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Abstract: Given a large collection of time-evolving online user activities, such as Google Search queries for mul-
tiple keywords of various categories (celebrities, events, diseases, etc...), which consist of d keywords/activities, for
[ countries/locations of duration n, how can we find patterns and rules? For example, assume that we have the on-
line search volume for “Harry Potter”, “Barack Obama” and “Amazon”, for 232 countries/territories, from 2004 to
2015, which include external shocks, sudden change of search volume, and more. How do we go about capturing
non-linear evolutions of local activities and forecasting future patterns? Our goal is to analyze a large collection of
time-evolving sequences, and moreover, to find the answer for the following issues: (a) Are there any important exter-
nal shocks/events relating to the keywords in the sequences? (b) If there are, can we automatically detect them? (c) Are
there any countries/territories which have different reacts to the global trend? In this paper, we present A-SPOT, a uni-
fying analytical non-linear model for large scale web search data; as well as an efficient and effective fitting algorithm,
which solves the above problems. A-SPOT can also forecast long-range future dynamics of the keywords/queries.
Extensive experiments on real data show that our method outperforms other effective methods of non-linear mining in

terms of accuracy in both fitting and forecasting.

Keywords: time-series data, automatic mining

1. Introduction

Online news, blogs, SNS and many other web search services
have been speedily developing and playing a very important part
in information searching. Our goal is to detect patterns, rules and
outliers in a huge set of web search data, consisting of tuples of
the form: (query, location, time). For example, assume that we
have the online search activities for “Harry Potter”, in 232 coun-
tries/territories from 2004 to 2015.

So, how can we find meaningful information, such as the exter-
nal shocks/events that happened during the period of 11 years? In
the case that such events happened, do they have any relationship
between each others (frequent/cyclic events or not?) Also, can we
detect global/local-level patterns? Are there countries/locations
that react differently from the global trend? Can we forecast the
dynamics of future events?

In this paper, we propose A-SPOT, a unifying analytical non-
linear model which is sense-making, scalable and parameter-free,
and provides a good summary of large collections of local online
activities. Intuitively, we wish to solve the following problem:

Informal Problem. Given a large collection of online activities,
which consists of d keywords in / locations of duration n with
missing values and external shocks, we want to

e detect external shocks (important events in reality),

e find global and local patterns, and

e forecast future activities.
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Fig. 1 Modeling power of A-SPOT: (a) It automatically detects external
events of keyword “Harry Potter” and (b) the world-wide reaction to
the release of the last episode of “Harry Potter” movie series.

Especially, we want to capture all these features automatically
and effectively.

Preview of Our Results. Figure 1 (a) shows the search volume
for the keyword “Harry Potter” from 2004 to 2015 (11 years) as
grey circles, and our fitted model, as solid red line. Our method
automatically spots seven big cyclic/non-cyclic events that relate
to “Harry Potter”. For example, (a) the biennial release (in July)
of “Harry Potter” movies and books (shown as green circles),
which corresponds to the major publication of works on “Harry
Potter”, (b) the release of new episodes of “Harry Potter” movie
series, held in November (shown as purple circles), and (c) non-
cyclic spike in May (shown in red circle).
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Figure 1 (b) shows the world-wide reaction to the release of the
last episode of “Harry Potter”. It is clearly shown that most of the
active (high reaction-level) countries have huge number of fans
of “Harry Potter” (For example: the U.S., European countries,
English native speaking countries, etc.)

Contributions. In this paper, we propose A-SPOT, a unifying

analytical non-linear model for large-scale online user activities.

Our method has the following desirable properties:

(1) Sense-making: Our method can detect external shocks
which are related to real-time events, such as the cyclic sport-
ing occasions, or celebrities relating special events.

(2) Automatic: Thanks to our modeling framework, our method
is fully automatic, requiring no manual tuning, where the goal
is to minimize the cost of the resulting modeling.

(3) Scalable: Our method scales linearly to the input size.

(4) Parameter-free: A-SPOT requires no parameters or special-
ized tuning.

Outline. The rest of the paper is organized in the conventional

way. Next, we describe related work, followed by our proposed

model and algorithms, experiments, discussion and conclusions.

2. Related Work

We provide a survey of the related literature, which falls
broadly into two categories: (a) Pattern discovery in time series
and (b) Social activity analysis.

Pattern Discovery in Time Series. In recent years, there has
been a huge interest in mining time-stamped data [9], [18], [21].
Traditional approaches typically use linear methods, such as auto-
regression (AR), linear dynamical systems (LDS), TBATS [8] and
their variants [3], [5], [6], [20]. TriMine [12] is a scalable method
for forecasting complex time-stamped events, while, [10] devel-
oped AutoPlait, which is a fully-automatic mining algorithm for
co-evolving sequences. Rakthanmanon et al. [17] proposed a sim-
ilarity search algorithm for “trillions of time series” under the
DTW distance.

Social Activity Analysis. Analyses of epidemics and social
media have attracted a lot of interest. The work described in
Ref. [13] studied the rise and fall patterns in the information dif-
fusion process through online social media. Prakash et al.[16]
described the setting of two competing products/ideas spread-
ing over a network, and provided a theoretical analysis of the
propagation model for arbitrary graph topology. FUNNEL [14]
is a non-linear model for spatially co-evolving epidemic tensors,
while, EcoWeb [11] is the first attempt to bridge the theoretical
modeling of a biological ecosystem and user activities on the
Web. For online activity analysis, Gruhl et al. [2] explored online
“chatter” (e.g., blogging) activity, and measured the actual sales
ranks on Amazon.com, while Ginsberg et al. [1] examined a large
number of search engine queries tracking influenza epidemics.
Contrast to the Competitors. Table 1 illustrates the relative ad-
vantages of our method. Only our A-SPOT matches all require-
ments, while

e The SI model (and SIR, SIRS, SKIPS [19], etc.) can com-

press the data into a fixed number of parameters, and capture

the dynamics of epidemiological data, however, it cannot de-
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Table 1 Capabilities of approaches. Only our approach meets all specifica-

tions.
SI/++ | AR/++ | FUNNEL | A-SPOT
Non-linear vV v vV
Outliers detection v v
Online activities v
Cyclic events/shocks v
Local analysis v v
Parameter-free v vV
Forecasting vV v v
Table 2 Symbols and definitions.
Symbol | Definition
d Number of keywords/queries
1 Number of locations/countries
n Duration of sequences
X 3rd-order tensor (X € Ny
Xij Local-level sequence of keyword i in location j
Le., x;; = {x;(OF.
X Global-level sequence of keyword i
ie., Xi = le':l Xij
S Count of (S)usceptibles i in location j at time ¢
Li(1) Count of (I)nfectives i in location j at time ¢
Vi) Count of (V)igilants 7 in location j at time ¢
B¢ Base global matrix (d x 4)
B; Base local matrix (d X [)
Rg Growth effect global matrix (d X 2)
Ry Growth effect local matrix (d X [)
S External shock tensor i.e., S = {sy,$2, ..., 8}
F Complete set of A-SPOT
ie.,F ={Bg,BL,Rg, R, S}

scribe periodic events, and is incapable of forecasting.

e The traditional AR, ARIMA and related forecasting methods
including AWSOM [15], PLiF [7] and TriMine [12] are funda-
mentally unsuitable for our setting, because they are based on
linear equations, while we employ non-linear equations. More-
over, most of them require parameter tuning.

e FUNNEL [14] is a comfortable non-linear model for time-
evolving tensor mining. However, it cannot detect cyclic exter-
nal shocks and was applied for epidemic sequences.

3. Proposed Model

3.1 Intuition behind Our Method

Assume that we receive time-stamped activities of the form
(query, location, time-tick). We then have a collection of se-
quences with d unique queries/keywords, / locations/countries
with duration n. We can treat this set of d X [ sequences as a
3rd-order tensor, i.e., X € N where the element x; (1) of X
shows the total number of entries of the i-th keyword in the j-th
country at time-tick ¢. For example, (‘Olympics’, ‘US’, ‘August
3-9,2008’; 36), means that the search volume for ‘Olympics’ in
‘US’ on ‘August 3-9 in 2008’ is ‘36’.

We refer to each sequence of the i-th keyword in the j-th lo-
cation: x;; = {x;;(1)}_,, as a “local/country”-level web search
sequence. Similarly, we can turn these local sequences into
“global/world”-level web search sequences: ¥; = {X;(1)}]_,, where
Xi(t) shows the total count of the i-th keyword at time-tick ¢, i.e.,
(1) = Xy xi0).

Preliminary Observations. Here, let us provide the reader with
several important observations.

e (P1) Basic Trends: We assume that the popularity size of

each activity evolves over time. The popularity size corre-
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sponds to the aggregated volume of each user who is inter-
ested in each topic in each country. For example, the event that
Barack Obama became the 44th president of the US (please
see Fig.5(a)), is a very important event, not only for the US
citizens, but also for people around the world. Many users will
spend time searching for Obama’s biography or his career. Fur-
thermore, they will share the stories to their friends; and even-
tually, this leads to an exponential growth in popularity size.

o (P2) Area Specificity: For each topic, users all over the
world have different types of reaction towards it. Due to social
network connection condition, or some specific reasons, there
may be a huge spike in some countries at a time-tick, while
nothing happens in others. For example, as shown in Fig. 1 (b),
users all over the world react differently to the release of the
last episode of “Harry Potter” movie series. Mostly, users from
countries, in which Harry Potter are popular, are highly active
to search for the episode’s information.

e (P3) Population Growth Effect: We also find that there ex-
ists a sudden change of popularity base size in some sequences.
For example, the number of searches for “Amazon” sharply
rises from 2010 until now. We call this behavior the population
growth effect. This phenomenon consists of different behav-
ior compared to the external shock effect. We will discuss it
further in Section 3.3 (Fig. 4).

e (P4) External Shock Events: One of our main goals is to
detect the external shocks that refer to real-time events. The
search volume for a keyword sharply rises when some events
(special publication, championship, performance, etc...) relat-
ing to that keyword happened. For example, Fig. 1 (a) shows
seven big events corresponding to the release date of Harry
Potter movies and books, from the first spike in 2004 (movie,
episode 3), until the last one in 2011 (movie, episode 7 - part
2). Most importantly, we observe that some external shocks
have got the cyclic property. These cyclic events happen at the
same time-tick of a specific window-size (i.e., one year, two
years, etc..), within the same duration. It is important to extract
these cyclic pattern from the large set of all external events.
In other words, we want to capture the periodical (annual, bi-
ennial, quadrennial) events, which provides a highly sensitive
view of big events in reality.

Summary. In this paper, we propose a new model, namely,
A-SPOT, which tries to incorporate all the above important prop-
erties that we observed in the real dataset. Consequently, we
would like to capture the following properties:

(P1): basic trends
(P2): area specificity and sensitivity

(P3): population growth effect

(P4): cyclic external events

3.2 A-SPOT - with a Single Sequence

We begin with the simplest case, assuming that we are given
a single sequence. The model we propose has nodes (=users) of
three classes:

e Susceptible: nodes in this class can get influenced by their

neighboring nodes who have searched for it. In other words,

© 2016 Information Processing Society of Japan

Fig. 2 A-SPOT diagrams: classes of population: susceptibles, infectives,
and vigilants.

citizens of this class are always ready to search for the key-

words.

e Infective: nodes who already searched for the keywords,

also capable of influencing other available nodes (share, or tell

the story about the keywords), namely, transmitting the interest

in the topic to the citizens in the susceptible class.

e Vigilant (i.e., busy/unavailable): nodes in this class do not

get condition to search for the information (no network connec-

tion, no free time to care about the topic), so they are immune

to the influence of the trend.

Figure 2 shows a diagram of our model, in which,

e Brepresents the rate of effective contacts between citizens in

infective and susceptible classes;

e Jistherate at which infected citizens lost interest in the topic

and quit searching for it;

e v is the immunization loss probability for a change in status:

being ready to search for the topic.
We also introduce two more parameter, €(f) and 7(f), to repre-
sent the external shock effect and growth effect, respectively. The
idea is that the number of the susceptible class S (#) is the count
of users available for infection, and if there is an external shock
event at time-tick #, the infection becomes stronger than usual.
Therefore, each infective pair would lead to a new infective citi-
zen, and will eventually cause a major spike. With respect to the
growth effect, it starts at time 7, and make the number of infec-
tives rise quickly to a new base.

Model 1 (A-SPOT-single) Our model can be described as
the following equations:

S+ 1) =58 = BSOeI(1 + (1)) +yV()
It + 1) = I(t) + BS ()e()I()(1 + n(1)) — 51(t)
V(t+1)=V()+0I(t) —yV(t) (1)

where, the growth effect started at time 7, and 7(?) is defined as:
0 (@<t
() = !
o (t > tr])

In addition, we introduce the temporal susceptible rate, €(?),
which is defined as follows:

k
e =1+ flt;s)
i=1

€ (t;+1pt/t,] <t <ty +1,[t/t)]+1,)
0 (else)

where, k is the number of shocks, and if k = 0, then €(¢) = 1.
Here, each external shock consists of s = {1,,, #,, t,, €}, i.€.,

f(t:s) ={

e 1,: Periodicity of the event (if 7, = oo, the event is non-
cyclic).
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Fig. 3 A-SPOT structure: (a) important properties extracted from tensor X. Also, (b) external shock

tensor S consists of a set of kK components.

ty: Starting point of the event.

t,,: Duration of the event.

€: Strength of the external shock.

33
So far we have seen how A-SPOT captures the dynamics of a

A-SPOT - with multi-evolving sequences

single sequence. The next question is: how can we apply A-SPOT
to multiple time-evolving sequences in X, and capture the indi-
vidual behavior of d keywords in [ locations/countries?

We want to extract the main trends and external patterns of co-
evolving sequences X € N and make a good representation
of X. Figure 3 shows our modeling framework. Given a ten-
sor X, it extracts important patterns with respect to the following
aspects, base properties of global and local trends B¢, By, popu-
lation growth effect R¢, Ry, and external shock events S.

Definition 1 (Complete set of A-SPOT) Let ¥ be a com-
F = {Bg,BL,Rg, Ry, S}) that
describe the global/local patterns of the sequences in X.

plete set of parameters (namely,

Next, we will see each property in detail.

(P1) Base trends and global influence. Basically, we assume
that the following parameters are the same for all / countries.

Definition 2 (Base-global matrix B¢ (d x4)) Let Bg be
the set of global parameters of d keywords/queries, where
{N;,Bi,0i,vi} is the parameter set of the i-th keyword, and
Ni = S8i(0) + 1i(0) + Vi(@).

For example, the potential infection rate of each keyword (e.g.,
“Harry Potter”, “Amazon”) should be the same for US and JP.
(P2) Area specificity. Next, we also want to analyze and explain
location-specific patterns and trends in X. For example, what
is the difference of users reaction for keyword “Ebola” between
the U.S. (US) and Nepal (NP)? Our answer is: their behavior is
similar, except for the “local sensitivity” of the sequence. Specif-
ically, we share the parameters of the global-level matrices for
all / countries. with one exception, ;;, which describes the total
population of users for keyword i in the j-th country. Specifically,
we set the invariant, N;; = §;;(t) + I;;(t) + V().

© 2016 Information Processing Society of Japan

Definition 3 (Base-local matrix By, (d X [)) Let By, be a pa-
rameter set of the potential population of d keywords and / coun-
b }
of susceptibles of the i- th keyword in the j-th country.

tries, i.e., By, = ,» where b'2);; is the potential population

This parameter corresponds to the fraction of individuals who
are likely to be infected by the trend. For example, US has more
users than NP, because they have more capacities for network
connection.

(P3) Population growth effect. The growth effect appears due
to the launch of new products and services that raise the interest
of users, which should have the same starting time all over the
world.

Definition 4 (Growth-global R¢ (d X 2)) Let Rg be the set
of global growth effect parameters of d keywords/queries, where
{10;, ;,} is the parameter set of the i-th keyword.

The growth effect has the same starting time, but different
growth rate for / countries.

Definition 5 (Growth-local Ry, (d x [)) Let Ry, be a parame-
ter set of the potential population of d keywords and / countries,
P
the i-th keyword in the j-th country.

ie, Ry = , where D), is the population growth rate of

(P4) Cyclic external events. We describe one external shock
event in terms of three aspects, (keyword, country, time), for ex-
ample, “Harry Potter, world-wide, Jul 15-21,2007”. To describe
each external shock event, we create a new parameter set, namely
external shock tensor S, which consists of a set of k external
{s1,82,...,8¢}
A single external shock event s can be described as three compo-
nents: s = {s®,s™ M)y},

e The (d x 1) size component s which represents the exter-

shock events, as described in Fig.3 (b). i.e., S =

nal view for d keywords/queries.

e The (3 x 1) size component s™, which describes the peri-
odicity (z,), the starting time (#,), and the duration (z,) of the
external event.

e The ([n/t,] x I) size component s, which expresses the
strength of the external shocks of one event in [ countries,
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Fig.4 Influence of combining growth effect and external shock effect: com-
pared with the case of using (a) none of above, (b) only growth effect,
(c) only external shock effect, and (d) the combination of both effects.
Clearly, (d) fits the data very well.

where [n/t,] is the number of shocks belonging to that event.

Consequently, we have:

Definition 6 (External shock tensor S) Let S be a 3rd-
order tensor of k external shock events, i.e., S = {s1,S>,..., S},
where the matrices show the parameters in terms of three compo-
nents.

Figure 4 compares the fitting results of the keyword
“Amazon”, in four different cases to demonstrate the influence
of the growth effect (P3) and external shocks (P4). The result
shows the benefit of treating the growth effect differently from
external shock effect, as well as combining these two effects to
achieve good fitting results (See Fig. 4 (d))*!.

4. Algorithm

In this section, we describe our fitting algorithm, A-SPOT-FIT.
Our goal is to extract the important patterns of online user activi-
ties from X. More specifically, the problem that we want to solve
is as follows:

Problem 1 Given a tensor X of (keyword, country, time)
triplets, Find a compact description that best summarizes X, that
iS, F = {B(;, BL, RG, RL, S}

We want to find a good representation # to solve the problem.
The essential questions are: (a) How can we estimate the parame-
ter set that best captures the dynamics and patterns in X? (b) How
should we decide the number of external shocks k? (c) How can
we treat an event to be cyclic or not?

4.1 Model Quality and Data Compression

We propose an intuitive coding scheme, which is based on the
minimum description length (MDL) principle. Here, it follows
the assumption that the more we can compress data, the more we
can detect its hidden patterns.
Model Description Cost. The description complexity of model
parameter set consists of the following terms,

*I' Here, the parameter values are: 8 = 5.014 x 107!,
§=4.675x107",y = 5211 x 107!, 59 = 1.605 x 107",

t, = 343 ( the growth effect starts from time-tick 343).

© 2016 Information Processing Society of Japan

e The number of keywords d, locations /, and time-ticks n re-
quire log*(d) + log"(I) + log* (n) bits*2.
e The model parameter set of the global base (Bg), global
growth effect (Rg), and local base, growth effect(By,, Ry,), ma-
trices require d X 4, d X 2, d X [ parameters, respectively,
i.e., Costy(Bg) + Costy(Rg) + Costy(Br) + Costy(Ry,) =
cp - d(4 + 2 + ), where cF is the floating point cost*3.
Similarly, the model description cost of the external shock ten-
sor S = {s, Sy, ..., S} consists of the following:
e The number of external shocks k requires log*(k) bits.
Also, for each shock s, it requires Costy(s) = Costy(s®) +
Costy(s™) + Costy(s), more specifically,
e The shock-keyword vector s requires log(d) bits.
e The shock-time vector s™ = {z,,1,,1,} requires 3 - log(n).
o The shock-location matrix s™ requires [s"|-(log(d)+log(l)+
log(n) + cr), where, | - | describes the number of non-zero ele-
ments.
Consequently, the model cost of the external shock tensor
S ={sy, -+ ,s¢}is Costy(S) = log" (k) + Zle Costy(s;).
Data Coding Cost. Once we have decided the full parameter
set ¥, we can encode the data X with a given parameters 7 :
Coste(XIF) = T 1082 Pty (iD= 1i(0),
where, x;;(#)is the elements in X, and I;;(¢) is the estimated
count of infections (i.e., Model 1)**.
Data Compression Equation. Consequently, the total code
length for X with respect to a given parameter set # can be de-
scribed as follows:

Costr(X; F) = log™(d) + log"(]) + log" (n)
+Costy(Bg) + Costy(By,) + Costy(Rg)
+Costy(Ry) + Costy(S) + Coste(X|F) 2)

Thus our next goal is to minimize the above function.

4.2 Multi-layer Optimization

Until now, we have seen how we can measure the goodness
of the representation of X, if we are given a candidate parameter
set ¥. The next question is, how to find an optimal solution of
the full parameter set: ¥ = {Bg,Br,Rg,Ryr,S}. As described
in Section 3.3, A-SPOT consists of multiple parameter sets, each
of which explains either the local or global pattern of web search
sequence in X. For example, the base and growth effect matri-
ces B, R explain the global-level behavior of each keyword
search volume, while the matrices By, Ry, describes the local-
level trends. Also, the extra tensor S consists of both global and
local parameters.

In order to estimate these model parameters, we propose a
multi-layer optimization algorithm, to search for the optimal so-
lution in terms of both the global-level and local-level parameters.
The idea is that we split parameter set  into two subsets, i.e., Fg
and ¥, each of which corresponds to a global/local-level param-
eter set, and try to fit the parameter sets separately. Our algorithm

*2 Here, log" is the universal code length for integers.

We used 4 X 8 bits in our setting.
Here, ¢ and o are the mean and variance of the distance between the
original and estimated values.

3
4
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Algorithm 1 A-SPOT(X)

Algorithm 3 LocaLFir(X, B¢, Rg, S)

: Input: Tensor X (d X [ X n)

: Output: Full parameters, i.e., ¥ = {Bg,BL,Rg, R, S}
: /¥ Parameter fitting for global-level sequences */

{Fg} =GLoBALFIT (X);

/* Parameter fitting for local-level sequences */

{1} =LocaLFir (X, Fg);

: return 7 = {Fg, Fh

R N

Algorithm 2 GrosarLFir(X)

1: Input: Tensor X
2: Output: Set of global-level parameters ¥

i.e,, Tg = {B(;, R(;,S}
3: fori=1:ddo
4:  Create ¥; from X; /* Global sequence ¥; of i-th keyword */
5:  /* Initialize external shocks for keyword i */
6
7
8

si = 0;
while improving the cost do
b®); = arg min Costc(X[b©@], 1y, s;); /* Base #/

b©);
9: r®); = arg min Costc (%@, 1@}, s;); /* Growth #/

)]

10: s; = 0; /* Initialize values */

11: /* Find external shocks for keyword i */

12: while improving the cost do

13: s = arg min Costc(%;b@;, 1@, {s; Us'));
¢

14: s;=s;Us;

15: end while

16:  end while

17:  /* Update parameter set of i-th keyword */
18: Bg =Bg U b(G)i; Rg =Rg U r(G)i;

19: S=8SUs;

20: end for

21: return Tg = {B(;,R(;,S};

consists of the following two phases:

e GrosaLFIT: find good global-level parameters for {X,»}lf’: s 1€

¥ = {Bg,Rg, S}

e LocaLFir: find good local-level parameters: for {xl-j}f’;:],

i.e., 7‘2 = {BL, RL, S}

Here, the global sequence of the i-th keyword: Xx; can be
described as the sum of the d local sequences, i.e., X;(f) =
Zlle x;j(t). Algorithm 1 shows an overview of A-SPOT to find
the full set of A-SPOT parameters given a tensor X.

4.2.1 Global-level Parameter Fitting

Given a tensor X, our sub-goal is to find the optimal global-
level parameter set: Fg, to minimize the cost function (i.e.,
Eq.(2)). So how can we fit the parameters (i.e., the base and
growth parameters) as well as simultaneously estimate the appro-
priate number of external shocks? To find a good basic parameter
set for X, we have to filter out the external shocks. Also, a good
external-shock filter requires a well estimated model. We escape
this circular dependency by applying an iterative method that em-
ploys external shocks detection and filtering, and model fitting
in an alternating way until the cost function reaches a minimum
value.

Algorithm. Algorithm 2 is a detailed algorithm of the global-
level fitting. Given a tensor X, it creates a set of d global se-
quences: {i,»};’:l. It tries to fit the global-level parameter set,
as well as find the appropriate number of external-shocks. We
use the Levenberg-Marquardt (LM) [4] algorithm to minimize the

cost function. Note that the extra tensor S consists of k entries
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1: Input: (a) Tensor X, (b) global-level parameter set g
2: Output: Set of local-level parameters, i.e., ¥,
3: while improving the cost do

4: /* For each local sequence x;; of i-th keyword in j-th country */
5: fori=1:ndo
6: for j=1:/do
7 bP;; = arg min Costc (x;;Bg, Rg. h("’:/, S);
b0
8: rP;; = arg min Costc(x;;Bg, R, r(L);/-, S);
oy,
9: end for
10:  end for
11:  for each external shock sin S do
12: Update s to minimize the cost /* Local participation rate */
13:  end for

14: end while
15: return ¥, = {Br,Bg, S};

{s1,S2,...,8¢}, This algorithm can find only the global-level en-
try, which consists of (keyword, time). The local-level entries can
be computed by local-level parameter fitting, as shown next in
Algorithm 3.

Also, the cost function (2) includes the cost of local-level pa-
rameters such as By, Ry, but these terms are independent of the
global model fitting. Hence, we can simply consider them to be
constant.

4.2.2 Local-level Parameter Fitting

Given a set of d X [ local-level sequences, {x,»_,»}f‘jl:1 e X,
and a set of global-level parameters, Fg, our next goal is to fit
the individual parameters of each disease in each state, that is,
Fr = {BL,S}. We propose an iterative optimization algorithm
(see Algorithm 3). Our algorithm searches for the optimal solu-
tion with respect to the base local matrix By, and the local-level
external shocks S, so that the total coding cost is minimized.

Lemma 1 The computation time of A-SPOT is O(dIn).

Proof 1 To create the global-level sequences from X, the al-
gorithm requires O(dIn) time. For global-level parameter fitting,
it needs O(#iter - k - dn) time, where #iter is the number of iter-
ations, k shows the number of external shocks. Similarly, for the
local-level parameter fitting, it needs O(#iter - k - din) time to fit
the parameters. Note that #iter, k are small constant values that
are negligible. Thus, the complexity is O(dn).

5. Experiments

In this section we demonstrate the effectiveness of A-SPOT
with real dataset. The experiments were designed to answer the
following questions:

Q1 Sense-making: Can our method help us understand the given
input online activities?

Q2 Accuracy: How well does our method match the data?

Q3 Scalability: How does our method scale in terms of compu-
tational time?

Dataset Description. We performed experiments on the follow-

ing three real datasets.

(1) GoogleTrends: This dataset consists of the volume of
searches for queries (i.e., keywords) in various topics (i.e.,
events, celebrities, movies, etc..) on Google*> from January

*5 http://www.google.com/insights/search/
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Fig. 5 Global fitting results for 8 queries in GoogleTrends dataset of different topics (celebrities, sporting

events, awards, movies, etc.)

2004 to January 2015, collected in 232 countries. Each query
represents the search volumes that are related to keywords over
time (in weekly basis).

(2) Twitter: We used more than 7 million Twitter*® posts cover-
ing an 8-month period from June 2011 to January 2012. We
selected the 10,000 most frequently used hashtags.

(3) MemeTracker: This dataset covers three months of blog ac-
tivity from August 1 to October 31 2008*7, It contains short
quoted textual phrases (“memes”), each of which consists of
the number of mentions over time. We choose 1,000 phrases in
blogs with the highest volume in a 7-day window around their
peak volume.

5.1 Sense-making
In this experiment, we demonstrate how effective A-SPOT can
be in terms of data fitting, external events detection and other im-
portant properties. We demonstrate the global fitting results of
three datasets:
(1) Figure 5 shows the results of model fitting on 8 trending
keywords/queries in various categories.
(2) Figure 6 shows the results of two popular hashtags “#apple”
and “#backtoschool”.
(3) Figure 7 shows the results of two phrases (“meme”)*® from
the MemeTracker dataset.
In all above figures, we show the original sequences (i.e., black
dots) and estimated sequences: /(¢) (i.e., red line) in linear-linear
scales. Also, we made several important observations, which cor-
respond to the properties mentioned above.
e (P1) Base trends and global influence: As shown in Figs. 5,
6 and 7, our proposed model successfully captures long-range
non-linear dynamics of user activities, as well as fit the data
sequences in high accuracy.

0 http://twitter.com/

http://memetracker.org/

Meme#3: “yes we can yes we can”

Meme#16: “joe satriani is a great musician but he did not write or have
any influence on the song viva la vida we respectfully ask him to accept
our assurances of this and wish him well with all future endeavours”

© 2016 Information Processing Society of Japan
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Fig. 6 Global fitting results for 2 hashtags in Twitter dataset.
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Fig. 7 Global fitting results for 2 memes in MemeTracker dataset.

o (P2) Area specificity: A-SPOT can find the local dynamics
of each query. For example, Fig. 8 (a) shows the local fitting re-
sults for keyword “Ebola” of GoogleTrends dataset; in which,
we detected some countries (AU, RU, GB, US, JP) that behave
similar to the global trend (i.e., the world reaction to the burst
of Ebola Virus in 2014, shown in green circles). Besides, we
can also detect several outliers from the countries which have
less capacities of network connection (LA, NP, CG).

e (P3) Population growth effect: In Fig.5 (d, e, f), our model
can detect the population growth effect, also describe its behav-
ior separately from the external shock effect.

e (P4) Cyclic external events: A-SPOT can capture important
external events relating to the keywords, including the cyclic
events.

5.2 Accuracy

Next, we discuss the quality of A-SPOT in terms of fitting ac-
curacy. We used the fitting result for keyword “Amazon”, and
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Fig. 11 Forecasting result: we train the model parameters using first 400 time-ticks of the sequences and

do forecasting the remaining part.

compared A-SPOT with the standard SIRS model, SKIPS [19],
and FUNNEL [14]. Figure 9 (a) shows the root-mean-square
error (RMSE) between the original and estimated counts of the
global sequences {)‘c,-(t)}l[.f;". Similarly, Fig. 9 (b) shows the results
of the local counts {x; j(t)};{}{}n’ (i.e., each keyword in each coun-
try, at each time-tick). A lower value indicates a better fitting
accuracy. Note that the SIRS model cannot capture seasonal dy-
namics, SKIPS has the ability to capture periodic patterns, while
FUNNEL can capture external shocks. Moreover, they are not in-
tended to detect growth effect. As shown in the figures, the SIRS
model and SKIPS failed to capture the complicated patterns of
data sequences, FUNNEL cannot detect cyclic external events,
while our method achieved those properties with high fitting ac-

curacy.
5.3 Scalability

We also evaluated the scalability of A-SPOT, and verified the
complexity of our method, which we discussed in Lemma 1, in
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Section 4. Figure 10 shows the computational cost of A-SPOT in
terms of the dataset size. We varied the dataset size with respect
to (a) keywords d, (b) countries /, and (c) duration n. As shown
in Fig. 10, A-SPOT is linear with respect to data size.

6. A-SPOT at work

As we described in the previous section, A-SPOT is capable
of analyzing online activities of various categories. Here, we dis-
cuss the most important and challenging task of A-SPOT, namely,
forecasting the future dynamics of co-evolving activities. Fig-
ure 11 shows results of our forecasting in relation to keyword
“Grammy”. The goal here is to predict the search volume of this
keyword in the future. We trained the model parameters by using
the 400 time-ticks of the sequence (solid black lines in the figure),
and then forecasted the following years (solid red lines). A-SPOT
can predict the time-tick, the duration and the relative strength
of incoming external events, which refer to the annual Grammy
Awards, held every February.
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We also compared A-SPOT with the auto regressive (AR)
model, and TBATS model. We applied several regression coeffi-
cients: r = §8,26,50 for AR. In Fig. 11 (a), (b), (c), we show the
original sequences, and the forecast results of A-SPOT and AR
with TBATS, respectively. Our method achieves high forecast-
ing accuracy: we can predict the next three spikes relating to the
next three Grammys. Whereas, AR and TBATS failed to forecast
future patterns.

7. Conclusion

In this paper, we presented A-SPOT, an intuitive model for

mining large scale time-evolving online activities. A-SPOT

demonstrates all the following desirable properties:

(1) It is effective: it can detect important hidden events that
match the reality.

(2) It is automatic: it requires no training set and no domain
expertise, thanks to our coding scheme.

(3) Itis scalable: A-SPOT is linear to the data size (i.e., O(dIn)).

(4) It is practical: A-SPOT can undertake long-range forecast-
ing and outperforms existing methods.
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