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時系列データの自動ネットワーク構造検出アルゴリズム

小幡 紘平1,2,a) 松原 靖子1 川畑 光希1 中村 航大1,2 櫻井 保志1

受付日 2022年6月8日,採録日 2022年10月3日

概要：本論文では，ネットワーク構造を持つ多次元時系列データのためのパターン検出手法である NGL
について述べる．NGLは，時間変化するネットワーク構造を持つ多次元時系列データが与えられたとき
に，その時系列データの中から重要なネットワーク構造を発見し，それらの情報を要約，表現する．具体
的に，提案手法は，(a)多次元時系列データからネットワーク構造に基づいた解釈性の高いクラスタを発見
する．(b)その際に最適な分割点とクラスタ数を自動的に決定する．すなわち，事前情報の付与が必要な
い．そして，(c)自動決定アルゴリズムにより高精度なクラスタリングを実現する．人工データを用いた精
度評価実験では最新の既存手法と比較して提案手法が大幅な精度向上を達成していることを明らかにした．
また，実データを用いた実験では NGLが解釈性の高いクラスタを発見していることを確認した．

キーワード：時系列データ，ネットワーク構造，グラフィカルラッソ
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Abstract: In this paper we present NGL, pattern mining algorithm for multiple time series data with underly-
ing network structures. Our method has the following properties: (a) Interpretable: it provides interpretable
network structures for the data; (b) Automatic: it determines the optimal cut points and the number of
clusters automatically; (c) Accurate: it provides reliable clustering performance thanks to the automated
algorithm. We evaluate our NGL algorithm on synthetic datasets, outperforming state-of-the-art baselines
in terms of accuracy. And extensive experiments on real datasets demonstrate that NGL does indeed obtain
interpretable network structure clusters.
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1. まえがき

車両走行センサ [1]，生体信号，ソーシャルネットワー

ク [2]，株価に代表される金融データ [3]など，さまざまな

アプリケーションにおいて時系列データが生成される．こ

れらの応用では，さまざまな特徴量を多次元時系列データ

として扱い，データの構造理解や予測に有用な特徴量間の
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相関関係，すなわち，ネットワーク構造に基づくパターン

を発見することが非常に重要な課題である．

一般に，実際に生成される時系列データは，複数の異な

るネットワーク構造を持つことが多い．たとえば，車両走

行センサデータの走行パターンはいくつかの代表的な運

転行動（直進，右折，左折，減速，急ブレーキ，急旋回な

ど）から構成される．ネットワーク構造の表現に効果的な

グラフ理論 [4]によると，各センサをノード，センサ間の

相関関係の強さをエッジとして表現することができる．右

左折では，ハンドル角と左右加速度にエッジが，減速では

ブレーキペダルストロークと前後加速度にエッジが形成さ

れるだろう．しかし，ネットワーク構造の変化点や種類が

c© 2023 Information Processing Society of Japan 1
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図 1 車両走行センサデータ：高速道路における NGL の出力例（GY = 左右加速度，Steer

= ハンドル角，Accel = アクセルペダルストローク，Spd = 速度，GX = 前後加速度，

Fuel = 燃費，Brake = ブレーキペダルストローク）

Fig. 1 Clustering result of NGL using highway automobile datasets.

既知であることは稀であり，人手で設定した閾値などによ

るパターン分割は難しく，現実的でない．また，データが

本来持つネットワーク構造を無視したパターン分割はパ

ターン変化点や依存関係の誤検出につながる．そこで本研

究では，大規模多次元時系列データの中から典型的なネッ

トワーク構造を自動的に検出するためのクラスタリングア

ルゴリズムである NGLを提案する．

本論文で扱う問題は以下のとおりである．

問題：大規模多次元時系列データX が与えられたとき，X

を表現する動的ネットワーク構造を抽出する．

より具体的には，(1) X の中のネットワーク構造に基づ

いた分割点を発見し，部分シーケンス集合（セグメント）

に分割する．(2)解釈性が高く，共通のネットワーク構造

を持つセグメント集合（クラスタ）を見つけ，最適なクラ

スタ数を自動的に決定する．

具体例．図 1 は車両走行センサデータと NGLの出力結果

例である．この車両走行センサデータは高速道路を走行し

た際の 7つのセンサデータ値から構成される．図 1 左部は

地図にクラスタをプロットしたものであり，同一のクラス

タに含まれるセグメントは同一の色で表現されている．左

部は各クラスタのネットワーク構造を示しており，ノード

が変数，エッジが変数間の相関係数を表している．提案手

法は，安定走行，カーブ，減速区間のパターンを発見して

いることが地図とネットワーク構造から分かる．ここで最

も重要なこととして，NGLはこれらの走行パターンに関

する事前知識を必要とせず，クラスタから運転行動を推測

できるネットワーク構造を出力することができる．実験結

果についての詳細は，6 章において示す．

1.1 自動ネットワーク構造抽出手法の重要性

時系列データを対象とした教師なしクラスタリング手法

は，数多く存在する [5]．しかし，先行研究の中にネット

ワーク構造と基にしたクラスタリングを行い，かつ最適な

クラスタ数を自動で発見する手法はない．多くの手法は実

値の距離に基づいたクラスタを発見するため，クラスタか

ら得られる情報は少ない [6], [7]．そのため，事前知識なし

ではクラスタの解釈が難しい．一方，ネットワーク構造に

基づいたクラスタリングでは，データの背後に潜む変数間

の相互関係が明らかになり，変数間の関係性をモデル化す

ることが可能となる．さらに，多くの時系列クラスタリン

グ手法はクラスタ数を事前に指定する必要がある [8], [9]．

しかしながら，クラスタ数を指定するには事前知識が必要

であり，未知のデータやビッグデータの解析には適してい

ない．また，クラスタ数を事前に指定する必要があるモデ

ルでは，既存クラスタで表現することができない観測値に

対し，新たなクラスタを動的に生成できないため，クラス

タの解釈性が低下する懸念がある．提案手法はデータに応

じてクラスタを動的に生成することができる．最適なクラ

スタ数を自動で決定することで，リアルタイム処理への拡

張や，予期せぬクラスタの発見ができ，解釈性が高いクラ

スタの検出が可能となる．

1.2 本論文の貢献

本論文では，大規模多次元時系列データから動的ネット

ワーク構造を抽出するための効果的なアルゴリズムである

NGLを提案する．NGLは以下の特長を持つ．

(a) 類似したネットワーク構造を持つ時系列パターン（ク

ラスタ）の個数と種類を把握し，データから解釈性の

高いクラスタを発見する．

c© 2023 Information Processing Society of Japan 2
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(b) モデルを表現する新しい符号体系を用いることで，デー

タについての事前情報の付与を必要とせず，時系列パ

ターンの最適な分割点とクラスタ数を自動で発見する．

(c) 効率的かつ効果的なセグメント分割アルゴリズムを提

案し，人工データを用いた実験において，提案手法が

最新の既存手法より高精度に時系列パターンを検出す

ることを示す．

2. 関連研究

関連研究は以下の 2つに分類される．

パターン発見．時系列データの解析に関する研究はさま

ざまな分野で進められている [10], [11], [12]．中でも，時

系列サブシーケンスのクラスタリングはデータを理解

するために有用である．時系列データの教師なしクラス

タリングの代表的な技術である，DTW（Dynamic Time

Warping）[13] と K-menas は距離に基づいたクラスタリ

ングを行い，データの構造よりも実値を比べることに焦

点を置いている．Liら [14]が提案した，DynaMMoは線

形動的システム（LDS: Linear Dynamical System）に基

づく手法で欠損を含む大規模時系列データ集合から時系

列のパターンを発見できる．Wangら [15]による pHMM

（pattern-based hidden Markov model）は隠れマルコフモ

デル（HMM: Hidden Markov model）に基づく手法であ

り，時系列のセグメント化とクラスタリングのための動的

モデルである．Mastubaraら [16]は多階層 HMMモデル

を使ったパラメータフリーの手法として AutoPlaitを提案

している．これらの手法は，時系列の複雑な動的パターン

を表現する能力はあるが，その一方で，ネットワーク構造

を考慮していないため，クラスタの解釈には困難がとも

なう．

時系列ネットワーク推定．時系列情報を加味したネット

ワーク推定は経済データ，生体信号データの解析手法とし

て研究されている [17]．グラフィカルラッソ [4]は静的な

ネットワーク推定手法であり，損失関数に �1 正則化項を

加味することで解釈が容易なスパースなネットワーク構

造が推定できる [18]．Hallacら [19]は文献 [4]に時系列情

報を考慮したネットワーク推定手法である TVGL（Time

Varying Graphical Lasso）を提案し，Harutyunyanら [20]

は文献 [21]を改良した共分散行列推定手法としてT-CorEx

を提案した．Tomasiら [22]は文献 [23]を時系列データに

適応し，潜在状態を考慮した動的なネットワーク構造を推

定する手法である，LTGL（Latent variable Time-varying

Graphical Lasso）を提案した．これらの手法は，ネット

ワーク構造の時系列変化をモデル化しており，前後のネッ

トワーク構造を比較することで変化点の検知は可能だが，

クラスタリングする能力はない．ネットワーク構造を基に

したクラスタリング手法として Hallacら [8]が提案した，

TICC（Toeplitz Inverse Covariance-based Clustering）と

Tozzo ら [9]が提案した，TAGM（Time Adaptive Gaus-

sian Model）がある．TICCはマルコフランダムフィール

ド（MRF: Markov Random Field）とテプリッツ行列を用

い変数間に内在する関係をとらえる手法であり，TAGM

は HMMと混合ガウスモデル（GMM: Gaussian Mixture

Model）を融合した手法である．これらの手法は各サブシー

ケンスのネットワーク構造に応じたクラスタを発見する．

これにより，クラスタに解釈性を持たせ，ほかの従来のク

ラスタリング手法では発見できなかったパターンを発見す

ることができる．両者とも，モデルにグラフィカルラッソ

を組み込み変数間の相互作用を基にクラスタリングしてい

るが，事前情報としてクラスタ数を指定しなければならな

い．つまり，提案手法のみが解釈性の高いクラスタリング

と最適なクラスタ数を自動的に見つけるという特長を持つ．

3. 事前準備

ここでは本論文で必要な概念について定義を行う．ま

た，表 1 に主な記号と定義を示す．

3.1 問題定義

T 個の連続した観測値集合 X = {x1, x2, . . . , xT } から
なる p 次元時系列データの各時刻 i において，|xi| ≥ 1

個の異なる観測値があるとする．xi ∈ R
p は i 番目の観

測値ベクトルであり，K 個の多変量正規分布のいずれか

xi ∼ N(0,Σk)から取得される．ネットワーク構造はグラ

フと同値であり，多次元データ xi ∈ R
p から多変量正規

分布 xi ∼ N(0,Σk)が得られたとき，各変数がノードを表

し，共分散行列 Σk がエッジを表す．共分散行列の対角成

表 1 主な記号と定義

Table 1 Symbols and definitions.

記号 定義

シーケンス

T 時系列の長さ

xi 時刻 i における観測値集合

|xi| 時刻 i における観測値数

p 時系列の次元数

X 時系列データ

モデル

θk クラスタ k の逆共分散行列

Θ 逆共分散行列集合

Fk クラスタ k への割当て

F 割当て集合

Mk k 番目のクラスタのモデルパラメータ

M K 個のクラスタのモデルパラメータ集合

K クラスタ数

コスト関数

< M > M のモデル表現コスト

< X|M > M による X の符号化コスト

< X; M > M による X の総コスト

c© 2023 Information Processing Society of Japan 3
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分がすべて 1 であるとき，非対角成分の値は変数間の相

関係数と等しい．本研究の目的は X をK 個のクラスタ集

合に分割する割当て F = {F1,F2, . . . ,FK}を発見するこ
とである．ここで，Fk は Θ = {θ1, θ2, . . . , θK} に基づい
た Xk ⊂ X (s.t. k = 1, 2, . . .K)のクラスタ k への割当て

である．それゆえ，クラスタ k に属する Xk の簡潔な記

述モデルをMk = {θk,Fk}とすると，パラメータ集合は
M = {M1,M2, . . . ,MK}となる．

3.2 グラフィカルラッソ

まずはじめに，静的なネットワーク構造 θi を推定する

グラフィカルラッソについて述べる．グラフィカルラッソ

は，多変量正規分布 N(0,Σ)を仮定した対数尤度関数に基

づく損失関数に，�1 正則化項を加えた関数を最小化するこ

とによりスパースな逆共分散行列を推定する手法である．

具体的には，以下の式を最適化する：

minimize θ∈Sp
++

− ll(xi, θi) + λ||θi||od,1, (1)

ll(xi, θi) = |xi|(log det θi − Tr(Siθi)),

ただし，|| · ||od,1 は対角成分を除いた �1 ノルムである．正

則化ハイパーパラメータ λ ≥ 0により損失関数と �1 正則

化項のバランスを調整することで，スパース性を制御す

る．ll(xi, θi)は対数尤度関数である．θi は正定値対称行列

（Sp
++）である．そして，Sは観測値から計算される共分散

行列 (1/|xi|)
∑|xi|

j=1 xjx
T
j であり，xj は各観測値である．

3.3 TVGL問題

TVGL [19]は動的なネットワーク構造を推定するために

上記の問題 (1)を拡張し，時間情報を加味した逆共分散行

列集合 Θを推定する手法である．TVGLは以下の問題を

最適化する：

minimize θi∈Sp
++

T∑

i=1

−ll(xi, θi) + λ||θi||od,1

+ β

T∑

i=2

ψ(θi − θi−1), (2)

ただし，λ はネットワークのスパース性を制御するハ

イパーパラメータである．β は隣接する逆共分散行列

の類似度を決定するハイパーパラメータである．罰

則項に含まれる関数 ψ は θi と θi−1 の類似性を定義す

る．多種の ψ によってネットワーク構造の時間変化の

類似性を制御することができる．具体的には，�1 罰則

項：ψ(X) =
∑

i,j |Xi,j |，�2 罰則項：ψ(X) =
∑

j ||Xj ||2，
ラプラシアン罰則項：ψ(X) =

∑
i,j X

2
i,j，などがあげら

れる．以下，本論文では，ラプラシアン罰則項を用いる．

式 (2) は凸最適化問題の最適化法である交互方向乗数法

（ADMM: Alternating Direction Method of Multipliers）

によって解ける．まず，補助変数 Z = {Z0, Z1, Z2} =

{(Z1,0, . . . , ZT,0), (Z1,1, . . . , ZT−1,1), (Z2,2, . . . , ZT,2)} を

用意し，式 (2)の変数を補助変数に置き換えることで変数

を分離する：

minimize
T∑

i=1

−ll(xi, θi) + λ||Zi,0||od,1

+ β

T∑

i=2

ψ(Zi,2 − Zi−1,1)

subject to Zi,0 = θi, θi ∈ Sp
++ for i = 1, . . . , T

(Zi−1,1, Zi,2) = (θi−1, θi) for i = 2, . . . , T.

すると，拡張ラグランジュ関数は次のようになる：

Lρ(Θ, Z, U)

=
T∑

i=1

−ll(xi, θi) + λ||Zi,0||od,1

+ β

T∑

i=2

ψ(Zi,2 − Zi−1,1)

+(ρ/2)
T∑

i=1

(||θi − Zi,0 + Ui,0||2F − ||Ui,0||2F
)

+(ρ/2)
T∑

i=2

(||θi−1−Zi−1,1+Ui−1,1||2F −||Ui−1,1||2F

+ ||θi − Zi,2 + Ui,2||2F − ||Ui,2||2F ),

ただし，双対変数 U = {U0, U1, U2} = {(U1,0, . . . , UT,0),

(U1,1, . . . , UT−1,1), (U2,2, . . . , UT,2)}，ADMMの罰則項 ρ >

0とする．rを更新数とすると，ADMMの更新式は以下で

表される：

Θr+1 := arg min
θ∈Sp

++

Lρ(Θ, Zr, Ur)

Zr+1 := arg min
θ∈Sp

++

Lρ(Θ, Zr, Ur)

Ur+1 := arg min
θ∈Sp

++

Lρ(Θ, Zr, Ur)

詳細は文献 [19]を参照されたい．TVGLは，前後の逆共

分散行列 θi と θi−1 を比較することで分割点を発見するこ

とが可能であるが，クラスタを発見することはできない．

本手法では各時刻の逆共分散行列を求める際，TVGLを最

適化手法として用いる．

4. 提案手法

前章では TVGLがどのように逆共分散行列集合 Θを求

めるかを取り扱った．本章では，(a)グラフィカルラッソ

モデルの分割基準をどのように設定するか，(b)最適な分

割点はどのように決定すればよいか，(c)最適なクラスタ

はどのように決定すればよいか，を解決するモデルを提案

c© 2023 Information Processing Society of Japan 4
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する．提案モデルは以下の 3つのアイデアに基づく．

• モデル表現コスト：最適な分割点とクラスタの発見
のために，最小記述長（MDL: minimum description

length）の概念を用いる．MDLは情報理論に基づく

モデル選択基準の 1つであり，直感的には，データを

より圧縮できれば良いモデルと見なすことができる．

本論文の目的を解決するために，新しい符号体形をグ

ラフィカルラッソモデルに対して定義する．

• CutPointSearch：一般的なボトムアップアルゴリズ

ム [24]を改良し，時系列データを扱うために適したア

ルゴリズムを提案する．最初に設定した分割点による

小サイズのセグメントをコスト制限を満たす隣接セグ

メントと反復的にマージすることで最適な分割点を求

める．

• NGL：EMアルゴリズムを用い，CutPointSearchで

発見したセグメントを最適なクラスタに割り当てる．

また，コスト関数に基づき最適なクラスタ数を自動的

に決定する．

4.1 特徴抽出とデータ圧縮

ここでは，大規模時系列データを表現するための符

号化スキームを導入する．簡潔に表すと，MDL を用い

てデータを表現するために必要なグラフィカルラッソ

モデルの最小数を求めることを目標とする．データ X

が与えられたときのモデルのよさは次の式で表現でき

る：< X;M >= α· < M > + < X|M >．ここで，

< M > はモデル M を表現するためのコストを示し，

< X|M >はM が与えられたときの X の符号化のコスト

を示す．ハイパーパラメータ α > 0によってモデル表現コ

ストと符号化コストのバランスを調整し，モデルの複雑さ

を制御する．

4.1.1 モデル表現コスト

モデルM の表現コストは以下の要素の総和から構成さ

れる．

• クラスタの総数 K：log∗(K) *1

• 各クラスタの観測値数：∑K
k=1 log∗(|Fk|)

• 各クラスタの平均値 p× 1：
∑K

k=1(p× cF )

• 各 ク ラ ス タ の 逆 共 分 散 行 列 p × p：
∑K

k=1 |θk| �=0(2 log(p) + cF ) + log∗(|θk| �=0)

ここで，| · |�=0 は行列の非 0要素の数を，cF は浮動小数点

のコストを示す*2．

4.1.2 データ記述長

先述のとおり，本論文ではグラフィカルラッソモデルを

用いてデータX のパターンを表現するが，ここで重要なの

は，推定したモデルが X を正しく表現しているかを判断

する指標の導入である．ハフマン符号 [25]を用いた情報圧

*1 ここで，log∗ は整数のユニバーサル符号長を表す．
*2 本論文では 4 × 8 ビットとする．

縮では，モデルM が与えられた際のX の符号化コストを

負の対数尤度を用いて次のように表現することができる：

< X|M >= − log2 P (X|M).

ここで P (X|M)は X の尤度を表す．したがって X と K

個のクラスタのモデルパラメータM が与えられたとき，

符号化コストは次のように表される：

< X|M > = −
K∑

k=1

ll(Xk, θk).

4.1.3 符号化コスト関数

まとめると，モデルパラメータ集合M が与えられたと

き X の符号長は以下のようになる：

< X;M >= α· < M > + < X|M > . (3)

したがって，本論文の次の目標は上記のコスト関数

< X;M > を最小化するようなモデルパラメータ集合

M を発見することである．

4.2 セグメント分割アルゴリズム

前項では，モデルパラメータ集合M を与えられたとき

のデータX を表現するためのコスト関数として式 (3)を示

した．続いての問題は式 (3)を最小化する最適な分割点を

発見することである．同じモデルで表現するべきセグメン

トの候補は多数あり，すべてを検討することは組合せ爆発

が起こるため難しい．本項では，ボトムアップアルゴリズ

ムを改良することで少数の候補から効率良く最適な分割点

を発見する．具体的には，以下の 2つのアルゴリズムを提

案する．

( 1 ) MergeSegment（inner loop）：分割点が与えられたと

きに，コスト関数に基づき隣接セグメントとマージし，

分割点を更新する．

( 2 ) CutPointSearch（outer loop）：分割点の更新が止まる

まで，与えられた分割点に基づいた逆共分散行列を計

算する．

図 2 は CutPointSearchの処理のながれである．データ

X は 2個の多変量正規分布から取得され，正しい分割点

は図 2 (a)である．CutPointSearchは多数の初期分割点，

図 2 (b)から開始し，図 2 (c)のようにコスト関数に基づき

隣接セグメントをマージしながら，最終的にデータ X の

最適な分割点，図 2 (d)を発見する．各イテレーションに

おいて局所的にコスト関数が減少するように隣接セグメン

トをマージする．

4.2.1 MergeSegment

隣接するセグメントが同じクラスタに属する傾向がある

と仮定して，MergeSegmentによって分割点を更新する問題

を考える．アルゴリズム 1はMergeSegmentの処理を示す．

分割点 cp = {c0, c1, . . . , cm}と各セグメントの逆共分散行
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図 2 CutPointSearch の概要図

Fig. 2 Overview of the workflow of CutPointSearch.

Algorithm 1 MergeSegment(ΘS ,ΘE ,ΘO, cp,X)
1: Input: Each covariance Θ, initial cut point set cp, and bun-

dle X

2: Output: Updated cut point set cpnew

3: id = 0, cpnew = φ;

4: while id < length(X) do

5: if id is even then

6: θLeft = θO; θRight = θE ;

7: idLeft = �id/2�; idRight = �id/2� + 1;

8: else if id is odd then

9: θLeft = θE ; θRight = θO;

10: idLeft = �id/2� + 1; idRight = �id/2� + 1;

11: end if

12: Csolo =< X; ΘS [id] > + < X; ΘS [id + 1] > + <

X; ΘS [id + 2] >;

13: Cleft =< X; ΘLeft[idLeft] > + < X; ΘS [id + 2] >;

14: Cright =< X; ΘS [id] > + < X; ΘRight[idRight] >;

15: if min(Csolo, Cleft, Cright) = Csolo then

16: cpnew = cpnew ∪ cp[id]; id+ = 1;

17: else if min(Csolo, Cleft, Cright) = Cleft then

18: cpnew = cpnew ∪ cp[id + 1]; id+ = 2;

19: else if min(Csolo, Cleft, Cright) = Cright then

20: cpnew = cpnew ∪ cp[id], cp[id + 2]; id+ = 3;

21: end if

22: end while

23: return cpnew;

列集合 ΘS = {θ,c0 , θc0,c1 , . . . , θcm,}が与えられたとする．
mは分割点の個数で，m+1はセグメント数となる．そして，

図 3 MergeSegment で比較される 3 つの分割点の候補の概略図．

これらの分割点の候補の MDL コストを比較する

Fig. 3 Illustration of the three candidates of cut points. We

compare each MDL cost of these candidates of cut

points.

奇数/偶数番目の分割点からなる各セグメントの逆共分散

行列集合 ΘO = {θ,c1 , θc1,c3 , . . .}と ΘE = {θ,c0 , θc0,c2 , . . .}
が与えられたとする．Xci,cj

，Mci,cj
，θci,cj

，はそれぞれ，

分割点 ciから cj までのセグメントにおける，観測値，パラ

メータ集合，逆共分散行列とする．ここでの目標はセグメ

ントを隣接セグメントとマージするかを決定することであ

る．シーケンスを id = 0から時系列順に処理していく．新

しい分割点の候補は，つねに 3つ存在する．図 3 に id = i

の場合の新しい分割点の候補を示す．(a) Soloは 3つのセ

グメントから，(b) Left，(c) Rightは片一方のセグメント

がマージされた 2つのセグメントから構成される．それぞ

れのコスト関数は以下になる：

(a) α · (< Mci,ci+1 > + < Mci+1,ci+2 > + < Mci+2,ci+3 >)

+ < Xci,ci+1 |Mci,ci+1 > + < Xci+1,ci+2 |Mci+1,ci+2 >

+ < Xci+2,ci+3 |Mci+2,ci+3 >,

(b) α · (< Mci,ci+2 > + < Mci+2,ci+3 >)

+ < Xci,ci+2 |Mci,ci+2 > + < Xci+2,ci+3 |Mci+2,ci+3 >,

(c) α · (< Mci,ci+1 > + < Mci+1,ci+3 >)

+ < Xci,ci+1 |Mci,ci+1 > + < Xci+1,ci+3 |Mci+1,ci+3 > .

上記の 3つのコスト関数を比較し，最小コストを示したも

のを新しい分割点として更新する．(b)が最小コストを示

した場合，ci+2 が新しい cpに加えられる．(a)が最小コス

トを示した場合，cpは更新前後で変化がない．この処理を

すべてのセグメントについて繰り返す．

4.2.2 CutPointSearch

ここで扱う問題は，データ X の最適な分割点を発見す

る問題である．アルゴリズム 2 に CutPointSearchの手順

を示す．データ X と初期分割点 cpが与えられたとする．

初期分割点はユーザが任意の特定間隔で設定する．TVGL

の最適化手法を用い，各セグメントと奇数/偶数番目の分

割点からなる各セグメントの逆共分散行列集合 ΘS，ΘO，

ΘE を計算する．すべての Θを得たら，MergeSegmentア

ルゴリズムにより，分割点を更新する．この処理を分割点

の更新が止まるまで繰り返す．

c© 2023 Information Processing Society of Japan 6



情報処理学会論文誌 データベース Vol.16 No.1 1–13 (Jan. 2023)

Algorithm 2 CutPointSearch(X, cp)
1: Input: Bundle X and initial cut point set cp

2: Output: Optimal cut point set cp

3: repeat

4: ΘSingle = TVGL(X, cp);

5: ΘEven = TVGL(X, cp[0 :: 2]); /* even-numbered */

6: ΘOdd = TVGL(X, cp[1 :: 2]); /* odd-numbered */

7: cp = MergeSegment(ΘSingle, ΘEven, ΘOdd, cp, X);

8: until convergence;

9: return cp;

Algorithm 3 NGL(X, cp)
1: Input: Bundle X, initial cut point set cp

2: Output: Cluster parameters Θ and cluster assignments F
3: cpopt = CutPointSearch(X, cp); K = 1;

4: while improving the total cost < X; M > do

5: Θ = ModelInitialization(cpopt, K);

6: repeat

7: F = AssignToCluster(X, Θ, cpopt); /* E-step, Equa-

tion (4) */

8: Θ = GraphicalLasso(X,F); /* M-step */

9: until convergence;

10: Compute < X; M >; // M = {Θ,F}
11: K = K + 1;

12: end while

13: return M = {Θ,F};

4.2.3 理論的な分析

補助定理 1 提案手法の計算コストは最小で O(m · p3)，

最大で O(m2 · p3)である．

証明 1 NGLの計算コストの大部分は CutPointSearch

のイテレーション回数と共分散行列集合を推定する計算コ

ストによる．データの次元数が p，初期分割点の数がm個

あり最終的に分割点の数が 0個になる場合を考える．この

とき，共分散行列行列を推定する計算コストは O(m · p3)

である [19]．CutPointSearchアルゴリズムのイテレーショ

ン回数は，最大m回であり，この場合mが 1つずつ減少

する．最小は log2m回であり，この場合mが半減してい

く．よって，NGLの計算コストは最小で O(m · p3)，最大

で O(m2 · p3)となる．

4.3 クラスタリングアルゴリズム

本論文の最終目標は，大規模時系列データの中から適切

な数のネットワーク構造を自動的に抽出することである．

最後に，最適な分割点から構成されるセグメントを適切な

クラスタに割り当てる手法である NGLについて述べる．

NGLは，各セグメントをクラスタに割り当てるために

EM アルゴリズムを用いる．アルゴリズム 3 に NGL の

手順を示す．最大のクラスタ数をセグメントの数とし，

K = 1, 2, 3, . . .と変化させ，コスト関数 (3)を最小化する

最適なK を求める．具体的には，各K において以下の問

題を最小化することで割当てを求める：

arg min
F,Θ

K∑

k=1

−ll(Xk, θk) + λ||θk||od,1. (4)

ここでは，すでに最適な分割点が得られており，各セグメ

ントにはモデルを形成するための観測値数が十分にあるた

め複雑なアルゴリズムは必要ない．Eステップでは，対数

尤度が最小となるよう，セグメントを適切なクラスタに割

り当てる．Mステップでは，各クラスタについて割り当て

られたデータの逆共分散行列を求める．ここで，各クラス

タのパラメータの学習には式 (2)の β = 0（式 (1)と同等）

とした TVGLの最適化法を用いる．

5. 評価実験

本章では，人工データに対する NGLのクラスタリング

精度と計算コストの検証を行う．クラスタリング精度比較

に用いられる典型的な実データはネットワーク構造に基づ

いた正解ラベルが与えられていない．一方で，人工データ

では明確なネットワーク構造のあるデータが生成可能で，

ネットワーク構造に基づいたクラスタリング精度の比較が

可能である．人工データの生成，実験設計は文献 [8], [26]

に従った．K 個のクラスタを持ち，各クラスタが多変量正

規分布X ∼ N(0,Σ)に従う，X ∈ R
5 の人工データをラン

ダムグラフに基づき生成した．ネットワーク構造に基づい

たクラスタリング精度を評価するため，各クラスタの平均

値は 	0とした．以下の手順で，各クラスタの逆共分散行列

を作成した [26]．

( 1 ) 隣接行列 A ∈ R
5×5 を Erdös-Rényiモデルに従って作

成する．全ノードペアについて，確率 20%でエッジを

形成する．

( 2 ) Aの選ばれたエッジについて，Aij ∼ Unif([−0.6,−0.3]

∪[0.3, 0.6])を設定する．また，Aは対称行列Aij = Aji

とする．

( 3 ) Σ−1を正定値行列とするために，Σ−1 = A+(0.1+|c|)I
とする．c = λmin(A)は Aの最小固有値で，I は p× p

の単位行列である．

次のような異なるセグメントの組合せの 4つのデータセッ

トについて実験を行った [8]（“1, 2, 1”,“1, 2, 3, 2, 1”,“1,

2, 3, 4, 1, 2, 3, 4”,“1, 2, 2, 1, 3, 3, 3, 1”）．それぞれの

データセットにつき 10回実験を行い，macro-F1スコアの

平均と標準偏差を記録した．macro-F1 スコアは，適合率

（Precision）と再現率（Recall）の調和平均を各クラスタに

ついて求め，平均したもので，1に近い値は高いクラスタ

リング精度を意味する*3．サンプル数について述べる場合

は，各セグメントごとのサンプル数と同意である（たとえ

ば，“1, 2, 1”において，サンプル数を 100とした場合，100

サンプルごとに θ1，θ2 からサンプルが生成された，計 300

*3 macro-F1 =
1

K

∑K
i

1

1/presicioni + 1/recalli
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表 2 4 つの異なるデータセットにおける NGL と比較手法の macro-F1 スコアによるクラス

タリング精度（高いほど高精度）

Table 2 Macro-F1 score of clustering accuracy for four different temporal sequences,

comparing NGL with state-of-the-art methods (higher is better).

Model NGL TAGM（KDD’21） TICC（KDD’18） AutoPlait（SIGMOD’14） NGL no-cps

1, 2, 1 0.93 ± 0.05 0.83 ± 0.25 0.85 ± 0.26 0.41 0.62 ± 0.13

1, 2, 3, 2, 1 0.96 ± 0.03 0.74 ± 0.21 0.89 ± 0.18 0.20 0.66 ± 0.15

1, 2, 3, 4, 1, 2, 3, 4 0.94 ± 0.03 0.78 ± 0.26 0.82 ± 0.21 0.11 0.66 ± 0.11

1, 2, 2, 1, 3, 3, 3, 1 0.93 ± 0.05 0.89 ± 0.17 0.83 ± 0.26 0.19 0.62 ± 0.07

サンプルのデータとなる）．

5.1 提案手法のクラスタリング精度

はじめに，与えられた人工データに対する提案手法のク

ラスタリング精度を検証するために，最新の時系列クラス

タリング手法と比較する．TICC [8]，および TAGM [9]は

ネットワーク構造に基づいたクラスタリングを行う手法で

ある．TICCにはスパース性を制限するハイパーパラメー

タ λと隣接ポイントを同じクラスタに割り当てない際の罰

則コストであるハイパーパラメータ β がある．TAGMに

はスパース性を制限するハイパーパラメータ λのみ存在す

る．さらに，これらの手法はクラスタ数の指定が必要であ

るため，正しいクラスタ数を与え実験した．AutoPlait [16]

は多階層 HMMベースの自動クラスタリングアルゴリズ

ムである．また，CutPointSearchの効果を検証するため，

NGLから CutPointSearchを除いた NGL no-cpsとも比較

した．NGLと NGL no-cpsのハイパーパラメータは人工

データでの実験を通して，初期分割点の幅を 5，α = 1と

設定した．なお，各手法のハイパーパラメータは，本実験

に使用したデータセットとは別に用意したサンプル数 100

のデータセットを用いた実験において，平均精度が最も高

いものを使用した．

5.1.1 多種類の人工データにおけるクラスタリング精度

4つのデータセットについてサンプル数 100で実験し，

クラスタリング精度を macro-F1 スコアで比較した結果

を表 2 に示す．本手法がすべてのデータセットにおい

て最も高い平均精度であり，最も低い標準偏差を記録し

た．AutoPlaitはネットワーク構造を考慮しないため，ク

ラスタを発見できなかった．TICCと TAGMは正しいク

ラスタ数を与えられたにもかかわらず，平均精度におい

て NGLより 10%以上低かった．NGL no-cpsの結果から，

CutPointSearchで大きな塊のセグメントを発見すること

が重要であることが分かる．つまり，CutPointSearchによ

り，初期分割点時の隣接セグメントが同一クラスタに割り

当てられやすくなるため，クラスタリング精度が上がる．

5.1.2 サンプル数を変化させたときのクラスタリング精度

サンプル数の増加に対して精度を維持することは大規模

時系列データを扱うにあたり重要である．“1, 2, 3, 4, 1,

図 4 NGLと 2つの比較手法におけるサンプル数に対するmacro-F1

スコア

Fig. 4 Plot of clustering accuracy macro-F1 score vs. number

of samples for NGL and two other state-of-the-art meth-

ods.

2, 3, 4” を例にとりサンプル数 25～10,000 まで増加させ

サンプル数による精度への影響を評価した．図 4 はサン

プル数に対するmacro-F1 スコアをプロットした結果であ

る．NGLは他手法と比較して，サンプル数が比較的少ない

25～100において安定して高い精度を示している．これは

MDLの定式化によって，動的なクラスタ数の推定が可能と

なるMergeSegmentによる効果であると考えられる．一方

で，NGLはサンプル数が 2,500を超えると精度の低下が見

られる．サンプル数の増加により，正解クラスタとのモデ

ルの差が大きい部分シーケンスが多く生成されることで，

余分なクラスタが多く生成されるためである．NGL-20は

初期分割点の幅をサンプル数の 20分の 1に設定した手法

である．この設定により，サンプル数の増加にともない，1

クラスタのサンプル数の下限が増加する．これにより，サ

ンプル数 2,500以上の範囲においても安定した精度を示し

ている．これは，各セグメントにおいてネットワーク構造

がより正確に推定されるため，余分なクラスタが生成され

にくくなるためである．このように，初期分割点の幅を調

節することで，提案手法は大規模時系列データにおいても

高精度なクラスタリングをすることができる．

5.1.3 次元数を変化させたときのクラスタリング精度

本手法の符号化コスト関数はデータの次元数による影響

を受ける．“1, 2, 3, 4, 1, 2, 3, 4”を例にとりサンプル数

100で次元数 pを 5～50まで増加させ，次元数による精度

への影響を評価した．図 5 は次元数に対するmacro-F1ス
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図 5 NGLと 2つの比較手法における次元数に対するmacro-F1 ス

コア

Fig. 5 Plot of clustering accuracy macro-F1 score vs. number

of dimensions for NGL and two other state-of-the-art

methods.

図 6 NGLの検出可能クラスタのサンプル数に対するmacro-F1 ス

コア

Fig. 6 Plot of clustering accuracy macro-F1 score vs. number

of target cluster samples for NGL.

コアをプロットした結果である．NGLでは次元数 15以上

の場合において精度が低下している．次元数の増加にとも

ない，クラスタ間のモデルの差が小さくなるため，クラス

タの検出が困難になる．そのため，NGL-αではモデルの複

雑さを制御するため，次元数 10以上において α = 100/p2

に設定した．これにより，上記の生成方法による人工デー

タでは，次元数 50までの範囲において比較的高い精度を

示している．このように，αを適切に設定することで次元

数の増加に対してロバストにモデルの推定を行うことがで

きる．

5.1.4 クラスタ検出可能なサンプル数の検討

提案手法は他手法と比較して，サンプル数 25～100にお

いて特に有効であると示した．サンプル数を 1つのクラス

タのみ減らすことで，クラスタとして検出するのに必要な

サンプル数を検討する．“1, 2, 1”を例にとりクラスタ 1の

サンプル数を 300，クラスタ 2のサンプル数 5～100まで増

加させ，精度を評価した．図 6 はクラスタ 2のサンプル数

に対するクラスタ 2のmacro-F1 スコアをプロットした結

果である．クラスタ 2のサンプル数 15以下ではクラスタ

図 7 NGL のサンプル数 (a) と次元数 (b) に対する計算コスト

Fig. 7 Plot of wall clock time vs. number of samples (a) and

dimensions (b) for NGL.

2をほとんど検出できていないが，クラスタ 2のサンプル

数 40以上では高精度で検出している．よって，提案手法

が上記の人工データのクラスタを高精度で検出するのに必

要なサンプル数は 40以上であることが分かる．

5.2 提案手法の計算コスト

ここでは，提案手法の計算コストについて検証する．補

助定理 1では NGLの計算コストが最小でO(m · p3)，最大

でO(m2 ·p3)であることを示した．図 7は “1, 2, 3, 4, 1, 2,

3, 4”のサンプル数 n，次元数 pを変化させたときの NGL

の計算コストを示す．NGLは初期分割点の幅が一定のた

め，サンプル数と初期分割点の数mは比例する．図 7 (a)

から NGLの計算コストがサンプル数に対し線形であるこ

とが分かる．また，NGLの計算コストが最大になることは

稀であり，多くの場合において最小に近くなると考えられ

る．NGL-20は初期分割点の数が一定である．NGL-20の

計算コストは n ≤ 1000において一定だが，n > 1000にお

いてはオーバヘッドのため線形になっている．一方，次元

数の増加は共分散行列集合を推定する計算コストに影響を

与える．提案手法の計算コストは，図 7 (b)から，次元数

pに対し O(p3)となっている．これは補助定理 1において

示した結果と一致する．

6. ケーススタディ

本章では，実データを対象とした実験により，NGLが

意味のあるネットワーク構造を教師なしで発見可能である

ことを示す．

6.1 ハイパーパラメータ選択基準

本章で扱う実データには正解クラスタが存在しない．ま

た，データによって特徴量の次元数やクラスタ間のモデル

の差が異なる．このような場合においては，ユーザの直感

に合う，期待どおりの分割結果が求められる．提案手法は

特定のデータに対してモデルの符号化コストを適切に設定

することで，クラスタ数の自動決定が可能となる．その一

方で，提案手法にはさまざまなデータに対応するために，
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図 8 外貨交換レートデータにおける NGL の出力例

Fig. 8 Clustering result of NGL using currency datasets.

符号化コスト関数を制御するハイパーパラメータとして，

α，λが存在する．αはモデルの複雑さを制御する．αを小

さくすると，モデル表現コストの影響が小さくなるため，

クラスタ間のモデルの差が小さいクラスタが発見されるよ

うになる．λはモデルのスパース性を制御する．λを大き

くすると，モデルがスパースになるためモデル表現コスト

の値が小さくなり，クラスタ間のモデルの差が小さいクラ

スタが発見されるようになる．クラスタ間のモデルの差が

異なる多種の実データに対応するには，これらのハイパー

パラメータの設定は不可欠である．本章では，分割結果を

一意に決定するにあたり，大きなクラスタが形成されてい

るか，クラスタ数は解釈できる数に収まっているか，とい

う 2点を重要視した．分割結果が直感にそぐわない場合は

適宜ハイパーパラメータを調整した．そして，分割結果か

らデータの背景（社会情勢，地図情報）を考慮することで，

クラスタを解釈した．

6.2 金融データ

一般的に，株式，国債，外貨データは互いに相関してい

る．時系列金融データを解析することで，経済ネットワー

クの関係性を推定することができる．投資においてネッ

トワーク構造を知ることは，ポートフォリオ形成の際，高

相関のプロダクトを避けるなどのリスク回避行動がとれ

るため重要である．2005年から 2018年の 1時間ごとに取

得された外貨交換レートデータ（AUD/USD，EUR/USD，

GBP/USD，USD/CAD）を用い実験した*4．サンプル数

は 82,882，次元数は 4である．ネットワーク構造が 1週間

変化しないと仮定し，初期分割点を 1週間（123サンプル

前後）に設定した．また，データを 1週ごと正規化するこ

とで，ネットワーク構造の変化のみをとらえることに焦点

を置いた．これにより，得られるクラスタの逆共分散行列

の非対角成分の値は各変数の相関係数となる．

図 8 上部は経済データのクラスタリング結果を示す．

NGLが 2007年中期から 2009年初期にかけて起こった世

界金融危機付近で相関関係の変化をとらえていることが，

黄色クラスタから灰色クラスタへの変化で分かる．図 8 下

*4 https://github.com/FutureSharks/financial-data

図 9 外貨交換レートデータにおける TICC のクラスタ割当て

Fig. 9 Clustering result of TICC using currency datasets.

部は 2016年 5月 16日から 2016年 6月 5日におけるネッ

トワーク構造の急激な変化を示している．赤字で示した行

列の値から分かるようにイギリスに関する相関係数が大き

く変化している．これは，2016年 6月 23日に控えたイギ

リスの欧州連合離脱是非を問う国民投票による，国民の関

心や不安が反映されたものと思われる．

6.2.1 比較手法 TICCとの差

TICC [8]はクラスタ数を事前に指定する必要があり，ク

ラスタ数を 1つずつ増加させた結果に BICを用いること

でクラスタ数の決定が可能である．図 9 に同じ条件の経

済データにおいて TICC を用い，割り当てられたクラス

タを時間に対してプロットした実験結果を示す．図 9 の

(a)，(b)，(c)は各 β において最良の BICを示した結果で

ある．TICCはハイパーパラメータを調整したにもかかわ

らず，大きなクラスタを発見できていないことが分かる．

これは TICC がクラスタ間のモデルの差がある程度以上

存在する場合のみクラスタを発見することができるからで

ある．本実験のデータは 1週間ごとに正規化されているた

め，クラスタ間のモデルの差が人工データと比較して小さ

い．TICCはクラスタ間のモデルの差を制御するハイパー

パラメータを持たないため，クラスタ割当ての初期化に失

敗し，大きなクラスタを発見できないと考えられる．一方

で，提案手法はボトムアップ型のアルゴリズムにより，隣

接データを同一のセグメントに組み込みやすくなり大きな

セグメントを形成しやすい．また，符号化コストを制御す

ることで，クラスタ間のモデルの差が小さい場合でも大き

なクラスタを発見できる．これは αを調整した車両走行セ

ンサデータの例からも分かる．

6.3 車両走行センサデータ：高速道路

先に例示したように，車両走行センサは互いに相関して

おり，運転行動によりネットワーク構造は異なる．図 1 は
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図 10 車両走行センサデータ：市街地における NGL の出力例

Fig. 10 Clustering result of NGL using city automobile datasets.

高速道路を約 3,500 m走行した車両走行センサデータの解

析結果である．複数のドライバーが同コースを計 40周回

し，7つのセンサデータ（左右加速度，ハンドル角，アク

セルペダルストローク，速度，前後加速度，燃費，ブレー

キペダルストローク）が 10 m間隔で取得された．サンプ

ル数は 14,000，次元数は 7である．ある地点を走行する際

のネットワーク構造を発見することを目的とするため，初

期分割点の幅を周回数と同じ 40に設定し，初期セグメン

トごとに正規化した．

図 1 右部は NGL により発見された 4 つのクラスタの

ネットワーク構造を示している．すべてのクラスタに共通

した特徴として，燃費とアクセルペダルストロークの負の

相関，燃費と前後加速度の負の相関，アクセルペダルスト

ロークと前後加速度の正の相関が見られた．そして，ネッ

トワーク構造と地図を用いることですべてのクラスタを

解釈することができた．クラスタ#1は直線を安定して走

行している区間であると解釈できる．クラスタ#2にはク

ラスタ#1のネットワークに加え左右加速度とハンドル角

に負の相関が見られることから，左折していることが分か

る．クラスタ#3では唯一，ブレーキペダルストロークと

前後加速度の相関が見られる．これはクラスタ#3付近に

合流や料金所があるために加減速を繰り返したためだと考

えられる．クラスタ#4は左右加速度とハンドル角に負の

相関に加え，アクセルペダルストロークと速度に正の相関

が見られることから加速しながら左折をしていることが分

かる．実際に地図を確認することで合流などがなく，アク

セルを踏めそうなカーブを左折していると確認できる．

6.4 車両走行センサデータ：市街地

図 10 は市街地を約 3,260 m 走行した車両走行センサ

データの解析結果である．複数のドライバが同コースを 4

走行したデータで，7つのセンサデータが 5 Hzで取得され

たものをそれぞれ NGLで解析した．サンプル数はそれぞ

れ 5,464，5,991，6,410，5,800，次元数は 7である．今回

は，単一走行のネットワーク構造を発見することを目的と

するため，初期分割点を 2秒間隔に設定し，初期セグメン

トごとに正規化した．

市街地コースは主に道幅が狭く右左折が多い区間と，信

号が多く混雑した区間と，道幅が広くスピードを出せる区

間から構成される．図 10 左部の地図では色とクラスタ番

号が対応しており，NGLにより，すべての走行において

類似した割当てがされたことが分かる．地図情報から判断

すると，クラスタ#1は道幅が狭い区間．クラスタ#2は

道幅が広い区間，そしてクラスタ#3は混雑した区間に対

応すると考えられる．また，クラスタ#2と#3のネット

ワーク構造をそれぞれ走行 Aから Dの間で比較すること

で走行の差やクラスタの特徴が分かる．クラスタ#2では，

道幅が広い区間では走行ごとに異なったネットワーク構造

を持つことが分かる．これは広い道路では信号や前方車の

有無などの複雑な外的要因，ドライバの技量により，走行
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ごとに異なる操作をしていることを示している．クラスタ

#3ではすべてのネットワーク構造に前後加速度と速度の

正の相関と，燃費とアクセルペダルストロークの負の相関

が共通して見られることが分かる．加減速を繰り返す区間

では，この 2つの相関が強く出ることが分かる．

7. むすび

本論文では，ネットワーク構造に基づいたパターンを検

出する手法として，NGLを提案した．NGLは与えられた

多次元時系列データに関する事前知識を必要とせずネット

ワーク構造に基づいた解釈性の高いクラスタを発見でき

る．また，NGLはデータの最適な分割点とクラスタ数を

自動的に発見することができる．人工データを用いた実験

により，NGLは最新の既存手法と比べてより高い精度を

持つことを示した．さらに，さまざまな種類の実データを

用いた実験では，NGLが解釈性の高いネットワーク構造

を持つクラスタを発見することを示した．
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