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Let Y be a complex algebraic surface. We say that it is Z-acyclic (respectively
Q-acyclic) if its reduced homology with coefficients in Z (resp. in Q) vanishes.
Topologically one can represent Y as a compact 4-manifold with boundary (denote
the boundary by 5), attached by a collar S x [0,1). Call 5 the boundary of Y.
If Y is an affine surface in C m then S is the intersection of Y with a sufficiently
large sphere. We say that Y is Λ-acyclic at infinity If 5 is an ^4-homology 3-sphere.
(A = Z, Q). If Y is A-acyclic then it is A-acyclic at infinity. If Y is Q-acyclic and
Z-acyclic at infinity, then it is Z-acyclic.

In the paper [18] Ramanujam proved that the only Z-acyclic surface bounded by
a homotopy 3-sphere is C 2 , and he also constructed there the first example of a non-
trivial Z-acyclic (and even contractible) surface. Later on Gurjar and Shastri [7]
proved that all Z-acyclic surfaces are rationnal. Tom Dieck and Petri [1] classifind
all acyclic surfaces which rise out of line configurations on P2. Fujita [5] (resp.
Miyanishi, Tsunoda [11] and Gurjar, Miyanishi [6]) classified acyclic surfaces with
Έ = 0 (resp. —oo and 1), where « denotes the log-Kodaira dimension. Zaidenberg
[21] pointed out the connection of Z-acyclic surfaces with exotic algebraic and
analytic structures on Cn, n > 3. Flenner and Zaidenberg [4] studied deformations
of acyclic surfaces.

A Seίfert fibration (see [19], [17]) on a smooth compact 3-manifold M is a
mapping onto a 2-manifold π : M —• B, which is a locally trivial fibration with
fiber S1 over B — {pi,... ,pr} and which looks nearpj like D2xSλ —> D2, {zι,z2) »-•
ZVlz¥> where D2 = {\z\2 < 1} c C, S 1 = dD2 and μJ9 Vj are coprime integers,

μj > 2. The π~1(pj) are called multiple fibers; M is called Seifert manifold if
it admits a Seifert fibration. Seifert A-homology sphere {A stands for Z or Q)
is a Seifert manifold M with H%{M\A) = if*(53;A). In this case the base B
is a 2-sphere. The question, when a Seifert homology sphere bounds an acyclic
4-manifold, was studied, for instance, in [3], [15].

Our main result is:

Theorem 1. Let Y be a smooth algebraic Q-acyclic surface of logarithmic
Kodaira dimension 2, bounded by a Seifert Q-homology sphere with r multiple fibers.
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Then:
(a) Y can not be Z-acyclic.
(b) r < 16.

Let Y be a Q-acyclic surface. Consider an algebraic compactification X of Y
such that Y = X — D, where D is a reduced curve with simple normal crossings
(an SNC-curve). Then all irreducible components of D are rational, and the dual
weighted graph of D (denote it by TD) is a tree (see [13]). (The dual graph of a
curve is the weighted graph, whose vertices correspond to the irreducible compo-
nents, edges correspond to their intersection points and the weight of a vertex is the
self-intersection number.) A tree is called r-fork if it has one vertex of valence r
and valences are < 2. Suppose that D is minimal, i.e. it contains no (—l)-curve
intersecting one or two others. A Q-acyclic surface Y with Έ(Y) = 2 is bounded by
a Seifert sphere if and only if ΓD (with minimal D) is a fork.1 Thus, we can reduce
Theorems 1 to:

Theorem 1'. Let D be a minimal SNC-curve on a smooth projective surface
X. Suppose that Y = X — D is Q-acyclic, ~κ(Y) = 2 and the dual graph ΓD is an
r-fork. Then:

(a) Y can not be Z-acyclic.
(b) r < 16.

REMARK 1. As we mentioned above, acyclic surfaces with K < 2 are classified
[5], [11], [6]. Using this classification and the classification of Seifert homology
spheres [17], one can see that if Y is a -Z-acyclic surface which is bounded either
by a Seifert sphere or by a fork, then Y = C2. If Y is Q-acyclic and ~Fi(Y) < 2 then
all the possible values for r are shown in the following table:

π(Y) -oo 0 1

dY is a Seifert sphere with r mult, fibers {0,1,2,3} {3,4,5} {4,5,...}

ΓD is an r-fork {0,1,...} {3} 0

This fact can be easily deduced from the results in [5], [6] and [10]. Note only
that the cases with ~κ = 0,1 and r > 4 correspond to the surfaces X — D with ΓD

of the form >o o o< . Such a surface is bounded by a Seifert sphere

becuse Γ^ becomes a fork after a 0-absorption (see [2], [14]).

*It is so, because when K — 2, the tree ΓD satisfies so called Negative Chains Condition: If
the valence of a vertex is < 2 then its weight is < -2 . When Έ < 2, the both assertions "if" and
"only if" are wrong.
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REMARK 2. Zaidenberg asked [22; Question 1.6] if there is only a finite list of
possibilities for the topological type of the dual graph at infinity of an acyclic (resp.
contractible) surface with Έ = 2. Theorem 1' can be considered as a very first step
toward the positive answer to this question.

REMARK 3. The proof of the part (b) of Theorem 1' is based on the loga-
rithmic Bogomolov-Miyaoka-Yau (log-BMY) inequality [12], strengthened by
Kobayashi-Nakamura-Sakai [9], and Fujita's computation [5] of the Zariski de-
composition of K + D. The part (a) also can be obtained as a direct consequence
of the elementary formulas from §§1-3 (most of them needed for the part (b)) using
the rationality of Z-acyclic surfaces [7] and the log-BMY inequality2. However,
these two results are quite non-trivial, while, as the referee of the first version of the
paper has pointed out,

" . . . a very elementary proof is possible. Using Lemma 4.1 in part I of [7], we
can show: Write Kx ~ a0D0 + Σi>i ai^i where Do is the central curve. Then
α0 > 0 = > all α» > 0 and α0 <~0 => all o» < 0. But if all α» < 0, then
pg(X) > 0. This is not possible. Hence all α̂  < 0. But then K -f D is eigher trivial
or a strictly negative divisor. In the latter case, Ίϊ(Y) = — oo. If K + D ~ 0, then
(K + D) Do = -2 + r = 0 = » r = 2. Hence ΓD is linear. This completes the
proof."

In fact, only the implication "αo < 0 => all α̂  < 0" is proven in [7, Lemma
4.1]. However, the proof can be easily completed to derive the implication "αo <
0 = > all en < 0" as well. Indeed, if α0 < 0 then by [7, (4.1)] all a{ < 0. If some
of them were = 0 then (due to connectedness of D) would exist two componets Di
and Dj such that α̂  = 0, aj φ 0 and Di D3f = 1. Then, since Df + 2 < 0, one would
have 0 = g(Di) = KD{ +Df + 2< KD{ = aj + Σk&j akDkDi < aά < 0.

REMARK 4. After the old proof of Theorem l'(a) was omitted, the propositions
1.4-1.6 remained without applications. However, we decided to leave them because
they are simple but maybe they are of some independent interest.

REMARK 5. The estimate r < 16 in Theorem 1', requires messy calculations
(see §8). However, the fact that r is bounded from above, can be obtained without
them. Therefore, we presented in §7 a shorter proof of Theorem 1' with a weaker
estimate for r.

REMARK 6. The estimate r < 16 still does not seem to be the best possible.
However, a stronger estimate needs other techniques, because an attempt to prove it
by the methods of this paper leads to so huge volume of calculations that the result
does not worth them.

2see the preliminary version of this paper in "Mathematica Gottingensis"', 38 (1995).
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1. Weighted trees and their discriminants

We list in this section some well-known elementary facts about discriminants
of weighted trees. A weighted tree is a finite tree (finite graph without cycles) with
an integer weight w(υ) assigned to each vertex υ. Let Γ be a weighted tree and
υι,...,υn be its vertices. The incidence matrix of Γ is AΓ = (a>ij), where

if ^ is connected to V{ by an edge,

otherwise.

The discriminant of Γ is defined as d(Γ) = det(—ΛΓ). By convention, d(0) = 1.
Clearly, this definition is independent of the order of the vertices and that the
discriminant of a disjoint union is the product of the discriminants of the connected
components.

The following lemma can be easily obtained, using the Cramer rule (see e.g.
[2] for details).

Lemma 1.1. Let Γ be a weighted tree with d(Γ) Φ 0. Let BΓ = (6^) = Aγλ

be the inverse matrix. Then

where [v^ Vj] is the minimal connected subgraph of Γ, which contains Vi and VJ.

Lemma 1.2. Let Γ be a weighted tree, υ a vertex of Γ and w(v) the weight of
v. Denote by Γ l 5 . . . , Γ r the connected components of V — v, and let Tf- = Γj — Vj,
j = 1,..., r, where Vj is the vertex of Γj, connected by an edge to v. Then (remind
that d(0) = 1)

d(Γ) = -w(v) Π d(Γ, ) - J2

Proof. Expand the determinant of AY according to the row, corresponding
to υ. D
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The valence of a vertex v of a graph is the number of edges, incident to v. A

graph is called a linear chain if its vertices vι,... ,vn can be orders so, that vι is

connected to v3iff \i — j\ = 1.

Corollary 1.3. Let T be a linear chain with all weights < —2.

a) // v is one of the ends of T then d(T) > d(T - v) > 0.

b) Let u be any vertex of T. Denote by Ti and T2 the connected components

of T -u, and let a = d(T), b = d(Ti), c = d ( Γ 2 ) . Then a>b + c.

Proof. a) Induction by the number of vertices, using Lemma 1.2.

b) For i = 1,2 let uι be the vertex of Ti, nearest to u, and T[ = Ti — uι. Put

V = d(T{), d = d(TΪ) (if T[ = 0, put b' = 0). Let w be the weight of u. Then by

Lemma 1.2 we have a = —wbc — bc' — b'c = (—w — 2)bc + b(c — cf) + c(b — bf) >b + c,

because -w - 2 > 0, and by (a), c - d > 1, 6 - V > 1. D

The following three propositions will not be used in the rest of the paper.

Proposition 1.4. Let T be a weighted tree\ u and v two its vertices. Let

Ao,..., Ak be the connected components of T — u, and Bo,..., Bm be those of

Γ — υ, indexed in such a way that v e Ao, u e Bo- Denote: ai = d(Ai), bi = d(Bi),

α = αi α*, 6 = fci &m, Δ = d(Γ), δ = d(AonBo), c = d((A0 Π JB0) - [u,υ]).

Suppose that a φ 0, b φ 0, δ Φ 0. Then

(27) ^Δ

Proof. Let M be the minor of AΓ obtained by deleting the two rows and the

two columns, corresponding to u and v. Clearly, M = δab. On the other hand, by

Jacobi formula for the minor of the inverse matrix,

M

where, by Lemma 1.1, buu = aao/A, buv = bvu = abc/A, bvv = bbo/A. •

REMARKS. 1. If 7 is a linear chain and d(Γ) = ±1 then (1) is the formula

for the "edgede determinant" due Eisenbud-Neumann.

2. In fact, (1) is still true even if any of its ingredients are zeros.

A tree Γ is called r-fork, if it contains a vertex ^o of valence r and the valences

of other vertices are < 2.

Proposition 1.5. Let Γ be an r-fork and v0 the vertex of valence r. Suppose
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that the weights of the other vertices are < —2. Let QΓ be the quadratic form,

defined by AY. Then:

(i) if d(T) > 0 then QY is negatively definite',

(ii) // d(Γ) < 0 then QΓ has the signature ( + , - , . . . , - ) .

Proof. Apply the Sylvester criterium, choosing an increasing sequence 1 =

M o , M i , . . . , M n = d(Y) of principal minors of the matrix —A where Mn_χ is

obtained from Mn by deleting the row and the column, which correspond to vo. It

follows from Corollary 1.3, that Mi > 0 for i < n. •

Proposition 1.6. In the hypothesis of Proposition 1.5 if d(Γ) = — 1 then all the

entries bij of BY = Aγλ are non-negative.

Proof. Denote by T Ί , . . . , Tr the coonected components of Γ—υ0, and by Vj the

end vertex of Tj (the vertex of 7), whose valence in Γ is 1). Denote also: Γ^ = Γ — Vj,

η = T- vj, Δ = d(ΓJ), aά = d(Tj), a'j = d(Γj), βj = a'j/ajij = 1,... , r) , and

p = ai...ar.

By Lemma 1.1 it is enough to show that the descriminant of any connected

proper (i.e. Φ Γ) subgraph of Γ is non-negative. First, we prove this for the sub-

graphs Tj. Indeed, applying 1.4 with u = vo and υ = VJ, we obtain a'j • (—1) =

Δ^αj — p/dj, or, dividing by a,j,A'j = p/a? — βj. But p/a2j > 0 and βj < 1. Hence,

A'j > - 1 , but A'j e Z, so, A'j > 0.

Let T" be any proper connected subgraph of Γ. It is contained in some Γ^ .

Chose an increasing sequence of principal minors which involves d(T") as well

as d(Γj ), and estimate the signature of QY, by Sylvester criterium. Clearly, the

inequality d(T") < 0 contradicts Proposition 1.5. D

2. Some elementary linear algebra on dual graphs

Let X be a smooth projective algebraic surface and D a reduced SNC-curve on

X. Denote by VD the subspace of H2(X\ Q) generated by the irreducible components

£>! , . . . , Dn of D. We shall call elements of VD by Q-divisors.

Denote by AD = ( A Dj)ij the intersection matrix of D. Let Γ^ be the dual

weighted graph of D. Clearly that AD is the incidence matrix (see §1) of Γ^. Define

the discriminant of D as d(D) = d(Tc>) := det(—AD).

Suppose that d(D) φ 0 (in particular ZVs are linearly independent), and let

Lemma 2.1. For CuC2e VD one has d C2 = Σij bij(cι ' A ) (C2 Dό)

Proof. Any bilinear form defines a homomorphism to the dual space. One

can intepret AD as the matrix of that for the intersction form. Then the required
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equality is just d >C2 = (ADd, C2) = (ZUBDZ2) for Zk = ADCk, k = 1, 2. D

Let Kx be the canonical class of V and let K — KD be its orthogonal projection
onto Vr>. Actually, for the main purpose of this paper we need only the case, when
VD = PicX ® Q, and hence KD = Kx (it is so if X — D is Q-acyclic). However,
this assumption does not simplify the statements (nor the proofs), in this and next
§§, so we do not restrict ourselves by this case here.

For an irrenducible component C of D denote by VD(C) its valence in Γ^, i.e.
uD{C) = C - (D — C), and put Vi = ^£>(A) Let χι be the Euler characteristic of
Di.

Lemma 2.2. (K + D) D{ = v{ - χim

Proof. Apply adjunction formula: Di-(K + D) = Di'{K + Di) + Vi = V{—χi.
D

Corollary 2.3 (cf. [16]). (K + Df = Σitj hj^i - Xi)(vj - χά).

Following Fujita [5], define a twig of D as a maximal linear rational branch. It
means that T is a twig, if T — C\ U U C&, where each d is a rational irreducible
component of D; vr>(Ck) = 1; VD(d) = 2 and d ' Cz+i = 1 for 1 < i < /c; and if
we denote by Co the component of D — T, which intersects CΊ, then either Co is not
rational or VD(CQ) φ 2. In this case Co is called the root of the twig T (it is not
contained in Γ); Ch is called the tip of T. The rational number d(T - Ck)/d(T)
is called inductance of Γ and is denoted by e(T) (we use the convention: d(0) =
1, e(0) = 0). The twig is called admissible if Cf < - 1 for alΠ = 1,..., k. Clearly,
that if a twig T is admissible then d(T) > 0 and 0 < e(T) < 1 (see Corollary 1.3)

For a twig T of D with d(Γ) ^ 0 we define the bark of Γ (see [5]) as the unique
Q-divisor Bk(T) in F τ (i.e. Supp(Bk(T)) c Γ), such that Bk(T) tip(Γ) = - 1 ,
Bk(Γ) C = 0 for a component C of Γ, which is not the tip. The following lemma
is an immediate consequence of Lemmas 1.1 and 2.1, applied to the matrix Bτ

Lemma 2.4 (Fujita, [5, (6.16)]). Let T be a twig of D, and d(T) φ 0. Then
(i) Bk(Γ)2 = -e(T).
(ii) If C is a vertex of a twig T then the coefficient of C in Bk(T) is equal

to d(Tc)/d(T), where Tc is the connected component of T — C which is between C
and the root of T.

(iii) In particular, if C is the vertex, nearest to the root, then the coefficient of
C is equal to l/d(T).



464 S.Y. OREVKOV

3. Local Zariski-Fujita decomposition

Let, an in §2, D be an SNC-curve on a smooth projective algebraic surface X,
K = KB be the projection of Kx onto VD, and suppose that D is not a linear chain
of rational components, and that all the twigs of D are admissible.

In this case we define the local Zariski-Fujita decomposition ofK + D near D
asK + D = H + N, where N = ND is the sum of the barks of all the twigs of
D. The Q-divisors H = HQ and ND are called respectively positive and nagative
parts of KD + D near D. From Lemma 2.2 and the definition of bark we obtain
immediately the follwing properties of the local Zariski-Fujita decomposition:

Lemma 3.1 (Fujita, [5, (6.12)]).
(i) K + D = H + N, where H,N e VD;
(ii) Supp(iV) is contained in the union of all twigs of D;
(iii) H is orthogonal to each irreducible component of N.

REMARK. It is proved in [5] (we do not use this here), that H and N are
uniquely defined by the conditions (i)—(iii) in Lemma 3.1. Fujita has also proved
(see [5, (6.20-6.24)]) that under certain conditions Zariski decomposition of K + D
coincides with the local one (see Theorem 5.2 below). Even if this is not the
case, it is much more convenient to calculate separately H2 and N2 in order to
calculate (K + D)2 in terms of discriminants of subgraphs (i.e. via the inverse matrix
BD = A-1).

Denote by bτ(D) the set of all irrenducible components C of D which have
either positive genus or VD{C) > 2, and put

0 otherwise,

where T runs through all twigs, rooted by Ό\

Lemma 3.2. If all the twigs of D are admissible, then HD Di = hi for any i.

Proof. By Lemma 2.2 we have (K + D) Di = Vi — χ%. By Lemma 2.4(iii)
and the definition of bark we have

2 — Vi otherwise.

It remains to subtract the latter equality from the former one. •
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Corollary 3.3 [16]. If all the twigs of D are admissible, then H% = Σijebτ(D)
bijhihj.

Proof. Apply Lemmas 2.1 and 3.2 D

4. The formulas from §§2, 3 for the case of a fork

Let D be a rational r-fork on a smooth projective algebraic surface X. This
means that D is an SNC-curve with rational components, and the dual graph of D is
an r-fork. Introduce the following notation. Denote by Do,..., Dn the irreducible
components of D and by Vi = v{Di) their valences. Without loss of generality we
may assume that u0 = r (and hence, Vi < 2 for i > 0). Let TΊ,. . . , Tr be the twigs
of D, i.e the connected components of D — Do, and di , . . . , dr their discriminants.
For z = 1,... ,n put

where 7) is the twig containing Dj and T ^ (resp., Γ^) is the connected components
of Tj — Di, which does not intersect (resp., does intersect) the "central" curve Do

(see Fig. 1). Extend this notation for i = 0, putting αo = b0 = 1, Co = 0.

A) ' * * A

Fig. 1.

Let Vb be the Q-vector space generated by Do,... ,Dn. Denote by Vj,j =
1,..., r the subspace of V& generated by the irreducible components of Tj9 and let
VH be the orthogonal complement of 0 ^ = 1 Vj. Denote by pr 1 ? . . . , prr and pr H the
orthogonal projections onto Vι,...,Vr and VH respectively. Let K + D = H + N
be the local Fujita decomosition of K + D near D. Since VH is one-dimensional,
it is generated by H unless H = 0. Let Λ^ = Bk(Tj) (clearly, that pr^iV) = Nj9

pτH(N) = 0 and N = Σ Nj). Denote:

(28) P=f[dj, Δ = d(D); Λ = r - 2 - ^ j - ; ε = -ph/A.
3=1 j = l J

Lemma 4.1. Lei C be a Q-divisor in VD. Put Xi = C Diyi = 0,... ,r and
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CH=pτH(C). Then

(a) H2 = εh; (d) C D = '

(b) C-H = ef2xi- (e) C • K = f > (*±i*< - l)
i=o α i ί=o V α i y

(0 c * - £ , , * ; m ^

Proof. (a) is an immediate consequences of Corollary 3.3. By Lemma 1.1

the entry b^ of the matrix B& is equal to — (b{ (j>/α^))Δ. Thus, (b) follows from

Lemmas 2.1 and 3.2. (c) follows from Lemma 2.4(ii); (d) id trivial; (e) follows from

(b,c,d) since K = H + N - D; (f) follows from (b) and (a). D

Corollary 4.2. Ifr>4 and all twigs of D are admissible then there exists no

smooth rational (—l)-curve C on X such that C D = 1 and C <£_ D.

Proof. Suppose that such a curve C exists. Then C K = — 1 and C D = 1

implies that for some i we have Xi = 1, Xk = 0 for kφi. Hence, by Lemma 4.1(e)

we have - 1 = C K = (c» + εbi)/ai - 1. But if r > 3 then ε > 0. Contradiction.

D

5. Zariski decomposition and refined log-BMY inequality

Let D be an SNC-curve on a smooth projective surface X, and F = X — D.

Remind the following definition (see e.g. [5], [8]). If κ(F) > 0, then there exitst the

Zariski decoposition K + D = H + N, where if, N are Q-devisors in X such that

(i) the intersection form is negatively definite on the subspace VN generated

by the irreducible components of N (in particular, N2 < 0);

(ii) HC > 0 for any complete irreducible curve C c l ;

(iii) H is orthogonal to VN (and hence, (K + D)2 = H2 + N2).

The main tool, used in the proof of Theorem 1', is the following refined version of

the log-BMY inequality.

Theorem 5.1 Kobayashi-Nkamura-Sakai [9]. // κ(Y) = 2, then H2 <

3e(y), where e is the topological Euler characteristic.

The following theorem is a partial case of [5, (6.20)].
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Theorem 5.2 (Fujita). Let Y = X — D be a smooth projectίve surface with

Ίϊ{Y) > 0 and D a connected SNC-curve on it. Suppose that all twigs of D are

admissible and D is neither a linear rational chain, nor a 3-fork. Then the {global)

Zariski decomposition of (K + D) coincides with the local Zariski-Fujita decompo-

sition near D unless there exists a smooth rational (—l)-curve C on X, which is not

contained in D and which satisfies one of the following conditions.

(i) D - C = 0, i.e.D Π C = 0.

(ii) TO = 1 for some twig T of D.

Corollary 5.3. Let Y = X — D be a Q-acyclic surface with ~κ(Y) = 2, and D

be a minimal rational r-fork with r > 4. Then Zariski decomposition of K + D

coincides with its local Zariski-Fujita decomposition near D.

Proof. Let C be some smooth rational (—l)-curve on X. Since «(X) = 2,

according to [5, (6.13)], all the twigs are admissible, so, according to the Theorem

5.2 it suffices to check that C does not satisfies (i), (ii) of 5.2. The condition (i)

evidently contradicts to H2(Y) = 0. The condition (ii) contradicts Corollary 4.2.

D

6. Begining of the proof of Theorem 1'

Let D be a minimal SNC-curve on smooth projective X, such that Γ^ is a

r-fork with r > 4 , Y = X — D is a Q-acyclic surface and ~κ(Y) = 2. Introduce the

notation as in §4. Since ~κ(Y) = 2, it follows from [5, (6.13)], that all twigs are

admissible, so, all α ,̂ bi, C{ are positive for i > 0.

Lemma 6.1. r < 2h + 4.

Proof. By (2), h = r-2-l/di l/dr > r-2-1/2 1/2 = (r/2)-2.

D

Due to the refined log-BMY inequality (Theorem 5.1) and Corollary 5.3, we

have (see Lemma 4.1 (a))

(29) εh < 3.

Thus, by Lemma 6.1 we must estimate h from above, or, equivalently, ε from below.

Lemma 6.2. / / £ ) § < 0 then h < (3 + Λ/33)/2 « 4.3722

Proof. Denote: dά = d(Tj)9 ό! = d(T<)9 j = 1,... ,r, where T- is obtained

from the twing Tj by deleting the component, nearest to Do. Then, by Lemma 1.2,
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l < 0, we have

Thus, (3) implies 3 > he = -ph2/A > ft2/(ft+ 2), hence /ι2 -3ft-6 < 0. D

Corollary 6.3. If r > 12 then X is rational

Proof. If r > 12 then by 6.1 and 6.2 we have D2, > 0. Hence, [20; Ch. II, §4,
Theorem 2] implies that X is rational. D

From now on we suppose that r > 12, hence by 6.3, X is rationl, and there
exists a smooth rational (—l)-curve C on X. Hence,

(30) C 2 = - l ; CK = 1

Like in Lemma 4.1, put xι = C Du i = 0,..., n and CH = prH(C). Put also
Cj - pr/C), j = l,. . . ,r, CV = Σ ^ i ^ j BY Lemma 6.2, C ̂  £>0, and from
minimality of D we know that C Φ Di, i > 0. So, C <jL D, hence, all Xi are > 0.

Lemma 6.4. -C2

N > CN.

Proof. Let Ij = {i \ Dι C Tj}. Then by Lemma 2.1 and lemma 4.1(c)

> Vrr2 > S" xxxu— > Vrr 2 — > S" x - -CN
ie/j i,keij-,i<k % ieij ι ieij %

D

Lemma 6.5. IfCD>2 then h < (9 + Λ/2Ϊ)/2 « 6.7912

Proof. By Corollary 1.3(b) we have bi/ai + Q/α^ < 1, hence, by Lemma
4.1(b,c,d), (CH)/ε + CN < CD. Therefore, by (4),

CH 1 — E
1 = -CK = -CH -CN + CD> -CH + = CH .

ε ε

Thus, CH < ε/(l - ε), hence, by Lemma 4.1(f), C2

H < ε)/((l - ε)2ft), and by (4)
and Lemma 6.4, 2 = -C2 -CK = (C2

N - CN) - {C2

H + CH) + CD > CD - εu

where

( 1 -
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Since CD is integer, CD > 2 implies ελ > 1, hence 2ε2 - (3 + l/h)ε + 1 > 0, hence

ε > 1/4/i (3h + 1 - V7i2 H-6/ι + l), and by (3) it implies /ι2 - 9/ι + 15 < 0. D

7. Proof of Theorem 1' with a weaker estimate

Let all the notation be like in §§4, 6, but in this section we shall suppose, that

CD = 2. Let i and k be such indices that CD{ + CDk = CD = 2. Thus, if i = k

then Xi = 2, x\ = 0 for / 7̂  z, and xiiφk then x̂  = #& = 1, x\ = 0 for I φ i,k. In

any case we rewrite the last two formulas of Lemma 4.1 as

(31) (O.

Denote by Qik "the predicate of belonging Di and Dk to the save twig", i.e. Qik = 1

if DiUDk c Tj for some j , and Qίk = 0 otherwise. When Qik = 1, without loss of

generality we can assume that Di is between Do and Dk. In this notation we have

(32)
N Q

di ak en

Using (5), (6) and the fact that C2 = C2

H + C^, we rewrite (4) as

(33) ( ^ (
\a aj \a ak

(34) ( ) Q i f e (
\ α α / d h \a ak

Lemma 7.1. Suppose that one of the following conditions holds:.

(i) x0 > 0; (ii) x0 = 0 (i.e. i φ 0 and k φ 0) and b{ > 2, bk > 2.

there exists a constant A± such that h > A±.

Proof. In the case (i) without loss of generality we suppose that k = 0, and,

putting ak —bk — 1, ck = Qik = 0, into (8), and using Ci/ai < 1, we see that bi > 1,

hence, bi > 2. Thus, in the both cases (i) and (ii) we have {cv/au) (bv — 2) > 0 for

v = i, k. Hence, subtracting (7) multiplied by 2 from (8), we obtain

ε o v;—> cv 7 x Cibk bi bk

—u + 2εu — 1 = y — [by — 2) + 2Qik > 0, where u = 1 .

Since u < 2 and ε < 3//ι, we see that h can not be arbitrary big. D
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Lemma 7.2. If XQ = 0 (i.e. i / 0 and k φ 0), bk = 1 #ftrf Qik = 1

ft < (3 + >/2Ϊ)/2 « 3.791

Proof. Putting 6̂  = Qifc = 1, α* = α^ = a into (7) and (8), subtracting (7)

from (8) and multiplying the result by α/(&i + l), we see that c—ε—(ε/ft) (l+6;)/α =

0. Hence, using the estivates Q > 1 and (6j + l)/α < 1, we get 1 — ε — (ε/ft) < 0,

and applying (3), we obtain ft2 — 3ft — 3 < 0. D

Lemma 7.3. Let Qik = 0 and bk = 1. 77κ?« 6£ > 2.

Proof. If 6i = 1, then subtracting (7) from (8) we would obtain ε = 0. D

Lemma 7.4. If x0 = 0 (i.e. k φ 0 and i φ 0), bk = 1 and Qik = 0 then there

exists a constant A2 such that ft < A2.

Proof. Putting bk = 1, Qik = 0 into (7) and (8), subtracting (7) from (8) and

multiplying the result by α ,̂ wee see that

biCi - C i = ( bi + — ) ε i , w h e r e ε 1 = ε - ( l + - ( — - \ ]] = O(ε)
\ akj V ft \ai ak))

or, equivalently,

(35) — = biCi ~ Ci - bi.

On the other hand, applying the estimate ck < ak — 1 (see 1.3(a)) to (7), putting

bi = 1 and multilying the obtained inequality by α ,̂ we see that

(36) Ci + εbi > — ( 1 - ε ) .

Substituting (9) into (10), we obtain (1 — ε)biCi < ε\bi + (1 -h εi — ε)ci. Replacing

bi with b' + 1, this inequality can be transformed into (&' — ε2){c% — ε$) < ε4 where

ε2, ε 3 and ε4 are O(ε). Since 6' > 1 (by 7.3) and Ci > 1, we see that ε can not be

arbitrary small. •

Proposition 7.5. Under the hypothesis of Theorem V one has r < 30.

Proof. Lemmas 6.2-7.4 imply ft < max(Ai,A2). Easy to see that these

constants can be chosen to be less than 13 1/2. Hence, by 6.1 we have r < 2ft+ 4 <

31. D
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8. More precise estimates for the case C D = 2

In this and the next section we are going to prove Theorem 1' in full volume
(with the estimate r < 16). To this end we strengthen here the estimates for h given
in §7. Thus, let C be a smooth rational (—l)-curve on X, where X — D is a Q-acyclic
surface with Έ = 2, and CD = 2. Let the notation be like in §§4, 6, 7. Denote also
h + (1/αi) + (I/a*;) by /ι+. We shall need the following evident identity:

(37) b(x - yf = (x2 + 2/2)6 + xy ((& - I) 2 - 62 - l)

= (y - bx)(by - x) + xy(b - I) 2 .

Lemma 8.1. Let k φ 0, Qik = 0, 6fc = 1 α«</ ft+ > 7 1/2. 77*ί?« ft+ = 8,
&i = 5, Ci = 1, Ci = α& — 1, α̂  = 5α& — 1 and a^ = 2,3 0/* 4.

Proof. Denote ak - ck by c'k. Putting Qik = 0, bk = 1, ck = ak - c'k into (7),
(8) and resolving the obtained simultaneous equations with respect to ε and /ι, we
see that

ε = —r , a =
CLi -ή- OiCLk

where u = Cibιak — dkaι > 0. Hence,

(39) Λ+ = ( 6 i -

b y ( 3 ) ?

- cf

kbkai)u + CiC^aia^bi - I ) 2

 fe

(40) = -E
6a

= +

6^a^ ak bu

(41) l
ak

T

b y ( 1 6 )(4cJ. 4- 3)6*

(44) *+<{Ci+1f:i+3)b;y by (13), (17). 7.3
C C ( C + !)(& !)
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Denote the right hand side of (18) by η+(bi) = 77+ c, (bi). Easy to check that 77+ is

decreasing with respect to each variable when bi > 2, c* > 1, c'k > 1.
In the Table 1 we show the values of a, c'k, bi, for which η+(bi) < 7 1/2 and

hence, the inequality h* < 7 1/2 follows from (18).

Table 1.

= 1 Ci 14

c;

fc = l : 6{ > 15 6» > 4 ^ > 3 ^ > 2

4 = 2 : 6» > 4 bi>2 bi>2 bi>2

c'k > 3 : bi > 3 6̂  > 2 6̂  > 2 6̂  > 2

Table 2.

: a = 1 Ci = 2 Ci < 6

4 = 1 : &* < 4 6» < 3 bi = 2

4 = 2 : 6i < 3

4 < 6 : h = 2

To see this, it is enough to verify that

77^(15) = 7 1/2, 77^(4) = 7, f ^ φ = 7, < 1 ( 2 ) = 7 1/2,
77+2(4)=7 1/3, 77+
77+3(3) = 7 1/2,

= 7 1/3,

In the Table 2 we show the values of Q, c'fc, for which the inequality h+ < 7 1/2
follows from (13), using the evident estimate u > 1.

Commparing the two table (note that bi > 2 by 7.3) shows that the only cases
which are not covered by them, are:

7 < ^ < 13,4 = 1, bi = 2; a = 1, c'k > 7, bi = 2; Q = ck = 1,5 < b{ < 14.

Consider these three cases separately:
Case 1 (7 < a < 13, c'k = 1 and 6» = 2). It follows from (17) that u > Q/7 >

1. Hence, u > 2 and (13) implies h+ < (Q + l)/u < (13 + l)/2 = 7.
Case 2 (Q = 1, 4 > 7 and 6. = 2).
Subcase 2.1 (ck = 7). Suppose that u = 1. Then by definition of TX we have

(45) 2ak - 7di = 1.

We know that α̂  > bi + 1 = 3. If α̂  were equal to 3, then by (19) one would have
αfc = 11, and hence, (14) would imply 3 > εh = 100/33. Therefore, α; > 3, but α̂
is odd by (19), hence, α< > 5. Thus, by (19) we have ak = (7â  +1)/2 > 18. Hence,
(14) implies 3 > l/2a» - 7/afc 4- 7/2 > -7/afc 4- 7/2 > -7/18 4- 7/2 > 3.

The obtained contradiction shows that u>2. Hence, (13) implies h+ = S/u <
4.

Subcase 2.2 (c'k > 8). It follows from (15) that 3 > -{dk/ak) 4- (4/2u) >
- 1 + (4/ 2 ^) Hence, u> c'k/S>l. Subtracting (14) multiplied by 2 from (13), we
see that /ι+-6 < 1/11-1/^ + 2 4 ^ . But 0 < u = 2ak-c'kai implies 24/«/e < 4/ai5

hence, /ι+ - 6 < l/u 4- 3/a< < 1/2 -h 3/3.
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Case 3 (Q = 1, c'k = 1 and 5 < b{ < 14). By (17) we have u > 2/7(6 i-l)2/6 i >
2/7(bi - 2). Hence, bt < (7u + 4)/2 and this implies

f (7u + 2)/2 ifu is even
(46) bi < I V "

[ (7u + 3)/2 if u is odd.

Thus, for u > 1 by (13) we have ή+ = 2(6* - l)/u < 7 1/3.
Suppose that u = 1. Then (20) implies 6; = 5. By (15) we obtain 3 >

— l(l/αfc) -f 16/5. Since α^ > 2, we have only three solutions: a^ — 2,3,4. For
Them di = bidk — u = bdk — 1, and by (13) we have h+ = 2(6̂  — l)/u = 8. This is
the only case when /ι+ > 7 1/2. D

Lemma 8.2. Let k = 0 and h+ > 8. Then h+ = 8 and (α*, bi, c<) = (13,2, 7).

Proof. The proof is similar to that of Lemma 8.1. The beginning of the proof
of 8.1 including the formulas (12), (13), (14) and (15) is valid in the case k = 0
without changes. However, the implication (15) => (16) does not work in this case.
Since we have a^ = bk = cf

k = 1, let us denote αΪ5 bi and Q simply by α, b and c till
the end of the proof. Them u = be — a.

First, note that c > 1 because otherwise u would be negative. Eliminating u
from (13) and (15), we see that

(47) ^<77 + (6,c), where

Case 1 (6 > 4). Since c > 2, by (21) we have /ι+ < 77+(4,2) = 8.
Case 2 (b = 3). If c > 4 then /ι+ < 77+(3,4) = 7 1/2 by (21). If c < 3 then

(13) implies h+ = 2(c + l)/u < 2(c + 1) < 8, hence h+ < 8 unless c = 3 and u = 1.
But in this case α = 6c — u = 8 which contradicts (14).

Case 3 (6 = 2). By (14) we have 3 > c/2a - 1 + c/2u > - 1 + c/2u. Hence,
c < 8u and being integer, c < Su — 1. Putting this estimate into (13), we see that
ft+ = (c+l)/u < 8 and /ι+ < 8 unless c = 8u- l . If h+ = 8, then putting c = 8u-l,
a = 2c-u= lbu - 2 into (14), we obtain u = 1. Hence (α, 6, c) = (13,2,7). D

Corollary 8.3. (a) Under the hypothesis of Lemma 8.1 the graph TD has one
of the following forms:

di = 9, dk = 2 : ai = 14, dk = 3 : di — 19, α/~ = 4

-5 -2 \7 -2 -5 -3 \7 -2 -2 -5 -4 \/ -2 -2 -2
o o o o o o o o o o o— o o o o

Di Do Dk Di Do Dk Di Do Dk

(b) Under the hypothesis of Lemma 8.2 the graph YD has the form:
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Lemma 8.4. Let b{>bk> 2. Then

(48) k< (** + *L). (λ + ®h.λ where q = (bk - 1) 4- (6< - 6fc) —-
\ak aiJ \bk q J ai

Proof. Denote (bi/ai) + (bk/o>k) by it. Multiplying (7) by 6 ,̂ subtracting
the result from (8) and using the estimate QikCibk/ai > 0, we obtain the inequality
(ε/h)u2 + bkεu — q > 0, where q denotes the save as in (22). Therefore, we have

where v = 4g/(36|). It remains to apply the evident estimate
-1 + vT+^ = - I + (1 + υ)/y/T+v > -1 + (1 + v)/(l + (v/2)) = υ/(2 + υ). D

Lemma 8.5. Let h>bk> 10. Then h<6 41/55 « 6.745 .

Proof. Applying the estimates (bk/ak) + (bi/ai) < (bk/(bk + 1)) + 1 and
q > bk — 1 to the inequality (22), we see that h < f(bk) where

n 2 3 2 3

= 6 + 16 6 - 1 6 + 1 ^ - l "

/ decreases when 6 > 1. Hence, Λ < f(bk) < /(10) = 6 41/55. D

Lemma 8.6. Let bι>bk> 2. Suppose also that bk < 9 α«rf α^ > 20. Then
h<5 113/120.

Proof. Case 1 (3 < bk < 9). Apply to (22) the estimates bi/ai < 1, ak > 20
and q > bk — 1. We obtaion the inequality

h < f(bk), where f(b) = (l + ̂ i ) ( f + ^

Direct calculation shows that /(6) < 5 113/120 for b = 3,4,..., 9.
Case 2 (bk = 2). Substituting bk — 2 into (22) and applying the estimates

αfc > 20, Ci > 1, we obtain h < f(ao,bi) where

d£ _ 562 + 716 + 72 7i = 10α - 20,£ _
db ~ 5α(α + b - 2)2 ' 72 = 32α2 -8a + 20.
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If a > 3 then 71,72 > 0, hence j ' h > 0. Therefore, since bi < α* — 1, we have

h < f{ai,bi) < f((Li,ai - 1) = g(di), where g(a) = f(a,a - 1). Easy to calculate

that g'{a) < 0 when a > 1. Recall that a{ > b{ + 1 > bk + 1 = 3. Hence,

h < g(ai) < g(3) = 5 11/30. D

Lemma 8.7. Let bi > bk > 2. Suppose also that bk < 9 and ai > 40. Then

h < 6.8.

Proof. From (22) and the estimates ak > bk + 1 and c* > 0, we obtain the

inequality

h < fbk(ai,bi), where /m(α,6) = f 1 + m + ~ ) ' \m+ (m - l)a + b - m) '

If α > 6, b > 2, m > 2 then / m is monotonically increasing with respect to 6.

Indeed, one can check that

dfm _ _2_ 3m 7 i Q ~ 72 71 = m 2 - m - 1,

56 ma m - h l ((m — l)α + b — ra)2 ' 72 = m2 + m.

m > 2 implies 71 > 0, hence, for α > 6 we have 710—72 > 671—72 = 5m2 —7m—6 >

0, thus, dfm/db > 0. Obviously, for b > 2 the denominator is non-zero.

We know that bi < ai — 1 and α̂  > 40. Hence, h < fbk{a>i,ai — 1) < gbk(ca),

where

#m(α) := / m ( α , α - 1) H = 6H ^ - 1 -.

ma mz + m ma — m — 1

Clearly, <7m is monotonically decreasing with respect to a when α > 2. Thus, it

suffices to check that #m(40) < 6.8 for m = 2, . . . , 9. •

Lemma 8.8. Suppose that b{ < bk < 2 and ak < 20, at < 40. Then h <

6.023810

Proof. Since bv < av and cv < av, it suffices to check only finitely many

possibilities for the values of Qik, av, bv and cv (where v = i, k). In each case we

can find ε and h from the equations (7), (8) and search the maximum of h under

the restrictions ε > 0, h > 0, εh < 3. These calculations were performed with a

compute. The corresponding C-program is shown on the Fig. 2. D

Corollary 8.9. Let b{>bk> 2. Then h < 6.8.

Proof. For bk > 10 see 8.5; for bk < 9 see 8.6 - 8.8 D
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#include <stdio.h>

main(){ int ak,bk,ck, ai,bi,ck, Q; double B,C,BC,h, hmax=0;

for( Q=0; Q<=1; Q++ ){

for( bk=2; bk<=9; bk++}{

for( ak=bk+l; ak<=21; ak++ ){

for( bi=bk; bi<=40;

for( ai=bi+l; ai<=41;

for( ck=l; ck<=ak-bk; ck++ ){

for( ci=l; ci<=ai-bi; ci++ ){

B=(double)bi/ai + (double)bk/ak;

C=(double)ci/ai + (double)ck/ak;

BC=(double)(bi*ci)/ai + (double)(bk*ck)/ak;

if( ai==ak ) BC=BC+(double)(2*Q*ci*bk)/ai;

if( 1-C <= 0 )continue; /* eps>0 */

if( BC-1 <= 0 )continue; /* h>0 */

if( (1-C)*(1-C) > 3*(BC-1) )continue; /* BMY */

if( (h=(l-C)*B/(BC-l)) > hmax ) hmax=h;

pringf( Mhmax=7βlf", hmax ) ;

}

Fig. 2.

9. Proof of Theorem 1'

Let things be like in §6.

Lemma 9.1. Supose that r > 17. then:
(a) h > 6.5.
(b) If h < 6.8 then r = 17, and up to a permutation, (di,..., du) is eigher

(4,2,...,2)*r(3,2,...,2) or (2,2,... ,2).

Proof. (a) See Lemma 6.1.
(b) If h < 6.8 then r = 17 by Lemma 6.1. Without loss of generality we may

assume that dι > d2 > - > d17. If d2 > 3, we would have h = 17 — 2 — 1/dχ
l/d17 > 15 - 1/3 - 1/3 - 1/2 1/2 = 6 5/6 > 6.8. Thus d2 = = dχl = 2
and 1/di = 1 7 - 2 - 1 / 2 1/2 - h = 7 - h > 1/5. D

Lemma 9.2. Suppose that r > 17 and h > 6.8. Then {up to a permutation)
one of the following possibilities holds:

(1) (Ti, Γ2) is one of the three pairs listed in 8.3(a) and either
(1.1) r = 18 andd3 = = d18 = 2, or
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(1.2) r = 17 and ( d 3 , . . . , d i 7 ) is one of ( 6 , 3 , 2 , . . . ,2), ( 4 , 4 , 2 , . . . ,2),

( 3 , 3 , 3 , 2 . . . , 2 ) .

(2) r = 17, d 2 = = d17 = 2 α«rf Γi & ί/ze ίw/g depicted i 8.3(b).

Proof. By 6.3, X is rational. Hence, there exists a smooth rational (—l)-curve
C. It does not coincide with one of Dι,..., Dn by the minimality, and C Φ Do by
Lemma 6.2. Thus, it follows from 6.5 and 4.2 that CD = 2.

Introduce the notation like in §7, §8. If the both bi and bk were > 2, then by
Corollary 8.9 we would have h < 6.8. Thus, one of them, say, bk is equal to 1 and
by Lemma 7.2 we have Qik = 0.

Case 1 (Like in 8.1). bk = 1, k Φ 0.
Since Di and Dk do not belong to the save twig, without loss of generality we

may assume that Di C TΊ, Dk C T2 (i.e. d\ = αΪ5 d2 — a>k) and that d3 < d4 < .
Then

(49) ft+ = r - 2 - l/d3 - l/d4 1/4 > r - 2 - 1/2 1/2

= (r-2)/2.

Since r > 17, it follows that h+ > 7 1/2. Hence, by 8.1 we have h+ = 8.
Subcase 1.1 r > 18. Then (23) turns out into 8 = > (r - 2)/2 > 8. Hence,

all the " > " can be replaced with " = " , and we have r — 18 and d3 = = dig = 2.
Subcase 1.2 r = 17. If d6 => 3, then like in (23) we would have 8 > 15 -

(1/3 - 1/3 - 1/3 - 1/3) - 1/2 = 8 1/6. Thus, d6 = = d17 = 2 and
l/d3 + l/d4 + l/d5 = 15 - h+ - 1/2 = 1.

Case 2 (Like in 8.2). k = 0.
Subcase 2.1 Without loss of generality assume that Di G Ti, i.e. d\ = α;. Then

r > 17 implies like in (23) that h+ = ft + 1 + 1/di > r - 1 - 1/2 1/2 =
(r - l)/2 > 8, and by 8.2 we have ft+ = 8. Hence, all the " > " can be replaced with
" = " and we obtain r = 17 and d2 = = di7 = 2. D

Lemma 9.3. Let X be a smooth rationalprojective surface. Then K2-\-b = 10
where K — Kx is the canonical class and b — b2(X) is the second Betti number.

Proof. Since X is rational, it is obtained from P2 by successive blow-ups
and -downs. Clearly that K2 + b = 10 for P2 and that K2 + b is invariant under
blow-ups. D

Corollary 9.4 (See e.g. [4; 1.3]). Let notation be like in 9.3. Suppose that D
is an SNC-curve such that X — D is Q-acyclic. Then

(50) (K -h D)2 = 8 - s - 36

where s denotes the sum of all the weights of
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Proof. Let Dι,..., Db be the irreducible components of D. Write (K+D)2 =
K2 H- 2KD -f D2 and compute each summand in the right hand side:

K2 = 10 - 6by Lemma 9.3;

KD = Σ Di(K + A ) - Σ A ? = ~2b - sby adjunction formula;
D2 = Σ A2 + Σiφk DiDk = Σ D2 + 2(number of edges of ΓD) = β + 2(6 - 1).

D

Now let (X, D) be again as in §6. Introduce the following notation. For a twig
T denote s(T) = Σ(wv + 3), where itv are the weights and the summation is over
all the vertices. Recall that e(T) denotes the inductance of a twig T (cf. §2). Let
e'(Γ) = e(T') where T' is the twig obtained from a twig T by reversing the order of
the vertices. Denote e(Γ) + e'(Γ) - s(T) by <p(T), and put: ê  = e(Tj), e' = e'(Tά),

Sj = s(Tj) and Ψj = φ(Tj).

Lemma 9.5. Σ Ψj > 2/ι — 5.

Proof. By Lemma 1.2 and (2) we have - Δ = p (D2 -h Σ e j ) Hence,
D2 = - Δ / p - Σ e ^ = h/ε-Σe'j. Further, by 4.1 (a) and 2.4(i) we have (K + D) 2 =
H2 + N2 = εh - Σej Putting these expressions for Dl and (K + £>)2 into (24)
(where, in out notation, s-\-3b = DQ+3 + ΣSJ)>

 w e obtain 5-hΣ^j — h(ε+l/έ) >
2h. D

Now let us complete the proof of Theorem 1'. Suppose that r > 17. Then by
9.1 (a) we have h > 6.5, hence, 9.5 implies Σψi — 13 — 5 = 8. However, each ψj
depends only on the twig, and by 9.1 and 9.2 only few types of twigs can appear.
The values of φ(T) for these twigs are as follows:

Table 3.

d(T) T φ(T)
2

3

4

[2]

[3]
[2,2]

[4]
[2,2,2]

0

2/3
-2/3

1.5
-1.5

5

6

[5]
[3,2]

[2,2,2,2]

[6]
[2,2,2,2,2]

2.4

0

-2.4

3 1/3

-3 1/3

Here the twing wigh the weights w1,w2,... is denoted by [—wi, —w2,...]. In
Table 3 we listed all the twigs with discriminants < 6. The values φ(T) for those
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twigs which appear in 8.3, are

It is easy to check that in all the cases allowed by 9.1 and 9.2 we can not have

Σψj ^ 8. Theorem I7 is proven.
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