u

) <

The University of Osaka
Institutional Knowledge Archive

V54 VEEIT—YAN) —LDIODIERFEET
1Y

Title i

Author(s) |JIIME, Y, WIR, BF;, FH, FA fb

Citation |BFRLEBERMNEET—F~N—2 (T0D) . 2021,
14(3), p. 30-41

Version Type|VoR

URL https://hdl. handle.net/11094/93123

rights ©2021 Information Processing Society of Japan

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



IBIRNIBFLHRTFE F—2~N—2 Vol.14 No.3 30-41 (July 2021)

* VT4 VIERIT — 2 2 MY — 4D DIERIE T TN

JI et 2 AR SEF2D) R A3 B &Y

Z{tH 2020F12F 100, #$&H 2021F4R4H

BE : Web MRBIRESINE SN L KBUERSRY 7 — 713, B ls, F—7— FEwvozkir 20H
LEBITEERN, FUYYNARMN) =L E LT/ EDNTEL. Web EIZBITA2—FT 2751 T+
DEMTTIE, LV EREELERTUZERT A ENEELRED 1 2Th L)Y, HiELEEZHOT
YYUNVARN) = A OREFUICER /39 — 25813752 L MEE A, R TlE, W, HE,
F—=T7—FD 32T 5 Web MR THERSNDL T >V IVA N — L ERRIIHENT 5 720D A

M) =27V T) AL THSH CUBECAST #H4T 5. CUBECAST 352 5N72T VI NVA M) —AIZE
INDEHEANLE ML Y FEFEHINY — 2R, 20 2 LD L 72058 x FFofs 7 v — 7~
ERRT A, ZOEE, RETHRIROBEZFED. (a) BN ¥ FEFR/Y — v OIS H—
DEFNVTEBT S, (b) NTA—FF 21— FRHEMELELET, BRYIET VRN — V%
L% HEIRICHEET 5. (c) BRIIDP DB NS — 2 ZB(LE E B A, T IV A MY — A ZRERNIZM
Y5, EF—F MV ERTE, RETFElERFUAHR 285 — » 2R ORRNIIER T

&L 2L aRL, MAEOHRYITMTEE LB L C, FHkE, sHERROgE MR,

¥—T7— R IERAITH, TSR, Ty AR — A0

Non-linear Mining of Social Activities in Tensor Streams
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Abstract: Given a large time-evolving event series such as Google web-search logs, which are collected ac-
cording to various aspects, i.e., timestamps, locations and keywords, how accurately can we forecast their
future activities? How can we reveal significant patterns that allow us to long-term forecast from such com-
plex tensor streams? In this paper, we propose a streaming method, namely, CUBECAST, that is designed to
capture basic trends and seasonality in tensor streams and extract temporal and multi-dimensional relation-
ships between such dynamics. Our proposed method has the following properties: (a) it is effective: it finds
both trends and seasonality and summarizes their dynamics into simultaneous non-linear latent space. (b) it
is automatic: it automatically recognizes and models such structural patterns without any parameter tuning
or prior information. (c) it is scalable: it incrementally and adaptively detects shifting points of patterns
for a semi-infinite collection of tensor streams. Extensive experiments that we conducted on real datasets
demonstrate that our algorithm can effectively and efficiently find meaningful patterns for generating future
values, and outperforms the state-of-the-art algorithms for time series forecasting in terms of forecasting
accuracy and computational time.

Keywords: time series forecasting, tensor decomposition, stream processing
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Fig. 1 Modeling power of CUBECAST for an online search volume tensor stream related

to five apparel companies: (a) Given the original tensor (gray lines), CUBE-

CAST quickly identifies the non-linear dynamics in the latest tensor (blue), then,

continuously forecasts multiple steps ahead values (red), (b) while extracting

seasonal patterns common to all countries. (c) It also automatically identifies

similar country groups based on their trends and seasonality, which are com-

pressed into compact models.
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Fig. 2 Multi-aspect mining of CUBECAST for GoogleTrends re-

lated to major apparel companies. It automatically de-

tects (a) similar country groups based on dynamics, and

(b) changes between discrete dynamics.
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Fig. 3 Graphical representation of CUBECAST: Given a current
tensor X¢, (a) it identifies a regime 6 while capturing
seasonality with S. (b) It generates latent states Z and
V. (c) It reports ls-steps ahead values E; at the i-th
location with projection matrices W, and U, which

capture the j-th location-specific pattern.
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DA—H VTN —TOHELBTERL, &HiEDE Y
Tri ={r, ...,rjy..., rq} Z d MOEHTEBT 2
(rj e{1,...,mi}).

REETTNVOEEH R 3 ITRT. /EETNVIT X
WOM LoV Y — L0 LIBEFH Y — 2 S VT
FEATH . BRI, JERBEIN Y AT 4% H T
EINTMEPSBHEIREZBLTV 2T LW A
Ty TETERL, ENENEITHZ W TFIMEL &
KT 5., ZokE, i FHOMBOWEEE 13, AER
BT A0 —A NIV — T OB EHWTERINS.
L oT, AWFEDOEMW LB, 7YV VA M) —L X
AT BT A= 5L 0, REHEEL, BHEOKRY ¢, 2
Bl ATy THROREEE HERLETAZETH .

4. 73U XL

ARETIE, T4 VIEHERZ L2727 YV IVA R
=2 D7ODIFETFHMT VT XL THSH CUBECAST
IZDOWTHIRRL, KEOHMWIL, KEMHET—F 2 M) —4
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Algorithm 1 CUBECAST (X¢,0,R)

Input: (a) Current tensor X'°
(b) Full parameter set ©
(c) Regime assignment set R
Output: (a) ls-steps-ahead future values £/
(b) Updated full parameter set ©'
(c) Updated regime assignment set R’
1: /* (I) Estimate a new regime for given data */
2: {0, r} < REGIMEESTIMATION (X€,8); //S€©
3: /* (II) Update model set and detect current dynamics */
4: {©', R’} —REGIMECOMPRESSION (X°¢,0,R,0,r);
5: /* (III) Generate future values using a current regime */
6

. {0,r} — arg min X — £(6',))]| // f(-,-): Equation (3)
0O’ r'eR’

T &L f0,1); /) & = {ews Yt L,
8: return {£/,0',R'};

D HRRI P ORERAYIZRERFN NS — 2 2§ B 72012,
ETFVHEE Y HEIIWISEL, HBOL Y — A% ) - B
#H4HZETHAH. Algorithm 1 (& CUBECAST DULEL D
MNERYT. REFEL, DLTOFHETETNVOLERE
B L 2D ok Pl 2479 .

(1) REGIMEESTIMATION | X¢ 22 b #i7-% LI — 4 0 &4
EY A, BAEIICIE, BN AT A La =
F—T O, Thbb, LY —LEMSTr LB
ITHEEGW, U EHEET 5.

(2) REGIMECOMPRESSION : # 72 ICHiwE L7z LY — 4k
WRICHEE SN LY — 4% )L, MDL 2 A hIZ
HoWT, EFNVEREED L) ICEHT L hE PO
H. Fl, RSNV Y =228 T, FHEHIKS
(kI A

(3B, WEOTFT—FICRIBLIZL Y -4 0 %
EHL, X @) > Tl, A7 v 7o FillE
&l = {etij}if{gli’:JJ LR 5.

4.1 ¥EBEHE

RUFFEOHWIE, © OfEE AFWICET A2 LT
HbH. FZTARIFETIE, MDL (Minimum description
length) [25] 122D K b AF — L %E AT 5. MDL
X, ETVOHEMEZRTETNVIANE, HDLETIIN
Hzohizt&or—y 0B 2RI HF7La A T
W SN, 22003 A NOHMRANE 25T IV 2 RE L
T5. $abb, UTOREMELZHNTO 2RO 5.

O =arg min < O >+ < X0 >, (4)
@/

ZIT, <O >EFETFTVNRTA=FELO ODETIVEH
TAN, <X|O >1FO T L X OFFILIA RS
2H50LThH. WBEEFVOEFLVEHIA ML, AH
T =¥ ORITE, BEREORTCE, BXY, 750 A
X CHREEN, BHOLZN—FVESE [26) & log* &
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HTLE ROXHITERING.

<t >=log"(t.), < d; >=log"(d;), < d >=log"(dy).
<k, >=log"(k,), <k, >=log"(k,), <p >=log"(p).
<8 >= 8] - (log(p) + log(ky) + cx) + log"(|S|).

<O>=<k, >+<A>+<B>+<W>+<U>.

2T, | |35 NTATHNOIEE O EE ORI, cr
FEBROFFAET 2 RE/NUTT A+ 2R$*2, [k
12, LY=L NRIRA=FDETFINVIAD <> EKRDEH
ICEFSND.

<A >=|A| (2 log(k)+cr)+1log*(JA]),

< B >=|B|-(3-log(k) + cr) + log*(|B|),

<W >=XL, W, - (log(dk) +log(k:)+cr)+log™(|Wil)
<U =S [UL| - (log(dx) + log(ky) + cx) + log™ (U],

W T, O35 X OfFFiba A M, NI T
b 27) 1230 &, FH u, Bk o? ODEHSMHIIBITSHA
DB ETEEINS.

te,dy,d
<X|O>= > —108s o (Trij — €rif), (5)

tyi,j=1
Z 2T, etij € PRE (3) &5 Tyij € X DHFEMTH 5.
FLOLLT XX THODHEITIAN <X;0 > %KD
LHIEFRT 5.

<X;0>=<0 >4+ < X|O >

=<t.>+<d>+<dy>+<p>

n
+ <ky,>+ <S> +Z <f;>+ <X[0>.
i=1

(6)

4.2 RegimeEstimation

AEICIE, X (6) m/METHLI—4, BLUE—7
WITN—T%RKDEHTIVT) XL E LT REGIMEESTIMA-
TION R FT 5. REETNVOERN LHERERIL (a) I
MIEGH% A, B (b) BUATHIESE W, U, (c) BAEFH +
LY FSTHAHA, ZNIMATH—ANT V=T Dk
ERLTHAEELEE 2 HFD. INHDNT X —=FITHWIC
KAFBR 2 o TV B 720 T TR ICHRBELT 5 2 L i
L, COMBEL RIS 57-9, REGIMEESTIMATION
FEREICETSEMDL 22 M2 kDA Tr0—%
WITN—=TEFDNTA=FHRDLIEEHNET A,
Algorithm 2 |2 REGIMEESTIMATION DRl Z 7R . &R
DL LT, 1) GabhilT oyl X IlH—Du—17
W TN — T HAME L THAR L % BIERIEENN > AT 4 & i
1%, (2) MDL 2 A bOFBAIEFE 2 EFTH— IV TV —
2ORBHUTIE, cp =32y FET D,
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Algorithm 2 REGIMEESTIMATION (X¢,S)

Input: Current tensor X and seasonality S

Output: Regime parameter set § and regime assignment r

LW=¢; U=¢; r={ri=1li=1,...,d1};
2: W* = ¢; U* = ¢; // candidate observation matrix set
3: /* Estimate a regime with a single local activity */
4: {A,B,W,U} — arg min < X% 8S,60 r >;
6'={A’,B' W', U’}
5: Push W into W*; Push U into U*;
6: /* Estimate local activities */
7: while W* and U* are not empty do
8: Pop an entry Wy from W*; Pop an entry Up from U*;
9: 0 — {A,BWr,Ur}; [/ Wr=WUW*U{Wy}
10: Initialize r*; Initialize W1, Wy, U, Ug;
11:  6* —{A*,B* Wy, Uy} // A*=A,B*=8
12: J/ WE=WUW*U{W 1, W}, Up =UUU* U{U;, Uz}
13: while < X¢;S,0*,r* > is improved do
14: Estimate r*;
15: Estimate W1, Wy, U, Ug;
16: Estimate A*, B*;
17: end while
18: if < X¢S,0%,r* > is less than < X¢;S,0,r > then
19: Push {W1, W3} into W*; Push {U1, Uz} into U*;
20: A — A%, B—B* r«r*
21:  else
22: Push Wy into W; Push Uy into U;
23: end if

24: end while
25: return {0, r }; //0={A,BW,U}

TOEMEELTOEFZMHEY KT LT, HEIWICET
MHEE R ET S. DT TIEINS 2 000z oW TE
NS

4.2.1 FBRHEN L X T LOHEE

WKHOT IV XHRGZohizEE, A ¢
<X%S,0,r>x L )/IESLT B0 ={AB WU} &
ETAH, ZoLE, SELY—afTHEBLTHHENS
TOMEENT A—=FEEZ D, 4, O=ANTV—TDH
Em=1TdhY, LIY—2E4Tr,cr(i=1,...,d) D
HIZTRTLTH5H. T/, SBUIATHESGIH—DER
B, W={W}, U={U} LEsNh5%.

T A=y OHE TR, BRI ML Y FOFBFEIREOK %
PET 720, k, 0% 1 2 SIEICHEME S, I X O
WBlhFE o772 EONRT A=Y 2 F]AT S, G2bNizk, 12
L, TVI) ALEFETIERIE/ ST A —F BOfEE 012
FEL, W7 A—% (AW, U} € DA% EM 7L T
AL ERCCHET A. ZD#, Levenberg-Marquardt
(LM) 28] Z FHWT B&2#ET 5. KBIZETIE, B OX
IS b € B (i € [1,k]) OAERMEMN T 5. JEREIRY >
A5 L OMIE {20, vo} 135/3F A —F OEHERIZE IS
HwES 5.
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Algorithm 3 REGIMECOMPRESSION (X 0, R, 0,r)

Input: (a) Current tensor X'°

(b) Full parameter set © and regime assignment set R
(c) Candidate regime 0 and regime assignment r
Output: Updated model set ©* and regime assignment set R*
1: /* Search an optimal regime within © */
2: {0*,r*} «— arg min < X<S,60 v >;
0'€O,r'eR
3: if < X¢;S,0,r > is less than < X¢; S, 0%, r* > then
4: 0 —0OUl; R*— RUr;
5 0* «— 6; r* «— r; // Replace an optimal regime with a
new regime
6: else
7 0 — 0; R* —R;
8: end if
9: while < X¢;S,0*,r* > is improved do
10:  Estimate 6*; // 6* € ©*
11:  Estimate S; // S € ©*
12: end while
13: return {©*, R*};

4.2.2 O—HNTIL—TOHE

BWnWT, O—A VTN —TOHET IV T) ZLIZDNT
FHT L, a—H VTV —TOEYTIE, HET L RITTE
WIB L THEEDRL, FHRIA MR RS L) |
BEPHELE., 22T, A¥ v 2 EPOEHRE LTIV
ANEMHAT L. 4, W & U & B BHIITH O it & 1
THEAY v 7 EL, MEREEL LT, 4.2.1 THTRD 7475
(W, U} B SND. A5 w2 Wb U 9522k b %
T{W,W,, U, Uy}, {A*,B*} €, u—A L Vv—7
DEB T r* L HEIZEHHT 5. rf OEHHTIE, /8T X —
FHGAONIEEDITA M < XE|AB,W;,U; > &/h
ELTHje{1,2} #ENVBTS. HElZ, gEIZALL
EFN O, r* EGEROETIVE, r LD A NEEL,
MBI ADNE/NSLT LA, {W1,W,,U;, Uy} DN
DHEMERE LTAY v ZIZHBT A, Z9) ThUWEE
X, Wo, Uy iR E LTH— AV TV — T O &R
Lm=m+1), tOA YTy 7 AZHEHFLTZDT ) —
TOGEEREILET 5.

4.3 RegimeCompression

TITIE, BREREICEXALY-L0%LEES RS
TIVTY) XL THSH REGIMECOMPRESSION (22 Tl
% . Algorithm 3 27”3 & 9 12, REGIMECOMPRESSION
(&, MDL I & MDDV TETIVIEMO LT % Hk 3
5. BARIIZIE, Ty XSz onE &, #EIC
B L2V Y— 285 {0,R} OFMPLEIRLAL Y — 24
0*,r* &£, REGIMEESTIMATION CHE L72L Y — 24 0,r O
DAL ERRETS. Or FHWAEEDI A RIS TR
EENOZETIVESNEBML, 9 ThriFIHEEL
TETNVEWEL THREOETIV O r* AN T X %k
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HYn, mBIC, U=V 7V —TOELTr* ZFEEL
TLY—=LRXT A= 0% EBEFHI/NY — > S Z2EHAZ
L, E7VERE X ICRELSES.

RIF7ECIE, METEEZHVCTA MY — LI E47 9 |
2, EFHOR E, L8N X =% SEMELT 5. 52
Shizr oy, FEIZH-> TERL, 4751 X € RPxd
2155, ZOTHINA BT ICA) 2@H L, #5
N7k, WO S% S LT 5, FD%, SIZHEDE,
REGIMEESTIMATION Z @ LT #kHD L. O %
ky=1,2,3,..., E#VELFETL, AP <X;S,0,r >
BN D L) B ky, SEWHEE T 5.

EH1 CuBeCast DEHEIX O(ndidy) TH 5.

AL B 2 WGt 2B A (2) OEHE R, AR
BOYE Ok?), HEEA XY POWE O(dk, + dpky) O
&8 & 7% 4. REGIMEESTIMATION (X, E& . DT vV
VARG 2o/t &, d oL ca—r s
W—=TO25E VR, KB 7V —THmE&E
TIWINT A=Y DOHEERITH. LoT, #YERLMEK
x dhiter L5 5L, TORBLICLERFEIT A NI
O(#iter - lody(k* + dik, + digky)) TdH 5. REGIMECOM-
PRESSION (3£ D L ¥V — 40 58D 7 — # 120 L Tl
b DEFBINT 572012 O(nledy (K +dik, +dyk, ) DA
TAMRES L. 22T, DR LN #iter, 71 Y B
YA X, BEOEAEIREDE K, k., by 13IER IS WERL
TdHb7:0, CUBECAST ZRDFHEEIX O(ndidy) TH 5.

5. FHliEER

KIFFE T, REFEOMRZ T 2720, RO

ICBIT 2 EBR A AT o 7.

(1) BRHIE T ¥ I B REFEOEME

(2) —ETFHORRY T HIKE

(3) "EFHEOFHEI A H

FEEEI21E, Intel Xeon W-2123 3.6 GHz quad core CPU,

128GB D AE) W L7 Linux ¥ ¥ Y 2@FH L7z, 57—

%t v M, GoogleTrends** S IUE L7z, FREL7-F—

77— FIZxf T 5B T L D Google R DOHERE % 7R T HE

RN TF =5 THb, R2ICRTEF—T—FEv b

L, 2004 4E 1 H2*5 2018 4E 3 H £ CToOMH, GDP L

7. 50 7 E ORI F— 7 ZNEL, 3BOF > I VT —

gL, T, BoNLT— IR RITT & ITHEREA

(z-normalization) L CHiA L7z, DIFIZRT L9112, It

BRI 2 FRYE TV 0 5 L 72,

e RegimeCast [16] : FEMZENH > A 7 L 125D R
FM TN T) XL RERLIHE, BEREOHK
k=4, ETVOMBK L =2, ETIVHEEDOHM
e=05-|X| & L7

*3 https://trends.google.com /trends/
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Fig. 4 Fitting results of CUBECAST for five apparel companies on GoogleTrends. CUBE-

CAST incrementally and automatically identifies sudden changes in dynamical

patterns including the latent trends, seasonality and structure of groups of sim-

ilar countries.

x®2 7Yty FOWME
Table 2 Dataset description.

ID Dataset
#1 | Apparel
#2 | Chatapps

Query
zara, uniqlo, h&m, gap, primark
facebook, LINE, slack,

twitter, telegram, viber, whatsapp

snapchat,

7#3 | Hobby soccer, baseball, basketball, running,
yoga, crafts
#4 | LinuxOS debian, ubuntu, centos, redhat,

fedora, opensuse, steamos, raspbian,
kubuntu

#5 | PythonLib | numpy, scipy, sklearn, matplotlib,
plotly, tensorflow

#6 | Shoes booties, flats, heels, loafers, pumps,

sandals, sneakers

o SARIMA [29] : FHEIZH)/ N — > ZZE LA R
EF)V. AIC EHEZ VT {1,2,4,8) DA Sl %
INT A= 5 RFRL 72,

e MLDS [30] : £ Z LR L2 IREZH T 7 L. A
Wrgeclx, B, ¥—7—FNHAOI Y72 FnzEh
{2,4}, {4,8} L& LsE7.
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e LSTM/GRU[12] : £ETNIZBWT, 50 L=y b®D
RNN # 2 @Ml L7, 2=y MNiE, o=y b
% 10,20,...,100 LZEfLSE2LE, 6 2DT Y
VAN = LDOGIG 2 FEBO ) B, 10%DHGEET — ¥
DVIREN B E R DL DERIRLZ. 2y M —
7 OFE T, PHEET05%D Ky 77w b EE
ML, Adam [31] & H\v> CThelifl L7z,

5.1 BRIEFTULTICHT 2EMM

KRETIE, Y I74 EHT Y VVA M) —AICkT S
CUBECAST OEKIRFEENIZ DO W THGEET 5. 1, 212
AL EDE, METFFEIRHEBT VU VA M) =405,
BERHN 7 — o ORFZEAL, MR O=R %2 FIFIZE 5 2
BOLMBIIRETMAZIT) 2R THL. K4
&, FEfRDT—% 1y MIOT 2REFEDE T IVHEER
BERLTWS, EBTIE, hLU o1y Fy0ES®
104 25 v 7 (24F) &L, 1327y 7 () Jki
Algorithm 1 #FAT L7z, £72, FHi/Ny — > 0% 52
277 (14E) L L, S 2004 4205 2006 £DF— %
FHOWTWI L L. 22T, 32o0BIcBITs2FN
ZNOEDIFI B RERTI Y — v & Fgom, JREFEE
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Fig. 5 Average forecasting accuracy of CUBECAST: our meth-

od is consistently superior to its competitors for all

datasets (lower is better).

FTRTOMENZ ) FLESRDI LI LT WA, H
B2 E LT, 2009 4E005 HEM S KA VIR A LS
L2 X B Web MEBEHO KGR EANRSNE. 2014 412
&, PEITEF -7 — FOMBEHPE LA LTBY, fHE
TEFERNY - OREPRO N, EFHEEH LS
ET, 9 Lckka M OZELICHEL L, Z5 08
LY=L LT L 2D ST AT & LI
L7.

5.2 FRIFEE DS

RIZ, 7Y VNA M) — AORBRTINS T 2 HEFE
DUEREZ FHIIS 5. FETEIZOWT, Al & ko5
BikE Rk T AT o7, B 51, T 1 Kol
95 FH RS (RMSE) OB TH L. HIEETIV
&% SARIMA, MLDS 37 v VIVA M) —AlZ&ETN D
MR NL Y R2ESRBZENTEY, EMTFINICIZH
72w, RegimeCast (X, EH ML ¥ FE2 LIS 5 IEHIE
B A7L (K1) OAEHWFETHY, FHiN
Y-V RFERTHIENTER V., REETFVIEIRA () %
WHEL, 7Y VYNA M) —LIZEENLFHNY - &L
LRAHZEIZEY, BTl ELRLZZ. —F, LSTM,
GRU ZREE TNV L IT L) RHEET OBV IERIEHE
EEFEORRVETIVTH LN, LY b T 1Y
WA LT, PR R o 2 BTV R HEET S 2 L DH
fchosz. FRL LT, BREMFIICE L THER 2 EERT
NG =B B IENTERY, RETHIZ, BHO
TR L TET VOB S 2 HEINICEL S, %R
1 72 B AT N BT L 72,

5.3 EtERFREDEEE:

WIS, MEFEOFHEREMICOVWTERS, & 6 i3,
HZTF=%ty MZBWCTYU T VYA LFllE T8 &,
&4 Y Ry TRELIEERMOTETH Y, RETFHEII
BT L CRmRICEET 5 2 L 2R T

X 7%, BETFHEICEGZET 7 VORRIC (R
OES, Eof) #xs¥7L 2orERMOZ T R
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Fig. 6 Average wall clock time on GoogleTrends: CUBECAST
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=3
o

can quickly provide a forecast while detecting regime

shifts and important patterns (lower is better).
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Fig. 7 Average wall clock time vs. tensor stream size, i.e., du-

Number of years

ration (t.) and number of countries (d;). CUBECAST
scales linearly with respect to the time and target mode

for division into several groups.
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SEITAZEICEY, RETLVT) XL0FEITAMIA
N7—=5 OEOEITF L THIETH L. DbokHic, i
EFHER TV INVAN) =D TIVY A LEHTIZE L7
HREXFT 5.

6. LTV

KL T, KBTIV A M) — A D720 DIETE
ETNTHSH CUBECAST # I E L7z, MEET NI, E
WL Y REFHIY — ORI E F—22 /1 LI FB
A IERIZEI S A 7 & % H\ CRERB TN A 2% %
BNy =B b2 EDRTEL, T2, MIB SN0
BRIy — D IO S — T XY, ik E)
MY AT L2BLIENTEDL, EF—F EHVTIRET
FEOVEREZFHE L, BEAFORSRYIE TV & B LTIk
JE, FHAREE & HICET A LKL 7.

BE: AWFE o & JSPS BHf &, JP17H04681,
JP18H03245, JP19J11125, JP20H00585, JST & & A%\)
JPMJPR1659, JST Aktt gl JPMIMILI9BS, #&
%4 SCOPE 192107004, ERCA & B3 If 78 #& 4 Hff it &
JPMEERF20201R02 OB % 5213 72 b O TF
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