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Intravital imaging of orthotopic and ectopic
bone
Kunihiko Hashimoto1,2, Takashi Kaito1 , Junichi Kikuta2 and Masaru Ishii2*

Abstract

Bone homeostasis is dynamically regulated by a balance between bone resorption by osteoclasts and bone
formation by osteoblasts. Visualizing and evaluating the dynamics of bone cells in vivo remain difficult using
conventional technologies, including histomorphometry and imaging analysis. Over the past two decades,
multiphoton microscopy, which can penetrate thick specimens, has been utilized in the field of biological imaging.
Using this innovative technique, the in vivo dynamic motion of bone metabolism-related cells and their interactions
has been revealed. In this review, we summarize previous approaches used for bone imaging and provide an
overview of current bone tissue imaging methods using multiphoton excitation microscopy.
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Background
Bone homeostasis is dynamically regulated internally and
externally via interactions among osteoblasts, osteoclasts,
osteocytes, other organs, and other cell types. Conven-
tional histological evaluation of bone tissue has been per-
formed on histological sections ex vivo; this evaluation is
limited to “static” analysis of cell morphology and gene
and protein expression. Bone histomorphometric analysis
can quantify the rates of bone formation and resorption
during a certain period but cannot visualize real-time “dy-
namic” behaviors, interactions, and functions among oste-
oblasts, osteoclasts, osteocytes, and other cell types.
Because conventional laser beams used for micro-

scopic observation cannot penetrate the thick miner-
alized cortical bone, numerous approaches including
micro-computed tomography imaging [1–4], Raman
microspectroscopy imaging [5, 6], and magnetic res-
onance imaging [7] have been utilized for indirectly
visualizing the inside of the bone through time-lapsed
in vivo imaging. However, it remains difficult to per-
form real-time analysis of bone dynamics.

The advent of multiphoton microscopy has launched a
new era in the field of biological imaging of the bone. The
longer wavelength light sources used in multiphoton exci-
tation microscopy enable deeper tissue penetration be-
cause less scattering occurs, and there is less laser-induced
damage to the tissue; the lower levels of photobleaching of
the imaged fluorophores by using near-infrared lasers en-
ables longer observation times compared with those of
conventional fluorescent microscopy. Using this innova-
tive technique, the dynamic motion of osteoblasts and os-
teoclasts and their interactions inside skeletal bone have
been clarified. We recently established a novel intravital
imaging system for ectopic bone formation as a powerful
tool for optimizing bone tissue regeneration. In this re-
view, we provide an overview of current bone tissue im-
aging including skeletal bone and ectopic bone formation
using multiphoton excitation microscopy.

Intravital imaging of skeletal bone with multiphoton
excitation microscopy
In vivo imaging can be divided into intravital imaging
and tissue explant imaging [8]. In intravital imaging,
experimental animals are kept alive under anesthesia,
and tissues of interest are exposed for observation. In
contrast, in tissue explant imaging, the tissues harvested
from experimental animals are maintained under viable
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conditions for observation in culture media. In this review,
we discuss only intravital bone imaging with multiphoton
excitation microscopy. Mouse calvarial bone, in which the
distance from the bone surface to the bone cavity is only
80–120 μm, was used in studies to visualize the bone-
marrow cavity. This is because thick cortical bone consists
of crystalized calcium phosphate, which prevents
visualization at depths greater than 150–200 μm, even with
the use of a near-infrared laser [8]. However, in addition to
the calvarial bone, there are reports of imaging using multi-
photon excitation microscopy on the long bones such as
the femur [9] or tibia [10, 11]. Intravital imaging of the
marrow of long bones is more invasive because surgical
treatment (bone thinning or drilling) of the cortical bone is
required. In addition, for the reduction of artifacts (body
motion) during the intravital imaging experiments, the im-
aging box and the anesthetized mouse are maintained at a
constant warm temperature using heated air. Heart rate is
monitored using an electrocardiogram monitor device, and
the concentration of the anesthetic gas is adjusted by using
the heart rate as a guide.

Visualization of osteoclasts, osteoblasts, and matrix
To visualize osteoclasts and osteoblasts, genetically modified
(knock-in) mice expressing a fluorescent protein in cell-
specific genes are employed. To visualize mature osteoclasts,
transgenic mice expressing fluorescent proteins under the
control of the tartrate-resistant acid phosphatase (TRAP)
promoter (TRAP-tdTomato mice) or the ATP-driven proton
pump (V-type H+-ATPase a3 subunit) promoter (a3-GFP
mice) are used [12–15]. To visualize osteoclast precursors,
knock-in mice expressing enhanced green fluorescent pro-
tein (EGFP) under the promoter of fractalkine receptor
(CX3CR1), which is expressed mainly on monocyte-lineage
cells, including osteoclast precursors, was used (CX3CR1-
EGFP mice) [16, 17].
To visualize osteoblasts, transgenic mice expressing GFP

or enhanced cyan fluorescent protein (ECFP) under the
promoter of type I collagen in osteoblasts (Col 2.3-GFP and
Col 2.3-ECFP) is generally used [13, 15, 18–20] (Table 1).
To further visualize the functional status of cells,

chemical fluorescent probes are being developed such as
pH-activatable probes, by which a low-pH region created

by bone-resorbing osteoclasts can be visualized [12, 13,
21, 22] (Table 2).
By using near-infrared lasers for multiphoton excitation,

collagen fibers in the bone matrix can be visualized by a non-
linear optical process named as second harmonic generation
(SHG), without additional fluorescent labeling [15, 19, 23–
25]. Additionally, administration of alizarin can be performed
to visualize calcified bone matrix [15, 19, 26] (Table 3).
Multifluorescent images are acquired via direct detec-

tion of fluorescence using four external non-descanned
detectors equipped with dichroic and emission filters.
The acquired images are subjected to channel unmixing
using the NIS-Elements integrated software (Nikon) for
autofluorescence and crosstalk reduction [13, 15].

Dynamic visualization of osteoclasts
Osteoclasts, which have a unique hematopoietic origin and
move dynamically among bone cells, can be visualized by
intravital imaging, which has provided insights into these
cells. Osteoclast precursors circulate in the blood vessel and
migrate to the bone surface to perform their bone resorp-
tive activity. However, the mechanism underlying the con-
trol of osteoclast precursor migration remains unclear. We
demonstrated that sphingosine-1-phosphate (S1P), an
abundant lipid mediator in the blood, regulates the migra-
tion of osteoclast precursors between blood vessels and the
bone surface through two S1P receptors (S1PR1 and
S1PR2) expressed on osteoclast precursors [17]. The action
mechanism of the anti-osteoporosis agent active vitamin D
was shown to involve reduced expression of S1PR2 on
osteoclast precursors at the bone surface and subsequent
migration of osteoclast precursors from the bone surface to
the blood vessels [27].

Table 4 Merits and demerits of multiphoton excitation
microscopy

Multiphoton excitation microscopy

Merits Demerits

1. Time-lapse intravital
imaging

1. Visualization of only fluorescently
labeled target cells and SHG

2. Imaging without tissue
preparation and staining

2. Limitation of penetration depth

3. Visualization of collagen
fibers as SHG

3. Difficulty in visualizing inflamed tissues
with effusion or tissues with bleeding

Table 3 Other methods for bone tissue visualization in intravital multiphoton imaging

Target molecule/protein Visualization (color) Target tissue Report
(development)

Report
(intravital imaging)

Noncentrosymmetric
molecular organization
(collagen etc.)

SHG (blue, etc.*) Bone etc. Freund et al. Biophys J (1986) [23]. Hashimoto et al. Sci Rep. (2020) [15].
Villa et al. Tissue Eng Part C Methods. (2013) [19].

Ca2+ Alizarin (red) Bone (mineral) O’Brien et al. J Biomech. (2002) [26]. Hashimoto et al. Sci Rep. (2020) [15]. Villa et al.
Tissue Eng Part C Methods. (2013) [19].

SHG second harmonic generation
*Color changes based on the wavelength of incidental laser
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Combined visualization and quantification of osteo-
clast motility and the acidic environment created by os-
teoclasts using pH-sensing chemical fluorescent probes
clarified that mature osteoclasts can be classified into
two different types based on their motility and function,
that is, the static-bone resorptive (R-type) and moving-
non-resorptive (N-type) [12]. Intravital imaging enabled
real-time evaluation of the conversion from N-type to R-
type osteoclasts through direct cell-to-cell contact with
Th17 cells (a subset of RANKL-expressing CD4+ T
cells) and intravenous administration of RANKL to in-
duce the formation of mature osteoclasts.

Dynamic interaction between osteoclasts and osteoblasts
The coupling of bone formation and resorption has been
increasingly recognized as a complex, dynamic process.
Cell-to-cell contacts between osteoblasts and osteoclasts
play an important role in coupling [28], but the spatio-
temporal relationship and functional changes caused by
the contacts remain unclear. We recently performed in-
travital imaging of the interaction between osteoblasts
and osteoclasts by using double transgenic mice express-
ing EGFP driven by the type I collagen promoter in oste-
oblasts and tdTomato under control of the TRAP
promoter in osteoclasts [13]. We demonstrated that os-
teoclasts do not perform bone resorption when they are
in contact with osteoblasts and engage in bone resorp-
tive activity when they are not in contact with osteo-
blasts. These results suggest that osteoblasts control the
bone resorption activity of osteoclasts via direct contact.

Intravital imaging of ectopic bone formation
Intravital imaging of skeletal bone by multiphoton exci-
tation microscopy has revealed the in vivo dynamic mo-
tion of osteoclasts and osteoblasts, as well as their
interactions with each other (Fig. 1). This innovative
technique may also be applicable in the field of bone re-
generation. To optimize bone regeneration, the process
by which new bone is created, it is important to under-
stand the temporospatial appearance and motility of

Fig. 2 Representative intravital two-photon microscopy images of
ectopic bone formation area in Col2.3-ECFP mice (visualization of
blood vessels). Visualization of osteoblasts, newly formed bone
(collagen), and blood vessels after implantation of a collagen
sponge containing BMP-2 [15]. Cyan, osteoblasts expressing Col2.3-
ECFP; red, blood vessels stained with rhodamine; blue, collagen
fibers (second harmonic generation, SHG). Scale bar, 100 μm

Fig. 1 Intravital two-photon microscopy images of calvarial bone in Col2.3-ECFP/TRAP tdTomato mice. a Representative image of the bone cavity
at calvarial bone. Cyan, osteoblasts expressing Col2.3-ECFP; red, osteoclasts expressing TRAP tdTomato; blue, bone tissues (second harmonic
generation, SHG). Scale bar, 50 μm. b Magnified images of osteoblasts (region delineated by dotted lines in a) and osteoclasts (region outlined in
a) captured at an interval of 60 min. Although the osteoblasts underwent very few morphological changes, the osteoclasts underwent dramatical
changes in morphology. Scale bar, 10 μm
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osteoclasts and osteoblasts and the bone formation
process. Indeed, the investigations on BMSC-mediated
calvarial bone defect repair using multiphoton excita-
tion microscopy have been reported [19, 20]. In the
field of bone tissue engineering, bone morphogenetic
protein (BMP) plays a central role owing to its potent
bone induction ability [29]. However, the dose-
dependent inflammation-related side effects of BMP
prevent its widespread use [30, 31]. One possible rea-
son for the difficulty in optimizing BMP-induced
bone formation is the limited understanding of this
process in vivo. We successfully established a method
for intravital imaging of the BMP-2-Induced ectopic
bone formation process [15]. The temporospatial dy-
namic bone formation process, which is initiated by

angiogenesis, the recruitment of osteoblasts and oste-
oclasts, the formation of collagen fibers, and depos-
ition of bone minerals were visualized by intravital
imaging of Col2.3-ECFP mice and Col2.3-ECFP/TRAP
tdTomato mice (Figs. 2, 3, and 4). Additionally, we
detected spindle-shaped osteoblasts and unidirectional
collagen fibers, with the osteoblasts and collagen fi-
bers showing an orientational correlation in the early
stage of ectopic bone formation (Fig. 5).
Furthermore, it is known that intermittent administra-

tion of teriparatide accelerates osteogenic differentiation
of mesenchymal progenitor cells instead of adipogenic
differentiation [32], reactivates lining cells [33], and sup-
presses apoptosis in osteoblasts [34]; it also activates
bone remodeling, which results in the increased bone

Fig. 4 Representative intravital two-photon microscopy images of ectopic bone formation area in Col2.3-ECFP/TRAP tdTomato mice. Visualization
of osteoblasts, osteoclasts, and newly formed bone (collagen) after implantation of a collagen sponge containing BMP-2 [15]. Cyan, osteoblasts
expressing Col2.3-ECFP; red, osteoclasts expressing TRAP-tdTomato; blue, collagen fibers (second harmonic generation, SHG). Scale bar, 100 μm

Fig. 3 Representative intravital two-photon microscopy images of ectopic bone formation area in Col2.3-ECFP mice (visualization of calcium
deposition). Visualization of osteoblasts, newly formed bone (collagen), and calcium deposition stained with alizarin after implantation of a
collagen sponge containing BMP-2 [15]. Cyan, osteoblasts expressing Col2.3-ECFP; red, calcium deposition stained with alizarin; blue, collagen
fibers (second harmonic generation, SHG). Scale bar, 100 μm
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resorptive activity of osteoclasts. Moreover, in this study,
intermittent administration of teriparatide was shown to
increase BMP-induced bone volume with the increase in
the number of osteoblasts, and caused a decrease in the
dynamic morphological changes (activated resorptive ac-
tivity) in osteoclasts.
Intravital imaging can be used to visualize the

whole BMP-2-induced bone induction process, con-
tributing to the understanding of ectopic bone forma-
tion and providing a foundation for optimizing this
process.

Future perspective
Intravital imaging has the greatest advantage with re-
gard to spatiotemporal visualization of living tissues,
which cannot be achieved using other methods. How-
ever, current imaging techniques have several limita-
tions (Table 4). First, not all objects can be observed
in the visual fields of multiphoton microscopy. Be-
cause only fluorescent labeling and SHG allow us to
see the target cells or organs, we should not misun-
derstand the lack of a signal as showing an open
field. As diverse structures and cellular components
are probably present, observations need to be inter-
preted carefully. Second, the penetration depth in
two-photon microscopy is up to 800–1000 μm in soft
tissues and 200 μm in hard tissues (e.g., bone).
Therefore, there are only limited areas where this im-
aging can be applied. However, the recently developed
three-photon microscopy substantially improves the

penetration depth and is expected to overcome these
limitations with its resolution [35]. Moreover, because
of the wide scattering of light, it is difficult to
visualize inflamed tissues with effusion or tissues with
bleeding using multiphoton microscopy. To resolve
these problems, technical innovations in optical sys-
tems and fluorophore are expected in the future.

Conclusions
Intravital imaging has made it possible to visualize the
“real-time” dynamics of living cells and biological phe-
nomena caused by cell-to-cell interactions and interven-
tions in various organs. Application of this technique to
bone imaging in the past 10 years has provided insights
into bone-related processes. Rapid advances in the devel-
opment of optical instruments and functional chemical
fluorescent probes [9] will enable visualization of the dy-
namics and function in bone.
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