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オンライン活動データストリームのための非線形モデル解析

川畑 光希1,2,a) 松原 靖子2,b) 本田 崇人3,c) 櫻井 保志2,d)

受付日 2020年12月10日,採録日 2021年4月4日

概要：Web検索履歴等に代表される大規模時系列データは，時刻や地域，キーワードといった様々な情報
とともに収集され，テンソルストリームとして扱うことができる．Web上におけるユーザアクティビティ
の解析では，より高精度な将来予測を実現することが重要な課題の 1 つであるが，複雑な構造を持つテ
ンソルストリームから将来予測に有用なパターンを発見することが問題となる．本論文では，時間，国，
キーワードの 3つ組に対するWeb検索数で構成されるテンソルストリームを効果的に解析するためのス
トリームアルゴリズムである CubeCastを提案する．CubeCastは与えられたテンソルストリームに含
まれる潜在的な長期トレンドと季節パターンを発見し，それらを基に類似した特徴を持つ地域グループへ
と分解する．このとき，提案手法は次の特長を持つ．(a)長期トレンドと季節パターンの非線形特性を単一
のモデルで表現する．(b)パラメータチューニングや事前知識を必要とせず，時系列モデルやパターン変
化を自動的に推定する．(c)逐次的かつ適応的にパターン変化をとらえ，テンソルストリームを効率的に処
理する．実データを用いた実験では，提案手法が将来予測に有用なパターンを効果的かつ効率的に発見で
きることを示し，既存の時系列予測手法と比較して，予測精度，計算時間の改善を確認した．

キーワード：時系列予測，テンソル分解，データストリーム処理
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Abstract: Given a large time-evolving event series such as Google web-search logs, which are collected ac-
cording to various aspects, i.e., timestamps, locations and keywords, how accurately can we forecast their
future activities? How can we reveal significant patterns that allow us to long-term forecast from such com-
plex tensor streams? In this paper, we propose a streaming method, namely, CubeCast, that is designed to
capture basic trends and seasonality in tensor streams and extract temporal and multi-dimensional relation-
ships between such dynamics. Our proposed method has the following properties: (a) it is effective: it finds
both trends and seasonality and summarizes their dynamics into simultaneous non-linear latent space. (b) it
is automatic: it automatically recognizes and models such structural patterns without any parameter tuning
or prior information. (c) it is scalable: it incrementally and adaptively detects shifting points of patterns
for a semi-infinite collection of tensor streams. Extensive experiments that we conducted on real datasets
demonstrate that our algorithm can effectively and efficiently find meaningful patterns for generating future
values, and outperforms the state-of-the-art algorithms for time series forecasting in terms of forecasting
accuracy and computational time.
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1. まえがき

時系列予測は，センサネットワーク監視 [1], [2]，ユーザ

行動分析 [3]，意思決定支援 [4]，等の幅広い分野で重要な役
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図 1 テンソルストリームと CubeCast の出力結果

Fig. 1 Modeling power of CubeCast for an online search volume tensor stream related

to five apparel companies: (a) Given the original tensor (gray lines), Cube-

Cast quickly identifies the non-linear dynamics in the latest tensor (blue), then,

continuously forecasts multiple steps ahead values (red), (b) while extracting

seasonal patterns common to all countries. (c) It also automatically identifies

similar country groups based on their trends and seasonality, which are com-

pressed into compact models.

割を果たす．特に，近年では IoT *1 [5], [6]やクラウドサー

ビスの普及による大規模データ解析の需要が高く，高精度

な時系列予測には，複数の属性を持つ高次元時系列データ

から重要なパターンを効果的にとらえるための時系列モデ

ルが必要となる．たとえば，マーケターは在庫管理や新製

品の開発を行う際，意思決定に役立つ情報を求めて自社製

品に対する顧客の反応を分析する．注目すべき点は，これ

までのデータの中で何の需要が（製品の属性），どこで（地

理的属性）で，どのように（時系列特性）変化しているのか

を推定することである．時系列解析を通して今後必要とさ

れる需要をあらかじめ見積もることにより，人材や資源を

より効果的に利用することが可能になると考えられる．そ

こで本論文では，時間，国，キーワードの 3つ組に対する

Web検索数で構成される大規模テンソルストリームを扱

い，Web検索履歴の多角的な解析と将来予測を試みる．一

般に，テンソルストリームは多くのノイズを含み，高次元

データの中から重要なパターンを発見することは難しい．

また，多様な趣向や社会的なイベントに影響された複雑な

時系列パターンは，時間とともに変化する．よって，本研

究では以下の 2つ課題に取り組む．

• 潜在トレンドの自動検出：多くのオンライン活動デー
タは複数のトレンドを持ち，長期的な成長・衰退といっ

た長期トレンドと周期的に現れる季節パターンに大別

され，これらを抽出することで効果的に将来予測を行

うことができるが，これらの時系列パターンに関する

事前知識が与えられることは稀である．テンソルスト

リームは高次元であるため考慮すべき属性の組合せが

増加するだけでなく，時系列パターンの特性はデータ

*1 IoT: Internet of Things

によって異なるため適切なモデルを設計することは容

易ではない．そのため，テンソルストリームに含まれ

る潜在的なトレンドを自動的かつ効果的に抽出するこ

とが重要である．

• 動的変化のモデリング：本研究では，テンソルスト
リームのトレンドを時系列と地域の 2 方向から分析

し，それらの特徴を単一の時系列パターンとして抽出

することで時系列予測精度の改善を図る．また，それ

らの特徴の変化を監視することで適応的かつ効率的に

予測モデルを更新するアルゴリズムを開発する．

本論文では，オンライン活動履歴等から得られるテンソ

ルストリームに対する，高速かつ高精度な将来予測手法と

して CubeCast [7]を提案する．

より具体的には，次の問題を扱う．テンソルストリーム

X が与えられたとき，以下の能力を有する時系列モデル，
および，将来予測アルゴリズムを開発する：

• 長期トレンド/季節パターンに基づく非線形時系列パ

ターンの抽出とテンソルストリームの多角的解析

• ユーザの介入を必要としない特徴自動抽出
• データストリーム処理に基づくモデル学習

1.1 具体例

図 1 に CubeCastを用いたテンソルストリームの解析

例を示す．図 1 (a)は解析に使用したテンソルデータの一

部を表し，テンソルの各要素は 50カ国において 5つのア

パレル企業の社名が検索された回数を週ごとに集計したも

のである．図中の灰色の線はオリジナルデータ，色の付い

た線は各企業の検索数に対する提案手法のモデリング結果

を示す．提案手法は，テンソルストリームの一部（青枠）

を保持しながらパターン検出とモデル更新を繰り返し，1

c© 2021 Information Processing Society of Japan 31
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図 2 CubeCast を用いたテンソルストリームの解析例

Fig. 2 Multi-aspect mining of CubeCast for GoogleTrends re-

lated to major apparel companies. It automatically de-

tects (a) similar country groups based on dynamics, and

(b) changes between discrete dynamics.

年後の検索数（赤枠）を予測し続ける．このとき，提案手

法は以下に示すテンソルストリームの特徴を自動的かつリ

アルタイムに検出する．

長期トレンド検出．図 1 (a)に示すように，アメリカにお

ける各企業の検索数には様々な長期トレンドが見られる．

GAPの検索数は，2010年まで下降し，2014まで上昇した

のち再び下降している．他の企業の検索数は 2017年まで

次第に増加しており，特に，Primarkは他の企業を追うよ

うに検索数が急激に成長している．提案手法はこのような

パターンを非線形モデルを用いて柔軟に表現することで，

各企業のトレンドを効果的にとらえることができる．

季節パターン検出．図 1 (b)は提案手法が出力した 2つの

季節パターンを示す．アパレル企業のキーワード群では，

ブラックフライデー（S1）や年末年始（S2）に検索数が増

大する年単位の周期性を自動的に発見した．季節パターン

の検出は長期トレンドの推定精度と密接に関係しており，

将来予測の精度を向上させる重要な要素である．提案モデ

ルの特徴は，長期トレンドと季節パターンの相互関係を単

一の非線形ダイナミクスとして表現し，高次元テンソルに

含まれる潜在的なパターンを抽出することである．

類似パターンに基づくレジーム検出．提案手法は，与えら

れたテンソルの一方向（たとえば，地域）等から類似した

長期トレンド，季節パターンを持つ集合を検出する．本研

究では，この集合をローカルグループと呼ぶ．図 1 (c)は

実データから得られたローカルグループの例であり，地図

中の色は 2006年から 2008年にかけて類似パターンを持っ

ていた地域を示す．たとえば，図 2 (a)に示すように，紫

で示されるアメリカ，イギリス等の国々では検索数の推移

が類似した傾向を持つ．さらに，本研究では各ローカルグ

ループのメンバとグループ内の特徴を表す時系列パターン

（長期トレンド，季節パターン）の構成を要約したものをレ

ジームと定義し，データの傾向の変化に応じてレジームを

変化させる．具体的な例として，図 2 (b)はイタリアにお

ける異なる 2つの期間のデータであり，H&Mの検索数が

急激に成長したことにより，傾向が大きく変化している．

提案モデルは，このような時系列パターンの変化をとらえ

るためにローカルグループの構成を柔軟に変化させ，適応

的に将来予測を行う．

1.2 本論文の貢献

本論文では，テンソルストリームを効果的に表現する非

線形モデル，および，その推定アルゴリズムを提案する．

提案手法は次の特長を持つ．

• 非線形モデル：オンライン活動履歴から得られるテン
ソルストリームの解析に有効な非線形モデルを提案

する．提案モデルは，長期トレンドと季節パターンを

柔軟に表現し，これらの特徴に基づいてテンソルスト

リーム中の時間的，地理的な差異をとらえる．

• 特徴自動抽出：非線形モデルの構造を自動的に決定す
るための符号化スキームを提案し，高度なパラメータ

チューニングやデータに関する事前知識を必要とせず

モデルパラメータを推定する．

• データストリーム処理：提案手法は，増加し続けるテ
ンソルストリームに対し逐次的かつ適応的に非線形モ

デルを変化させながら重要な時系列パターンをとら

える．そのため，提案手法の計算時間はテンソルスト

リーム全体の長さに依存せず，高速に将来予測を行う．

2. 関連研究

時系列予測に関する研究は，データマイニング，データ

ベース分野でさかんに取り組まれている [6], [8], [9]．自己

回帰モデル（AR），線形動的システム（LDS）は代表的な

手法であり，これまでに様々な拡張モデルが提案されてい

る．SARIMAは，季節パターンを表現するための統計モ

デルであるが，線形モデルに基づいており，複雑な時系列

パターンを表現することができない．非線形動的システ

ム [10], [11]に基づく時系列解析では，データのドメイン

知識をモデルに適用することで，効果的に時系列パターン

する手法がある．しかし，ドメイン知識がつねに有効であ

るとは限らず，複雑なテンソルストリームの解析におい

ては，自動的に時系列モデルを推定できることが望まし

い．深層学習に基づく時系列モデルも注目を集めており，

LSTM，GRU等に代表される再帰型ニューラルネットワー

ク（Recurrent neural network：RNN）[12]を用いた時系

列モデルが多数存在する [13], [14], [15]．深層学習は，高い

表現能力を持つモデルを用い，大量のデータから時系列予

測に有効な特徴量を抽出することが可能であるが，解析結

果がパラメータチューニングに依存する傾向があり，モデ

c© 2021 Information Processing Society of Japan 32



情報処理学会論文誌 データベース Vol.14 No.3 30–41 (July 2021)

ル学習には高い計算コストを要する．これらの特徴は，時

間経過にともない傾向が変化しうるデータストリームの解

析には適さない．

時系列データストリームのための将来予測手法として提

案された RegimeCast [16]は，非線形動的システムをデー

タの傾向に応じて適応的に変化させることで，高速かつ効

果的な将来予測を達成した．しかし，RegimeCastは季節

パターンを表現するための明示的な機構がなく，オンライ

ン活動データの解析には不十分である．

テンソルデータの解析も活発な研究分野である [17], [18],

[19]．ストリーム処理を想定した手法 [20], [21], [22]では，

主に次元削減や関係性の抽出による欠損値の補間，情報

推薦等を目的としている．一般に，これらの手法は時系列

特性を無視しており，将来の振舞いを予測する能力を持

たない．テンソル分解を応用し，季節パターンを検出す

る手法 [23], [24]も存在するが，ストリーム処理を想定し

ていない．多線形動的システム（Multi-Linear Dynamical

System：MLDS）は，時系列特性と多線形性を同時に推定

するために提案された LDSの拡張である．しかし，オン

ライン活動履歴では季節に依存するパターンがよく見られ

るため，多線形性に基づくモデルは不十分である．

本研究の目的は，非線形性を持つ時系列パターン（長期

トレンド，季節パターン）を表現するストリーム処理指向

の時系列予測モデルを開発することである．

3. 提案モデル

本章では，オンライン活動テンソルストリームのための

時系列モデルついて述べる．

3.1 問題定義

表 1 に本研究で使用する記号の定義を示す．本研究で

は，時間，地域，キーワードで構成される 3階テンソルを

扱う．長さ tc，地域数 dl，キーワード数 dk から成るテン

ソルを X ∈ R
tc×dl×dk と表し，テンソルの各要素 xtij は

単位期間中のWeb検索数の総数を示すものとする．また，

各時刻において，新たなデータが観測されるたびにテンソ

ルの長さ tcが増加し続ける．本研究の目的は，このように

刻々と増大する時系列テンソルデータ，すなわち，テンソ

ルストリーム X をモデル化し，将来の振舞いを予測し続け
ることである．

定義 1（推定イベントテンソル） X をモデル化したと
きの推定値を E ∈ R

tc×dl×dk と表す．

続いて，X のうち，ある時刻 ts から te で切り出される

長さ lの部分テンソルを Xts:te
∈ R

l×dl×dk のように表すと

き，解析に用いる最新データの区間，および，予測対象と

する区間を次のように定義する．

定義 2（カレントウィンドウ） 時刻 tpから tc までの区

間で与えられる X c = Xtp:tc
を時系列予測に使用する最新

表 1 記号と定義

Table 1 Symbols and definitions.

記号 定義

dl, dk 地域，キーワードの総数

tc 現在の時刻（テンソルの長さ）

X テンソルストリーム X ∈ R
tc×dl×dk

Xts:te 時刻 ts から te までの部分テンソル

X: ,i i 番目の時系列シーケンス X: ,i ∈ R
tc×dk

X c カレントウィンドウ X c =Xtp:tc (lc = tc − tp)

X f 予測ウィンドウ X f =Xts:te (ts = tc+ls, te = ts+le)

kz , kv 潜在長期トレンド，潜在季節パターンの総数

Z 長期トレンドの潜在状態 Z={z1, . . . , zt}, zi∈R
kz

V 季節パターンの潜在状態 V={v1, . . . ,vt}, vi∈R
kv

A,B 非線形動的システム A∈R
k×k,B∈R

k×k×k(k=kz +kv)

W 長期トレンドの観測行列W ∈ R
dk×kz

W 長期トレンドの観測行列集合W = {W1, . . . ,Wm}
U 季節パターンの観測行列 U ∈ R

dk×kv

U 季節パターンの観測行列集合 U = {U1, . . . ,Um}
p 季節パターンの周期

S 潜在季節パターン S ∈ R
p×kv

E 推定イベントテンソル E ∈ R
tc×dl×dk

m レジーム内のローカルグループの総数

n レジームの総数

θ レジームパラメータ集合 θ = {A,B,W,U}
Θ モデルパラメータ集合 Θ = {S, θ1, . . . , θn}
R レジーム割当て R = {r1, . . . , rn}

のテンソルデータとし，カレントウィンドウと呼ぶ．こ

のとき，カレントウィンドウの長さを lc = tc − tp と定義

する．

定義 3（予測ウィンドウ） 時刻 tc から ls ステップ先の

区間で与えられる X f = Xts:te
を予測対象のデータ区間と

し，予測ウィンドウと呼ぶ．ここで，ts = tc + ls を満た

し，予測ウィンドウの長さが le = te − tsのとき，leステッ

プごとに X f の値を予測する．

まとめとして，本論文で扱う問題を次のように定義する．

問題 1（ls ステップ先予測） tcを最新の時刻とし，長さ

lc のカレントウィンドウ X c = Xtp:tc
(tc = tp + lc)が与え

られる間，ls ステップ先の長さ le のテンソル X f = Xts:te

(ts = tc + ls, te = ts + le)を予測し続ける．

3.2 CubeCastモデル

1.1 節で述べたように，オンライン活動データは複雑な

時系列パターンで構成され，それらが時間，あるいは地域

に依存して異なる特徴を持つ．本章では，これらの特徴を

網羅的に表現するための新たな時系列モデルを提案する．

具体的には，以下の手順でモデルを構築する．

• 非線形動的システム：多次元時系列シーケンスの中か
ら，より少ない次元数の潜在的な時系列パターン（長

期トレンド）を抽出する．

• 季節パターン：非線形動的システムに季節パターンを
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とらえるための機構を加える．

• レジーム集合：上記の特徴をまとめたモデルをレジー
ムとし，時系列パターンの特徴に対して適応的に変化

させる．また，レジーム内部にローカルグループを定

義し，類似パターンの検出を行う．

3.2.1 非線形動的システム

まずはじめに，提案モデルの基本となる非線形動的シス

テムについて述べる．このモデルでは，ある単一の地域に

おける複数キーワードの検索数の推移のような d次元の時

系列データに対して 2つの潜在アクティビティを仮定する．

• zt：時刻 tにおける kz 次元の潜在アクティビティ

• et：時刻 tにおける d次元のアクティビティ

潜在アクティビティはデータから推定される未知の情報で

あり，et は潜在アクティビティから実際に観測されるデー

タを再現したものである．潜在アクティビティの時間依存

性，および，それらと実際のアクティビティとの関係性は

次式で表現される．

zt+1 = Azt + Bzt ⊗ zt,

et = Wzt, (1)

⊗は 2つのベクトルの外積を示し，A ∈ R
kz×kz は線形射

影行列，B ∈ R
kz×kz×kz 非線形射影テンソルである．連続

する 2つの潜在状態は，これらのパラメータを用いて一時

刻前の潜在状態から生成され，様々な事象の時間発展を数

理モデルとして表現することができる．一方，W ∈ R
d×kz

は観測行列であり，潜在状態の線形写像によって実際の

データが表現される．非線形動的システムでは，パラメー

タである A，B，Wと初期値 z0 を求めることで，d次元

の時系列データに含まれる kz 次元の重要な時系列パター

ンを抽出することが可能である．

3.2.2 季節パターンの抽出

オンライン活動データの解析では，季節によって周期的

に変動する時系列パターンを抽出することが重要である．

通常，このような周期パターンはデータの中でつねに一定

に繰り返されると仮定されるが，本研究ではこれらの傾

向自身も時間とともに変化すると考える．たとえば，ある

キーワードに対する関心が高まっているとき，すなわち，

長期トレンドが上昇傾向を示すとき，それにともなって特

定の季節に高まる関心も強くなることがある．そのため，

長期トレンドと季節パターンの相互関係をモデル化するた

めに式 (1)を拡張する．具体的には，新たに以下の 2つの

潜在アクティビティを仮定する．

• vt ∈ R
kv：時刻 tにおける潜在季節パターンの強さ．

• S ∈ R
p×kv：潜在季節パターン．

つまり，kv は潜在的な季節パターンの数を示し，pは周期

を示す．これらの要素を考慮した非線形動的システムを次

のように定義する．

[
zt+1

vt+1

]
= A

[
zt

vt

]
+ B

[
zt

vt

]
⊗

[
zt

vt

]
,

et = Wzt + U(vt ◦ St mod p), (2)

ここで，◦は 2つのベクトルの要素積を示し，カッコは 2

つのベクトルの結合を示す．このモデルでは，ある時刻 t

における 2つの潜在状態，zと vを結合した k = kz + kv

次元のベクトルを潜在状態とし，共通の線形・非線形射影

A ∈ R
k×k，および B ∈ R

k×k×k を用いて時系列特性をモ

デル化する．また，観測行列 U ∈ R
d×kv を追加すること

で，et は 2つの潜在アクティビティから観測され，ある時

刻 tの季節パターンは行列 Sの (t mod p)番目の列とベク

トル vt をかけあわせたものとなる．このモデルによって，

長期トレンドの変化と相互に依存し，動的に変化する季節

パターンを表現する．

3.2.3 レジーム集合の検出

これまでに述べたモデルは多次元時系列データ，すなわ

ち，単一地域のみを対象として議論した．最後に最も重要

な課題として，複数の地域を対象としたテンソルデータの

ための非線形モデルを提案する．本研究の目的で述べたよ

うに，テンソルを多角的に分析し，いくつかの要素に要約

することで，重要なパターンを検出することが可能になる．

そこで，非線形動的システムで抽出される潜在アクティビ

ティに基づいて，地域方向，時間方向のパターン変化をと

らえるためのモデルを提案する．

地域方向の解析では，3階テンソル X が与えられたと
き，dl 個の地域をm個 (m < dl)のローカルグループに分

割する．このとき，各グループが固有の観測行列Wi，Ui

(i ∈ {1, . . . , m})を持つことで，すべての地域で共通する
潜在ダイナミクスと，地域によって異なるダイナミクスを

表現する．つまり，類似した時系列パターンを持つ地域は，

類似した潜在アクティビティで構成されていることを意味

する．よって，X の推定値 E ∈ R
tc×dl×dk は次式で表現さ

れる．[
zt+1

vt+1

]
= A

[
zt

vt

]
+ B

[
zt

vt

]
⊗

[
zt

vt

]
,

eti = Wjzt + Uj(vt ◦ St mod p), (3)

つまり，i番目の地域は，自身が属する j 番目のグループ

の観測行列を用いて表現される．

定義 4（レジーム） θ = {A,B, W,U}を単一のレジー
ムとし，W，および U はm種類のローカルグループの潜

在アクティビティを表現するための観測行列集合とする．

すなわち，W = {W1, . . . ,Wm}，U = {U1, . . . ,Um}と
表される．

さらに，レジーム θで表現されるダイナミクスが時間変

化する様子をとらえたい．そのため，テンソルストリーム

を時間方向に分割し，それぞれのダイナミクスを n個のレ
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図 3 CubeCast のモデル概要図

Fig. 3 Graphical representation of CubeCast: Given a current

tensor X c, (a) it identifies a regime θ while capturing

seasonality with S. (b) It generates latent states Z and

V. (c) It reports ls-steps ahead values Ei at the i-th

location with projection matrices Wj and Uj , which

capture the j-th location-specific pattern.

ジーム {θ1, . . . , θn}を用いて表現し，各レジームが特有の
非線形ダイナミクスとローカルグループの構成を持つもの

とする．したがって，本研究で求めたいモデルパラメータ

を以下のように定義する．

定義 5（モデルパラメータ集合） Θ = {θ1, . . . , θn,S}
を n 種類のレジームと季節パターンで構成されるモデ

ルパラメータ集合とする．

また，各レジーム内のローカルグループの割当てを次のよ

うに定義する．

定義 6（レジームメンバーシップ） 集合 Rを n個のレ

ジーム Θ のレジームメンバーシップと定義し，R =

{r1, . . . , rn} と表す．各要素 ri は，i 番目のレジーム

のローカルグループの割当てを示し，各地域の割当

て ri = {r1, . . . , rj , . . . , rdl
} を dl 個の整数で表現する

(rj ∈ {1, . . . , mi})．
提案モデルの全体図を図 3 に示す．提案モデルは X cに

最も適したレジーム θ と潜在季節パターン S用いて将来

予測を行う．具体的には，非線形動的システムを用いて推

定された初期値から潜在状態 ZおよびVを予測したいス

テップまで生成し，それぞれ観測行列を用いて予測値を生

成する．このとき，i番目の地域の推定値 E:,i は，自信が

属するローカルグループの観測行列を用いて生成される．

よって，本研究の具体的な問題は，テンソルストリーム X
に対するパラメータ集合Θ，Rを推定し，現在の時刻 tcか

ら ls ステップ先の推定値 Ef を生成し続けることである．

4. アルゴリズム

本章では，オンライン活動履歴をとらえたテンソルスト

リームのための将来予測アルゴリズムである CubeCast

について述べる．本章の目的は，大規模データストリーム

Algorithm 1 CubeCast (X c, Θ,R)
Input: (a) Current tensor X c

(b) Full parameter set Θ

(c) Regime assignment set R
Output: (a) ls-steps-ahead future values Ef

(b) Updated full parameter set Θ′

(c) Updated regime assignment set R′

1: /* (I) Estimate a new regime for given data */

2: {θ, r} ←RegimeEstimation (X c,S); // S ∈ Θ

3: /* (II) Update model set and detect current dynamics */

4: {Θ′,R′} ←RegimeCompression (X c, Θ,R, θ, r);

5: /* (III) Generate future values using a current regime */

6: {θ, r} ← arg min
θ′∈Θ′,r′∈R′

‖X c − f(θ′, r′)‖ // f(·, ·): Equation (3)

7: Ef ← f(θ, r); // Ef = {etij}te,dl,dk

t,i,j=ts,1,1,

8: return {Ef , Θ′,R′};

から効果的かつ効率的に時系列パターンを検出するために，

モデル構造を自動的に決定し，複数のレジームを選択・更

新することである．Algorithm 1 は CubeCastの処理の

流れを示す．提案手法は，以下の手順でモデルの各要素を

更新しながら将来予測を行う．

( 1 ) RegimeEstimation：X cから新たなレジーム θを推

定する．具体的には，非線形動的システムとローカル

グループの検出，すなわち，レジーム割当て rと観測

行列集合W，U を推定する．
( 2 ) RegimeCompression：新たに推定したレジームと

過去に推定されたレジームを比較し，MDLコストに

基づいて，モデル全体をどのように更新するかを決め

る．また，選択されたレジームに基づいて，季節性 S

を更新する．

( 3 ) 最後に，現在のデータに最も適したレジーム θ を

選出し，式 (3) に従って ls ステップ先の予測値

Ef = {etij}te,dl,dk

t,i,j=ts,1,1 を計算する．

4.1 特長自動抽出

本研究の目的は，Θ の構造を自動的に決定することで

ある．そこで本研究では，MDL（Minimum description

length）[25] に基づく符号化スキームを導入する．MDL

は，モデルの複雑さを示すモデルコストと，あるモデルが

与えられたときのデータの表現能力を示す符号化コストで

構成され，2つのコストの和が最小となるモデルを最適と

する．すなわち，以下の最適化問題を解いて Θを求める．

Θ = arg min
Θ′

< Θ′ > + < X|Θ′ >, (4)

ここで，< Θ′ >はモデルパラメータ集合Θ′ のモデル表現

コスト，< X|Θ′ >は Θ′ に対する X の符号化コストを与
えるものとする．提案モデルのモデル表現コストは，入力

データの次元数，潜在状態の次元数，および，行列のサイ

ズで決定され，整数のユニバーサル符号長 [26]を log∗ と
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表すとき，次のように定義される．

< tc >=log∗(tc), < dl >=log∗(dl), < dk >=log∗(dk).

< kz >=log∗(kz), < kv >=log∗(kv), < p >=log∗(p).

< S >= |S| · (log(p) + log(kv) + cF ) + log∗(|S|).
< θ >=< kz >+< A > + < B > + < W > + < U > .

ここで，| · |は与えられた行列内の非ゼロ要素の総数，cF

は実数の符号化に要する浮動小数点コストを示す*2．同様

に，レジームパラメータのモデルコスト< θ >は次のよう

に定義される．

< A >= |A| · (2 · log(k) + cF ) + log∗(|A|),
< B >= |B| · (3 · log(k) + cF ) + log∗(|B|),
< W >=Σm

i=1|Wi| · (log(dk)+log(kz)+cF )+log∗(|Wi|),
< U >= Σm

i=1|Ui| · (log(dk) + log(kv) + cF ) + log∗(|Ui|).

続いて，Θに対する X の符号化コストは，ハフマン符号
化 [27]に基づき，平均 μ，分散 σ2 の正規分布における負

の対数尤度で表される．

< X|Θ >=
tc,dk,dl∑
t,i,j=1

− log2 pμ,σ(xtij − etij), (5)

ここで，etij ∈ E は式 (3)による xtij ∈ X の推定値である．
まとめとして，X に対するΘの総コスト< X ; Θ >を次の

ように定義する．

<X ; Θ>=< Θ > + < X|Θ >

=< tc > + < dl > + < dk > + < p >

+ <kv > + <S> +
n∑

i=1

<θi > + <X|Θ> .

(6)

4.2 RegimeEstimation

本節では，式 (6)を最小化するレジーム，およびローカ

ルグループを求めるアルゴリズムとしてRegimeEstima-

tionを提案する．提案モデルの基本的な構成要素は (a)非

線形写像 A，B (b)観測行列集合W，U，(c)潜在季節ト

レンド Sであるが，それに加えてローカルグループの数と

割当てが重要な役割を持つ．これらのパラメータは互いに

依存関係を持っているためすべて同時に最適化することは

難しい．この問題を解決するため，RegimeEstimation

は貪欲法に基づき MDL コストをより小さくするローカ

ルグループとそのパラメータを求めることを目的とする．

Algorithm 2 に RegimeEstimationの詳細を示す．全体

の流れとして，(1)与えられたテンソル X cに単一のローカ

ルグループを仮定して基本となる非線形動的システムを推

定後，(2) MDLコストの減少が止まるまでローカルグルー
*2 本論文では，cF = 32 ビットとする．

Algorithm 2 RegimeEstimation (X c,S)
Input: Current tensor X c and seasonality S

Output: Regime parameter set θ and regime assignment r

1: W = φ; U = φ; r = {ri = 1|i = 1, . . . , dl};
2: W∗ = φ; U∗ = φ; // candidate observation matrix set

3: /* Estimate a regime with a single local activity */

4: {A,B,W,U} ← arg min
θ′={A′,B′,W′,U′}

< X c;S, θ′, r >;

5: Push W into W∗; Push U into U∗;

6: /* Estimate local activities */

7: while W∗ and U∗ are not empty do

8: Pop an entry W0 from W∗; Pop an entry U0 from U∗;

9: θ ← {A,B,WF ,UF }; // WF =W ∪W∗ ∪ {W0}
10: Initialize r∗; Initialize W1,W2,U1,U2;

11: θ∗ ← {A∗,B∗,W∗
F ,U∗

F }; // A∗ = A, B∗ = B
12: // W∗

F =W∪W∗ ∪{W1,W2}, U∗
F = U ∪U∗ ∪{U1,U2}

13: while < X c;S, θ∗, r∗ > is improved do

14: Estimate r∗;

15: Estimate W1,W2,U1,U2;

16: Estimate A∗,B∗;

17: end while

18: if < X c;S, θ∗, r∗ > is less than < X c;S, θ, r > then

19: Push {W1,W2} into W∗; Push {U1,U2} into U∗;

20: A← A∗; B ← B∗; r← r∗

21: else

22: Push W0 into W; Push U0 into U ;

23: end if

24: end while

25: return {θ, r }; // θ = {A,B,W,U}

プの追加と割当ての更新を繰り返すことで，自動的にモデ

ル構造を決定する．以下ではこれら 2つの処理について詳

細に述べる．

4.2.1 非線形動的システムの推定

最新のテンソル X c が与えられたとき，コスト

< X c;S, θ, r >をより小さくする θ = {A,B, W,U} を推
定する．このとき，Sはレジーム間で共通して使用される

ため固定パラメータと考える．今，ローカルグループの数

はm = 1であり，レジーム割当て ri ∈ r (i = 1, . . . , dl)の

値はすべて 1である．また，各観測行列集合は単一の要素

を持ち，W = {W}，U = {U}と表される．
パラメータの推定では，長期トレンドの潜在状態の数を

決定するため，kzの数を 1から順に増加させ，コストの減少

が止まったときのパラメータを採用する．与えられた kzに

対し，アルゴリズムはまず非線形パラメータ Bの値を 0に

固定し，線形パラメータ {A,W,U} ∈ θのみを EMアルゴ

リズムを用いて推定する．その後，Levenberg-Marquardt

（LM）法 [28]を用いて Bを推定する．本研究では，Bの対
角成分 biii ∈ B (i ∈ [1, k])のみを使用する．非線形動的シ

ステムの初期値 {z0,v0}は各パラメータの更新時にともに
推定する．
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Algorithm 3 RegimeCompression (X c, Θ,R, θ, r)
Input: (a) Current tensor X c

(b) Full parameter set Θ and regime assignment set R
(c) Candidate regime θ and regime assignment r

Output: Updated model set Θ∗ and regime assignment set R∗

1: /* Search an optimal regime within Θ */

2: {θ∗, r∗} ← arg min
θ′∈Θ,r′∈R

< X c;S, θ′, r′ >;

3: if < X c;S, θ, r > is less than < X c;S, θ∗, r∗ > then

4: Θ∗ ← Θ ∪ θ; R∗ ←R∪ r;

5: θ∗ ← θ; r∗ ← r; // Replace an optimal regime with a

new regime

6: else

7: Θ∗ ← Θ; R∗ ←R;

8: end if

9: while < X c;S, θ∗, r∗ > is improved do

10: Estimate θ∗; // θ∗ ∈ Θ∗

11: Estimate S; // S ∈ Θ∗

12: end while

13: return {Θ∗,R∗};

4.2.2 ローカルグループの推定

続いて，ローカルグループの推定アルゴリズムについて

説明する．ローカルグループの割当ては，分割する次元数

に応じて組合せが増大し，計算コストが高くなるという問

題が生じる．そこで，スタックを用いた効率的なアルゴリ

ズムを使用する．今，W∗と U∗を各観測行列の候補を格納

するスタックとし，初期状態として，4.2.1 項で求めた行列

{W,U}が格納される．スタックW∗ と U∗ が空となるま

で {W1,W2,U1,U2}，{A∗,B∗} ∈ θ∗，ローカルグループ

の割当て r∗ を交互に更新する．r∗i の更新では，パラメー

タが与えられたときのコスト < X c
: ,i|A,B,Wj ,Uj >を小

さくする j ∈ {1, 2}を割り当てる．最後に，分割を試した
モデル θ∗，r∗と分割前のモデル θ，rとのコストを比較し，

前者がコストを小さくする場合，{W1,W2,U1,U2}を次
の分割候補としてスタックに格納する．そうでない場合

は，W0,U0 を最適解としてローカルグループの数を増や

し (m = m + 1)，rのインデックスを更新してそのグルー

プの分割を停止する．

4.3 RegimeCompression

ここでは，時間経過によるレジームの変化をとらえる

アルゴリズムである RegimeCompressionについて述べ

る．Algorithm 3 に示すように，RegimeCompression

は，MDLコストに基づいてモデル追加の必要性を判断す

る．具体的には，テンソル X c が与えられたとき，過去に

検出したレジーム集合 {Θ,R}の中から選択したレジーム
θ∗, r∗と，RegimeEstimationで推定したレジーム θ, rの

コストを比較する．θ, rを用いたときのコストが小さけれ

ばそれらをモデル集合へと追加し，そうでなければ推定し

たモデルを破棄して過去のモデル θ∗, r∗ を用いて X c を表

現する．最後に，ローカルグループの割当て r∗ を固定し

てレジームパラメータ θ∗ と潜在季節パターン Sを交互に

更新し，モデル全体を X c に最適化させる．

本研究では，提案手法を用いてストリーム処理を行う前

に，潜在季節の数 kv とパラメータ Sを初期化する．与え

られたテンソルを，周期に沿って変形し，行列X ∈ R
p×d

を得る．その行列へ独立成分分析（ICA）を適用し，得ら

れた kv 個の独立成分を Sとする．その後，Sに基づき，

RegimeEstimationを適用して θ を求める．この処理を

kv = 1, 2, 3, . . . ,と繰り返し実行し，コスト < X ;S, θ, r >

が最小となるような kv，Sを初期値とする．

定理1 CubeCastの計算量は O(ndldk)である．

証明1 ある時刻 tにおける式 (2)の計算量は，潜在状

態の射影 O(k2)，推定イベントの推定 O(dkkz + dkkv)の

合計となる．RegimeEstimation は，長さ lc のテンソ

ルが与えられたとき，dl 個の地域に対してローカルグ

ループの 2 分割を繰り返し，最適なグループ数 m とモ

デルパラメータの推定を行う．よって，繰り返し回数

を #iter とすると，この最適化に必要な計算コストは

O(#iter · lcdl(k2 + dkkz + dkkv))である．RegimeCom-

pressionは過去のレジームから現在のデータに対して最適

なものを選択するためにO(nlcdl(k2 +dkkz +dkkv))の計算

コストを要する．ここで，繰り返し回数#iter，ウィンドウ

サイズ lc，および潜在状態の数 k, kz, kvは非常に小さい定数

であるため，CubeCast全体の計算量はO(ndldk)である．

5. 評価実験

本研究では，提案手法の性能を評価するため，次の問い

に関する実験を行った．

( 1 ) 時系列モデリングに対する提案手法の有効性

( 2 ) 提案手法の時系列予測精度

( 3 ) 提案手法の計算コスト

実験には，Intel Xeon W-2123 3.6 GHz quad core CPU，

128 GBのメモリを搭載したLinuxマシンを使用した．デー

タセットは，GoogleTrends *3から収集した，指定したキー

ワードに対する週ごとの Google 検索数の推移を示す時

系列データである．表 2 に示す各キーワードセットに

対し，2004年 1月から 2018年 3月までの期間，GDP上

位 50カ国の時系列データを収集し，3階のテンソルデー

タとした．また，得られたデータは各次元ごとに標準化

（z-normalization）して使用した．以下に示すように，比

較手法は代表的な時系列モデルから選出した．

• RegimeCast [16]：非線形動的システムに基づく将来

予測アルゴリズム．提案論文に従い，潜在状態の数

k = 4，モデルの階層数 h = 2，モデル推定の閾値

ε = 0.5 · ‖Xc‖とした．

*3 https://trends.google.com/trends/
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図 4 提案手法を用いた時系列モデリングの例

Fig. 4 Fitting results of CubeCast for five apparel companies on GoogleTrends. Cube-

Cast incrementally and automatically identifies sudden changes in dynamical

patterns including the latent trends, seasonality and structure of groups of sim-

ilar countries.

表 2 データセットの概要

Table 2 Dataset description.

ID Dataset Query

#1 Apparel zara, uniqlo, h&m, gap, primark

#2 Chatapps facebook, LINE, slack, snapchat,

twitter, telegram, viber, whatsapp

#3 Hobby soccer, baseball, basketball, running,

yoga, crafts

#4 LinuxOS debian, ubuntu, centos, redhat,

fedora, opensuse, steamos, raspbian,

kubuntu

#5 PythonLib numpy, scipy, sklearn, matplotlib,

plotly, tensorflow

#6 Shoes booties, flats, heels, loafers, pumps,

sandals, sneakers

• SARIMA [29]：季節変動パターンを考慮した自己回帰

モデル．AIC基準を用いて {1, 2, 4, 8}の中から最適な
パラメータを選択した．

• MLDS [30]：多線形性を考慮した状態空間モデル．本

研究では，国，キーワード方向のランクをそれぞれ

{2, 4}，{4, 8}と変化させた．

• LSTM/GRU [12]：各モデルにおいて，50ユニットの

RNNを 2層使用した．ユニット数は，各層のユニット

数を 10, 20, . . . , 100と変化させたとき，6つのテンソ

ルストリームの開始 2年間のうち，10%の検証データ

の平均損失が最良となるものを選択した．ネットワー

クの学習では，中間層で 0.5%のドロップアウトを適

用し，Adam [31]を用いて最適化した．

5.1 時系列モデリングに対する有効性

本節では，オンライン活動テンソルストリームに対する

CubeCastの表現能力について検証する．図 1，図 2 に

示したように，提案手法は大規模テンソルストリームから，

時系列パターンの時間変化，地域間の差異を同時にとらえ

ながら効果的に将来予測を行うことが可能である．図 4

は，同様のデータセットに対する提案手法のモデル推定結

果を示している．実験では，カレントウィンドウの長さを

104ステップ（2年）とし，13ステップ（四半期）ごとに

Algorithm 1を実行した．また，季節パターンの周期を 52

ステップ（1年）とし，Sは 2004年から 2006年のデータ

を用いて初期化した．ここでは，3つの時期におけるそれ

ぞれの国が特徴的な時系列パターンを持つ中，提案手法は
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図 5 各予測ウィンドウの平均予測精度の比較

Fig. 5 Average forecasting accuracy of CubeCast: our meth-

od is consistently superior to its competitors for all

datasets (lower is better).

すべての傾向をうまくとらえることに成功している．特徴

的な傾向として，2009年からH&Mがドイツに参入したこ

とによるWeb検索数の大幅な上昇が見られる．2014年に

は，中国で各キーワードの検索数が急上昇しており，他国

では季節パターンの成長が見られた．提案手法を用いるこ

とで，こうした様々な傾向の変化に適応し，それらの特徴

をレジームとして抽出しながら将来予測を行うことに成功

した．

5.2 予測精度の比較

次に，テンソルストリームの将来予測に対する提案手法

の性能を評価する．各比較手法について，前節と同様の実

験設定で将来予測を行った．図 5 は，各予測ウィンドウに

対する平均自乗誤差（RMSE）の比較である．線形モデル

ある SARIMA，MLDSはテンソルストリームに含まれる

複雑なトレンドをとらえることができず，長期予測には適

さない．RegimeCastは，長期トレンドを表現する非線形

動的システム（式 (1)）のみを用いた手法であり，季節パ

ターンを表現することができない．提案モデルは式 (1)を

拡張し，テンソルストリームに含まれる季節パターンをと

らえることにより，高い予測精度を示した．一方，LSTM，

GRUは提案モデルと比べてより表現能力の高い非線形構

造を持つ時系列モデルであるが，各カレントウィンドウ

に対して，汎化性能を持ったモデルを推定することが困

難であった．結果として，長期予測に対して有効な時系列

パターンをとらえることができない．提案手法は，最新の

データに対してモデルの複雑さを自動的に変化させ，効果

的な長期予測に成功した．

5.3 計算時間の比較

最後に，提案手法の計算時間について述べる．図 6 は，

各データセットにおいてリアルタイム予測を行ったとき，

各ウィンドウで要した計算時間の平均であり，提案手法は

比較手法に対して高速に動作することを示す．

図 7 は，提案手法に与えるテンソルの各次元（時系列

の長さ，国の数）を変化させたときの計算時間の変化を示

図 6 各ウィンドウでの平均計算時間の比較

Fig. 6 Average wall clock time on GoogleTrends: CubeCast

can quickly provide a forecast while detecting regime

shifts and important patterns (lower is better).

図 7 テンソルサイズに対する提案手法の計算時間

Fig. 7 Average wall clock time vs. tensor stream size, i.e., du-

ration (tc) and number of countries (dl). CubeCast

scales linearly with respect to the time and target mode

for division into several groups.

す．貪欲法に基づく手法でテンソルをローカルグループへ

分割することにより，提案アルゴリズムの計算コストは入

力データの国の数に対して線形である．以上のように，提

案手法はテンソルストリームのリアルタイム解析に適した

性能を有する．

6. むすび

本論文では，大規模テンソルストリームのための非線形

モデルである CubeCastを提案した．提案モデルは，長

期トレンドと季節パターンの時間変化を同一空間上に表現

する非線形動的システムを用いて時系列予測に有用な時系

列パターンをとらえることができる．また，検出された時

系列パターンに基づく地域のグループ化により，柔軟な動

的システムを得ることができる．実データを用いて提案手

法の性能を評価し，既存の時系列モデルと比較して予測精

度，計算時間ともに改善することに成功した．
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