

| Title        | Identification of a novel arthritis-associated<br>osteoclast precursor macrophage regulated by<br>FoxM1 |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Author(s)    | Hasegawa, Tetsuo; Kikuta, Junichi; Sudo, Takao<br>et al.                                                |  |  |  |
| Citation     | Nature Immunology. 2019, 20(12), p. 1631–1643                                                           |  |  |  |
| Version Type | АМ                                                                                                      |  |  |  |
| URL          | https://hdl.handle.net/11094/93182                                                                      |  |  |  |
| rights       | © 2019, The Author(s), under exclusive licence<br>to Springer Nature America, Inc.                      |  |  |  |
| Note         |                                                                                                         |  |  |  |

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

## 1 Supplementary information



- 3 Supplementary Figure 1. Protocol for isolating pannus (hypertrophied
- 4 synovium) in arthritic mice

| 1  | a, Schematic diagram showing that hypertrophied synovium exists behind the            |
|----|---------------------------------------------------------------------------------------|
| 2  | patellar ligament and on the "bare area" of the femur, where bone is exposed to       |
| 3  | the synovium without a cartilage covering. Pa; patella, Fe; femur, Ti; tibia. The     |
| 4  | red lesion indicates the hypertrophied synovium on the bare area.                     |
| 5  | <b>b</b> , After removal of the biceps femoris muscle, the quadriceps femoris muscles |
| 6  | including the vastus intermedius muscle were pinched and lifted with tweezers.        |
| 7  | The quadriceps femoris muscles and patellar ligament, including the patella,          |
| 8  | were isolated from the knee joint under a stereoscopic microscope. The                |
| 9  | hypertrophied synovium is visible on bare areas of the femur (arrowheads) and         |
| 10 | isolated without damaging the bone.                                                   |
| 11 | c, Schematic diagram showing that hypertrophied synovium exists behind the            |
| 12 | Achilles tendon. Ti; Tibia, Ta; Talus, Cal; Calcaneus. The red lesion indicates the   |
| 13 | hypertrophied synovium.                                                               |
| 14 | d, After removal of the ankle joint tendons, including the Achilles tendon, the       |
| 15 | hypertrophied synovium can be detected around the talus (arrowheads) and              |
| 16 | isolated without damaging the bone.                                                   |



harmonic generation (SHG) and cell counting by Imaris software. Bar, 70 µm.

| 1  | <b>b</b> , Immunohistochemistry of CX <sub>3</sub> CR1-EGFP transgenic mice healthy knee joints |
|----|-------------------------------------------------------------------------------------------------|
| 2  | stained with Ab against CD11b (BV421). Bars, 70 μm.                                             |
| 3  | <b>c</b> , Schematic diagram showing the experimental design for production of bone             |
| 4  | marrow chimeric mice with wild-type hematopoietic cells.                                        |
| 5  | d, Representative confocal images of knee joints showing recipient-derived                      |
| 6  | EGFP $^+$ macrophages in the synovium (S) attached to the meniscus (M) with PI                  |
| 7  | and SHG at multiple time points post-transplantation. Bars, 70 $\mu m.$                         |
| 8  | e, Quantification of recipient-derived EGFP <sup>+</sup> cells in the synovium as               |
| 9  | percentages of total nucleated cells at the indicated time points following BM                  |
| 10 | transplantation. Symbols represent individual mice.                                             |
| 11 | f, Schematic diagram showing the experimental design for the production of                      |
| 12 | bone marrow chimeric mice with CX <sub>3</sub> CR1-EGFP transgenic hematopoietic cells.         |
| 13 | g, Representative confocal images of knee joints showing donor-derived EGFP <sup>+</sup>        |
| 14 | macrophages in the synovium (S) attached to the meniscus (M). Bars, 70 μm.                      |

h, Quantification of donor-derived EGFP<sup>+</sup> cells in the synovium as percentages 1 of total nucleated cells at the indicated time points following bone marrow 2 transplantation. 3 confocal of CX<sub>3</sub>CR1-EGFP<sup>+</sup> Representative images cells and 4 i, TRAP-tdTomato<sup>+</sup> osteoclasts in arthritic knee joints of double transgenic mice 5 6 (Control) and bone marrow chimeric mice (BMT). Bo: bone, L: patellar ligament. Arrowheads indicate bone erosion. Bars, 200 and 50 µm. 7 8 One-way ANOVA with Bonferroni's post hoc test (e, h). Mean ± S.E.M. for each 9 group. Symbols represent individual mice.



c, Histograms represent percentages of CX<sub>3</sub>CR1-EGFP and TRAP-tdTomato<sup>+</sup> 1 cells in the synovium, blood, and bone marrow of wild-type parabionts. 2 Quantification of CX<sub>3</sub>CR1-EGFP<sup>+</sup> cells in blood was conducted by FACS. Mean 3 ± S.E.M. for each group. Symbols represent individual mice. 4 d, Representative confocal images of CX<sub>3</sub>CR1-EGFP<sup>+</sup> cells 5 and 6 TRAP-tdTomato<sup>+</sup> osteoclasts in arthritic knee joints from indicated parabionts.

7  $\,$  Bars, 200 and 50  $\mu m.$ 



1

2 Supplementary Figure 4. Comparison of CD45<sup>+</sup>F4/80<sup>+</sup> cells in synovium

<sup>3</sup> and other organs.

| 1 | a, Phenotypic marker comparison of conventional OP-containing population in                                                                           |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | bone marrow (BM-OP; $CX_3CR1^{lo}Ly6C^{hi}$ cells) and R3 cells in the inflamed                                                                       |
| 3 | synovium.                                                                                                                                             |
| 4 | <b>b</b> , Representative plots of CD45 <sup>+</sup> F4/80 <sup>+</sup> cells from various of organs of                                               |
| 5 | CX <sub>3</sub> CR1-EGFP transgenic mice.                                                                                                             |
| 6 | <b>c</b> , Representative TRAP staining images of RANKL-induced osteoclastogenesis                                                                    |
| 7 | and May-Giemsa staining of CX <sub>3</sub> CR1 <sup>lo</sup> Ly6C <sup>hi</sup> cells and CX <sub>3</sub> CR1 <sup>hi</sup> Ly6C <sup>int</sup> cells |
| 8 | from BM in CIA and non-CIA mice. Bars, 200 and <mark>20 μm</mark> .                                                                                   |

**d**, Quantification of nuclei in multinucleated cells within the visual field in **c**.



#### Supplementary Figure 5. Definition of R2' and R3' fractions based on the 2 expression level of F4/80. 3 Both R2 and R3 fractions may contain transitional states. R2 (CX<sub>3</sub>CR1<sup>lo</sup>Ly6C<sup>hi</sup>) 4 and R3 (CX<sub>3</sub>CR1<sup>hi</sup>Ly6C<sup>int</sup>) cells in the inflamed synovium were further gated on 5 F4/80 to discriminate transitional status and define R2' 6 to (CX<sub>3</sub>CR1<sup>lo</sup>Ly6C<sup>hi</sup><u>F4/80<sup>int</sup></u>) and R3' (CX<sub>3</sub>CR1<sup>hi</sup>Ly6C<sup>int</sup><u>F4/80<sup>hi</sup></u>), respectively. R3' is 7

- 8 defined as "fully differentiated R3", and R2' is defined as "basal state R2".
- 9

1

10







| 1 | Supplementary Figure 7. Transcriptional profiling of R1, R2', and R3' cells                     |  |  |  |  |  |
|---|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2 | by RNA-Seq (related to Fig. 4).                                                                 |  |  |  |  |  |
| 3 | <b>a</b> , Downstream effects analysis of R2'/R1 cells and <b>b</b> , R3'/R2' cells by RNA-Seq. |  |  |  |  |  |
| 4 | c, Enrichment analysis of mitochondrial translation and oxidative                               |  |  |  |  |  |
| 5 | phosphorylation in R3' cells compared with R2' cells.                                           |  |  |  |  |  |
| 6 | <b>d</b> , Upstream analysis of FoxM1 in R3'/R2' cells by RNA-Seq.                              |  |  |  |  |  |



2 Supplementary Figure 8. Effects of thiostrepton *in vitro* and *in vivo* (related

1 to Fig. 4).

| 2  | <b>a</b> , Histogram plots of annexin-V positive bone marrow macrophages treated with                                                                     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | 10 ng/ml M-CSF and DMSO or thiostrepton for 48 hours.                                                                                                     |
| 4  | <b>b</b> , Histogram plots displaying proliferation of bone marrow macrophages treated                                                                    |
| 5  | with 10 ng/ml M-CSF and DMSO or thiostrepton for 48 hours, determined by                                                                                  |
| 6  | CellTrace Violet signal.                                                                                                                                  |
| 7  | c, RT-PCR analysis of IL-1, IL-6, RANKL, and TNF expression in synovial                                                                                   |
| 8  | tissues from CIA mice treated with vehicle or 50 mg/kg thiostrepton. Vehicle or                                                                           |
| 9  | thiostrepton were injected intraperitoneally every other day for 2 weeks before                                                                           |
| 10 | sacrifice.                                                                                                                                                |
| 11 | d, Representative TRAP staining images of RANKL-induced osteoclastogenesis                                                                                |
| 12 | of synovial CX <sub>3</sub> CR1 <sup>hi</sup> Ly6C <sup>int</sup> cells (R3 cells) and CX <sub>3</sub> CR1 <sup>lo</sup> Ly6C <sup>hi</sup> cells from BM |
| 13 | (BM-OP) treated with thiostrepton.                                                                                                                        |
| 14 | e, Quantification of nuclei in multinucleated cells within the visual field depicted                                                                      |
| 15 | in <b>d</b> . Bars, 200 μm.                                                                                                                               |
| 16 | <b>f</b> , Body weight of WT mice treated with vehicle or 50 mg/kg thiostrepton from 5                                                                    |

| 1 | weeks to 10 weeks of age. Vehicle or thiostrepton were injected intraperitoneally |
|---|-----------------------------------------------------------------------------------|
| 2 | twice a week for 5 weeks.                                                         |
| 3 | g, Axial view of femur metaphyseal region in 10-week-old mice treated with        |
| 4 | vehicle or thiostrepton as described in <b>f</b> . Bar, 1 mm.                     |
| 5 | h, Quantification results of micro CT analysis; bone volume/total volume (BV/TV), |
| 6 | cortical bone mineral density, trabecular bone mineral density, trabecular        |
| 7 | number (Tb.N), trabecular thickness (Tb.Th), and trabecular space (Tb.Sp) were    |
| 8 | measured.                                                                         |





#### <sup>3</sup> erosion on micro-CT (related to Figs. 4, 7).

a, 3D reconstructions of hind paws were scored at six anatomical sites: talus,
navicular bone, medial cuneiform bone, and the bases of the first, second, and
third metatarsals.
b, Erosions were scored on a scale of 0–3 (0 = normal, 1 = pitting, 2 =
full-thickness holes in small–medium areas, 3 = full-thickness holes in medium–

9 large areas) with a maximum score of 18.

- **c-d**, Intra-observer and inter-observer reproducibility were r = 0.9831 and
- 2 0.9883, respectively. Scatter dots represent individual mice.



- 1 d. Representative TRAP staining images of bone marrow macrophages
- 2 electroporated with CMV-T7-FoxM1 plasmid or mock plasmid. Cells were cultured
- <sup>3</sup> with 100 ng/ml RANKL and M-CSF at the indicated concentrations. Bars, 200 μm.
- 4 **e**, Quantification of nuclei within multinucleated cells within the visual field in **d**.
- 5 Unpaired two-tailed t test (a, e). Mean ± S.E.M. for each group. Symbols
- 6 represent individual mice.



#### 2 Supplementary Figure 11. Isolation of mature osteoclasts differentiated

3 from R3 cells.

1

a, Representative TRAP staining images of RANKL-induced osteoclastogenesis
 of synovial CX<sub>3</sub>CR1<sup>hi</sup>Ly6C<sup>int</sup> cells (R3 cells) and nuclei quantification of
 mononuclear cells and multinucleated mature osteoclasts using Imaris software.
 Bars, 200 μm.

b, Schematic diagram depicting the procedure for isolation of mononuclear cells 1 and multinucleated mature osteoclasts using temperature-responsive cell 2 cultureware, RepCell. 3 c, Representative plots of isolated cells from RepCell. FSC<sup>10</sup>SSC<sup>10</sup> population 4 (P1) and FSC<sup>hi</sup>SSC<sup>hi</sup> population (P2) were analyzed for TRAP-tdTomato and 5 Hoechst 33342. FSChiSSChitdTomato+ population with multiple nuclei were 6 gated as mature osteoclasts. Shaded region indicates control values from 7 8 wild-type mice. d, RT-PCR analysis of FoxM1 expression in R3 cells and resultant osteoclasts. 9 Unpaired two-tailed *t* test (d). Mean ± S.E.M. for each group. Symbols represent 10 individual mice in **a** and a single experiment in **d**. 11







#### 2 Supplementary Figure 13. Histological examination of inflamed knee joints

<sup>3</sup> in FoxM1<sup>fl/fl</sup> Rosa26<sup>CreERT2</sup> mice (related to Fig. 7).

- a, Histological examination of knee joints from CAIA mice treated with oil control,
- 5 tamoxifen, tamoxifen plus adoptive transfer of FoxM1<sup>+/+</sup>CX<sub>3</sub>CR1<sup>+</sup> monocytes or
- 6 FoxM1<sup>-/-</sup>CX<sub>3</sub>CR1<sup>+</sup>monocytes. BM: bone marrow; S: synovium. Bars, 300 and
- 7 **100 µm**.
- 8 **b**, Number of osteoclasts (N. Oc) per visual field at the sites of bone erosions.
- 9 Symbols represent individual mice and values represent the average count of
- 10 three different sections.
- 11 One-way ANOVA with Bonferroni's post hoc test. Mean ± S.E.M. for each group.
- 12



2 Supplementary Figure 14. Physiological bone remodelling was not

- 3 affected by global FoxM1 deletion.
- 4 a, Body weight of FoxM1<sup>fl/fl</sup>Rosa26<sup>CreERT2</sup> mice treated with oil control or

5 tamoxifen from 6 weeks of age; 2 mg tamoxifen was injected intraperitoneally 3

<sup>6</sup> days in a row from 6 weeks of age, and was repeated from 10 weeks of age.

7 b, Axial view of the femur metaphyseal region of 14-week-old

8 FoxM1<sup>fl/fl</sup>Rosa26<sup>CreERT2</sup> mice treated with oil control or tamoxifen. Bar, 1 mm.

9 **c,** Quantification of the micro CT analysis: bone volume/total volume (BV/TV),

10 cortical bone mineral density, trabecular bone mineral density, trabecular

number (Tb.N), trabecular thickness (Tb.Th), and trabecular space (Tb.Sp) were

- 1 measured in the femur metaphyseal region of 14-week-old
- 2 FoxM1<sup>fl/fl</sup>Rosa26<sup>CreERT2</sup> mice treated with oil control or tamoxifen.
- 3





**a**, RT-PCR analysis of FoxM1 expression in CX<sub>3</sub>CR1<sup>+</sup>Ly6C<sup>hi</sup> bone marrow cells

5 (BM-OP) from FoxM1<sup>fl/fl</sup> and LysM-Cre;FoxM1<sup>fl/fl</sup> mice.

6 **b**, Body weight of FoxM1<sup>fl/fl</sup> and LysM-Cre:FoxM1<sup>fl/fl</sup> mice.

7 c, Axial view of the femur metaphyseal region of 8-week-old FoxM1<sup>fl/fl</sup> and



9 **d**, Quantification results of micro CT analysis; bone volume/total volume (BV/TV),

- 10 cortical bone mineral density, trabecular bone mineral density, trabecular
- number (Tb.N), trabecular thickness (Tb.Th), and trabecular space (Tb.Sp) were

1 measured in the femur metaphyseal region of 8-week-old FoxM1<sup>fl/fl</sup> and

2 LysM-Cre:FoxM1<sup>fl/fl</sup> mice.

3



Supplementary Figure 16. FoxM1 is dispensable for R2 to R3 cell
 differentiation.

a, Schematic diagram showing that synovial R2 cells from CAIA mice treated

<sup>5</sup> with corn oil or tamoxifen were sorted into Nunclon Sphere plates and incubated

```
6 for 48 hours with 10 ng/ml M-CSF.
```

7 b, Flow cytometry plots of R2 cells incubated with 10 ng/ml M-CSF and

8 percentage of resultant CX<sub>3</sub>CR1<sup>hi</sup>Ly6C<sup>int</sup> cells (R3).

9 Unpaired two-tailed *t* test (b). Mean ± S.E.M. for each group. Symbols represent

10 individual mice.



Supplementary Figure 17. Schematic diagram of the differentiation
 trajectory of inflammatory OPs in arthritis.

4 CX<sub>3</sub>CR1<sup>lo</sup>Ly6C<sup>hi</sup> cells in the blood (R1) trans-migrate into the synovium as 5 CX<sub>3</sub>CR1<sup>lo</sup>Ly6C<sup>hi</sup>F4/80<sup>int</sup> cells (R2'), which express chemokines (*Ccl2, Ccl3, Ccl4,* 6 *Cxcl1, Cxcl2*), inflammatory cytokines (*Tnf, Il-1, Il-6*), and *Vegfa*. A high level of 7 M-CSF in the inflamed synovium up-regulates FoxM1 in the R2' subset and 8 induces differentiation into R3' cells (AtoMs), the osteoclast precursors (OPs) in 9 arthritis. R3' cells differentiate into osteoclasts upon RANKL-stimulation in 10 pannus to cause bone erosions.



- 2 Supplementary Figure 18. Gel source data



# 1 Supplementary Figure 19. Gating strategy for different tissues.

| 2 | Viable cells were enriched by scatter plots and doublet cells were excluded            |
|---|----------------------------------------------------------------------------------------|
| 3 | based on FSC-H/FSC-W. After gating on CD45 <sup>+</sup> cells, R2 and R3 cells in the  |
| 4 | CIA synovium were defined according to CX <sub>3</sub> CR1 and Ly6C. These populations |
| 5 | were further gated by F4/80 to sort R2' and R3' cells.                                 |
|   |                                                                                        |

| Gene set         |              |           |  |  |
|------------------|--------------|-----------|--|--|
| ACP5             | FOS          | PDGFB     |  |  |
| ATP6V0D2 GLO1    |              | PPARG     |  |  |
| CALCR            | GPC3         | PPARGC1B  |  |  |
| CA2              | ITGB3 SEMA4D |           |  |  |
| CD109            | JUN          | SH3PXD2A  |  |  |
| CKB              | JUNB         | SPHK1     |  |  |
| CSF1             | MAPK1        | SPNS2     |  |  |
| CSF1R            | MAPK11       | SRC       |  |  |
| CTHRC1           | MAPK12       | TFRC      |  |  |
| CTNNB1 MAPK14    |              | TM7SF4    |  |  |
| CTSK MITF        |              | TNFRSF11A |  |  |
| C200RF123        | MMP9         | TNFRSF11B |  |  |
| EFNA2 NFATC1     |              | TRAF2     |  |  |
| EFNB2 NFKB1 TRAF |              | TRAF6     |  |  |
| E2F1             | NFKB2 TREM2  |           |  |  |
| FAM20C           | OSCAR        |           |  |  |
| FARP2            | OSTM1        |           |  |  |

## 2 Supplementary Table 1. Gene set related to osteoclast differentiation

# 3 modified from the Broad Institute Molecular Signatures Database

| Case | Diagnosis | Sex | Age | Onset of disease | Treatment           | Seropositivity |
|------|-----------|-----|-----|------------------|---------------------|----------------|
| 1    | RA        | F   | 65  | 1987             | MTX                 | RF             |
| 2    | RA        | F   | 56  | 2012             | MTX                 | ACPA           |
| 3    | RA        | F   | 76  | 1994             | MTX                 | RF, ACPA       |
| 4    | RA        | F   | 86  | 2003             | PSL, Tac            | RF, ACPA       |
| 5    | RA        | F   | 69  | 2010             | MTX                 | RF             |
| 6    | RA        | F   | 77  | 2001             | PSL, Tac, ADA       | -              |
| 7    | RA        | F   | 89  | 2003             | PSL, SASP, BUC, GOL | RF, ACPA       |
| 8    | RA        | F   | 67  | 2010             | SASP                | RF, ACPA       |
| 9    | RA        | F   | 76  | 1994             | MTX, Tac            | RF, ACPA       |
| 10   | RA        | M   | 87  | 2014             | PSL, MTX, Tac       | RF, ACPA       |
| 11   | RA        | F   | 58  | 2010             | MTX                 | -              |
| 12   | RA        | F   | 42  | 2013             | ADA                 | RF, ACPA       |
| 13   | RA        | F   | 69  | 1993             | PSL, MTX, BOL       | RF, ACPA       |
| 14   | RA        | F   | 69  | 2007             | none                | -              |
| 15   | RA        | M   | 67  | 1989             | ETN                 | RF, ACPA       |
| 16   | RA        | F   | 71  | 1998             | MTX, PSL, IGU       | RF             |
| 17   | RA        | M   | 69  | 2003             | MTX, ABT            | RF, ACPA       |
| 18   | RA        | F   | 55  | 2018             | MTX                 | RF, ACPA       |
| 19   | RA        | F   | 66  | 1992             | SASP, PSL           | RF, ACPA       |
| 20   | RA        | F   | 74  | 2018             | SASP                | -              |
| 21   | RA        | F   | 79  | 1994             | Tac, TCZ            | -              |
| 22   | RA        | F   | 74  | 2002             | Tac, BUC            | -              |
| 23   | RA        | M   | 54  | 2017             | MTX, PSL            | RF             |

### **Supplementary Table 2. RA patient clinical information.**

MTX: methotrexate; PSL: prednisolone; Tac: tacrolimus; SASP:
salazosulfapyridine; BUC: bucillamine; IGU: iguratimod; ETN: etanercept; ABT:
abatacept; ADA: adalimumab; GOL: golimumab; TCZ: tocilizumab; RF:
rheumatoid factor; ACPA: anti-citrullinated protein antibody.

Supplementary Video 1. Ex vivo incubation of inflamed synovium from 1 double transgenic mice (CX<sub>3</sub>CR1-EGFP/TRAP-tdTomato) (related to Fig. 1). 2 3 Harvested inflamed synovium from double transgenic mice (CX<sub>3</sub>CR1-EGFP/TRAP-tdTomato) was incubated with 100 ng/ml RANKL and 10 4 ng/ml M-CSF stimulation. Sequential images of the same visual field were 5 acquired by BioStation IM-Q (Nikon). CX<sub>3</sub>CR1-EGFP and TRAP-tdTomato are 6 shown as green and red, respectively, on transmission images. Playback speed is 7 8 6000X.