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Chapter 21
Application of Imaging Technology 
to Humans

Takahiro Matsui and Masaru Ishii

21.1  �Introduction

Through the history of clinical medicine, detailed observation of patient symptoms 
has been most important for both diagnosis and treatment, and several attempts to 
observe the human body more precisely have been conducted for a long time. Of the 
numerous brilliant inventions, histopathology established by Rudolf Ludwig Karl 
Virchow continues to occupy the central position of definite diagnosis. However, 
there still exist some problems with typical histopathological diagnostic procedures. 
First, histological analysis with biopsy procedure inevitably needs some tissue dam-
age. Second, it takes much time to make a diagnosis after biopsy because of the 
various steps necessary to make pathological specimens, such as fixation, dehydra-
tion, embedding, and staining. Therefore, it is desirable to develop a new histologi-
cal diagnostic system for use in real time, with a less invasive way. On the other 
hands, the development of imaging technology has greatly influenced life science 
research in recent years. Especially, intravital imaging technique has a strong impact 
because it enables to observe life phenomena visually while keeping animals alive. 
Multiphoton excitation microscopy (MPM) is one of the major tools used to observe 
deep regions of the living body using fluorescence and multiphoton absorption pro-
cess. In the field of life science research, MPM is now widely used for intravital 
imaging of deep tissues such as brain (Meyer-Luehmann et al. 2008) and bone mar-
row (Ishii et al. 2009). Now life science and clinical medicine are inseparably con-
nected, and the development of new imaging techniques such as MPM recalls the 
application to humans in the field of clinical medicine. Especially, malignant neo-
plasms are extremely important diseases that continue to be a major cause of death 
all over the world, and have a large number of patients. So detailed diagnosis of 
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cancer at the cellular level through the application of imaging technology is thought 
to be of great interest all over the world and have much potential demand. However, 
there are many obstacles before application of MPM to the clinic. One of the most 
serious hurdles is that it is difficult to label fluorescently cells in human body, 
because fluorescent dyes are often toxic. It is obviously impossible as well to per-
form genetic fluorescent labeling unlike laboratory animals such as mice. In recent 
years, several articles have been reported the methods of imaging living tissues that 
do not require any labeling. For example, Raman spectroscopy obtains images by 
detecting Raman scattered light generated when a sample is irradiated with laser 
light. Depending on the vibrational properties and component distribution such as 
proteins, lipids, DNA and so on, image contrast generates without any labeling 
(Freudiger et al. 2008). Photoacoustic microscopy is also known as an efficient tool 
for non-labeling imaging. It images tissue by photoacoustic effect, a phenomenon in 
which molecules absorbing light energy emit heat and acoustic waves are generated 
by volume expansion due to the heat (Yao et al. 2015). There are some reports indi-
cating the usefulness of imaging for human using these techniques described above 
(Ji et al. 2013; Hsu et al. 2016), and these facts recall the possible utility of non-
labeling MPM (NL-MPM) imaging for human. Moreover, fluorescent imaging 
including MPM is considered superior to these techniques in spatiotemporal resolu-
tion. Here, we introduce our attempt of colorectal carcinoma diagnosis by non-
labeling imaging for human colorectal tissues using MPM (Matsui et al. 2017).

21.2  �MPM Technique Enables to Visualize the Histological 
Features of Fresh, Unstained Human Colorectal 
Mucosa and Can Be Used for Histopathological 
Diagnoses

First, imaging analysis of fresh, unstained normal human colorectal mucosal tissues 
was performed with an MPM imaging system under 780 nm excitation. Without any 
labeling, it was possible to visualize the histological features of the colorectal tis-
sues in detail, such as ductal structures of epithelial cells and hematopoietic cells in 
the lamina propria (Fig. 21.1a). In the NL-MPM images, we were able to recognize 
three different components by the different color patterns: epithelial cells, hemato-
poietic cells, and basement membrane. Spectral analyses revealed that auto-
fluorescent substances and second harmonic generation (SHG), which is a nonlinear 
optical phenomenon, made color variation among those three components and made 
MPM images. The images of our NL-MPM imaging for fresh tissue and conven-
tional hematoxylin and eosin (HE) staining procedures for fixed sections were mor-
phologically very similar (Fig.  21.1b). Such similarity was also observed in 
NL-MPM imaging of colorectal carcinoma tissue, which showed irregular and 
atypical ductal structure and nuclear enlargement in epithelial cells like HE staining 
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images (Fig. 21.1c, d). These facts made us to think that it might be possible to 
perform histopathological diagnosis by NL-MPM imaging, instead of HE staining. 
In fact, it was possible for experienced pathologists to make correct diagnoses based 
only on the NL-MPM images in the blind manner. These facts indicated that 
NL-MPM images of fresh unstained colorectal tissues were as useful as conven-
tional HE staining of resected/fixed specimens for differential diagnosis of cancer-
ous versus non-cancerous regions.

Fig. 21.1  Non-labeling MPM imaging of human normal colorectal mucosa and colorectal carci-
noma. (a) MPM imaging of human normal colorectal mucosa. (b) HE staining of normal colorectal 
mucosa, using the same sample as in (a). (c) MPM images of colorectal cancer tissue. (d) 
HE-stained images of colorectal cancer tissue, using the same samples as in (c). Bar: 50 μm. 
(These figures were quoted from Matsui et al. 2017)
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21.3  �Classification by Numerical Parameters Enables 
to Distinguish NL-MPM Images to Normal 
and Cancerous Tissues Quantitatively

One of the most important advantages of fluorescent images is the ability to perform 
quantitative analyses. It is relatively easy to measure and analyze fluorescent signals 
compared to bright-field images of HE staining (Kikuta et al. 2013; Egawa et al. 
2013). This means that we are able to perform histopathological diagnosis immedi-
ately and quantitatively by using MPM images. In order to handle image data quan-
titatively, it is necessary to extract numerical parameters from the images. In this 
colorectal NL-MPM imaging, two independent numerical parameters were estab-
lished: nuclear diameters of epithelial cells and intensity of SHG signal from base-
ment membrane. Nuclear diameters in cancer tissues were statistically larger than 
those in non-cancerous tissues, while SHG signals from basement membrane were 
diminished in cancer region compared to normal mucosa. Using both NL-MPM 
imaging and spectral analysis, these features could easily be quantified and defined 
as index N (represent nuclear dimeters) and index S (represent the intensity of SHG 
signals), respectively. In examination with multiple samples, most of NL-MPM 
images of the non-cancerous areas showed low index N and high index S values. In 
contrast, most areas from cancer lesions showed high index N and low index S val-
ues. After threshold values are set from these results, the utility of these two indices 
as diagnostic tools for distinguishing normal and malignant lesions in colorectal 
mucosa was evaluated, which showed 96% sensitivity and 84% specificity, respec-
tively (Fig. 21.2). The kappa coefficient between the HE-based conventional diag-
nosis and the two indices described above was 0.82. From these results, it was 
shown that we could distinguish cancerous and non-cancerous tissues in fresh, 
human unstained colorectal mucosa quantitatively, using MPM images and the two 
indices.

21.4  �Conclusion

We have described the diagnostic approach of cancer tissue using NL-MPM imag-
ing as an example of imaging technology application to humans. Although we 
described the analysis of colon tissue, similar analysis is possible in other organs, 
depending on the distribution of auto-fluorescent substances as well as the degree of 
nonlinear optical phenomena (Ulrich et al. 2013; Miyamoto and Kudoh 2013). The 
usefulness of observing and diagnosing human tissues with imaging system lies in 
its rapidity and quantitativeness. Deep observation capability is also another useful 
advantage for MPM imaging, although the observation range is limited now (up to 
typical depth of 120 μm in colorectal mucosa). In life science research, imaging 
technologies have made it possible to perform quantitative assessment of life phe-
nomena in real time, and have contributed greatly to elucidation of life phenomena. 
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The usefulness of imaging procedures is also considered high in experiments target-
ing humans and clinical medicine. We hope that further development of imaging 
technology will introduce the breakthrough into clinical medicine as well and con-
tribute to the happiness of humans.

Fig. 21.2  Classification analysis of MPM images from normal and cancer tissues using the two 
indices N and S. Five areas (square ROI with a side length of 100 μm) were determined in advance 
in the x-y coordinate plane for the original image files, the two indices N and S were calculated 
with each ROI, and scatter plot was drawn. Final diagnoses of normal (black dot, n = 64) or cancer 
tissue (red triangle, n = 80) were made using HE-stained sections from the same specimens imaged 
by MPM. Areas that showed an index N ≤ 9.5 and index S > 3.1 (upper left area of the dashed line) 
were deemed normal in the classification analysis. Areas that contained no epithelial cell nuclei in 
the ROI (e.g., the pink ROI) were omitted from the analysis. Bar: 50 μm. (This figure was quoted 
from Matsui et al. 2017)
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