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複合イベントストリームのための特徴自動抽出

中村 航大1,2,a) 松原 靖子1,b) 川畑 光希1,c) 梅田 裕平3,d) 和田 裕一郎3,4,e) 櫻井 保志1,f)

受付日 2021年3月8日,採録日 2021年7月2日

概要：複数の属性（乗車時間，乗車エリア，降車エリア，タクシーの種類，顧客の属性…）を含むタクシー
乗車データなどに代表される，時間情報をともなうイベント集合は，テンソルストリームとして扱うこと
ができる．本論文では複雑かつ大規模なイベントテンソルストリームから，類似時系列パターンや属性内
における潜在グループを自動で抽出する TriCompを提案する．TriCompは (a)時系列パターンや属性
間における類似した特徴を明らかにし，(b)それらの特徴をパラメータのチューニングを行うことなく自
動的に抽出し要約する．また，(c)計算時間はデータストリームの長さに依存せず，高速に処理を行う．実
データを用いた実験では，TriCompが複雑なイベントストリームから時系列変化を正確にとらえ，潜在
グループや時系列パターンといった，データの解釈を助ける特徴を自動的に発見することを確認した．ま
た，提案手法が，最新の既存手法と比較して高精度であり，計算時間について大幅な性能向上を達成して
いることを明らかにした．
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Abstract: Given that large tensor streams of time-evolving events such as taxi rides, which contain multiple
attributes (e.g., pick up time, pick up area, drop off area, taxi type, customer attribute. . . ) are difficult
to comprehend, how do we obtain intuitive groups and patterns? Also, how do we incrementally capture
latent structure and typical patterns to achieve a meaningful summarization? In this paper, we propose a
streaming algorithm, namely TriComp, which is designed to automatically find both typical patterns and
latent groups in such complex yet huge collections. Our method has the following advantages: (a) it is
Effective: it provides compact and powerful representations that reveal similar features with respect to both
time and attributes. (b) it is Automatic: it automatically recognizes and summarizes them without any pa-
rameter tuning. (c) it is Scalable: it is incremental yet scalable, and thus requires computational time that
is independent of data stream length. Extensive experiments on real datasets demonstrate that TriComp

provides a summarization that helps us understand the complicated data and that consistently outperforms
the state-of-the-art methods in terms of both execution speed and accuracy.
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1. まえがき

位置情報に基づくサービス [1]，Webアクティビティ [2]，

医療情報解析 [3], [4]，などの幅広い分野において，複数の

属性情報を持つイベントデータが毎時刻生成されている．

このようなデータは，複雑でありながら大量に生成され続

けるため，リアルタイムに有用な要約を獲得することが重

要である．具体的には，潜在的なグループを明らかにする

ような解釈性，実社会の状況に合わせて変化する適応性，

人手を介さない自動性をあわせ持つ要約が必要とされる．

たとえば，タクシー乗車データは，乗車エリア，降車エリ

ア，顧客情報，タクシーの種類といった情報が付加されて

いる．このようなデータを，稼働状況を反映しながら効果

的なマーケティングに活用するために，エリアや顧客情報

にどのような潜在的なグループがあるのか，夏季と冬季で

どのような違いがあるのか，といった分析をチューニング

による時間的コストや人材コストを必要とせずに行うこ

とが求められる．したがって本研究では，大量のイベント

データから要約されるべき情報を時系列パターンと潜在グ

ループの集合と定義し，要約情報と呼ぶ．

上述の需要を満たす有用な要約情報を獲得するために，

以下の 2つの重要かつ困難な課題の解決が必要となる．

• 非構造データの構造化：潜在的に存在するグループと
そのグループに対する各属性の関連度の強さを明らか

にする．多数の属性を含むイベントデータストリーム

はセンサデータのような連続的な系列データとは異な

り，スパースで大規模なテンソルとして表現されるた

め扱いが困難である．本論文では，このような複数の

属性を持つログデータを「複合イベント」と定義する．

• 時系列パターンの発見：データストリームに現れる類
似時系列パターンを発見する．それぞれの類似時系列

パターンは多様な種類と異なるパターン長を持つた

め，種類数，特徴，パターン長をデータから自動的に

学習することが必要となる．本論文では，このような

類似時系列パターンを「レジーム」と定義する．

本研究では，リアルタイム処理において，大量に発生す

る複合イベント集合から，潜在グループとレジームの両方

を自動で発見する手法としてTriComp を提案する．具体

的には，それぞれのイベントデータが時刻（time）と 2つ

の属性情報（entity1，entity2）を持つとして，以下の課題

に取り組む．

問題 1 3つ組 (entity1, entity2, time)で構成されるイ

ベント群が与えられたとき，

• 潜在的に存在するグループとそれらのグループに対す
る各属性の関連度の強さを明らかにし，

• 自動ですべての時系列パターンを抽出し，潜在グルー
プと時系列パターンの両方をモデルとして表現する．

• また，これらの処理をオンラインかつ高速に行う．

なお，提案手法は上述の 3つ組以外にも任意の属性数を

持つイベントを扱うことができるが，論述の簡略化のため

に本論文では主に 3つ組のイベントについてのみ言及する．

1.1 具体例

図 1 は本研究で対象とする複合イベントテンソルの例で

ある．図中の各データ点は，乗車エリア，降車エリア，乗

車時間の 3つ組で構成されるイベントに対応する．オリジ

ナルデータはスパースなテンソルであり，時系列パターン

やグループを発見できず，明確な特徴をまったく把握でき

ない．

このような複雑なイベントテンソルストリームにおいて

TriComp は類似時系列パターン（レジーム）を自動的に

発見する．図 2 (a)は TriComp の出力結果である．提案

手法は，はじめにレジーム 1として時系列パターンと潜在

グループをモデル化した．時刻 80では，パターン変化を自

動的に検出し，レジーム 2を新たに生成することで異なる

特徴を持つパターンを表現している．最終的に得られるレ

ジームの変化点と割当てから，レジーム 1が平日，レジー

ム 2が休日に対応していることが分かる．また，図 2 (a)の

赤枠は提案手法がレジーム 2に割り当てた期間であるが，

この日は実際に祝日であることから，周期性のない特徴も

把握することに成功している．結果として，実際の社会活

動と一致するような特徴を持つ，複数のレジームを自動で

検出している．このように，提案手法はデータに関する事

前情報を必要とせず，イベントテンソルストリームから有

用なパターンを検出する．

また，TriComp はイベントテンソルストリームに潜在

的に存在する共通のグループとそれらへの各属性の関連度

を要約情報として抽出する．図 2 (a)において，各シーケ

ンスは，それぞれのグループに対する各時刻の関連度の強

さを示す．図 2 (b)，(c)では，提案手法が検出した 3つの

潜在グループが存在し，それらに対する各エリアの関連度

は色の濃さで示されている．

図 1 オリジナルのイベントテンソルストリームの一部

Fig. 1 Part of original event tensor stream.
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図 2 (a) レジーム割当てと時間ごとのグループ関連度 (b)，(c) 3 つの潜在グループとそれら

に対する各エリアの関連度（色の濃さ）．0.4 以下の小さな関連度は可視化していない．

Fig. 2 Modeling power of TriComp for taxi ride events: (a) Segments (shaded rectan-

gle with yellow and gray) and time-wise intensity sequences of each group. (b),

(c) Each attribute (pick up and drop off area)-specific groups. It shows latent

groups (colors) and its attributes wise participation weights (depth of colors).

Too low degrees are not shown (< 0.4).

具体的な例としてレジーム 2（休日レジーム）を取り上

げる．図 2 (a)において，レジーム 2ではグループ 3（緑

色）が強い関連度を示しており，グループ 3 は休日との

関連が強いグループであることが分かる．また，休日に

おいてグループ 3へと変化した赤円で囲まれたエリアが，

広大な自然公園や，多くのバーやレストランがある Lower

Manhattanであることを考慮すると，グループ 3は娯楽に

関連するグループであると考えられる．また，グループは

属性間で共通であるため，娯楽グループの乗車は図 2 (b)

の右図において緑色のエリア（グループ 3）から多く発生

していることが分かる．以上のように，TriComp は，事

前知識を要することなく明確な特徴をとらえ，データの解

釈を助ける，有益な要約情報を抽出することができる．

1.2 本論文の貢献

本論文では複合イベントテンソルストリームにおける特

徴自動抽出手法としてTriComp を提案する．提案手法は

次の特長を持つ．

( 1 ) 大規模かつ複雑な複合イベントから，有用な特徴であ

る時系列パターンと潜在グループの両方を動的に抽出

する．

( 2 ) 上記の特徴抽出は自動的に行われ，ユーザの介入を必

要とせずに発見することができる．

( 3 ) 増加し続ける複合イベントストリームにおいて，デー

タ全体を保持せず効率的に処理することができる．

2. 関連研究

行列/テンソル分解．行列分解に基づく手法は高次元デー

タが持つ潜在的に存在する要素の発見に有用である．CP

分解 [5]や Tucker分解 [6]は基礎的な技術であり，幅広い

分野で用いられている．さらに，時間情報を含むデータ

に対してより効果的な手法として，時間発展を考慮した

分解手法が数多く提案されている [7], [8]．CompCube [9]

や PowerCast [10]は非線形の時間発展をとらえ，効果的な

時系列解析を行う．RobustSTL [11]，Fast RobustSTL [12]

は，季節性の変動と変化点をとらえることが可能である．

しかし，これらの連続値を対象とした手法は，離散値で構

成される非構造な複合イベントを適切に扱うことができ

ない．

複数の属性を持つ離散データはテンソルとして処理する

ことが可能である [13]．Rubik [4]は，遺伝子に関する専門

知識をモデルに組み込むことで，表現型*1を明らかにする，

スパース性を持つテンソルのための手法である．また，確

率分布を用いた分解も潜在的な構造を発見するうえで有用

である [14], [15], [16]．TriMine [17]はトピックモデルに基

づく，拡張性を兼ね備えた手法である．Dalleigerらは，最

大エントロピー法を用いて，データ内のグループとそれら

の特徴を発見する手法を提案した [18]．深層学習を用いた

*1 生物の示す形態的，生理的な性質．遺伝子に規定されて発現する
形質．
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手法も多数提案されている [19], [20], [21]．CoSTCo [22]は

スパーステンソルのための畳み込みニューラルネットワー

クに基づくモデルである．これらの手法とは異なり，提案

手法は，時系列パターンと属性内における潜在グループの

両方を要約情報として抽出する．さらに，特徴抽出はリア

ルタイムかつ自動で行われる．

動的モデリングに基づく要約．隠れマルコフモデル（HMM:

hidden Markov model），自己回帰モデル（AR: autoregres-

sive model），線形動的システム（LDS: linear dynamical

model）は代表的な技術であり，これらに基づく時系列

解析手法が数多く提案されている [23], [24], [25]．Auto-

Plait [26]と TICC [27]は，センサデータなどの多次元時系

列データから類似した時系列パターンを発見する手法であ

る．StreamScope [28]は AutoPlaitを発展させた，リアル

タイムに処理を行うモデルであり，CubeMarker [29]は 3

階のテンソルからパターンを検出することが可能である．

また，CubeCast [30]はテンソルの要約情報を利用し，効果

的な非線形予測を行う．一方，連続的な時系列シーケンス

を対象とした従来の手法と異なり，提案手法は，スパース

性がともなうイベントテンソルのために設計されている．

まとめると，大規模イベントテンソルストリームにおい

て，潜在グループと類似時系列パターンの両方を，リアル

タイムに自動抽出する手法は依然として存在しない．本研

究の目的は，この問題を解決するため，イベントテンソル

ストリームのための有用なテンソル分解と類似時系列パ

ターンの検出に基づく，ストリーム処理指向の自動解析モ

デルを開発することである．

3. 提案モデル

本章では，複合イベントストリームのための解析モデル

について述べる．提案モデルに必要な概念と問題について

定義を行ったのち，それらの詳細について説明する．

3.1 問題定義

表 1 に本研究で使用する記号の定義を示す．本研究で

は，2つの属性と時間情報 (entity1, entity2, time)の 3つ組

で構成される複合イベントを扱う．ここで entity1，entity2

の総数をそれぞれ u，v とし，総タイムスタンプ数を nと

する．

定義 1（イベントテンソル） X ∈ N
u×v×n を 3 階のイ

ベントテンソルとする．X の要素 xi,j,t は時刻 tにおいて

entity1の i番目に entity2の j番目が出現した頻度を示す．

また本論文では，各イベントエントリに共通の潜在グ

ループが存在すると仮定する．これにより，TriComp は

(entity1, entity2, time)の 3要素に対し潜在グループを発

見し，テンソル X を 3つの行列（A，B，C）に分解する．

定義 2（潜在行列A (u× k)） 要素 ai,j は i番目の en-

tity1と j 番目の潜在グループとの関連度の強さを示す．

表 1 記号と定義

Table 1 Symbols and definitions.

記号 定義

u，v entity1 と entity2 の総数

n イベントテンソルの長さ

X 3 階イベントテンソル X ∈ N
u×v×n

k 潜在グループの個数

A，Â entity1 に関する潜在行列と過去のモデルパラメータ，

u × k

B，B̂ entity2 に関する潜在行列と過去のモデルパラメータ，

k × v

C，Ĉ 時間に関する潜在行列と過去のモデルパラメータ，

k × n

θi i 番目のモデルパラメータ集合 θi = {Ai,Bi,Ci}
Θ q 個のレジームによる全レジーム集合，

Θ = {θ1 . . . θq}
si i 番目のレジームの遷移履歴

S q 個のレジームによる遷移履歴集合 S = {s1 . . . sq}
D 候補解 D = {Θ, S}

このとき要素 ai,j は正の実数とし，各要素の合計値を 1

とする（
∑

j ai,j = 1）．entity2に関する潜在行列Bと時間

に関する潜在行列Cの定義も上記と同様であるが，簡略化

のため省略する．潜在行列A，B，Cはそれぞれ，(entity1,

entity2, time)の各要素における潜在グループ#1, #2, . . . ,

#kに対する関連度の強さを示す．

提案手法は 3つ以上の属性（M > 3）を持つイベントを

扱うことも可能である．複合イベント集合がM 階テンソ

ル X で表現されるとき，提案手法は，X をM 個の潜在行

列に分解することができる（A,B(1), . . . ,B(M−2),C）．

まとめとして，本論文で扱う問題を次のように定義する．

問題 1（複合イベント集合からの潜在グループの発見）

3つ組 (entity1，entity2，time)で構成されるイベントテン

ソルX が与えられたとき，X の潜在グループを明らかにし，
(entity1, entity2, time)の各要素に対し潜在行列を得る．

上述のように，M 個の行列への分解によって，複合イベ

ントから潜在グループを発見をすることが可能であるが，

様々な時系列パターンを含む複合イベントテンソルスト

リームの表現には不十分である．したがって，時間発展に

ともなう，潜在グループとそれらへの関連度の変化を表現

する必要がある．

定義 3（レジーム） 特定の類似時系列パターンを表現

するために，分解された 3つの潜在行列をレジーム θとす

る（θ = {A,B,C}）．q 個のレジームがあると仮定したと

き，レジームパラメータ集合として Θ = {θ1 . . . θq}を定
義する．また，レジーム割当て集合を S = {s1 . . . sq}とす
る．ここで si = {(ts, j), . . . }は，時間 tsに i番目のレジー

ムから j 番目のレジームに遷移したことを示す．

定義 4（候補解） D = {Θ, S} を X を表現する全パラ
メータ集合とし，候補解と呼ぶ．
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本論文の目的は，複合イベントストリーム X に潜在する
グループを抽出すると同時に，類似時系列パターンを発見

し，X の有用な要約を行うことである．本論文で扱う問題
を以下のように定義する．

問題 2（リアルタイム要約） 複合イベントテンソルス

トリーム X が与えられたとき，X 全体を表現する要約情
報D，すなわち，

• レジームの個数 q，

• レジームパラメータ集合，Θ = {θ1 . . . θq}，
• それらの割当て集合，S = {s1 . . . sq}.
を求めることである．

3.2 TriComp モデル

本節では，提案モデルの詳細について述べる．TriComp

は以下の 2つのアイデアから構成される．

• オンラインテンソル分解：複雑かつ大規模なイベント
テンソルから潜在グループの抽出を可能にする多方向

分解を行う．さらに重要な点として，この分解は逐次

的かつ高速に処理を行う．

• 自動圧縮：新しい符号化スキームを導入することで，
イベントテンソルストリームから抽出された要約情報

を自動的に評価する．この評価に基づいて，時系列パ

ターンを検出し，潜在グループと時系列パターンの両

方をモデルとして表現する．

3.2.1 オンラインテンソル分解

第 1 の課題はスパース性をともなう複合イベントスト

リームから潜在グループを抽出することである．まず，オ

フライン（単一のイベントテンソル X のみ扱う場合）での
分解について述べる．M 階の複合イベントテンソルが与

えられたとき，k個のグループを発見し，これらのグルー

プに基づくM 個の潜在行列を推定する．本手法ではそれ

ぞれのイベントエントリに対し 1つの潜在グループを割り

当てる．イベント集合における生成モデルは以下のとおり

である．

( 1 ) For each groups r = 1, . . . , k:

( a ) For each tensor mode m = 1, . . . , M − 2:

( i ) Draw B(m)
r ∼ Dirichlet(β(m)).

( b ) Draw Cr ∼ Dirichlet(γ).

( 2 ) For each entity1 i = 1, . . . , u:

( a ) Draw Ai ∼ Dirichlet(α).

( b ) For each entry j = 1, . . . , Ni:

( i ) Draw a latent variable zi,j ∼
Multinomial(Ai).

( ii ) For each tensor mode m = 1, . . . , M − 2:

( A )Draw an entity2 e
(m)
i,j ∼

Multinomial(B(m)
zi,j ).

( iii )Draw a timestamp ti,j ∼
Multinomial(Czi,j

).

ここで，α，β(m)，γ はそれぞれA，B(m)，Cのための

固定パラメータとする*2．

次に，上述の推定をオンラインで効率的に行う手法につ

いて述べる．提案手法では，以前のモデルパラメータを利

用することで，過去のモデルの情報を引き継ぐことを可

能にする．(entity1, entity2, time)の各要素における各潜

在グループへの関連度は，時々刻々と変化し，現時刻にお

けるそれらの関連度は，新たなデータが観測されない限

り一時刻前の関連度と同じであると仮定する．具体的に

は，それぞれの潜在行列における過去のグループ関連強度

Ât−1,u，B̂(m)
t−1,k，Ĉt−1,k を，それぞれのディリクレ事前分

布の平均としてパラメータに組み込む（Dirichlet(αât−1,i)，

Dirichlet(β(m)b̂
(m)
t−1,r)，Dirichlet(γĉt−1,r)）．

上記に加えて，より長期間の時間的依存性を導入する

ために，Lステップ前までの時系列変化を考慮するとき，

ディリクレ事前分布は以下のように表される．

Draw Ai ∼ Dirichlet(ΣL
l=1αât−l,i),

Draw B(m)
r ∼ Dirichlet(ΣL

l=1β
(m)b̂

(m)
t−l,r), (1)

Draw Cr ∼ Dirichlet(ΣL
l=1γĉt−l,r).

過去パラメータの導入によって，時系列変化をモデル化す

るために過去のテンソルを保持する必要がなくなり，省計

算時間かつ省メモリ容量で処理を行うことが可能となる．

3.2.2 自動圧縮

第 2の課題は，潜在行列A，B(m)，Cが与えられたとき，

複合イベントテンソルストリームを表現する良い要約情報

を定義し，自動でモデルを構築することである．本研究で

は，良い要約情報を定義するため，最小記述長（Minimum

description length: MDL）に基づく符号化スキームを適用

する．MDLに従い，候補解Dを表現するための「モデル

表現コスト」，候補解 Dが与えられたときのデータ X の
「符号化コスト」を定義し，これらの総和が最小となるモデ

ルを構築する．

モデル表現コスト．本研究におけるモデル表現コストはす

べてのレジームを表現するためのコスト <Θ>によって定

義される．浮動小数点のコストを cF とすると*3，<Θ>は

次の要素から構成される*4：

<θ> = <A> +
M−2∑

m=1

<B(m)> + <C>, (2)

<A> = |A| · (log((k − 1) ∗ u) + cF ) + log∗(|A|), (3)

<B> = |B| · (log((v − 1) ∗ k)) + cF ) + log∗(|B|), (4)

<C> = |C| · (log((n− 1) ∗ k) + cF ) + log∗(|C|). (5)

ここで | · | は，それぞれの行列の要素と 1/k，1/v，1/nと

の差における，非ゼロ要素の総数である．
*2 本論文では，α = 0.5

k
，β(m) = 0.1，γ = 0.1 とする．

*3 本論文では 8 ビットとする．
*4 log∗ は整数のユニバーサル符号長を示す．
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データの符号化コスト．ハフマン符号を用いた情報圧縮で

は，候補解Dが与えられたときの X の符号化コストを次
のように定義する：

<X|D> =
q∑

p=1

<X [sp]|Θ>

=
q∑

p=1

− log P (X [sp]|θp). (6)

ここで，X [sp]は p番目のレジームに割り当てられた部分

テンソル集合とする．

複合イベントストリームは半無限長のデータであり，デー

タ全体の符号長を計算することは困難である．したがっ

て，新たに生成されたデータに対して動的にパラメータを

最適化する．より具体的には，最新の部分イベントテンソ

ルXC がX に追加されるときに必要となる総コストの増加
量を計算し，増加量が最小となるようにレジームパラメー

タ集合 Θとそれらの割当て S を求める．XC を表現する

ために追加で必要となるコストは以下のようになる：

Δ<X ;D> = <XC ; θ∗>

= Δ<θ∗> + <XC |θ∗>. (7)

ここで，θ∗ は XC を表現するために用いるレジームパラ

メータである．XC を既存レジームによって表現できる場

合は Δ<θ∗> = 0となり，そうでない場合，新しいレジー

ムを記述するためのモデル表現コストが必要となる．上述

の計算における新しいレジームの採用には，追加のモデル

表現コストが必要となるため，既存のレジームより高い表

現力（低い符号化コスト）でデータを表現することが求め

られる．したがって，総コストの増加量が最小となるよう

にモデルを構築することで，データを表現するうえで冗長

なレジームを含まない，簡潔かつ効果的なレジームパラ

メータ集合 Θの構築を行うことができる．

4. ストリームアルゴリズム

本章では複合イベントテンソルストリームを，高速かつ

自動で解析するためのアルゴリズムであるTriComp につ

いて述べる．

4.1 概要

前章で述べた符号化理論に従い，有用な要約情報を抽出

するためには (a)複合イベントのテンソル分解に基づいた

モデルの推定，(b)候補解Dのリアルタイム最適化を行う

必要がある．これらを達成するためのアルゴリズムである

TriComp の概要を Algorithm 1 に示す．また，図 3 は，

TriComp の処理の流れを示している．直感的には，最新

のイベントテンソル XC からモデルパラメータ集合（レ

ジーム）を推定し，推定レジームを用いて候補解Dの更新

を試みる．より具体的には，アルゴリズムは以下の 2つの

Algorithm 1 TriComp (XC ,D)

Input: 1.Current tensor XC ∈ N
u×v×τ

2.Previous candidate solution D = {Θ, S}
Output: Updated candidate solution D′

1: θ = TriComp-deComp (XC);

2: Θ′, S′ = TriComp-Compress (XC , D, θ);

3: return D′ = {Θ′, S′};

図 3 TriComp のアルゴリズムの概要

Fig. 3 An overview of TriComp.

手順で構成されている．

(P1) TriComp-deComp：部分イベントテンソルから候

補レジーム θc を推定する．θc は Lステップ前までの

時間的依存性を考慮した，オンラインテンソル分解に

よって導出される．

(P2) TriComp-Compress：直前レジーム θp と候補レ

ジーム θcを監視しながら，評価指標である式 (7)に基

づいて最適なレジームを採用する．また，レジーム集

合Θは，モデルの切替えをともなう，提案手法に適し

た手順で更新される．

ここで，X の部分テンソルとしての XC を，データ長

が τ � nであり，要素集合 xi,j,t−τ+1, . . . , xi,j,t を持つと

する．本アルゴリズムでは，重複のない XC が，τ 間隔で

与えられるとする．以降の説明では，論文の簡略化のため

にイベントテンソルを 3階のテンソルとして述べるが，潜

在行列Bに関して拡張するだけで，より高次元のテンソル

を扱うことが可能である．

4.2 TriComp-deComp

本研究では，ギブスサンプリング [31] を用いて潜在グ

ループの推定を行う．テンソル XC 内における非ゼロ要素

xi,j,tに対し，確率 pで潜在グループを割り振る．それぞれ

の要素にとっての潜在グループ zi,j,t は，過去パラメータ

を考慮しながら以下の確率によって決定される．

p(zi,j,t = r|X ,A′,B′,C′, α, β, γ, Â, B̂, Ĉ) (8)

∝ a′
i,r +

∑L
l=1 αâl,i,r

∑k
r=1 a′

i,r + Lα
· b

′
r,j +

∑L
l=1 βb̂l,r,j∑v

j=1 b′r,j + Lβ

· c
′
r,t +

∑L
l=1 γĉl,r,t∑n

t=1 c′r,t + Lγ
.
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Algorithm 2 TriComp-deComp (XC)

Input: Current tensor XC ∈ N
u×v×τ

Output: Model parameter set θ = {A,B,C}
1: for each iteration do

2: for each non-zero element x in XC do

3: for each entry for x do

4: Draw hidden variable z // Eq. (8)

5: end for

6: end for

7: end for

8: Compute A,B,C; //Eq. (9)

9: θ ← A,B,C;

10: Q.deque; // Remove oldest previous parameter

11: Q.enque(θ); // Insert θ as new previous parameter

12: return θ;

ここで，ai,r，br,j，cr,t は r番目のグループに entity1の i

番目，entity2の j番目，時刻 tが割り振られた回数を示す．

a′
i,r 等のプライム符号は，entity1の i番目，entity2の j番

目，時刻 tに割り振られた値が除かれていることを示す．

推定される潜在行列 Ã，B̃，C̃の各要素は次の式で計算

される：

ãi,r ∝ ai,r +
∑L

l=1 αâl,i,r∑k
r=1 ai,r + Lα

, b̃r,j ∝ br,j +
∑L

l=1 βb̂l,r,j∑v
j=1 br,j + Lβ

,

c̃r,t ∝ cr,t +
∑L

l=1 γĉl,r,t∑n
t=1 cr,t + Lγ

.

(9)

Algorithm 2 は TriComp-deComp の詳細を示してい

る．はじめに，式 (8)によって，テンソル XC 内のそれぞ

れの非ゼロ要素 xi,j,t に対する潜在グループを決定する．

各要素にとっての潜在グループが決定したのち，式 (9)を

用いて潜在行列を推定する．ここで，過去パラメータはサ

イズ Lの先入れ先出しのキューとして扱う．モデルの推定

後，キューから最も古いパラメータが取り除かれ，新たに

推定したレジームパラメータが挿入される．

4.3 TriComp-Compress

候補レジーム θc を推定後，TriComp-Compress はレ

ジーム遷移を監視し続け，評価指標である式 (7)に基づい

て適切なモデルを選択する．

Algorithm 3 は TriComp-Compress の詳細を示して

いる．レジーム遷移を監視するために，直前レジーム θpと

候補レジーム θcの 2つを保持する．そして，式 (7)を用い

てそれぞれの増加コストを比較し，コストがより小さくな

るように次の手順を決定する．

• 直前レジーム θp を採用したときの増加コストが小さ

い場合，レジーム遷移は発生せず，候補レジームは採

用されない．

Algorithm 3 TriComp-Compress (XC ,D, θ)

Input: 1. New observation tensor XC ∈ N
u×v×τ

2. Previous candidate solution D = {Θ, S}
3. Candidate model parameter set θ = {A,B,C}

Output: Updated candidate solution D′

1: θc ← θ;

2: /* Compute <XC ; θp> and <XC ; θc>; // Eq. (7)

3: if <XC ; θp> is less than <XC ; θc> then

4: /* Stay on the previous regime θp */

5: θ′p ← RegimeUpdate (θp, θc); // Eq. (10)

6: else

7: θe = arg min
θ∈Θ

<XC ; θ> // Eq. (7)

8: if <XC ; θc> is less than <XC ; θe> then

9: /* Shift to the candidate regime θc */

10: Θ′ ← Θ ∪ θc; q ← q + 1;

11: sq+1 = (t, q + 1);

12: S′ ← S ∪ sq+1;

13: else

14: /* Shift to the existing regime θe*/

15: θ′e ← RegimeUpdate (θe, θc) // Eq. (10)

16: se ← (t, e)

17: end if

18: end if

19: return D′ = {Θ′ S′};

• 候補レジーム θc を採用したときの増加コストが小さ

い場合，既存レジームの複製を避けるために，Θの中

からより適切なモデルを検索する．その後，コストが

最小となるレジームを選択する．

リアルタイム更新．最適なレジームとして既存レジームが

選択された場合，既存レジームは候補レジームに基づいて

以下の式で更新される．

˜ai,r ←
ai,r +

∑
l αâl,i,r + λ(ac

i,r +
∑

l αâc
l,i,r)∑

r ai,r + Lα + λ(
∑

r ac
i,r + Lα)

,

˜bj,r ←
bj,r +

∑
l βb̂l,r,j + λ(bc

j,r +
∑

l βb̂c
l,r,j)∑

r bi,r + Lβ + λ(
∑

r bc
i,r + Lβ)

, (10)

˜ct,r ←
ct,r +

∑
l γĉl,r,t + λ(cc

t,r +
∑

l γĉc
l,r,t)∑

r ct,r + Lγ + λ(
∑

r cc
t,r + Lγ)

.

ここで，ac
i,r 等の符号 cは，候補レジームの要素を示し

ている．また，本アルゴリズムにおいて学習率 λ > 0は固

定値とする*5．この更新式では，新たに追加される候補レ

ジームの要素は，既存レジームの要素に対してより小さい

影響力を持つ．したがって，レジーム間の独立性を保持し

ながらオンラインに更新することが可能である．これは，

モデルの切替えをともなう提案手法に適した更新となって

いる．

定理 1 各カレントテンソルにおいて TriComp は単位
*5 本論文では λ = 0.1 とする．
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時間あたり最小 O(N)，最大 O(q + N)の計算時間を要す

る．ここで，N はテンソル X 内における総イベントエン
トリ数を示す（N =

∑
i,j,t xi,j,t）．

証明 1 各時刻において，TriComp はまず TriComp-

deComp を行う．XC 内における各イベントエントリにお

いて，潜在グループ z を決定する．グループ数を k，学習

の反復回数を#iterとすると，この手順はO(#iter× kN)

の計算時間を必要とする．ここで，#iter，k は総イベン

トエントリ数 N と比較し小さい定数であるため無視する

ことができる．よって，TriComp-deComp の計算時間は

O(N)である．次に，TriComp-Compress では θc と θp

を監視する．XC に適したレジームとして，前レジーム θp

が選択された場合，繰返し処理を必要とせずに，パラメー

タが更新されるため計算時間は O(1)のみ必要とする．そ

うでない場合，レジーム集合 Θの中から適切なレジーム

を検索するため，O(q)の計算時間を要する．全体として，

TriComp はこれらの 2つのアルゴリズムによって構成さ

れている．したがって，単位時間あたり最小 O(N)，最大

O(q + N)の計算時間を要する．

5. 評価実験

本論文では，TriComp の有効性を検証するため，以下

の項目について実データを用いた実験を行った．

• 提案手法から得られる要約の有効性
• 提案手法の要約精度
• 複合イベントテンソルストリームに対する提案手法の
計算コスト

実験には，Intel Xeon E5-2637 3.5 GHz quad core CPU，

192 GBのメモリを搭載した Linuxマシンを使用した．実

験に使用した 2つのデータセットについて，表 2に示す*6．

• NY-Taxi *7：2020年 1月 1日から 2020年 6月 30日

までの期間におけるニューヨーク市の Yellow Taxiの

乗車記録．各イベントエントリは (乗車エリア ID, 降

車エリア ID, 1時間刻みの乗車時間)の 3つの属性か

ら構成されている．

• NY-Bike *8：2015 年のニューヨーク市自転車シェア

リングサービスの利用履歴．各記録は，(利用ユーザ

世代, 利用開始エリア ID, 1時間刻みで取得した利用

開始時間)の 3つの属性値を持つ．利用ユーザ世代は，

表 2 データセットの概要

Table 2 Dataset description.

ID Dataset entity1 entity2 time sparsity (%)

#1 NY-Taxi 262 263 4,368 98.262

#2 NY-Bike 19 488 8,760 93.263

*6 sparsity は (1 − #observation
u×v×n

) × 100 によって求められる．
*7 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.

page
*8 https://www.citibikenyc.com/system-data

10歳から 100歳までを 5歳ごとに分類（離散化）し，

それぞれが該当する年代を属性情報とした．

5.1 Q1. 提案手法の有効性

NY-Taxi．NY-Taxiデータセットの結果は 1章で示した

とおりである（図 2）．この結果では，直感的な社会活動

と一致するような，9つのセグメントと 2つのレジームの

検出に成功している（q = 2）．ここで，平日の特徴をとら

えたと考えられるレジーム 1（平日レジーム）を取り上げ

る．図 2 (a)の平日レジームでは，グループ 1（青色）が

1日の始めと終わりに高いグループ関連度を持つことに対

し，グループ 2（橙色），3（緑色）は 1日の終わりにかけ

てグループ関連度が高くなることを示している．これは，

グループ 1が 1日の始めと終わりに多く利用されているグ

ループであり，グループ 2，3は夜にかけて利用が増加す

るようなグループであることを示している．潜在グループ

はすべての属性間で共通しているため，上記の傾向を持つ

ユーザは図 2 (b)，(c)の各色で示したエリアで乗車・降車

していることが分かる．重要な点として，提案手法は事前

知識を必要とせずに自動で上述の特徴を抽出し，リアルタ

イムに処理を行う．

NY-Bike．図 4は，NY-Bikeでの解析結果を示す．まず，

直感に従うような類似時系列パターンの検出に関する有効

性について述べる．図 4 (a)において，提案手法は 3種類

のレジームを自動的に検出している．最終的に得られたこ

れらのレジームの変化点と割当てから，それぞれのレジー

ムが平日，休日，祭日と一致していることが分かる．ここ

で重要な点として，提案手法は，時刻 480 の祭日や時刻

600の休日といった，不規則なパターンを正確にとらえて

いる．TriComp におけるレジームの検出は出現頻度に依

存しないため，祭日のような突然発生したイベントもとら

えることが可能である．

続いて，検出されたそれぞれのレジームに関して述べる．

レジーム 1（平日レジーム）：早朝と夕方に強いグループ

関連度を示しており，シェアリングサービスが通勤のために

よく利用されているのではないかと推測できる（図 4 (a)）．

図 4 (b)では，小さな点が地図全体に点在している．これ

は，特定のエリアで集中して利用されているわけでなく，

様々なエリアでサービスが利用されていることを示して

いる．

レジーム 2（休日レジーム）：図 4 (a)において昼ごろに集

中を示している．また，図 4 (b)において，いくつかの大き

な点が見られ，点群は赤円の範囲内に集中している．これ

は，休日において，他のエリアと比較して多くのユーザが，

特定のエリア（Lower Manhattan）でシェアリングサービ

スを利用しているということを示している．図 4 (c)にお

いて，平日レジームと休日レジームを比較すると，大きな

点を示していたグループ 3（緑色）と中年層が強い関連度を
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図 4 (a) レジーム割当て結果と時間ごとのグループ関連度 (b) 3つの潜在グループとそれらに

対する各エリアの関連度（点の大きさ）．0.4 以下の関連度は可視化していない．(c) 潜

在グループに対する各世代の参加強度

Fig. 4 Modeling power of TriComp for bicycle ride-share events: (a) Regime assign-

ment and time-wise group intensity (Regime 1: weekday, Regime 2: weekend,

Regime 3: festival day). (b) Three latent groups (three colors) and their station-

wise participation weights (size of dot). Too low degrees are not shown (< 0.4).

(c) Participation weights of each generation in their respective groups.

持っていることが分かる．これは休日の Lower Manhattan

において，中年層が主要なユーザであることを示している．

レジーム 3（祭日レジーム）：この日は，ニューヨーク市

で式典やパレードが催されていた日と一致している．こう

したイベントは短時間の混雑を引き起こすため，昼ごろに

休日より強い集中を示している．図 4 (b)において，グルー

プ 2（橙色）が多く出現し，図 4 (c)では，若年層とグルー

プ 2の関連度が大きくなっている．これは，若年層ユーザ

がグループ 2のエリアで多く利用していたことを示してい

る．祭日において，休日では主要なユーザではなかった若

年層ユーザが，このサービスに強い関心を持っていること

が分かる．

まとめると，提案手法は，既存手法では達成し得ない，

効果的かつ有益な洞察を提供する．

5.2 Q2. 提案手法の精度

続いて，提案モデルによる要約の精度について検証する．

提案手法の目的は，大規模かつ複雑なイベントテンソルス

トリームを効果的に表現可能な要約情報の抽出である．そ

こで，得られた要約情報を用いてデータを再構成した際の

RMSEと perplexityを評価した．RMSEは，モデルから

得られた予測値と実際の値との誤差を示す．perplexityは，

確率モデルや確率分布の性能を評価する尺度であり，モデ

ルを用いて対象データを予測した際の精度を示す．両者と

も，低い値は高いモデル精度を意味する．比較手法として

図 5 再構成結果の Average perplexity と RMSE

Fig. 5 Accuracy of TriComp (Average perplexity, RMSE).

以下のテンソル分解アルゴリズムを用いる．

TriMine [17] 3つ組で構成されるイベント群においてオ

フラインに分解を行う既存手法である．

CosTCo [22] 大規模スパースデータのための最新手法で，

ニューラルネットワークに基づきテンソル分解，テンソル

補完を行う．学習は文献 [22]に準拠し，最適化には Adam

アルゴリズムを使用した．

図 5 では，毎時刻，長さ 24の XC を与えた場合の，再

構成テンソルとオリジナルテンソルとの，平均 perplexity

と平均 2乗誤差（RMSE）を示している．両指標において，

低い値は高いモデル精度を意味する．提案手法は，リアル

タイムに類似時系列パターン（レジーム）を適切にとらえ，

効果的にモデルを更新することが可能であるため，全体と

して，既存のオフライン手法と比較し高い精度を示してい
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図 6 各時刻における提案手法の精度

Fig. 6 Accuracy of TriComp per time point.

図 7 各時刻における TriComp の計算コスト

Fig. 7 Wall clock time of TriComp.

る．CosTCoはスパースで大規模なテンソルを処理するこ

とが可能であるが，潜在的な時系列変化がともなう，複合

イベントテンソルストリームに最適化されていない．

また，NY-Taxiデータセットにおける各時刻のperplexity

を図 6 に示す．NY-Taxiデータセットでは，全体長の中間

時点から傾向が変わる．既存手法の 1つである TriMineで

は，このような急な傾向の変化を適切にとらえることがで

きない．一方，提案手法は，効果的な要約とモデルの切替

えによって，傾向が変化した後も低い値を示し続けている．

5.3 Q3. 提案手法の計算コスト

図 7 は各時刻における計算コストを，既存手法と比較し

たものである．各データセットにおいて，提案手法は逐次

的な更新により，既存手法に比べて最大 4桁の高速化を実

現している．

図 8 は入力テンソルのサイズ（データ長，entitiy1の総

数）を変化させたときの計算コストを示している．テンソ

ル分解に基づく高速かつ効率的なモデル推定によって，す

べての実験においてテンソルサイズに線形な計算量であ

り，大規模なイベントテンソルストリームの解析に適した

手法である．

6. むすび

本論文では，大規模な複合イベントテンソルストリーム

のためのリアルタイム解析技術として TriComp を提案

した．

( 1 ) 複雑なイベントデータから，時系列パターンや属性内

に存在するグループといった潜在的な特徴を発見する．

( 2 ) 特徴抽出は自動的に行われ，データの解釈を助けるよ

うな要約情報をリアルタイムに提供する．

図 8 テンソルサイズに対する平均計算時間

Fig. 8 Average wall clock time vs. tensor stream size, i.e., du-

ration and the number of entity1.

( 3 ) 半無限長となる複合イベントテンソルストリームを一

定の計算時間で処理する．

実データを用いた評価実験では，複雑なイベントテンソ

ルストリームから自動で要約情報を抽出することを確認し

た．また，計算コストはデータストリームの長さに依存せ

ず，従来の手法と比較して大幅に性能が向上していること

を示した．
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