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Abstract
Histopathological diagnosis is the ultimate method of attaining the final diagnosis; 
however, the observation range is limited to the two-dimensional plane, and it re-
quires thin slicing of the tissue, which limits diagnostic information. To seek solutions 
for these problems, we proposed a novel imaging-based histopathological examina-
tion. We used the multiphoton excitation microscopy (MPM) technique to establish a 
method for visualizing unfixed/unstained human breast tissues. Under near-infrared 
ray excitation, fresh human breast tissues emitted fluorescent signals with three major 
peaks, which enabled visualizing the breast tissue morphology without any fixation or 
dye staining. Our study using human breast tissue samples from 32 patients indicated 
that experienced pathologists can estimate normal or cancerous lesions using only 
these MPM images with a kappa coefficient of 1.0. Moreover, we developed an image 
classification algorithm with artificial intelligence that enabled us to automatically 
define cancer cells in small areas with a high sensitivity of ≥0.942. Taken together, 
label-free MPM imaging is a promising method for the real-time automatic diagnosis 
of breast cancer.
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1  |  INTRODUC TION

Histopathological diagnosis has been the most important and de-
finitive method of final diagnosis for over a century. With stained 
tissue preparations and bright-field microscopy, pathologists esti-
mate or judge different types of histopathological findings such as 
cell malignancy, the degree of inflammation and fibrosis, the depth 
of tumor invasion, and metastasis status. Moreover, histopathology 
plays an important role in the final diagnosis and intraoperative rapid 
diagnosis, which is critical for reducing the excision range in cancer 
surgery.1–3 However, some problems are associated with typical 
histopathology-based diagnostic procedures. Conventional meth-
ods can provide only planar two-dimensional images; thus, it is not 
possible to observe three-dimensional structures in diverse anatom-
ical structures consisting of various cells. In addition, it is difficult to 
analyze gene copy counting accurately using conventional methods 
by in situ hybridization because of thin tissue sections. Therefore, it 
would be desirable to develop an alternative diagnostic method that 
provides histological information in real time without tissue sampling.

Recent advances in optical imaging technology have enabled ob-
serving biological phenomena in real time. Multiphoton excitation mi-
croscopy (MPM) is one of the most common tools for intravital imaging. 
It enables the three-dimensional observation of tissues within living 
animals in real time.4–7 Several intravital imaging techniques use ge-
netically fluorescent-labeled animals; however, label-free imaging with 
MPM can be performed using nonlinear optical phenomena and auto-
fluorescence.8,9 Recently, several reports have been published on novel 
imaging technologies applied to clinical medicine.10–12 Visualization of 
multiple areas in real time without tissue sampling and staining is likely 
to be advantageous in clinical histopathological diagnosis. For instance, 
the application of the aforementioned imaging technology may enable 
us to quickly grasp cellular or molecular features during surgeries.

In the present study, we aimed to establish a novel MPM imaging 
method for human fresh breast tissue, without fixation or staining. 
Furthermore, we also intended to describe the utility of our attempt 
to classify cancerous or noncancerous images using artificial intelli-
gence (AI) based on a convolutional neural network (CNN). The com-
bination of our MPM imaging and CNN-based classification may be 
a promising alternative method with quantifiability and rapidity that 
can omit tissue sampling.

2  |  MATERIAL S AND METHODS

2.1  |  Clinical specimens

Breast tissue samples consisting of 30 carcinoma tissues and 25 
normal tissues were collected postoperatively from 32 patients 

with breast carcinoma from the Cancer Institute Hospital of the 
Japanese Foundation for Cancer Research (Table 1). Samples were 
collected from the center of the tumor or the residual normal breast 
tissue surrounding the tumors. They were immediately immersed in 
phosphate-buffered saline with 10% fetal bovine serum and peni-
cillin/streptomycin and delivered to the imaging room at Osaka 
University. Immediately following imaging, the samples were fixed in 
10% neutral buffered formalin (Muto Pure Chemicals) and processed 
routinely for paraffin embedding. All patients were histologically di-
agnosed preoperatively using biopsies. All patients provided written 
informed consent in accordance with the ethics committee require-
ments of the hospital and the Declaration of Helsinki. This study 
was conducted with the approval of the ethics boards of the Cancer 
Institute Hospital of the Japanese Foundation for Cancer Research 
and the Osaka University Graduate School of Medicine. The Osaka 
University Graduate School of Medicine Institutional Review Board 
approved the study protocol on December 17, 2015 (No. 15369). 
The Cancer Institute Hospital of the Japanese Foundation for Cancer 
Research Institutional Review Board approved the study protocol on 
August 18, 2016 (No. 2016-1059).

K E Y W O R D S
artificial intelligence, breast cancer, multiphoton excitation microscopy, rapid diagnosis, 
surgical margin

TA B L E  1  Patients and tissue samples participating in this study

Characteristics

Age at operation (years); mean (range) 56.6 (33-77)

<50 13 (40.6%)

50–70 14 (43.8%)

≧70 5 (15.6%)

Patients and provided tissues (n = 32)

Both normal and tumor tissues 23 (71.9%)

Only normal tissue 2 (6.3%)

Only tumor tissue 7 (21.8%)

Tissue size (mm)

Normal tissue (n = 25)

Major diameter (mean ± SD) 19.5 ± 5.00

Minor diameter (mean ± SD) 13.6 ± 3.66

Tumor tissue (n = 30)

Major diameter (mean ± SD) 20.8 ± 5.64

Minor diameter (mean ± SD) 14.6 ± 3.86

Histological type of cancer (n = 30)

Invasive breast carcinoma of no special type 28 (93.4%)

Mucinous carcinoma 1 (3.3%)

Invasive micropapillary carcinoma 1 (3.3%)

Abbreviation: SD, standard deviation.
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2.2  |  Imaging of human breast tissues and group 
separation of data files

The imaging system consisted of an upright microscope (A1RMP+; 
Nikon) driven by a laser (Chameleon Vision II Ti: Sapphire; Coherent, 
Inc.) tuned to 780 nm, and an upright microscope equipped with 
a × 25 water immersion objective (CFI75 Apo 25 × W MP/NA 1.10; 
Nikon). Tissue samples were positioned with the observation surface 
facing upward and overlaid with a coverslip to place a drop of water 
between the sample and the objective lens. To detect multipho-
ton excited fluorescence and second harmonic generation (SHG) 
emission signals, we used 390/18-nm, 480/40-nm, and 629/56-nm 
band-pass filters. To acquire a series of image files from one sample, 
we collected image stacks at 3-μm vertical steps at a depth > 30 μm 
below the sample surface with 1.0× zoom and 1024 × 1024 X-Y 
resolution (0.50 μm per pixel). Following imaging, we calibrated the 
z-coordinate (orthogonal to the observation plane) of the stacked 
image files by defining z = 0 as the first height at which the fluores-
cent signal was detected in almost the entire image area. Moreover, 
images of the surface side with z ≤ 30 μm were used in this study.

In normal tissues, the adipose tissues, fibrotic stromal tissues, 
and vascular structures were observed in addition to the ductal-
lobular structures. In cancerous tissues, we could recognize inva-
sive breast carcinoma, mucinous carcinoma, and ductal carcinoma 
in situ in addition to the surrounding normal tissue components. 
An experienced pathologist linked the ground truth to each image 
file. We divided all image files from normal and cancerous tissues 
into two groups, depending on the case. Image data of group A 
(1765 images from 12 patients; consisting of 784 images from nor-
mal tissues, 91 images without malignant findings from cancerous 
tissues, and 890 images with malignant findings from cancerous 
tissues) were used for the construction of classification models, in-
cluding training and validation. We used the training data set for 
the construction of the learning model candidates, and the vali-
dation data set was used to select the learning model with a high 
generalization performance. Lastly, we analyzed the classification 
performance of the determined learning model using the files of 
group B (2393 images from 20 patients, consisting of 899 images 
from normal tissues, 138 images without malignant findings from 
cancerous tissues, and 1356 images with malignant findings from 
cancerous tissues).

In the spectral analyses, we used the spectral detector of the 
A1RMP+ microscope (Nikon). Tissues were imaged to record their 
emission spectra from 380 nm to 630 nm (collected in 25 bins, each 
approximately 10 nm wide) under 780 nm excitation. Each fluores-
cence intensity was recorded at 4096 gray intensity levels (12 bits).

2.3  |  Construction of image classification model

All image files, in the form of squares with a side of 1024 pix-
els, were normalized before the analysis such that the mean 

value was 0 and the standard deviation was 1. Moreover, they 
were cropped into 64 squares with sides of 128 pixels (termed 
“image tiles”). After cropping, we separated the validation data 
set by randomly selecting 20% of the image tiles from group A; 
the resulting 90,368 and 22,592 tiles were prepared for training 
and validation, respectively. Subsequently, the image tiles with a 
signal-to-noise ratio < 20 and an average brightness value <0.10 
were defined as blank. The signal-to-noise ratio was based on a 
pseudo-noiseless image, which was constructed with a median 
filter. Based on these criteria, 9908 tiles in the training set, 2498 
tiles in the validation set, and 12,258 tiles in the test set (group 
B) were judged as blank. After separating the blank image tiles, 
we established a classification model for the nonblank image 
tiles using Inception-v3, a type of deep-learning architecture. 
The code was implemented in Python using TensorFlow 2.0, and 
Keras 2.3, which are open-source software libraries for machine 
intelligence. The Adam optimization algorithm was used with an 
epoch of 100, a learning rate of 0.020 and a batch size of 128. A 
total of 80,460 and 20,094 image tiles from group A were used 
for training and validation during training, respectively. Following 
the construction, all 140,894 nonblank image tiles from group 
B were tested for an automatic classification of the presence of 
cancer cells. After the test, all image tiles from group B (153,512 
tiles), involving those judged as blank (12,258 tiles), were evalu-
ated to calculate detection accuracy. The image tiles judged as 
representing cancer were classified as “positive.” In contrast, 
image tiles judged as showing no cancer cells as well as the blank 
ones were classified as “negative.”

2.4  |  Histology

Paraffin-embedded specimens were cut into 4-μm-thick sections 
and stained with hematoxylin and eosin (H&E) using a standard 
protocol.

2.5  |  Statistical analyses

For comparisons between groups with non-Gaussian distributions, 
we performed the Mann–Whitney U test to calculate P values. 
Accuracy represents the number of correctly classified observa-
tions over the total analyzed data number. Precision represents 
the ratio of correctly predicted positive observations to the total 
predicted positive observations. Recall, a synonym for sensitivity, 
represents the ratio of correctly predicted positive observations 
to all observations in actual positivity. F-measure represents the 
weighted average of precision and recall. To compare diagnosis ac-
curacies by experienced pathologists between conventional histo-
pathological method using HE staining and MPM images, Cohen's 
kappa coefficient was calculated as a measure of interinspection 
reproducibility.
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    |  2919Matsui et al.

3  |  RESULTS

3.1  |  Autofluorescent profiles of human fresh 
breast tissues

We analyzed the autofluorescent spectral profile of fresh human 
breast tissues (Figure  1A). Previous studies using human fresh 
tissues other than breast reported on detecting sufficient auto-
fluorescent signals by an excitation wavelength ≤800 nm.12,13 
Therefore, we employed an excitation wavelength of 780 nm in 
the current study. We continuously acquired emission signals 
between 380 nm and 630 nm under the aforementioned condi-
tions (Figure  1B and Figures  S1–S3). Epithelial cells in the nor-
mal mammary duct displayed an emission peak at 480 nm (red 
region of interest [ROI] in Figure  1B). Similar autofluorescence 
was observed in adipose cells around the mammary gland (purple 
ROI in Figure 1B) and fibrous structures (blue and black ROIs in 

Figure 1B). We could also detect a dot-like autofluorescence near 
the edge of normal ducts with an emission peak at 510 nm (cyan 
ROI in Figure  1B). In addition, we detected a sharp and narrow 
emission fluorescence peak at 390 nm from the fibrous structures 
(blue and black ROIs in Figure 1B). This represented half the exci-
tation wavelength, thereby indicating that we observed fluores-
cent signals by SHG derived from fibrillar collagens.14 In cancerous 
tissues, the emission peak of cancer cells was similar to that of nor-
mal epithelial cells (orange ROI in Figure 1B). Contrarily, immune 
cells around the cancer cells displayed autofluorescence with an 
emission peak at 570 nm (magenta ROI in Figure 1B). Thin fibrous 
structures near the cancer cells emitted less autofluorescence, ex-
cept for SHG (green ROI in Figure 1B). Therefore, human breast 
tissue emitted multiple autofluorescent signals via near-infrared 
ray excitation. It principally consisted of three major peaks, which 
prompted us to describe the histological features in detail with 
these fluorescent signals.

F I G U R E  1  Spectral analysis of fresh human breast tissue with near-infrared ray excitation. A, A schematic of spectral analysis using 
multiphoton excitation microscopy system. A coverslip (white arrow) is placed to retain water (red arrowhead) between the fresh tissue and 
objective lens. The excitation near-infrared ray is tuned to 780 nm and emitted from the femtosecond pulse laser, and tissues are imaged to 
record emission spectra from 380 nm to 630 nm (collected in 25 bins, each approximately 10 nm wide). B, Representative results of spectral 
analysis using normal mammary gland tissue (first row), normal fat tissue (second row), and breast carcinoma tissue (third row). The color 
graph in the first column displays the fluorescence intensity at a similar color region of interest (ROI) (a square with 15 μm side) as in the 
middle column images. The images in the middle column consist of 25 image superpositions (described in Figure S1A–C). The hematoxylin 
and eosin (H&E)-stained images in the third column are captured after the spectral analysis from the same tissue. Bar, 50 μm
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F I G U R E  2  Label-free multiphoton excitation microscopy (MPM) imaging for human fresh breast tissues. A, A schematic of the MPM 
imaging system. The excitation near-infrared ray is tuned to 780 nm and emitted from the femtosecond pulse laser, and fluorescence signals 
are detected with nondescanned detectors after the transmission of dichroic mirrors and emission filters. B, Representative images of MPM 
imaging of breast tissue with various histological types. Merged fluorescent images (fourth column) are constructed by the superposition of 
three fluorescent images from different channels. Hematoxylin and eosin (H&E)-stained images in the fifth column were captured after the 
imaging analysis from the same tissue. Bar, 50 μm
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3.2  |  MPM images of breast tissue enabled 
pathologists to estimate normal or cancerous 
lesions accurately

Based on the abovementioned spectral analysis, we established an 
MPM imaging system using three channels with different band-pass 
filters (Figure  2A). Next, we performed label-free MPM imaging 
of fresh unstained breast tissues, including normal and cancer-
ous lesions. H&E-stained sections from identical tissues used for 
MPM imaging were used to confirm the diagnosis. In fat tissues 
around the mammary gland, we identified adipose cells with cir-
cular morphology by detecting autofluorescent signals (first row 
of Figure  2B). Epithelial cells were lined neatly on the basal side 
of the lumen in mammary ducts in normal tissues. Cellular nuclei 
were identified as signal-void regions and did not display obvious 
enlargement. In addition, dot-like autofluorescence was detected 
along the edge of the ductal structures (second row of Figure 2B). 
In contrast, tumor cells of ductal carcinoma in situ revealed irregu-
lar proliferation in the lumen with nuclei enlargement on MPM im-
aging. Moreover, the dot-like autofluorescence at the lesion edge 
was unclear (third row of Figure 2B). In invasive carcinoma tissues, 
the tumor cells proliferated irregularly without luminal formation 
(fourth row of Figure 2B). These histological features recognized in 
MPM images resembled those of conventional H&E-stained images 
(fourth column of Figure  2B). Multiphoton excitation microscopy 
images of both normal tissues (from 25 patients) and cancerous le-
sions (from 30 patients) were randomly examined by two experi-
enced pathologists, who could provide correct diagnoses using only 
the MPM images with a kappa coefficient of 1.0 (Table 2). These 
results demonstrated that experienced pathologists can estimate 
normal or cancerous lesions using only our MPM images with ad-
equate high accuracy.

3.3  |  Image classification with AI algorithm 
enabled to detect cancer lesion in small area without 
pathologist's intervention

When inspecting a small lesion or tumor margin, cancer cells are usu-
ally found only in a small area (if any). Therefore, we constructed 
an AI classification algorithm that could detect cancer cells that 
exist in a portion of the captured image (Figure 3A). We randomly 
divided all image files into two groups, depending on the patients. 
Subsequently, we cropped all files into 64 squares with 64 μm side 
each, or “image tiles,” and a pathologist linked ground truth to each 
tile. Considering the inclusion of blank image tiles in the edge area 
of the original images, we separated them based on the signal-to-
noise ratio and average brightness value. Nonblank tiles from group 
A were used to construct an image classification model based on 
Inception-v3, a type of CNN architecture. We used image tiles from 
group B to examine the classification algorithm. Both image tiles 
judged as involving no cancer cells as well as blank ones were classi-
fied as “negative.” In contrast, those judged as involving cancer were 
classified as “positive.” The utility test of our classification algorithm, 
performed with 153,152 tiles from group B, indicated accuracy, 
precision, recall, and F-measure of 0.934, 0.827, 0.942, and 0.881, 
respectively (Figure 3B and Table 3). Moreover, to evaluate the de-
tection accuracy of the malignant area in the original captured image 
file (consisting of 64 tiles), we defined the index termed “malignant 
probability” as the ratio of positive tiles in an original captured 
image. This index was calculated for each analyzed image file from 
group B, which revealed a significant difference between the normal 
and cancerous images (Figure 3C). Under the threshold of 0.0625 
(from the receiver operating characteristic curve in Figure 3D), we 
classified 1314 of 1356 cancerous files, and 974 of 1037 normal files 
were classified as “malignant” and “nonmalignant,” respectively, with 
a sensitivity, specificity, and area under the curve of 0.969, 0.939, 
and 0.989, respectively (Figure 3D). These results indicated that a 
combination of label-free MPM imaging and AI-based image classifi-
cation enabled the detection of cancer cells in a small area.

4  |  DISCUSSION

In this study, we proposed the potential usability of MPM imaging 
for histopathological diagnosis of breast cancer. We consider this 
imaging method has three main advantages. First, it enables two-
dimensional observation with depth. We can evaluate only a single 

TA B L E  2  Comparison of diagnostic results by pathologists 
between multiphoton excitation microscopy (MPM) images and 
conventional histopathological method using hematoxylin and 
eosin (H&E) staining

H&E

Normal Carcinoma Total

MPM Normal 25 0 25

Carcinoma 0 30 30

Total 25 30 55

F I G U R E  3  Multiphoton excitation microscopy (MPM) image classification algorithm to detect cancer cells in a small area using 
convolutional neural network (CNN)-based artificial intelligence (AI). A, Flowchart of the classification algorithm. B, Representative 
classification results of the algorithm for each image tile (a square with 64 μm), cropped from the original image file (left column). Each square 
in the right column displays the results and corresponds to the image tile in the left column. Red, yellow, cyan, and blue indicate true-
positive, false-positive, false-negative, and true-negative results, respectively. C, Box-and-whisker plot of malignant probability of each MPM 
image from group B. The top and bottom of the rectangle indicate the third and first quartile, respectively. Horizontal lines in the rectangle 
indicate the median. Vertical lines indicate the 5-95 percentile range. D, Receiver operating characteristic (ROC) curve of malignant 
probability
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    |  2923Matsui et al.

plane with conventional histology, while previous report using tissue-
clearing technique has indicated that three-dimensional pathological 
screening might increase diagnostic sensitivity.15 In MPM imaging, it 
is possible to observe at different focal planes by “optical slice” and 
add higher dimensional information to conventional histopathology. 
Second, MPM imaging is superior in rapidity based on less invasive-
ness. As it does not require sampling or staining for observation, it is 
unnecessary to perform fixation, embedding, thin slicing, and stain-
ing. Such a time-saving effect may be advantageous for intraopera-
tive rapid diagnosis. Lastly, one of the most important features of 
MPM imaging is the easy access to the AI-based image classification 
model. It is possible to obtain the digital image data from fresh tissue 
in real-time. Thus, AI can be accessed rapidly and easily, without any 
image digitization process. Recently, the application of AI to histopa-
thology has progressed remarkably and is now used in research and 
clinical practice.16 Multiple reports have suggested that CNN-based 
AI analysis excels in image recognition or identification, and CNN 
algorithms can accurately analyze or classify histological images.17 
Despite the problem of “explainability” of algorithm results,18 utilizing 
AI for histopathological assessment has several advantages.

Novel optical technologies other than MPM are also considered 
useful for histopathological analysis (Table  4). For instance, pho-
toacoustic imaging is based on a hybrid technique of optical exci-
tation and ultrasound detection and collects ultrasonic signatures 
from the expansion of molecules following laser light irradiation.19,20 
However, we cannot directly visualize cancer cells in label-free con-
ditions but rather judge them indirectly from the state of the tumor 
environment. Moreover, ultrasound has an inferior spatial resolution 
to light, and the in-plane spatial resolution of photoacoustic imaging 
(approximately 150 μm20) is not sufficient to distinguish a lesion at 
the single-cell level. Raman spectroscopy is another imaging device 
that detects the inelastic scattering of monochromatic laser light 
to probe molecular vibrations that provide a specific signal of cells 
and tissues.19,21 However, it takes considerable time during mea-
surement compared with other intravital imaging techniques. This is 
because Raman-scattered light is faint. Taken together, the greatest 

advantage of the MPM imaging method is its ability to rapidly pro-
vide image data similar to conventional histological images at high 
resolution on a cell-by-cell basis.

We assume that our MPM imaging method is promising, espe-
cially in intraoperative rapid diagnosis. Although it is critical to re-
duce the excision range in cancer surgery,1–3 suboptimal accuracy 
is one of the most important concerns. This is partly attributed to 
sampling error caused by the limited observable area of the frozen 
section. Moreover, tissue image quality obtained from frozen sec-
tions is generally lower than that from permanent specimens be-
cause of the artifacts caused by freezing or compression.22 As for 
breast cancer, surgical margin diagnosis in breast-conserving sur-
gery displays inadequate sensitivity (ranging from 65.0% to 96.0%), 
compared with its specificity (ranging from 84.0% to 100%).23 In 
other words, the current methods may be insufficiently reliable 
for determining the margin status,24 and we require alternative 
methods to improve accuracy. Our MPM imaging may complement 
the conventional intraoperative rapid diagnosis and improve the 
rapidity. In current intraoperative diagnosis takes approximately 
20 minutes from tissue sampling to slide glass preparation. In con-
trast, a series of our imaging procedures in this study has implied 
that multi-layered MPM imaging of fresh tissue can be completed 
within at most 5 minutes by optical slices, and it takes only a few 
seconds to analyze the imaging data with AI, though supporting 
data about examination time are currently not available. Therefore, 
MPM imaging may shorten the examination time during surgeries. 
In addition, we can perform MPM imaging analysis ahead of the 
conventional method with frozen sections, which can be added af-
terward depending on the AI classification result. To verify these 
contents, it is necessary to reorganize the study for intraoperative 
diagnosis and compare the diagnostic accuracy as well as the actual 
time required for diagnosis.

This study has some limitations. Only surplus surgical tissues 
were analyzed in our study as we needed to collect fresh tissues 
before fixation and embedding. However, the study design re-
stricted the collection of histological samples rarely found in surgical 

Actual value

Positive Negative Total

Predicted value Positive 37,267 7815 45,082

Negative 2283 105,787 108,070

Total 39,550 113,602 153,152

TA B L E  3  Confusion matrix of 
multiphoton excitation microscopy (MPM) 
image classification algorithm for all image 
tiles from group B

TA B L E  4  Comparison of multiphoton excitation microscopy (MPM) and other optical technologies for intraoperative diagnosis

Photoacoustic 
imaging Raman spectroscopy MPM

Measured energy Ultrasound Raman scattered light Visible light and near-infrared ray

Analysis time Seconds Minutes to hours Seconds

Tumor cell detection Contrast agent Label-free (by Raman shift) Label-free (by autofluorescence)

Compatibility with conventional histology Good Not good Good
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specimens. It was also impossible to collect particular histological 
images in advance unless it was recognizable by the gross appear-
ance on fresh tissue. In contrast, the mammary gland tissue has a 
divertical histological appearance. Therefore, images from normal 
tissues analyzed in this study reflect only a small portion of non-
neoplastic breast tissues, while several other important tissue im-
ages are not included, such as atrophic ducts or lobules, adenosis, 
fibrocystic changes, and usual ductal hyperplasia. Similarly, we could 
not assess columnar cell lesions and premalignant lesions such as 
atypical ductal hyperplasia, which might be challenging in intraoper-
ative rapid diagnosis. It is necessary to collect abundant image data 
that reflect various mammary gland histology, including biopsy spec-
imens by multicenter analysis.
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