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1. Introduction

An oriented link £ = k; U--- Uk, of u components in S is called a 2-periodic
link if there is a Zy-action on the pair (S%,£) such that the fixed point set f of the
action is homeomorphic to a 1-sphere in S? disjoint from £. It is known that f is un-
knotted. Hence the quotient map p : S3 — S%/Z, is an 2-fold cyclic branched cover-
ing branched over p(f) = f. and p(f) = ¢, is also an oriented link in the orbit space
S3 /7, = S3, which is called the factor link of ¢.

In this paper, we express a relationship between the modified Goeritz matrices of
a 2-periodic link ¢ and those of its factor link ¢, and the link ¢, U f,. As an ap-
plication, we give an alternative proof of the Gordon and Litherland’s formular([3]):
o(f)—Lk(¢, f) = o(£,) + (£, U f.) for the signature o(£) of a 2-periodic null homol-
ogous oriented link £ in a closed 3-manifold M in the case of a 2-periodic oriented
link in S3. We also show that n(£) = n(£,) + n(f. U f.) — 1, where n(£) denotes the
nullity of an oriented link £ and f, denotes the knot f, with an arbitrary orientation.

2. Preliminaries

Let ¢ be an oriented link in S® and let L be its link diagram in the plane R? C
R® = §3 — {o0}. Colour the regions of R — L alternately black and white. Denote the
white regions by Xy, X1, -+, X,, (We always take the unbounded region to be white
and denote it by Xp). Let C'(L) be the set of all crossings of L. Assign an incidence
number 7(c) = %1 to each crossing ¢ € C(L) as in Fig. 2.1 and define a crossing
c € C(L) to be of rype I or type II as indicated in Fig. 2.1.

Let S(L) denote the compact surface with boundary L, more precisely, S(L) is
built up out of discs and bands. Each disc lies in S? = R? U {oo} and is a closed
black region less a small neighbourhood of each crossing. Each crossing gives a small
half-twisted band. Let Bo(L) denote the number of the connected components of the
surface S(L).

Let G'(L) = (9ij)o<i,j<w> Where gi; = — 3 .o, (x,,x;) 1(c) for i # j and gi;
Y cecy(x:) N(c), where Cp(X;) = {c € C(L)|c is incident to X;} and Cr(X;, X;)
{c € C(L)|c is incident to both X; and X}.
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The principal minor G(L) = (gij)1<i,j<w Of G'(L) is called the Goeritz matrix
of £ associated to the diagram L([1],[2]).

Let Crr(L) = {c1,c2,---,cp} denote the set of all crossings of type II in L
and let A(L) = diag(—n(c1),—n(c2),---,—n(cp)) be the p x p diagonal matrix.
Then Traldi([5]) defined the modified Goeritz matrix H(L) of £ associated to L by
H(L) = G(L) ® A(L) @ B(L), where B(L) denotes the (8o(L) — 1) x (Bo(L) — 1)
Zero matrix.

Two integral matrices H; and H, are said to be equivalent, denoted by H; ~ Hj,
if they can be transformed into each other by a finite number of the following two
types of transformations and their inverses:

(I) H — UHU!, where U is a unimodular matrix of integers,

1 0
(1) H—)H@(O 1)

If L, and L, are link diagrams of ambient isotopic links, then H(L;) and H(L5)
are equivalent([5]).

The signature o(£) and the nullity n(£) of an oriented link £ in S® are given by
the formulars:o(f) = o(H (L)), n(€) = n(H(L)) + 1, where o(H(L)) and n(H(L))
are the signature and nullity of the matrix H (L) respectively([4], [5]). The absolute
value of the determinant of the modified Goeritz matrix H (L) associated to a diagram
L of a link £ is clearly an invariant of the link type ¢, denoted by |det(£)|.

3. The modified Goeritz matrices of 2-periodic links

Let £ = ky U---Uk, be a 2-periodic oriented link of s components in S3. Then
we may assume that the homeomorphism of the pair (S2,¢) induced by the periodic
Zy-action is the standard rotation ¢ of R® through 7 about the z-axis and hence the
fixed point set f is the z-axis Uoo. We choose the standard orientation on the z-axis
and denote it by f. Define Lk(¢, f) = !, link(k;, f), where link(k;, f) denotes’
the linking number of k; and f.

Applying an isotopy deformation if necessary, we may assume that £ is represent-
ed by a 2-periodic oriented diagram L in an annulus in R?, which is divided into 2
pieces L; and Lo such that ¢(L;) = Lo,¢(Ls) = L;, where ¢ is the rotation of
R? through 7 about the origin. Let a;,a2,--,ar,ary1, +,a,, denote the intersec-
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tion points of L with the line § = 0 and let p(a;) = b;,2 = 1,2,---,m, as shown in
Fig. 3.1. Note that Lk(¢, f) = 2r — m.

Colour the regions of R? — L alternately black and white. Without the loss of gen-
erality we may assume that the surface S(L) is connected and the orientation of ¢ is
as indicated in Fig. 3.1. If not, by applying ambient isotopy deformations in R® - §,
i.e., the Reidemeister moves in R?> — {0} (hence Lk(¢, f) is not changed), L can be
deformed to L' so that L' is also a 2-periodic link diagram of ¢, which has the re-
quired orientation and S(L') is connected. Now let ¢, : R* — R?/p(= R?) be the
quotient map and let ¢, (L) = L,. Then L, is a link diagram of the factor link £, of
L.

In the case of Lk(£,f) = 1 (mod 2) we denote the white regions as follows.
We denote the unbounded white region by XJ. Notice that the bounded region con-
taining the origin is then a black region. Let X, X2 ---, XF denote the white regions
in L, C L which do not intersect the line 8 = 0, and let X', X2 ... Xw(w =
k + (m — 1)/2) denote the white regions in L which intersect the line § = 0. For
each j = 1,2,---,w, let XJ = o(X7). Note that p(XJ) = X9 (see Fig. 3.1).
For p # qori # j, let g = "zcec,,(x;;,xg)"(c)- For p = g and i = j,
let g5, = ey (x;) (). Denote M = (g1 i<ij<e, N = (911)e+1<ij<w, P =
(gi)1<i<kkri<i<ws @ = (9p)i1<i<kk+i<i<ws B = (915)k+1<ij<w, A(L1) =
diag(—n(c1), —n(c2), -+, —nlcs)), where ¢; € Crr(Ly), and I the k x k(k > 1)
identity matrix.

In these notations we have the following Lemma 3.1 and Lemma 3.2.
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Lemma 3.1. Let £ be an oriented 2-periodic link with Lk(¢,f) = 1 (mod 2)
and let L be the 2-periodic diagram of ¢ as shown in Fig. 3.1 and let ¢, (L) = L..
Then

M
M P O Q@
[Pt N @ R
Qt R Pt N

2

TH(L)T'=U [H(L*) ® (Ptn_th ;:%) GBA(LI)] Ut
1

where T = I, ® (1 _1

) ® I, ® I, and U is a unimodular integral matrix.

Proof. (1) For p,g = 0,1,2, let Gy = (g5 )1<ij<w- Then G'(L) =
(Gpg)o<p,g<2- It is easy to see that the Goeritz matrix G(L) of £ associated to L is
the matrix of the form: for an integral matrix X,

M P O Q

_ G11 G12 _ PP N X R
G(L) - <G21 ng) - O Xt M P
Qt Rt Pt N

For k+1<i<wand 1< j < w, X} and X are incident if and only if p(X?) = X3
and ¢p(X 7 ) = X J are incident, and their corresponding crossing types are the same.
Thus g} = g3, for k+1<i<w,1< j < w. Hence X = (9 kt1<icwi<i<k =
(95 kr1<i<wi<i<k = QF and R* = (g5 ks1<ijcw = (953)k+1<ijcw = R. It is
obvious that A(L) = A(L;) & A(Ly).

(2) Note that the colouring of the diagram L induces the colouring of the di-
agram L, of £,. Let X° = ¢.(X9),X7 = @.(X]) for each j = 1,---,w.
Then {X’|j = 0,1,---,w} is the set of all white regions of L.. Hence G(L.) =
(giihr<ijsw, Where gij = =3 e, (xixi) ()i # §),9i = Yeeo,,(xi)M(C)-
If 1 < i < k, then X} intersect neither the line § = 0 nor the line § = 7. So
(9ij)1<ij<k = (911)1<w<k = M. Notice that for k + 1 < j < w, the region X’
of L, is %((X.J UX3)NLy). S 0 (gij)1<i<kk+1<j<w = (95 + 91 1<i<kbti<icw =
P+ Q. Let g} = ECGCLI(X‘ xi)n(c), and gy = —ZCECLz(X' Xj)n(c) Then

(9ij)k+1<ij<w = (911 +.‘7;]2+912)k+lsz715w = (911 +911)k+1<w<w +(912)k+1<1,1<w

= N + R. Since A(L,) = A(Ly), H(L,) = PtA_th f,i%) @ A(L,) and so

 the result follows by easy calculations.
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Now we consider the modified Goeritz matrix of the oriented link £, U f. in
S3/Zy = S3, where f, = p(f). From Fig. 3.1 we can obtain the diagram L, U F,
in Fig. 3.2 as a diagram of £, U f, and denote the white regions of the coloured di-
agram L, U F, by X% X1,--- ) X%*™ ag indicated in Fig. 3.2. Then we obtain the

following

Lemma 3.2. Let L, UF, be the diagram of £, U f, shown in Fig. 3.2. Then

_ M P-Q N, Iim-1)/2
t _ m
VH(L,UF,)V*" = (P‘ Q' N- R) ® A(L) @ (I(m—l)/Z
& E® (2),
where V is an unimodular integral matrix, Ny is an integral matrix, E = —I. @&

Lyr—1 ifriseven, and E = —I. 1 @ Iy, if T is odd.

Proof. Let G'(L.UF) = (gi)o<i,j<w+m, Where gij = =Y cc, o (x:.x4)M(0)-

We may identify X® in L, U F, with X{ in L for i = 1,--
—Zcecl,l(x;,x;’)n(c) for p,¢ = 0,1,2 and L; C L. Denote E; = (goj)i<j<k

(98{)1519, Er = (goj)kt1<icw = (God)k+1<i<ws Bz = (Gowti)1<j<(m—1)/2
0). No-

(05 )1<i<(m-1)/2> agd E,
tice that E> + E3 = (go1)k+1<j<w-

(905 ) w+(m—-1)/241<j<wt+m = (=2 0

-, w. Let g

For1<i,j<k (95 = @) =M For1<i<kadk+1<j<w,

(i) = (9%) = P.For 1 < i < kand 1 < j < (m—1)/2, since giw+;

T kg
= 912

)
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(giwti) = (91577) = (g58)1<o<hhti<tcw = Q- A .
For1<i<kand w+(m-1)/2+1<j<w+m, X* and X’ are not incident
for each pair of ¢ and j. Thus (g;;) = O, the k x (m — 1)/2 zero matrix.
Ifk+1<i<wandw+(m-1)/2+1<j <w+m, then the regions X* and
X7 are incident exactly at one crossing only for j =w + (m —1)/2+i and j = w +
(m —1)/2+1i+1 whose incidence number is —1 for j = w+ (m — 1)/2+1 and 1 for
j=w+(m—1)/2+i+1. So (g:) = J, where J is the (m —1)/2x ((m —1)/2+1)
matrix of the form:for m =1, J = and for m > 1,

1 -1 0 0 0

0 1 -1 0 0
J= .

o o o0 ---1 -1

Similarly for w+1<i<w+(m-1)/2and w+ (m—-1)/2+1< j < w+m,
(9:5) = J.

Now let N1 = (gij)rti<ij<w, N2 = (gij)wti<ij<wt(m-1)/2, 1 =
(9i5) k+1<i<w,wt1<j<wt(m-1)/2> K = (9ij)wt(m—1)/2+1<i,j<w+m- Then

—a E1 E2 E3 E4
i EE M P Q O
G'(L. U F,) = (9s5)o<i,j<wtm = | E3 P* N1 Ri J |,
Et Q® Rt N, J
Et O Jt Jt K

where a is the sum of all entries of the row matrices E;, E5, E3, and Ej.
Forw+ (m—1)/2+1<14,j <w+m, gi;; =0(i # j) and g;; = —d;, where d;

is the sum of all the i-th rows of Ef and 2J. But dy4+m = —2 and the other d;’s are
O O
all zero. Hence K = (0 9 )

Now by deleting the first row and the first column of G'(L, U F,), we obtain the
Goeritz matrix G(L. U F,) of £, U £, associated to L, U F,.

Let E be the diagonal matrix whose diagonal entry corresponding to each type
Il crossing c in the diagram L, U F, generated by intersecting L, with F, is —n(c).
If r is even, then the number of these type II crossings with incidence number +1
is equal to r and the number of these type II crossings with incidence number —1 is
equal to m —r —1 and hence E = —I, ® I,,_,_1. Similarly for r odd, we have E =
~I 41 ®In_,. Thus A(L,UF,) = A(L;) ® E. Since S(L.) is connected, S(L.U F)
is also connected. Hence B(L, U F) is the empty matrix. Therefore H(L, U F,) =
G(L.UF,)® A(L«UF,)=G(L.UF,)® A(L,) ® E.

It is not difficult to see that Ry + R} = R, N1+ N> = N and there is a unimodular
integral matrix V' such that VH (L, U F,)V* =
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M P-Q Ne  Iim-yy2
(Pt_Qt N—R) GBA(Ll)69 (I(m—l)/2 0 @E@(2)‘ O

Theorem 3.3. Let £ be an oriented 2-periodic link in S® with the fixed point set
f and let £, be the factor link of L. Then there exist 2-periodic diagrams L and L, U
F, of £ and £, U f, satisfying the following:

() Lk, =1 (mod 2).

s [H(L)GB (’0 _OIb) @(2)] 51w (H(OL*) H(Lf)uﬁ*)).

(2 Lk, f)=0 (mod 2).
Let Lowu denote the splittable 2-periodic link consisting of £ and the unknot u and
let h™ denote the left handed Hopf link. Then

S[H(LUU) ® (I(; “IOb+1)®(2)] ST (H(OL*) H((L« U%) # D')) ),

where S is an invertible rational matrix, L, = @.(L), LUU and D~ are diagrams

of Lou and h™ respectively, and a — b+ 1 = —Lk(¢, f).

Proof. (1) It follows from Lemma 3.1 and 3.2 that

N,

THL)T 'o (
Iim_1))2

1(,,,(_)1)/2) ®E® (2) = X[H(L,) ® H(L, UF,))X",

where X is a unimodular integral matrix. Note that

N, I(m—l)/2) _ [(Ia 0) ] -1
(I(m_m rese@=v|(5 )o@y

a—b=m-2r—1=—Lk(, f) — 1, where Y is an invertible rational matrix. This
leads to the result.

(2) Let LUU be the 2-periodic diagram of £ o u as shown in Fig. 3.3, where
U denotes the diagram of the unknot u. Note that Lk(Uwu, f) = Lk((,f) -1 =1
(mod 2). By (1), we obtain

§ [H(LUU“B (Io —(;,,) 9(2)] §7 = (H(L*ou o) H((L. u%,.)uF*))

and a— (b+1)+1= Lk(¢owu, f) = —Lk(¢, f) — 1. Since L,UU, and (L.UU,)UF,
are ambient isotopic to a splittable link diagram L, o U, and the connected sum (L, U
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F)4D~, H(L,UU,) ~ H(L,)®(0) and H((L.UU.)UF,) ~ H(L.UF,) { D).
This implies the result. ]

Corollary 3.4. Let £ be a 2-periodic oriented link in S® and let ¢, be its factor
link. Then
(1)  o(8) — Lk, F) = 0(£) + o(€, U f.).
2 n() =n(l) +n(l. U f.) =1, where f, denotes the knot f. with an arbitrary
orientation.

Proof. (1) Casel. Lk({, f) =1 (mod 2). The relation of (1) in Theo-
rem 3.3 gives that 0(£) +a—b+1 = o(l.) +0(£. U f.). Since a—b+1= —Lk(¢, f),
the result follows.

Case II.  Lk(¢,f) =0 (mod 2). The relation of (2) in Theorem 3.3 gives that
o(lou)+a—b = a(l)+ o((ls U f)h™). Note that o(£ o u) = a(£),0((fe U
fOth™) = (s U f.) + o(h™) = 0(f. U f.) — 1 (see [4, Lemma 7.2, 7.4]). Since
a—b=—Lk((, f) — 1, the result follows.

(2) Since n(H(L)) = n(¢) + 1,n(H(LUU)) = n(H(Lo U)) = n(H(L)) +
1,n(H(L,) ®(0)) = n(£) +1, and n(H((L. UF)ED ™)) =n(lUf,) +n(h™)—1=
n(f. U f.) — 1 (see [4, Lemma 6.3, 6.4]), Theorem 3.3 implies the result.

Now reversing the orientation of the fixed point set f only changes the sign of
some diagonal entries of the diagonal matrix A(L, U F,) in H(L,UF,). This implies
that the equations do not depend on the choice of the orientation of f. O

REMARK 3.5. Let k,U f, be an oriented link in S3, where f, is the unknot. Then
the inverse image of k, in the 2-fold cyclic cover M>(f«) branched over f. gives a 2-
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periodic oriented link k in S3. Clearly any 2-periodic link in S3 arises in this way. If
k. is a knot, then by Corollary 3.4(2) n(k) = n(k.« U f.).

It is well known that |det(G(K))| = order(H,(M2(k);Z)) for any diagram K of

a knot k, where order(H;(M(k);Z)) denotes the order of the first homology group
H, (M, (k); Z) of the 2-fold cyclic cover M»(k) branched over k with integer coeffi-
cients. Now if k, is a knot and Lk(k., f«) is an odd integer, then k is also a knot and
n(k) = n(k« U f,) = 1. Furthermore, |det(H (K))| = |det(G(K))| for any diagram K
of the knot k. So by Theorem 3.3 (1) we obtain that

(1]

order (Hy (M2 (k); Z)) = %order(Hl (Ma(ks); Z2))|det (ki U fi).
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