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推薦論文

車両走行センサデータからの自動パターン検出

本田 崇人1,a) 松原 靖子1 根山 亮2 櫻井 保志1

受付日 2015年12月20日,採録日 2016年4月8日

概要：本論文では，車両走行データのための自動パターン検出手法である TrailMarkerについて述べ
る．TrailMarkerは，位置情報をともなう様々な車両走行センサデータが与えられたときに，おのおの
の道路や場所における車両走行の特徴を抽出し，それらの情報を統計的に要約，表現する．すなわち，走
行データに基づく高度な道路地図情報を提供する．具体的に提案手法は，(a)車両走行データをテンソル
として表現した後，そこから複数の部分シーケンスに共通する主要な走行パターンを抽出する．(b)その
際の計算量は入力データのサイズに対して線形である．さらに，最も重要な点として，(c)提案手法はパ
ラメータに依存しない．すなわち，事前情報の付与またはパラメータのチューニングを行うことなく，大
規模車両走行データの特徴抽出とパターン検出を自動で行うことができる．実データを用いた実験では
TrailMarkerが様々な車両走行データの中から主要パターンや外れ値シーケンスを効果的かつ効率的に
検出することを確認した．

キーワード：車両走行センサデータ，自動パターン検出，地理情報テンソル

Fully Automatic Mining of Large Geographical Complex Sequences
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Abstract: In this paper we present TrailMarker, a fully automatic mining algorithm for geographical
complex sequences. Our method has the following properties: (a) effectiveness: it operates on large collec-
tions of time-series, and finds similar segment groups that agree with human intuition; (b) scalability: it
is linear with the input size, and thus scales up very well; and (c) TrailMarker is parameter-free, and
requires no user intervention, no prior training, and no parameter tuning. Extensive experiments on real
datasets demonstrate that TrailMarker does indeed detect meaningful patterns effectively.
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1. はじめに

車両走行センサデータの解析は，安全で快適な自動車走

行のための技術向上，ならびに情報ネットワークを活用し

た新たな運転サービスの提供のために非常に重要な課題と

なっている．本論文では，大規模な車両走行センサデータ

を対象とし，重要な車両走行パターンの抽出，もしくは異
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2 トヨタ IT 開発センター
TOYOTA Info Technology Center Co., Ltd., Minato, Tokyo
107–0052, Japan
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常パターンの検出を自動的に行うことを目的とする．より

具体的には，様々な道路，多数の車両，複数のセンサから

のデータが与えられたとき，これら大規模な車両走行セン

サデータを多次元の地理情報テンソルとして扱い，すべて

の要素を統合的に解析し，データ全体を表現する要約情報

を抽出する．そして，走行データに基づく高度な道路地図

情報を提供する．

一般に，実際に生成される車両走行センサデータは，複

数の異なるトレンドやパターンを持つことが多い．たとえ

本稿の内容は 2015 年 11 月のWebDB フォーラム 2015 で発表
され，同シンポジウムプログラム委員会により情報処理学会論文
誌データベースへの掲載が推薦された論文である．
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図 1 車両走行データにおける TrailMarker の出力例（Y コース，総トリップ数：31）

Fig. 1 TrailMarker “automatically” identifies driving patterns (e.g., turn) and fea-

tures (e.g., driver) of vehicle sensor data, as well as the positions of the all cut

points (Y course, 31 trips).

ば，一般的な道路では，曲がり角や信号，車線変更など様々

な走行パターンを持つ．また，同じ道路であっても時間帯

や運転者によって走行パターンは異なる．ある道路を走

行している際，安定した走行と異常，つまり危険な走行な

ど，様々な走行が見られる．ここで，これらの走行パター

ンを本論文では「V-レジーム（V-regime）」，走行グループ

を「H-レジーム（H-regime）」と呼ぶ．本研究では，大規

模な地理情報テンソルの中から，これらの異なるトレンド

を発見し，すべての車両走行パターンを表現する手法とし

て，TrailMarkerを提案する．

本論文で扱う問題は以下のとおりである．

問題：車両走行センサデータ集合 X が与えられたとき，X
を表現する車両走行パターンを抽出する．より具体的には

( 1 ) X の中のパターンの変化点を発見し，部分シーケンス
集合（セグメント）に分割し，

( 2 ) セグメントの共通パターンを検出するとともに，

( 3 ) 類似した車両走行シーケンスをグループ化する．

( 4 ) さらに重要な点として，これらの処理は高速かつ自動

で行う．

具体例． 図 1 は，赤坂 Yコースの車両走行センサデータ

と TrailMarkerの出力結果例である．この車両走行の

センサデータ集合には合計 31の多次元シーケンスが含ま

れており，シーケンスの各要素は 3次元の値から構成され，

それぞれの次元が，速度（青），左右加速度（赤），前後加

速度（緑）を示している．図 1 (a)，(b)，(c)はおのおの類

似した車両走行シーケンスのグループ（H-レジーム）を示

しており，各グループにそれぞれ 9，21，1つのシーケンス

が割り当てられている．図 1 (a)の上段は TrailMarker

の出力結果から，1つの典型的なシーケンスを地図上にプ

ロットしたものであり，下段はグループにおける 1つの典

型的なシーケンスと，TrailMarkerが自動抽出した 6つ

のセグメント共通パターン（V-レジーム）をグループの代

表として示している．同一の V-レジームに含まれるセグ

メントは同一の色で表現されている．

提案手法は，ハンドル操作，加速や減速，停止など，車

両走行の様々な共通パターンである V-レジームを抽出す

ると同時に，慎重な走行（図 1 (a)），スムーズで慣れた走

行（図 1 (b)），経験の浅い走行（図 1 (c)）などの H-レジー

ムの発見，すなわち車両走行のグループ化も行うことがで

きる．

ここで最も重要なこととして，TrailMarkerはこれら

の走行パターンに関する事前知識を必要とせず，適切な数

の V-レジーム，H-レジームを自動的に把握することがで

きる．

1.1 自動抽出手法の重要性

クラスタリング [9]，セグメンテーション [5], [22]，類似

シーケンス探索 [16], [18]などセンサデータを対象とした研

究課題は数多く存在するが，これらの先行研究は基本的に

すべてパラメータの設定やチューニングを必要とする．セ

グメントの個数やエラーの閾値など，ユーザに様々なパラ

メータ入力の負担を強いるだけでなく，出力結果にも大き

な影響を与える．特にビッグデータの解析において，ユー

ザの手を介したパラメータ設定は多くの時間的コストを必

要とするため，自動処理技術は必要不可欠な要素である．

1.2 本論文の貢献

本論文では車両走行センサデータ集合を多次元の地理情

報テンソルに変換し，縦方向（Vertical）や横方向（Hori-

zontal）に分割しながら，複数の観点からすべての要素を

c© 2016 Information Processing Society of Japan 2
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統合的に解析する．提案手法 TrailMarkerは以下の特

長がある．

( 1 ) すべての車両走行シーケンスにおいて共通する部分

シーケンスパターンの個数を求め，おのおののパター

ンの特徴をモデル（V-レジーム）として表現する．

( 2 ) V-レジームのモデルを用いて類似した車両走行シーケ

ンスのグループ化を行う．提案するコスト関数に基づ

いて適切なグループ数を求めながら，各グループの特

徴（H-レジーム）をとらえる．

( 3 ) TrailMarker はパラメータ設定を必要としない．

ユーザの介入を必要とせず，適切な V-レジームの数，

H-レジームの数，変化点の数を，自動的に発見するこ

とができる．

( 4 ) 縦方向と横方向の分割と特徴抽出を交互に行いなが

ら，効率的にテンソルの解析を行う．計算コストは入

力データの長さ，車両走行データの数に対して線形で

ある．

2. 関連研究

関連研究は以下の 3つに分類される．

パターン発見． センサデータの解析に関する研究

は，時系列マイニングなど様々な分野で進められてい

る [2], [10], [11], [13]．自己回帰モデル（AR: autoregres-

sive model），線形動的システム（LDS: linear dynamical

systems）は代表的な技術であり，これらに基づくセンサ

データの解析と予測手法が数多く提案されている [19]．ま

た，本論文と関連するテンソル解析についても，Web情報

を解析するための様々な手法が提案されている [12], [14]．

Li らは文献 [8] において，欠損を含む大規模時系列シー

ケンス集合のためのアルゴリズムである DynaMMoを提

案している．DynaMMoは LDSに基づき，時系列データ

のパターンを発見し，シーケンスのセグメント化の能力

を持つ．Rakthanmanonらは文献 [16] において，兆単位

（“trillions”）の時系列シーケンスを対象とした DTWの類

似探索問題を扱っている．著者らの先行研究 [20]では，時

系列データのパターン発見とセグメント化，クラスタリン

グを完全自動で行う手法を提案しているが，テンソルデー

タを対象としておらず，扱う問題が異なる．

確率モデル．隠れマルコフモデル（HMM: Hidden Markov

model）は音声認識を含む様々な分野において，時系列デー

タ処理手法として広く利用されている [23]．HMMに基づ

く大規模時系列シーケンスのための研究として，文献 [7]

では，RFIDセンサから生成された時系列のマルコフスト

リームを対象としたイベント問い合わせの手法が提案さ

れ，一方，文献 [4]では大規模HMMデータ集合のための高

速探索アルゴリズムが扱われている．最新の研究として，

Wangら [22]は文献 [5]を改良し，pHMM（pattern-based

hidden Markov model）を提案している．pHMMは時系列

データのセグメント化とクラスタリングのための動的モデ

ルであり，シーケンスをマルコフモデルに基づいて線形の

セグメントに分割する能力を持つ．これらの手法は，時系

列データの複雑な動的パターンを表現する能力があるが，

その一方で，高度なパラメータチューニングや，モデルの

構造の定義などが必要となり，さらに，これらの手法は大

規模センサデータの解析を想定していない．

また，テンソル解析手法として，Matsubaraら [12], [14]

はTriMine（Fast mining and forecasting of complex time-

stamped events）を提案している．TriMineは大規模イベ

ントデータから潜在的なトレンドやパターンを検出可能で

あるが，webクリックデータを対象としており，本手法と

は扱う問題が異なる．

情報抽出とクラスタリング． 情報抽出とクラスタリング

の手法は CLARANS [15]，BIRCH [24]，TRACLUS [6]を

含め，様々なものが提案されている．パラメータフリーな

情報解析手法としては，OCI [1]がある．OCIは，外れ値

を含む点集合のクラスタリングのための手法である．さら

に，文献 [3], [21]においては，MDLの概念を用いて情報

要約とクラスタリング問題を扱っている．

3. コンセプトと問題定義

ここでは本論文で必要な概念について定義を行う．本

研究において扱う車両走行データは時間，場所（緯度，経

度），センサによる計測値から構成され，トリップごとに毎

時刻収集される．トリップとは，特定の車両による 1つの

目的を持った出発地から到着地までの移動を指す．本論文

では，場所ごとの車両走行の特徴を抽出するため，すべて

の道路にはゾーンと呼ぶ小さな区域を設ける．そして，各

ゾーンは 1カ所の計測場所を有する*1．したがって車両走

行データは (trip, zone, object)のように構成される要素の

一連のシーケンスとして表現される複合データである．こ

こで，トリップ（trip）とゾーン（zone）の総数をそれぞれ

wと nとする．そして objectは各種センサによる計測値を

表しており，d次元ベクトルとして表現される*2．本論文

ではこのようなデータを地理情報テンソルと呼ぶ．

定義 1（地理情報テンソル） X ∈ R
w×d×n を地理情報

テンソルとする．X の要素 xi,z,j は，i番目のトリップに

おけるゾーン zの j 番目のセンサノードの計測値を示して

いる．

地理情報テンソル X から i番目のトリップの情報，すな

わちセンサノードの計測値を取り出したとき，トリップ i

の地理複合シーケンスと呼ぶ．

*1 1つの ゾーンが複数の計測場所を持つ場合には，ゾーンの中心点
に近い計測値を選択するか，中心からの距離に基づく重み付き平
均をとることにより求めることができる．

*2 本論文ではセンサによる計測値として，速度，前後加速度，左右
加速度を用い，またゾーンとして道路を 1m 間隔に区分してい
る．

c© 2016 Information Processing Society of Japan 3
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定義 2（地理複合シーケンス） Xi = {xi,1, . . . ,xi,n}
をトリップ i の長さ n の地理複合シーケンスとする．

xi,z = {xi,z,j}d
j=1 はゾーン z における計測値である．

すなわち，X = {X1, . . . ,Xw}である．図 1 は車両走行

データ，すなわち地理複合シーケンスの例であり，各ゾー

ンにおける d次元のオブジェクトシーケンスを示している．

1つの地理複合シーケンスX が与えられたとき，X を

m個のセグメント s1, . . . , smに分割してその特徴をとらえ

る（5.2 節を参照）．siは i番目のセグメントの範囲を表し，

ある 1つの走行パターンが現れる範囲を表している．これ

はセグメントの開始点 ts，終了点 te，トリップ番号 j で構

成され（つまり，si = {ts, te, j}），各セグメントは重複が
ないものとする．そして，発見したこれらのセグメント集

合 s = {s1, . . . , sm}を類似セグメントのグループに分類す
る．すなわち，類似した走行パターン（車線変更，信号停

止，右折など）を表すセグメント同士のグループ化を行う．

定義 3（V-レジーム） r を最適なセグメントグループ

の個数とする．それぞれのセグメント s はセグメントグ

ループの 1つに割り当てられる．これらグループを V-レ

ジーム（V-regime）と呼び，それぞれの V-レジームは統計

モデル θi (i = 1, . . . , r)として表現される．

V-レジームは後述（5.2 節）のアルゴリズムV-Splitによっ

て作成されるセグメントグループであり，たとえば，図 1 (a)

において，シーケンスは r = 6個の V-レジームから構成さ

れ，それぞれのセグメントが r = 6個の V-レジームのうち

の 1つに割り当てられる．

定義 4（セグメントメンバーシップ） 地理複合シーケ

ンス X が与えられたとき，v = {v1, . . . , vm} を，m 個

の整数列とし，vi を i番目のセグメントが所属する V-レ

ジームの番号とする (1 ≤ vi ≤ r)．

図 1 (a)では，1番目のセグメントは 2番目の V-レジーム

に，2番目のセグメントは 1番目の V-レジームにそれぞれ

所属する．つまり，この場合のセグメントメンバーシップ

は v = {2, 1, 2, 1, ...}となる．
次に，複数トリップからの特徴抽出について考える．

X = {Xi, . . . ,Xw}を w個のトリップの地理情報テンソル

とする．本研究の目的は大規模な X が与えられたときに，
(a)おのおののトリップのグループ化と，(b)各グループに

おけるトリップシーケンスのセグメンテーション，それら

両方を行いながら複数のトリップシーケンスに共通する特

徴を高速かつ自動で抽出することである．そこで，本研究

ではセグメンテーションだけでなく，X を g個のトリップ

グループに分割してパターン抽出を行う．

定義 5（H-レジーム） gを最適なトリップグループの個

数とする．それぞれのトリップはトリップグループの 1つに

割り当てられる．これらグループをH-レジーム（H-regime）

と呼び，それぞれの H-レジームはコア Φ = {φ1, . . . ,φg}
として表現される．

H-レジームは後述（5.3 節）のアルゴリズムH-Splitによっ

て作成されるトリップグループである．たとえば，図 1 に

おいて，地理情報テンソルは g = 3個の H-レジームから構

成され，それぞれのトリップが g = 3個の H-レジームの内

の 1つに割り当てられる．φi は i番目の H-レジームのコ

アであり，i番目のグループを代表するトリップが，各ゾー

ンにおいてどのモデル θj (j = 1, . . . , r)を用いて表現され

ているのかを示している．すなわち，φi は長さ nの整数

列であり，各ゾーンが所属する V-レジームの番号を表す．

そして，セグメントグループを表現する V-レジームは，1

つの H-レジーム内でのみ共有される．

定義 6（トリップメンバーシップ） 地理情報テンソル

X が与えられたとき，H = {h1, . . . , hw}を，w個の整数列

とし，hi を i番目のトリップが所属する H-レジームの番

号とする (1 ≤ hi ≤ g)．

本論文で取り組む問題を以下のように定義する．

問題 1 地理情報テンソル X が与えられたとき，すべ
てのトリップの地理複合シーケンスXi (i = 1, . . . , w)を

表現するような以下の情報を抽出する．

( 1 ) 各セグメントの位置とセグメント総数：

S = {s1, . . . , sw, m}
( 2 ) V-レジームの総数 rとセグメントメンバーシップ：

V = {v1, . . . ,vw}
( 3 ) H-レジームの総数 gとトリップメンバーシップ：

H = {h1, . . . , hw}
( 4 ) r個の V-レジームを表現するモデルパラメータ集合：

Θ = {θ1, . . . ,θr,Δr×r}
( 5 ) g個の H-レジームのコア集合：

Φ = {φ1, . . . ,φg}
ここで，Δr×rはV-レジーム遷移行列，m = {m1, . . . , mw}
は各トリップにおけるセグメント数である．上記のすべて

の情報は最小記述長原理に基づくコスト関数（式 (2)）を

最小化するものを選ぶ．

本論文では，V-レジームを表現するモデルパラメータ集合

Θを，r個の隠れマルコフモデル（HMM: hidden Markov

model），{θ1, . . . ,θr}，として表現する*3．

問題 1 で示したとおり，本論文の目的は，X の特徴を抽
出し，すべてのパターンを表現するパラメータ集合を発見

することである．

定義 7 X を表現する全パラメータ集合 C =

{r, g,S,Θ,Φ,V,H}を候補解と呼ぶ．候補解 Cは，セグメ
ント集合，各セグメント，各トリップの V-レジーム，H-レ

ジームへの割当て，V-レジームを表現する確率モデル，H-

レジームのコア，これらすべてを表現する．

表 1 に主な記号と定義を示す．結論として，本論文の目

的は最適な解 C を発見することである．ここで非常に重要
*3 提案する枠組みは，HMM以外のモデルに適用することも可能で
ある．
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表 1 主な記号と定義

Table 1 Symbols and definitions.

記号 定義

テンソル

n 地理複合シーケンスの長さ

w トリップの数

d 地理複合シーケンスの次元数

X w × d × n 次元の地理情報テンソル：

X = {X1, . . . , Xw}
X d 次元の地理複合シーケンス

V-レジーム

m X に含まれるセグメントの総数：m = {m1, . . . , mw}
S X に含まれるセグメント集合：S = {s1, . . . , sw, m}
r X に含まれる V-レジームの総数

Θ r 個の V-レジームのモデルパラメータ集合：

Θ = {θ1, . . . , θr, Δr×r}
θi i 番目の V-レジームのモデルパラメータ

ki θi の状態数

Δr×r V-レジーム遷移行列：Δ = {δij}r
i,j=1

V セグメントメンバーシップ：V = {v1, . . . , vw}
H-レジーム

g X に含まれる H-レジームの総数

Φ g 個の H-レジームのコア集合：

Φ = {φ1, . . . , φg}
φj j 番目の H-レジームのコア

H トリップメンバーシップ：H = {h1, . . . , hw}
コスト関数

C 候補解：C = {r, g,S, Θ, Φ,V,H}
CostT (X; C) C による X の総コスト

な課題は，(a)どのように各トリップ，各ゾーンにおける

特徴を抽出するか，(b)どのようにセグメントの数，V-レ

ジームおよび H-レジームの数を推定するか，(c)どのよう

に 2種類のレジームを表現し，セグメント，トリップの割

当てを行うかである．本研究では，ユーザによるパラメー

タ設定を介せず，自動処理によって最適解を求めるための

新手法を提案する．

4. 提案モデル

本章では，問題 1 を解決するためのモデルを提案する．

提案モデルはモデル表現コストのアイデアに基づいてお

り，以下に詳述する．

4.1 特徴抽出とデータ圧縮

まず，大規模センサデータを表現するため，最小記述

長（MDL: minimum description length）の概念を用いる．

MDLは情報理論に基づくモデル選択基準の 1つであり，

可逆圧縮を行うことができるが，そのものの概念だけでは

本論文の目的を直接解決することはできない．そこで，与

えられたテンソル X を適切に表現するモデルを見つける
ために，新しい符号化スキームを導入する．

地理情報テンソルX が与えられたときのモデルの良さは
次の式で表現できる：CostT = Cost(M) + Cost(X|M)．

ここで，Cost(M)はモデルMを表現するためのコストを

示し，Cost(X|M)は，Mが与えられたときの X の符号
化のコストを示す．以下では単一のシーケンスX のコス

トについて議論した後，トリップ数 wの地理情報テンソル

X のコストについて述べる．

4.2 地理複合シーケンスのモデル表現コスト

シーケンスX が与えられたとき，提案モデルの表現コ

ストは以下の要素から構成される．

• 多次元シーケンスデータの長さnと次元数 d: log∗(n)+

log∗(d)ビット*4

• セグメントとV-レジームの個数m, r: log∗(m)+log∗(r)

• 各セグメントのV-レジームへの割当て（セグメントメ

ンバーシップ）：m log(r)ビット

• 各セグメントの長さ s:
∑m−1

i=1 log∗ |si|ビット
• r 個 の V-レ ジ ー ム の モ デ ル パ ラ メ ー タ 集

合：CostM (Θ) =
∑r

i=1 CostM (θi) + CostM (Δ)．単

一の V-レジームのモデル θ は，状態数 k(log∗(k))

と確率モデル (θ = {π,A,B}) の表現コストが必
要となる（π は HMM における初期確率，A は

遷移確率，B は出力確率である）．まとめると，

CostM (θ) = log∗(k) + cF · (k + k2 + 2kd)．ここで，

cF は浮動小数点のコストを示す*5．同様にして，V-

レジーム遷移行列には，CostM (Δ) = cF · r2 のコス

トを要する．

4.3 地理情報テンソルの符号化コスト

先述のとおり，本論文では隠れマルコフモデルを用いて

シーケンスX の車両走行パターンを表現するが，ここで重

要なのは，推定したモデルがX を正しく表現しているかを

判断する指標の導入である．ハフマン符号を用いた情報圧

縮では，モデル θ が与えられた際のX の符号化コストを

負の対数尤度を用いて次のように表現することができる．

CostC(X|θ) = log2

1
P (X|θ)

= − lnP (X|θ). (1)

ここで，P (X|θ)はX の尤度を示す．シーケンスX と r

個の V-レジームのモデルパラメータ集合Θが与えられた

とき，データ圧縮のためのコストは次のとおりである．

CostC(X|Θ) =
m∑

i=1

CostC(X[si]|Θ)

·
m∑

i=1

− ln(δvu · (δuu)|si|−1 · P (X[si]|θu))

ここで，iと (i− 1)番目のセグメントはそれぞれ uと v番

目の V-レジームに所属し，vi = u, vi−1 = v, v0 = v1 と

する．また，X[si]はセグメント si の部分シーケンスを示

*4 ここで，log∗ は整数のユニバーサル符号長を表す：log∗(x) ≈
log2(x) + log2 log2(x) + . . . [17]．

*5 本論文では 4 × 8 ビットとする．
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し，P (X[si]|θu)はセグメント siの尤度とし，θuはセグメ

ント si が所属する V-レジームである．

H-レジームの表現コストは以下の要素から構成される．

• トリップの数 w と H-レジームの個数 g: log∗(w) +

log∗(g)ビット

• 各トリップの H-レジームへの割当て（トリップメン

バーシップ）：w log(g)ビット

4.4 符号化コスト関数

トリップ iのシーケンスをXi，セグメント数をmi，ト

リップ i の j 番目のセグメントの位置を sij とするとき

(i = 1, . . . , w)，候補解 C = {r, g,S,Θ,Φ,V,H}が与えら
れたときの地理情報テンソル X の符号長を次に示す．

CostT (X ; C) = CostT (X ; r, g,S,Θ,Φ,V,H)

=
w∑

i=1

log∗(ni) + log∗(d) +
w∑

i=1

log∗(mi)

+ log∗(r) + log∗(g) + log∗(w) + w log(g)

+
w∑

i=1

mi log(r) +
w∑

i=1

mi−1∑

j=1

log∗ |sij |

+CostM (Θ) +
w∑

i=1

CostC(Xi|Θ) (2)

したがって本論文の次の目標は，上記のコスト関数 (2)

を最小化するようなセグメント，V-レジームおよび H-レ

ジーム集合を発見することであり，次章ではそのためのア

ルゴリズムについて述べる．

5. 最適化アルゴリズム

前章では，候補解 C = {r, g,S,Θ,Φ,V,H}が与えられ
たうえでテンソル X を表現するためのコスト関数として，
式 (2)を示した．本章では，式 (2)に基づき，最適な解 Cを
発見するためのアルゴリズム TrailMarkerを提案する．

5.1 TrailMarker

本研究では，前章で述べたコストモデルに基づき，セグ

メント，V-レジームおよび H-レジームの個数を自動的に

図 2 TrailMarker の概要図：TrailMarker はテンソル X が与えられたとき，反復処理
により適切な V-レジーム/H-レジームの個数を求める

Fig. 2 Overview of the workflow of TrailMarker.

選択する．直感的には，データの圧縮率が高ければ，その

モデルはデータに含まれるパターンをよく表現していると

いえる．つまり，候補解 C に対し，最小記述長に基づく
X の符号化コスト CostT (X ; r, g,S,Θ,Φ,V,H)が最小と

なるとき，C は適切なモデルになる．
次に，具体的な最適化手法を示す．TrailMarkerはス

タックを用いた手法であり，貪欲法に基づく局所最適解を

出力するアルゴリズムである．TrailMarkerは以下に示

す 2つのステップにより，与えられた Xをシーケンス方向

（vertical）とトリップ方向（horizontal），交互に分割する．

( 1 ) V-Split：V-レジームの個数 r = 2が与えられたとき

に，X をシーケンス方向（vertical）に分割し，得ら

れた 2つの V-レジームを表現するモデルパラメータ

（θ1, θ2, Δ）を推定する．

( 2 ) H-Split：H-レジームの個数 g = 2が与えられたとき

に，X をトリップ方向（horizontal）に分割し，得ら

れた 2つのH-レジームを代表するコア（φ1, φ2）を推

定する．

これにより，コスト関数である式 (2)を減少させていく．

もし新しいV/H-レジーム（以下，レジームと表記）の候補

のコストが現在のレジームのコストより低い場合（つまり，

新しいレジームの候補ペアが勝った場合），TrailMarker

は候補ペアをスタックに追加する．

図 2 は，TrailMarker の処理の流れを示している．

TrailMarkerは 2種類のレジームである V-レジームと

H-レジームを分割しながらテンソル X を適切に表現する
解 Cを発見する．オリジナルのテンソルX が与えられたと
き（図 2 (a)），まずTrailMarkerは V-Splitによってテ

ンソル X を 2つの V-レジームに分割し（すなわち g = 1,

r = 2），2 つのモデル θ1 と θ2 を推定しながらセグメン

テーションを行う（図 2 (b)）．次に，図 2 (c)に示すよう

に，H-Splitでは 2つの H-レジームのコア φ1と φ2を生成

する．コアは各ゾーンにおいて，θ1 と θ2，どちらのモデ

ルを用いて表現されているのかを示すインデックス情報で

ある．モデルのパラメータ（θ1と θ2）とモデル選択のイン

デックス情報（φ1 と φ2）を用いながら，すべてのトリッ

プを 2つのグループに分割する（g = 2, r = 4）．そして最
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Algorithm 1 V-Split (X )
1: Input: Tensor X
2: Output: (a) Number of segments assigned to each V-

regime, m1, m2

3: (b) Segment sets of two V-regimes, S1,S2

4: (c) Model parameters of two V-regimes {θ1, θ2,Δ}
5: Initialize models θ1, θ2;

6: while improving the cost do

7: /* Find segments (phase 1) */

8: {m1, m2,S1,S2} = SegmentAssignment (X , θ1, θ2,Δ);

9: /* Update model parameters (phase 2) */

10: {θ1, θ2, Δ} = ModelUpdate (S1,S2);

11: end while

12: return {m1, m2, S1,S2, θ1, θ2,Δ};

後に，2つのグループおのおのにおいてモデルパラメータ

を更新する（θ1, θ2, θ3, θ4）．

これら縦横の分割処理を交互に繰り返し，V-Splitと H-

Splitおのおのにおいてコストが下がらなければ，レジーム

の分割は行わず処理を終了する．次節からは，V-Splitと

H-Splitの詳細について述べる．

5.2 V-Split

ここで扱う問題は，V-レジームの変化点の検出とモデル

パラメータの推定である．具体的には，(a) 2つのV-レジー

ムのモデルパラメータを推定し，同時に，(b)すべての V-

レジーム変化点を検出したい．そこで本研究では，式 (2)

を用いてテンソル X の表現コストを最小にするようなモデ
ルパラメータの推定を行う．アルゴリズム 1 は V-Splitの

処理を示す．提案アルゴリズムは以下に示す 2つのステッ

プから構成される反復処理によって，モデルパラメータの

推定を行う．

• ステップ 1：SegmentAssignmentを利用し，符号化コ

ストが最小となるV-レジーム変化点を検出し，セグメ

ント集合を 2つのグループ {S1,S2}に分割する．
• ステップ 2：ステップ 1で得られたセグメント集合に

基づき，2つのV-レジームのモデルパラメータ {θ1,θ2,

Δ}を推定する．ここで，HMMのパラメータの学習

には，Baum-Welchアルゴリズムを用いる．

SegmentAssignment．まず最も単純な部分問題として，

テンソル X と，2 つの V-レジームのモデルパラメータ

{θ1, θ2,Δ} が与えられている場合を考える．まず，Seg-

mentAssignmentは V-レジームのモデルパラメータに基づ

き，X のパターンの変化点（つまりセグメントの分割位置）
の候補を検出する．続いて，モデルが与えられたうえでの

符号化コスト CostC(X|Θ) = − lnP (X|Θ)を最小化する，

V-レジーム変化点の個数と位置を最適解として出力する．

ここで重要な点として，提案アルゴリズムは高速かつ単一

の走査によって，最適なV-レジーム変化点の個数と位置を

検出する．ゆえに，計算時間は O(wdnk2)であるが，kは

Algorithm 2 H-Split (X )
1: Input: Tensor X
2: Output: (a) Number of trips assigned to each H-regime,

w1, w2

3: (b) Trip sets of two H-regimes, G1,G2

4: (c) Cores of two H-regimes, φ1, φ2

5: Initialize cores φ1, φ2;

6: while updating trip sets G1,G2 do

7: /* Split H-regimes (phase 1) */

8: {w1, w2,G1,G2} = TripAssignment (X , φ1, φ2);

9: /* Update cores (phase 2) */

10: {φ1, φ2} = CoreUpdate (X [G1],X [G2]);

11: end while

12: return {w1, w2, G1,G2, φ1, φ2};

ゾーンの数 nに対しきわめて小さいため無視できる．よっ

て計算時間は O(wdn)となる．

モデルパラメータの初期化． V-Splitでは，はじめにモデ

ルパラメータ {θ1, θ2}を初期化する必要がある．最も簡易
的な方法としては，地理複合シーケンスX の中に含まれ

る部分シーケンスをランダム抽出し，モデルの初期値に設

定することである．しかし，この方法を用いる場合，初期

値に大きく依存するため局所解へ収束してしまう可能性が

ある．そこで，本研究ではこの問題を解決するため，サン

プリングに基づく手法を提案する．まずX の中から複数

個のセグメント/部分シーケンスをサンプルとして均等に

取り出す．次に，それぞれのサンプルセグメント sに対し，

モデルパラメータ θs を推定する．続いて，すべてのモデ

ルのペア {θs1 , θs2}に対し，符号化コストを計算し，最も
適切なペア {θ1, θ2}を初期モデルとして選出する．

{θ1,θ2} = arg min
θs1 ,θs2 |s1,s2∈X

CostC(X|θs1 ,θs2), (3)

ここで，X = {s1, s2, . . . }は，X から取り出したサンプル

の集合を示す．

ModelUpdate． HMMのモデルパラメータの推定手法

である Baum-Welchアルゴリズムは，モデル θに対し，隠

れ状態の数 kを与える必要がある．しかし，この kを手動

で設定するのは非常に難しい．もし kの値を小さくすれば，

データの表現能力が低くなり，適切なセグメントおよびV-

レジームを求めることが困難となる．一方で，もし kを大

幅に上げてしまうと，オーバフィッティングを招く．そこ

で本研究では，隠れ状態の個数を k = 1, 2, 3, . . . のように

変化させながら，コスト関数 CostM (θ) + CostC(X [S]|θ)

が最小となる kを求める．

5.3 H-Split

ここでは，V-Splitと同様にテンソル X を 2つの H-レ

ジームに分割し，それらのコアを推定する．アルゴリズム

2 は H-Splitの処理を示す．以下に示す 2つのステップか

ら構成される反復処理により，最適な H-レジームを決定
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する．

• ステップ 1：2つのコア {φ1, φ2}のモデルパラメータ
に基づき，TripAssignmentを用いて 2つの H-レジー

ムに分割する．

• ステップ 2：ステップ 1で得られた H-レジームに基づ

き，それぞれの H-レジームのコア {φ1, φ2}を Core-

Updateにより更新する．

代表トリップの初期化． H-Splitにおいて，はじめに H-レ

ジームを代表するトリップ {Φ1,Φ2}を初期化する必要が
ある．最も簡易的な方法としては，トリップ全体からラン

ダムに 2つのトリップを抽出し，代表点として設定するこ

とである．しかし，この方法では初期の代表点に大きく依

存した局所解へ収束してしまう恐れがある．そこで，本研

究では，尤度計算に基づき最も離れた 2点を初期の代表ト

リップとする手法を用いる．まずはじめに，分割前のH-レ

ジームのコアとそれぞれのトリップとの尤度を計算し，コ

アと最も異なるトリップを代表トリップとして設定する．

続いて，はじめに設定した代表トリップとの尤度を計算し，

最も異なる代表トリップのペア {Φ1,Φ2}を決定する．

Φ2 = arg max
Φ1,Φ2∈X

CostC(Φ1|Φ2) (4)

TripAssignment． 2つのコア {φ1, φ2}に基づき，テン
ソル X を 2つの H-レジームに分割する．分割する際，テ

ンソル X に属する各 トリップがどちらのコアに近いかに
よって H-レジームを決定する．ここで，コアとの近さと

は，あるトリップ iを 1つのコア φj のモデルパラメータ

（すなわち，Θφj
）で表したときの符号化コストのことであ

る．この符号化コストがより小さくなる H-レジームにト

リップ iは属するものとする．

hi = arg min
j|φ1,φ2

CostC(Xi|Θφj
) (5)

各トリップに対し，上記のモデルパラメータを計算するた

め，Algorithm 1 と同様に計算時間は O(wdn)となる．

CoreUpdate． H-レジームに属するトリップが更新され

ると，2つのコア {φ1, φ2}を更新する必要がある．ここで
は，説明の簡略化のため，1つのコアのみについて説明を行

う．まず，(1) H-レジーム内のトリップを 1つ選び，(2)選

んだトリップXj のモデルパラメータ (ΘXj
)と H-レジー

ム内のすべてのトリップ {Xi}w
i=1との符号化コストを計算

する．そして，(3)その際に計算される合計コストが最小

となるトリップを選び，それを新しいコアとする．

φ = arg min
j|Xj∈X

w∑

i=1

CostC(Xi|ΘXj
) (6)

6. 実験

本論文ではTrailMarkerの有効性を検証するため，実

データを用いた実験を行った．具体的には，本章では以下

の項目について検証する．

Q1 車両走行パターン検出に関する提案手法の有効性

Q2 パターン検出に対する計算時間の検証

Q3 レジーム抽出と変化点検出に対する精度の検証

実験は 16 GBのメモリ，Intel Core i5 3.4 GHzの CPU

を搭載した OS Xのマシン上で実施した．本論文では 3つ

の実データ（赤坂 C，H，Yコース）を用いて検証を行う．

各データは平均値と分散値で正規化（z-normalization）し

て使用している．

• 赤坂 Cコース

このデータセットは，図 3 に示すコースを走行した

データである（w = 171，n = 2400）．

• 赤坂 Hコース

このデータセットは，図 4 に示すコースを走行した

データである（w = 13，n = 9100）．

• 赤坂 Yコース

このデータセットは，図 1 に示すコースを走行した

データである（w = 31，n = 5200）．

6.1 車両走行センサデータからの特徴抽出

図 1，図 3，図 4は赤坂コースを走行したデータに対する

車両走行パターンの検出結果を示している．センサデータ

として，速度（青），左右加速度（赤），前後加速度（緑）の

3次元から構成される値を使用している．TrailMarker

は，各コースデータに対し，複数のH-レジームとV-レジー

ム，そして外れ走行の検出に成功している．図 3，図 4 に

ついて，H-レジーム内に複数のトリップが存在する場合，

代表して 2つのトリップの出力結果を掲載している．以下

で，検出結果について考察を行う．

6.1.1 赤坂Yコース

H-レジーム 1：スムーズで慣れた走行グループ． H-レジー

ム 1（図 1 (b)）は慣れた走行グループであり，H-レジーム

1に属するトリップはすべて，2回以上本コースを走行し

たドライバーによるものである．一時停止回数が全体平均

5.2回に対し，この H-レジームではおよそ 3.4回と非常に

少ない．この特徴は，本コースに対するドライバーの慣れ

が大きく起因していると考えられ，H-レジーム 1は他のH-

レジームに比べ，安定した走行パターンが多く，いくつか

の場面で一時停止することなく減速のみで対向車を回避し

ている様子が見られる．

H-レジーム 2：慎重な走行グループ． H-レジーム 2

（図 1 (a)）は慎重な走行グループである．対向車に対す

る減速と停止回数が最も多く，対向車を過剰に意識した慎

重な走行グループであるといえる．たとえば V-レジーム 2

（緑）は対向車に警戒し，減速や一時停止を行ったときに生

成された V-レジームである．

外れ走行：経験の浅い走行グループ． 図 1 (c)は特に経験
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図 3 C コースを走行したデータにおける TrailMarker の出力結果（総トリップ数：171）

Fig. 3 Result of TrailMarker (C course, 171 trips).

図 4 H コースを走行したデータにおける TrailMarker の出力結果（総トリップ数：13）

Fig. 4 Result of TrailMarker (H course, 13 trips).

の浅いトリップである．H-regime2（図 1 (a)）の特徴に加

え，先行車両が存在する時間が最も長い（平均 126秒に対

し，本トリップでは 166秒）．慣れていないドライバーで

ある場合，交通量が少ないにもかかわらず先行車を回避す

ることなく走行を続ける．たとえばゾーン 3100から 3700

に見られる V-レジーム 5と V-regime 6は先行車を意識し

て加減速を繰り返したことによって生成された V-レジー

ムである．実際に，本トリップは赤坂 Yコースを初めて走

c© 2016 Information Processing Society of Japan 9
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図 5 TrailMarker の計算コスト

Fig. 5 Scalability of TrailMarker.

行したドライバーによるものであった．

6.1.2 赤坂 Cコース

赤坂Yコースと同様に，H-レジーム 1（図 3 (a)）はスムー

ズで慣れた走行グループであり，H-レジーム 2（図 3 (b)）

は慎重な走行グループである．このコースは悪天候（雨，

雪）時のトリップを含んでおり，雨の日のトリップのうち

87%，そして雪の日のトリップのすべてがH-regime 2に属

している．

上記に対し，図 3 (c)は外れ走行であり，特に歩行者，自

転車に対する急な停止と減速が多く見られる走行である．

歩行者，自転車に対する急な停止，減速回数は，Cコース

全体で平均して 0.7回であるのに対し，このトリップでは

7回の急な停止と減速が見られた．

6.1.3 赤坂Hコース

本コースでは，ゾーン 2100から 6000までの区間におい

て首都高速を走行するルートを選択しているため，すべて

のトリップが安定して高速な走行を行っている．結果とし

て，すべてのトリップが 1つの H-レジーム（図 4 (a)）に

属している．ただし，図 4 (b)に示すトリップのみ，交通

規制によって一般道を走行しているため，外れ走行として

検出されている．

上記のように，本手法 TrailMarkerはパラメータ設

定や事前知識を要することなく，複雑な車両走行グループ，

車両走行パターンとその変化点を発見することができる．

また，これらの車両走行グループから外れた走行も自動的

に検出することができる．

6.2 計算コスト

図 5 はシーケンス長 n，トリップ数 w を変化させた際

の TrailMarkerと比較手法における計算コストを示し

ている．より詳細に計算コストを検証するため，対数ス

ケールと線形スケール両方の実験結果の図を記載している．

ここでは，大規模時系列データ解析の最新の手法である

pHMM [22]，AutoPlait [10]と比較した．線形スケールにお

いて，pHMMは計算コストが大きすぎるため，AutoPlait

のみ提案手法と比較した．また，pHMMはパラメータを

必要とするため，文献 [22]にしたがって εr = 0.1, εc = 0.8

とした．

TrailMarker，AutoPlaitはデータの長さに対し，線

形 O(n)である（対数スケールにおいて傾きは slope = 1.0

である）．一方，pHMM は O(n2) の計算量を要する

（slope ≈ 2.0）．TrailMarker は AutoPlait と比較し，

n = 100000において，平均して 2.3倍，pHMMに対して

は 3366倍の性能向上を達成している．特に，2方向への分
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図 6 TrailMarker の精度と計算コスト

Fig. 6 Computation cost and accuracy of TrailMarker.

割を交互に行うことにより，より高速に解が収束するため

AutoPlaitよりも高い性能を示している．また，トリップ

数に対しても，TrailMarker は pHMM，AutoPlaitと

比較し，高い性能を示している．

6.3 精度

続いて，与えられたシーケンスに対する提案手法の変化

点検出とクラスタリングの精度について検証する．図 6 は

提案手法と比較手法におけるセグメントとレジーム抽出の

精度と計算コストに関する実験結果である．精度について

は，実データに対するモデルの対数尤度に基づき評価を行

う．x軸は対数尤度を示し，実データとモデルの誤差が少

ないほど大きな値となる．また，y 軸は計算コストを表す

ため，図 6 (a)，(b)，(c)おのおのの右下に示す赤点が理想

的な結果となる．

図 6 において，TrailMarkerと AutoPlaitについて

は 1点のみで実験結果が表現されている．これは，両手法

がパラメータを持たず，出力結果が 1つに定まるためであ

る．一方，pHMMについては，モデルの学習精度に関連す

る閾値のパラメータとして，εr と εc の 2つを設定しなく

てはならない．本実験では，εr を 0.4から 2.0に変化させ

ながら精度と計算コストを検証した．pHMMはパラメー

タによって精度と計算コストが大きく左右されることが分

かる．

どの比較手法も，与えられたシーケンスの中から類似セ

グメントを検出する能力を持つが，TrailMarkerは精度

と計算コストの両面で優れた性能を示している．一方で，

図 6 (a)においては，AutoPlaitが提案手法よりも高い精度

を示している．これは，AutoPlaitがすべてのトリップに

対して，個別にシーケンスの分割を行っているためである．

Cコースの走行データのように，多くの類似トリップが存

在する場合，シーケンスのセグメント分割のみを行った方

が精度が向上する場合がある．しかしながら，一般に収集

される車両走行センサデータはさらに多くのトリップのグ

ループを有しており，セグメント分割とモデル化のみでは

一方向の特徴しかとらえることができず不十分である．ま

た，トリップのグループ化により高速な情報要約が可能で

ある．比較手法と異なり，提案手法はトリップのグループ

化も同時に行っており，地理情報テンソル，もしくは車両

走行センサデータの解析により適した手法となっている．

7. まとめ

本論文では車両走行センサデータのための特徴自動抽出

手法として TrailMarkerを提案した．TrailMarker

は，車両走行センサデータを地理情報テンソルとして扱

い，おのおののトリップのグループ化（H-Split）と各グ

ループにおけるトリップシーケンスのセグメンテーション

（V-Split），それらを交互に行いながら複数のトリップシー

ケンスに共通する特徴を高速かつ自動で抽出する．様々な

種類の実データを用いて実験を行い，TrailMarkerの有

効性を示した．
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