1. Then b; > 2.
Proof. If b; = 1, then subtracting (7) from (8) we would obtain € = 0. O

Lemma 74. If 2o =0 (ie k+# 0 andi+#0), by =1 and Qi = 0 then there
exists a constant A, such that h < As.

Proof.  Putting by, = 1, Q;x = 0 into (7) and (8), subtracting (7) from (8) and
multiplying the result by a;, wee see that

bic, —c; = <b,- + ﬂ) €1, where g =¢- (1 + E <91 + i)) = 0(e)
ak h \ a; A

or, equivalently,

a; bici — C;

(335) — bi.

ag €1

On the other hand, applying the estimate ¢ < ar — 1 (see 1.3(a)) to (7), putting
b; = 1 and multilying the obtained inequality by a;, we see that

(36) ci+eb > 2(1—e).
a

Substituting (9) into (10), we obtain (1 — e)b;c; < e1b; + (1 + €1 — €)c;. Replacing
b; with b’ + 1, this inequality can be transformed into (b’ — e3)(c; — e3) < £4 Where
€2, €3 and g4 are O(e). Since b’ > 1 (by 7.3) and ¢; > 1, we see that € can not be

arbitrary small. U
Proposition 7.5. Under the hypothesis of Theorem 1’ one has r < 30.
Proof. Lemmas 6.2-7.4 imply h < max(A;,Az). Easy to see that these

constants can be chosen to be less than 13 1/2. Hence, by 6.1 we have r < 2h +4 <
31. O
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8. More precise estimates for the case C - D =2

In this and the next section we are going to prove Theorem 1’ in full volume
(with the estimate r < 16). To this end we strengthen here the estimates for h given
in §7. Thus, let C be a smooth rational (—1)-curve on X, where X — D is a Q-acyclic
surface with € = 2, and CD = 2. Let the notation be like in §§4, 6, 7. Denote also
h+ (1/a;) + (1/ax) by ht. We shall need the following evident identity:

37 bz —y)? = (2®+y*)b+zy ((b—1)°-b° - 1)
= (y — bz)(by — ) + zy(b— 1)

Lemma 8.1. Let k # 0, Qi =0, by =1 and h* > 71/2. Then ht = 8,
bi:5,ci:1,c,~=ak—1,a,-=5ak—1 andak=2,3 ord4.

Proof. Denote ax — ci by cj. Putting Q;x =0, by = 1, ¢, = ax — ¢}, into (7),
(8) and resolving the obtained simultaneous equations with respect to £ and h, we
see that
_ Cha; — ciay (ca; — cia)(bar + a;)

38 = GG TGO
(38) & a; + bjar a; QKU ’

where u = ¢;b;a — cja; > 0. Hence,

(39 R = (bi — 1)(ci + ¢)/u;
I N2 (ca; — c.ar)?
3> cp = (= ciar)” _ bi(cyai — ciax) by (3), (12)
a;aku bia;aku
_ (ciar — c;cbkai)u + cic;caiak(bi - 1)2 by (11)
b;a;aru
¢y, cich(b—1)?
(40) - b,-a,- Qg bu
/ ol (b, —1)2
(41) > _C_k_{_fik(b’_i; omit
an biu bia;
c cicj(bi —1)° !
_ . > 1
(42) > o +1 biu ’ e ak =G
cich (¢ + 1) (b; — 1)2
4 1k \“k 2 .
(43) u > (4, + 3)b; oy (1o
X / / .
) pt < (et ) (dc +3)bs by (13), (17), 7.3

cicl(ch +1)(b; — 1)



472 S.Y. OREVKOV

Denote the right hand side of (18) by n*(b;) = n:;,c,k (b;). Easy to check that nt is
decreasing with respect to each variable when b; > 2, ¢; > 1, ¢ > 1.

In the Table 1 we show the values of ¢;, ¢}, b;, for which n*(b;) < 7 1/2 and
hence, the inequality At < 7 1/2 follows from (18).

Table 1. Table 2.
=1 ¢=2c¢2>23c¢>14 tc=1¢=2¢<6
c,=1:b0;>15b;>4 b; >3 b >2 =1:b0<4b<30b=2
=2 :b;>24 b;>22 b;>2 b;>2 c,=2:b;<3
>3 :b;>3 b;>2b;>2 b >2 c, <6 :b=2

To see this, it is enough to verify that

na(15)=71/2, n,(4)=7, ni,(3)=7, ni(2)=71/2,
ni2(4) =71/3, nf,(2)=71/3,

In the Table 2 we show the values of ¢;, cj, for which the inequality h+ < 7 1/2
follows from (13), using the evident estimate u > 1.

Commparing the two table (note that b; > 2 by 7.3) shows that the only cases
which are not covered by them, are:

7SCiS13,C;¢,=17bi=2; Ci=17C;cZ7,bi=2; Ci=C;=1,5SbiS14.

Consider these three cases separately:

Case 1 (7<¢; <13, ¢}, =1 and b, =2). It follows from (17) that u > ¢; /7 >
1. Hence, u > 2 and (13) implies At < (¢; +1)/u < (13+1)/2=71.

Case2 (¢;=1,¢,>7andb =2).

Subcase 2.1 (cj, = 7). Suppose that u = 1. Then by definition of u we have

(45) 2ax — Ta; = 1.

We know that a; > b; + 1 = 3. If a; were equal to 3, then by (19) one would have
ax = 11, and hence, (14) would imply 3 > eh = 100/33. Therefore, a; > 3, but a;
is odd by (19), hence, a; > 5. Thus, by (19) we have ar = (7a; +1)/2 > 18. Hence,
(14) implies 3 > 1/2a; — T/ax +7/2> —T/ax +7/2 > —7/18 + 7/2 > 3.

The obtained contradiction shows that u > 2. Hence, (13) implies h* = 8/u <
4.

Subcase 2.2 (cj, > 8). It follows from (15) that 3 > —(c}/ax) + (c}/2u) >
—1+(cj/2u). Hence, u > c},/8 > 1. Subtracting (14) multiplied by 2 from (13), we
see that ht —6 < 1/u—1/a;+2c}ax. But 0 < u = 2ax — ca; implies 2¢} /ax < 4/a;,
hence, h* —6 < 1/u+3/a; <1/2+ 3/3.
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Case3 (c;=1,cj =1and5<b; < 14). By (17) we have u > 2/7(b;—1)%/b; >
2/7(b; — 2). Hence, b; < (7Tu + 4)/2 and this implies

(46) b < { (Tu+2)/2 if uis even

(Tu+3)/2 if uis odd.

Thus, for u > 1 by (13) we have h* = 2(b; — 1) /u < 7 1/3.

Suppose that v = 1. Then (20) implies b; = 5. By (15) we obtain 3 >
—1(1/ax) + 16/5. Since ax > 2, we have only three solutions: ay = 2,3,4. For
Them a; = b;ar, — u = 5a; — 1, and by (13) we have h* = 2(b; — 1)/u = 8. This is
the only case when At > 71/2. O

Lemma 8.2. Let k=0 and h* > 8. Then h* =8 and (a;, b;,c;) = (13,2,7).

Proof.  The proof is similar to that of Lemma 8.1. The beginning of the proof
of 8.1 including the formulas (12), (13), (14) and (15) is valid in the case k = 0
without changes. However, the implication (15) = (16) does not work in this case.
Since we have a, = by = ¢}, = 1, let us denote a;, b; and c; simply by a, b and c till
the end of the proof. Them u = bc — a.

First, note that ¢ > 1 because otherwise u would be negative. Eliminating u
from (13) and (15), we see that

+ + +_ 4ct+1)b
47) h™ <n™(b,c), where n" = c_(m)—

Case 1 (b > 4). Since ¢ > 2, by (21) we have ht < n*(4,2) =8.

Case 2 (b =3). If c > 4 then h* < n*(3,4) =7 1/2 by (21). If ¢ < 3 then
(13) implies AT = 2(c+1)/u < 2(c+1) < 8, hence ht < 8 unless c=3 and u = 1.
But in this case a = bc — u = 8 which contradicts (14).

Case 3 (b= 2). By (14) we have 3 > ¢/2a — 1 + ¢/2u > —1 + c¢/2u. Hence,
¢ < 8u and being integer, ¢ < 8u — 1. Putting this estimate into (13), we see that
h* = (c+1)/u < 8 and h™ < 8 unless c = 8u—1. If h* = 8, then putting ¢ = 8u—1,
a =2c—u=15u — 2 into (14), we obtain v = 1. Hence (a,b,c) = (13,2, 7). O

Corollary 8.3. (a) Under the hypothesis of Lemma 8.1 the graph I'p has one
of the following forms:

a; =9,ar =2: a; =14,a, =3 : a; =19,ar =4
-5 -2 \/ =2 -5 -3 \/ -2 -2 -5 —4 \/ -2 -2 =2
o—O0———0C—0 e, ~O— —O [eg © O
D, Dy Dy D; D Dy, D; Dy Dy,

(b) Under the hypothesis of Lemma 8.2 the graph I'p has the form:
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4 -2 2 -2
>O—O——-0——-O——O
Dy D;

Lemma 8.4. Let b; > by, > 2. Then

be b 2 3b
48) k< (i + —) : (— + —’“) , where g= (b — 1)+ (b; — b))~
ax  a; b ¢ a;

Proof.  Denote (b;/a;) + (bx/ax) by u. Multiplying (7) by by, subtracting
the result from (8) and using the estimate Q;xc;bx/a; > 0, we obtain the inequality
(e:/h)u2 + bgeu — q > 0, where ¢ denotes the save as in (22). Therefore, we have

hby, 4q by (3) hby, 4q hby,

>k 1+ 14— ) > EEc14 14+ 2 | = 2R (-1 + VI

Uz ( + +Ehb%> z2 + +3b§ 2( +V1+0)

where v = 4q/(3b2). It remains to apply the evident estimate

—1+V14+v=-14+1+v)/vV1+v>-14+1+v)/(1+(v/2)) =v/(2+v). UJ
Lemma 8.5. Let b, > by, > 10. Then h < 6 41/55 ~ 6.745- - -.

Proof.  Applying the estimates (byx/ax) + (bi/a;) < (bx/(bx + 1)) + 1 and
g > b — 1 to the inequality (22), we see that h < f(bx) where

b 2 3b 2 3 2 3
f“’)—(“m)'(Vm)-“z*b_ﬁbﬂw-r

f decreases when b > 1. Hence, h < f(bx) < f(10) = 6 41/55. U

Lemma 8.6. Let b; > b, > 2. Suppose also that by, < 9 and a;, > 20. Then
h < 5113/120.

Proof. Casel (3<br<9). Apply to (22) the estimates b;/a; < 1, ar > 20
and ¢ > by — 1. We obtaion the inequality

h < f(bx), where f(b)= <1+2i_) <%+b3Tb1)

Direct calculation shows that f(b) < 5113/120 for b =3,4,...,9.
Case 2 (b = 2). Substituting by = 2 into (22) and applying the estimates
ar > 20, ¢; > 1, we obtain h < f(ao,b;) where

f(a,b): (%4‘2) <1+$—2‘> and

of 8" +mb+v  m =10a —20,
b B5a(a+b—2)2" v, = 32a% — 8a+ 20.
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If @ > 3 then 1,72 > 0, hence f; > 0. Therefore, since b; < a; — 1, we have
h < f(ai,b;) < f(as,a; — 1) = g(a;), where g(a) = f(a,a — 1). Easy to calculate
that g’(a) < 0 when a > 1. Recall that a; > b; +1 > by + 1 = 3. Hence,
h < g(a;) < g(3) =511/30. U

Lemma 8.7. Let b; > by, > 2. Suppose also that by, <9 and a; > 40. Then
h < 6.8.

Proof. From (22) and the estimates ax > by + 1 and ¢; > 0, we obtain the
inequality

h < fox(as,b;), where fn,(a,b) = ( m_y é) . (__2_ + 3ma ) )

1+m a m (m—1a+b—m

Ifa>6,b>2 m > 2 then f, is monotonically increasing with respect to b.
Indeed, one can check that

Ofm 2 3m Ma— 2 11 =m?

—m—1,
ob _m*a+m+1'((m—1)a+b—m)2’ vo =m2 4+ m.

m > 2 implies v; > 0, hence, for a > 6 we have yja—~2 > 671 —v2 = 5m2—Tm—6 >
0, thus, 0f,,/8 > 0. Obviously, for b > 2 the denominator is non-zero.

We know that b; < a; — 1 and a; > 40. Hence, h < fyx(ai,a; — 1) < gor(as),
where

B 2 m+2 3(m+1)
gm(a).——fm(a,a 1)+ma_6+m2+m ma—m—l.

Clearly, g,, is monotonically decreasing with respect to a when a > 2. Thus, it
suffices to check that g,,(40) < 6.8 for m = 2,...,9. O

Lemma 8.8. Suppose that b; < by, < 2 and ax < 20, a; < 40. Then h <
6.023810- - -.

Proof. Since b, < a, and ¢, < a,, it suffices to check only finitely many
possibilities for the values of Q;x, a,, b, and ¢, (where v = i,k). In each case we
can find € and h from the equations (7), (8) and search the maximum of h under
the restrictions € > 0, h > 0, eh < 3. These calculations were performed with a
compute. The corresponding C-program is shown on the Fig. 2. U

Corollary 89. Let b; > by, > 2. Then h < 6.8.

Proof. For by > 10 see 8.5; for by < 9 see 8.6 — 8.8 ]
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#include <stdio.h>
main(){ int ak,bk,ck, ai,bi,ck, Q; double B,C,BC,h, hmax=0;
for( Q=0; Q<=1; Q++ ){
for( bk=2; bk<=9; bk++}{
for( ak=bk+1l; ak<=21; ak++ ){
for ( bi=bk; bi<=40; bi++ ){
for( ai=bi+1; ai<=41; ai++ ){
for( ck=1; ck<=ak-bk; ck++ ){
for( ci=1; ci<=ai-bi; ci++ ){
B=(double)bi/ai + (double)bk/ak;
C=(double)ci/ai + (double)ck/ak;
BC=(double) (bi*ci)/ai + (double) (bk*ck)/ak;
if ( ai==ak ) BC=BC+(double) (2*Q*ci*bk)/ai;

if( 1-C <= 0 )continue; /* eps>0 */
if( BC-1 <= 0 )continue; /* h>0 =*/
if( (1-C)*(1-C) > 3%(BC-1) )continue; /* BMY x/
if( (h=(1-C)*B/(BC-1)) > hmax ) hmax=h;

I3}

pringf ( "hmax=)1f", hmax );

Fig. 2.

9. Proof of Theorem 1’

Let things be like in §6.

Lemma 9.1. Supose that r > 17. then:

(a) h>6.5.

(b) If h < 6.8 then r = 17, and up to a permutation, (dy,...,d,7) is eigher
(4,2,...,2) or (3,2,...,2) or (2,2,...,2).

Proof. (a) See Lemma 6.1.

(b) If h < 6.8 then r =17 by Lemma 6.1. Without loss of generality we may
assume that dy; > dy > -+ > dy7. If d3 > 3, we would have h =17—-2—-1/d; —---—
1/dy7 >15-1/3-1/3-1/2—---—1/2=65/6>6.8. Thusdy =--- = dy7 = 2
and 1/dy =17-2-1/2—---—1/2—h=T7—-h > 1/5. 0

Lemma 9.2. Suppose that r > 17 and h > 6.8. Then (up to a permutation)
one of the following possibilities holds:

(1) (T1,T3) is one of the three pairs listed in 8.3(a) and either

(1.1) =18 anddz3 =--- =dyg =2, or
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(12) r = 17 and (ds,...,d17) is one of (6,3,2,...,2), (4,4,2,...,2),
(3,3,3,2...,2).
2) r=17,dy =--- =dy7 = 2 and T} is the twig depicted i 8.3(b).

Proof. By 6.3, X is rational. Hence, there exists a smooth rational (—1)-curve
C. It does not coincide with one of Dy, ..., D, by the minimality, and C # D, by
Lemma 6.2. Thus, it follows from 6.5 and 4.2 that CD = 2.

Introduce the notation like in §7, §8. If the both b; and b, were > 2, then by
Corollary 8.9 we would have h < 6.8. Thus, one of them, say, b is equal to 1 and
by Lemma 7.2 we have Q;;, = 0.

Case 1 (Likein 8.1). by =1, kK #0.

Since D; and Dy, do not belong to the save twig, without loss of generality we
may assume that D; C Ty, Dy, C Ty (i.e. dy = a;, d2 = ag) and that dg < dy < ---.
Then

(49) ht=r—-2-1/ds—1/ds—--—1/dp, >7r—2—-1/2—---—1/2
= (r—2)/2.

Since r > 17, it follows that A* > 7 1/2. Hence, by 8.1 we have h™ = 8.

Subcase 1.1 - r > 18. Then (23) turns out into 8 = --- > (r — 2)/2 > 8. Hence,
all the “>” can be replaced with “=", and we have r =18 and d3 = --- = d15 = 2.

Subcase 1.2 r = 17. If dg => 3, then like in (23) we would have 8 > 15 —
(1/3-1/3-1/3-1/3) —1/2—--- = 8 1/6. Thus, d¢ = --- = dy7 = 2 and
1/ds +1/dy+1/ds =15 —hT —1/2 —- .. = 1.

Case 2 (Like in 8.2). £ =0.
Subcase 2.1 Without loss of generality assume that D; € T3, i.e. di = a;. Then

r > 17 implies like in (23) that A* = h+1+4+1/dy > 7 -1-1/2—.-- —1/2 =
(r—1)/2 > 8, and by 8.2 we have h* = 8. Hence, all the “>” can be replaced with
“="and we obtainr =17 and dy = --- =d;7 = 2. ]

Lemma 9.3. Let X be a smooth rational projective surface. Then K?>+b = 10
where K = K x is the canonical class and b = by(X) is the second Betti number.

Proof.  Since X is rational, it is obtained from P? by successive blow-ups
and -downs. Clearly that K2 + b = 10 for P? and that K2 + b is invariant under
blow-ups. J

Corollary 9.4 (See e.g. [4; 1.3]). Let notation be like in 9.3. Suppose that D
is an SNC-curve such that X — D is Q-acyclic. Then

(50) (K+D)?=8—5-3b

where s denotes the sum of all the weights of I'p.



478 S.Y. OREVKOV

Proof. Let Dy,..., Dy be the irreducible components of D. Write (K +D)? =
K? + 2KD + D? and compute each summand in the right hand side:
K? =10 — bby Lemma 9.3;
KD =Y DK + D;) — Y D? = —2b — sby adjunction formula;
D? =% D?+3, ., DiDy =y D? + 2(number of edges of T'p) = s +2(b—1).
O

Now let (X, D) be again as in §6. Introduce the following notation. For a twig
T denote s(T) = >_(w, + 3), where w, are the weights and the summation is over
all the vertices. Recall that e(T") denotes the inductance of a twig T (cf. §2). Let
€'(T) = e(T") where T" is the twig obtained from a twig T by reversing the order of
the vertices. Denote e(T) + €'(T) — s(T') by ¢(T), and put: e; = e(T}), €; = €'(T}),
S; = S(Tj) and p; = QO(TJ').

Lemma 9.5. > ¢; > 2h —5.

Proof. ~ By Lemma 1.2 and (2) we have —A = p- (D} + Y €). Hence,
D} = —A/p—Y_ €} = h/e—Y_ €. Further, by 4.1(a) and 2.4(i) we have (K + D)? =
H? 4+ N? = eh — Y _e;. Putting these expressions for D? and (K + D)? into (24)
(where, in out notation, s+3b = D2+3+3_ s;), we obtain 5+ ¢; = h(e+1/e) >
2h. O

Now let us complete the proof of Theorem 1’. Suppose that r > 17. Then by
9.1(a) we have h > 6.5, hence, 9.5 implies > ¢; > 13 — 5 = 8. However, each ¢;
depends only on the twig, and by 9.1 and 9.2 only few types of twigs can appear.
The values of ¢(T) for these twigs are as follows:

Table 3.
dT) T o(T) dT) T ©(T)
2 (2] 0 5 [5] 2.4
3 (3] 2/3 [3,2] 0
[2,2] -2/3 [2,2,2,2] —2.4
4 [4] 1.5 6 (6] 31/3
[2,22] -15 [22222] -31/3
Here the twing wigh the weights w;,ws,... is denoted by [—w;, —w2,...]. In

Table 3 we listed all the twigs with discriminants < 6. The values ¢(T') for those
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twigs which appear in 8.3, are

12

oll25) =15, w(3,5) =25, w(45) =35, w(42,22)=—1.

It is easy to check that in all the cases allowed by 9.1 and 9.2 we can not have
Y ®; > 8. Theorem 1’ is proven.
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