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1. Introduction

We consider a bounded region M in R" (n=2 or 3) whose boundary is
smooth. Let w be a fixed point in M. By B(e;w) we denote a ball of radius ¢
with the center w. We put M,=M\B(e;w).

Let U(x,p,t) (U®(x,y,f); respectively) be the heat kernel in M (M, ; respectively)
with the Dirichlet condition on its boundary dM (0M,; respectively). That is, it
satisfies

4( 0,—A)U(x,y,)=0 x,yeM, t>0

(1.1) Ux,y,)=0 xedM, yeM, t>0
lirrg Uxy,0)=d(x—y) xyeM
t—
f 0,—A)Uxy,)=0  xyeM, (>0
1.1 J U9xp,)=0 xedM, yeM, >0
[ hng U(S)(xayat)=5(x_y) xayeMe
t—
We put
(1.2) (USNx)= f Uxy)f)dy,  feLP(M)
M
and
(1.3) (UPHx)=| U®xcy)f)dy,  feLA(M).
M.

Then, U,f and UPf satisfy the following.

[ 6,—AXUSNN=0 xeM, 1>0
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) (U9)=0  xedM, t>0
VU~ Noary = 0 as t—0
g @—AJUPNX)=0  xeM, t>0
(U®f)(x)=0 xedM, >0
( OO f~fllopey =0  as t—0

We want to construct an approximate kernel of U®(x,y,?) by using U(x,y,t). We
put

(14) ,V“)(x,y,t) = U(x’y’t) - Ln(s)J‘ U(xswat) U(W,y,f - T)d‘C,
0
where
L= { —2n(loge)™'  (ifn=2)
| 4me (ifn=23).

and we put
(VP N)x)= J VOxy,0)fp)dy,  feLAM).
M

Let T and T, be operators on M and M,, respectively. Then, |T|,, T,
denotes the operator norm on LP(M), L?(M ), respectively. Let fand f, be functions
on M and M,, respectively. Then, |fll,, fl,. denotes the norm on LP(M),
LP(M,), respectively.

Let x, denote the characteristic function of M,. Then, we have the following
Theorems 1 and 2.

Theorem 1. Assume that n=2. Then, there exists a constant C, which
may depend on t but which is independent of ¢ such that

NUE = %V kel e
j CellPlloge| ™! if pe(2,00)
< < Cgl92logel ! if p=2
Cel~MPlloge|~! if pe(1,2)

hold. Here s€(0,1) is an arbitrary fixed constant.

Theorem 2. Assume that n=3. Then, there exists a constant C, independent
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of ¢ such that

" Ut(g) —Xe V;E)Xe”p,e

Celt@n if pe(3,00)
< {CgsmIn if pe[3/2, 3]
C g3 @ if pe(1, 3/2)

hold. Here se€(0,1) is an arbitrary fixed constant.

RemMARK. Thus, by Theorems 1 and 2, we know that
- Ln(ﬁ)Xs(x)Xs(V)f U(X,W,T) U(w,y o[ — T)dt
V]

gives a main asymptotic term of the difference between U9(x,y,f) and U(x,y,?).

The Hadamard variation of the heat kernel was discussed in [2]. And we
have various papers on singular variation of domain. See, for example,
(31, [4], [5], [6].

We give the proof of Theorems 1 and 2 in section 2 and section 3,
respectively. In Appendix we give some properties of Ulx,y,f) and U®(x,p,f).
Following an usual custom, we use the same letter C in inegualities which are
independent of e.

2. Proof of Theorem 1

Throughout this section we assume that n=2. We put

2.1) Ux,p,0) = W(x,p,t) + S(x,,1),
where
(2.2) W(x,p,t) = (4nt) " ?exp(—|x —y|* / 41).

We write B(g;w)=B,. Without loss of generality we may assume that w=0.
We take arbitrary fe L?(M,). Let f be an extension of f to M which is 0 on
B, At first we want to estimate [(V?/)(X)|ses5. By (2.2), we have

2.3) J‘ W(x,w,1)dt| xedB,
0
= f(4m)' lexp(—e?/4t)de
(1]

=(4n)“f s~ e~ %ds

£2/4t
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=(4m)~ e *logs)

s =00 ©
S=82/4t+j e *(log s)ds

£2/4t
=(4n)~ }(—2log e+ R(e,1)),
where

R(e,f)=2(1 —exp(—&? / 41))log e+ (exp(— &2 / 41)log(4f)

+ f e *(log s)ds.

£2/4t
Let y be the Euler constant. Then,

y=— J e *(log s)ds.

Thus, we have
2.4) R(e,f)=2(1 —exp(—e? / 4f))loge
+(exp(—&? / 4t))log(41)

2 /4t
-y —J e (log s)ds

0
c2/4t

= —y+log(4r)+ J e “log(e? / (41s))ds.
0
Since 0<log(e? /(41s)) <2(¢*/ (4ts))"/*> =¢(ts)~ /? hold for any se(0, ¢2/4t), we have
2 /4t
(2.5) IJ. e *log(e? / (4ts))ds|

0

24t
<gt™ 1?2 s~ 12e™5ds
0

oo}
sgt“/zf s 12 sds =q12g¢= 112,
0

It is easy to see that |log#|<2(t+¢~'/?) holds for any t€(0,00). Thus, by (2.3),
(2.4) and (2.5), we get

(2.6) f W, w, 1)t seop, = —(270)~ log e+ R(g,1),
o

where
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|R(e,t) < C(llog t| + ¢t~ 12 4 1)
<C+t71241)

hold for any sufficiently small ¢>0.
On the other hand, since

0
U(W,y,l - t) - U(W’y,t) = fé‘; U(W,y,t —S)dS
(1]

* 9
= —J —U(w,p,t—s)ds
Jt

0
hold for t€(0,f) and ye M,, we see that
f W(x,w,r)Uw,y,t — t)dx
(4]

=( f W(x,w,7)dt)Uw,p,t)
0

—f W(x,w,t)(j iU(w,y,t—s)ds)dr.
Thus, we have

f ( W(X,W,’C) U(w,y E— ‘C)d‘C)f (y)dy
M

e O
=(f W(X,W,‘C)d‘l?)f U(Way ’t)f (y)dy
0 &
—f Woew.) f (| Tutna—9 1 0¥
0 0 J MmOl
=(J\ W(x,w,t)dr)\ U, f)(w)—J‘ W(x,w,t f %( U,_ . f)w)ds)dt
0 0 0

for xe M. Combining this equality with (1.2), (1.4) and (2.1), we can easily see
X)) (VO f)x)
=J Ux.y:t) f )y
M,

_L"(E)j (| Wxw,))Uw,y,t—1)dv) f (y)dy
M

evO0



946 S. OzawaA AND S. ROPPONGI

—L, ()| (]| SCe,w,t)Uw,py,t—1)dr)f(y)dy
M. Jo
=(U/¥x)— L,.(a)(f Wixw,t)de\ U, f)w)
0
+ L..(E)f W(x,w,r)(fi( U, f)w)ds)d
o o0t

- Ln(s)f S(X,W,T)( Ut - z.i)(w)dt
(]

for xe M.
We recall that L,(¢) = —2n(loge) " ! forn=2. Thus, by (2.6) and (2.7), we have
3
(2.8) (Vz(e)f)(x)peaac =) If&t),
i=1
where

Il (8,[) = ( Utf)(x)]xech - (Utf)(w)
L(e,)= —2n(loge) ! J‘ W(x,w,t)(f% U,_ . f)w)ds)dz
(1] 1]

I3(e,f)=2n(log &)~ “(R(e, (U, f)w) + fS(x,w,tXU,_, FYw)dr)

0

for x€0B,.

Notice that S(x,w,7) is uniformly bounded for xe M and 7e[0,].

(2.6) and Lemma A.3 in Appendix,

29 |R(e,X U, f)w)|
<Rt P fll, < Ct Yt + =2 D)) £ e

and
(2.10) |Jt See,w, NU, - S w)dr|
(V]

<C| (U, S)w)ldz
0

< Cllfll,,J‘(t—f)" rdr<Ce' =P\ ],
0

Thus, by
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hold for p>1 and xe M. Therefore, by (2.8), (2.9) and (2.10), we have
211) IT3(e0| < Cllogel ™'t~ VPt 4+t 2+ D) f 1l ,e

for p>1. The same calculation as above yields
*0

212 Ij (U, S w)ds|
o0t

SCIIfII,,J (t—s)~1~WPds
0

<ClIf . t—7)~ P27 1P)

SClfllpet~ Pt Pt =)= 1P
for p>1, 1€(0,f) and

(2.13) (&) =l V(U)W + 0(x — )| jxesm,
< Cgt—(llp)—(lﬂ)"f"p .

for p>1, where 6€(0,1) denotes some constant. Furhermore, by (2.2), (2.8)
and (2.12),

(2.14) [15(e,0)|
M
<Qloge| 't~ fll,.| t*P~1(t—1)" Pexp(—&* / 41)dr

t
<CQlloge| 't~ P fll,.| P t—1)" VPde
Jo

1
= Cllogel ™"t~ | £1,..| s1/P~1(1—s)~eds
JO

< C|log8|— lt— Up“f"p,e

hold for p>1.
Summing up (2.8), (2.11), (2.13) and (2.14), we get the following.

Proposition2.1. Fixp>1andt>0. Then, there exists a constant C independent
of & t such that

IV XX) e, < Ct~ Pt +17 12+ Dllogel M| 11l

holds for any fe L*(M,).
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Now we are in a position to prove Theorem 1. We put u(x,t)=(U®f)(x)
—(V@f)x). Then u(x,) satisfies the following.

0,— A)o(x,0)=0 xeM, t>0
v(x,0)=0 xedM, >0

2.15) o(x,0)=— (VO F)x) xedB, t>0

lirrow(x,t)=0 aa. xeM,.
t—
By the maximum principle we have

suplofx,)| < sup [o(x,0)| < sup|( Vo).

xeMe
Thus, by Proposition 2.1,

(2.16) (ST AL
=00, )l .. < Ct VPt + 1~ 2+ D)jlogel L £,

hold for p>1.
On the other hand, by (1.1), and (2.15), v(x,?) is explicitly represented as follows.

(2.17) ox,f)= (j (ve f)(z)‘-ag—m(x,z,t—t)daz)dr
0 JoB. V.

Here 0/0v, denotes the derivative along the exterior normal direction with respect
to M,. Thus, by (2.17), Proposition 2.1 and Lemma A.5 in Appendix, we have
(2.18) 1UL =1V F 1.0

=llo(-, )l

oU®
<| (sup|(V2NEI| ( Iﬁx,z,t—r)ldx)daz)df

0 xedBe #B, . .

< Celloge| ™! IIfIIP,Efr" Up(r 41712 4 1)t — 1)~ V2de

0

< Celloge| ™| £t~ WPt 41712 4 1)

for p>2.
We fix p>2 and t>0. Then, by (2.16), (2.18) and the interpolation
inequality, we see

(2.19) WU =1V e
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<N UOf—x VOFIPNIUS f~ g VOFI L 0P
<Cge'?llogel ™ [ fl,..-

Therefore we get the following.

Proposition 2.2. Fix p>2 and t>0. Then, there exists a constant C,
independent of ¢ such that

" U:S) —Xe I/t(E)Xa”p,s < Ctsllpuog 8' -1

holds.

From (1.4) and Lemma A.2 in Appendix, we can see that (V?)*=V® and
(U¥)*=U®. Thus, by the duality argument,

(2.20) 1T = 2V %xell pr e = N UE = 4V Xell e

holds for any pe(2,00), where p'=(1—1/p)~!. Furthermore, by Proposition 2.2,
(2.20) and the Riesz-Thorin interpolation theorem,

(2'2 1) “ Ut(e) — Xe V:“)Xs" 2,6 < " Ut(s) —Xe th(E)Xs " X3

holds for any pe(2,00).
From Proposition 2.2, (2.20) and (2.21), we can easily get Theorem 1.

3. Proof of Theorem 2

Throughout this section we assume that n=3. We recall (2.2). Then
t
J W(x>w,r)dr|x6685
0
= f(4m)' 32exp(—¢? | 41)dr
0
=4"17t‘3/2.e’1ro s~ 12¢7sds,

£2/4t

Since
o0
s— 1/Ze—sds=n1/2

and
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2 /4t e2/4t
|f s™12e73ds| < sT12ds =gt~ 112

0 0o

hold, we have

(31) f u/(x’war)dtlxeaB; = (47t8) ! + Rl(t:’t)’
0

where

IR (e,)| <4~ tn~32¢~ 112,

We fix an arbitrary fe L?(M,). We recall (2.7) and L,(e)=4ne for n=3. Thus,
by (2.7) and (3.1), we have

6
(3.2) (v c)f’\)(x)pcewE = _241 (&),

where
Ly(e,0)=( sz)(x)|xeaa,; —(U.f)w)
I(et)= 4nsf W(x,w,r)(f ~a-( U,_ . f)w)ds)dz
-Jo 00t

I(e,f) = —dme(Ry (e, 1) U,ﬁ(w)+J’S(x,w,r)( U, f)w)dr)
V]
for xedB,. By (3.1) and Lemma A.3 in Appendix,
(3.3) He(e,0)]

< Ce(t™ (U)Wl + f (Ur-fYw)ld1)

<Cg-a-ern|f o+ f ||,f(t—r)‘3’2”dr)
0
<Cet™¥P(t+1='?)\fll,. (@>3/2),

(3.4) [ae0) =elV LU )W+ 00x — W)l seos,
<Cet~CRP=UD|fY, . (p>1)

and

(3.5) |fb‘%w,_sf)(w)ds| <CIfl,. f (=)0 (> 1)
0 0
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hold for t€(0,f), where 6€(0,1) denotes some constant.
Next we want to estimate Is(g,f). By (2.2), (3.2) and (3.5), we see

(3.6) s(e) < Cell f 1| 5.l (e0),

where

I(ef)= J‘ 173 2exp(—¢? /41:)(J (t—s)~1~0B2Pdg)qdr,
0 0

Since
I7(£’t)=f‘[ot—3/2 exp(—e? /4t)(t—s) 1 ~C2Pdsdr
<s<tst
= J‘(t —s5)~! "‘””’(fr' 32exp(—&? / 4v)dr)ds
0 s
and

ft ~32exp(—&? [ 4r)de

s

c2/4s
=28-1J‘ r-2%e""dr

£2/4t
c2/4s

<2e7! r=12dr
£2/4t

= 2st) (12 —512) < 2st) (1 —5)' 2

hold for se(0,f), we have

Len<2t I/Zfs- 112(¢ — 5)~ (112~ 312D g
0

1
=2,-u/2)—(3/2p>J T V(] —g)~WD=G2)gy
0

< Ct~W»-06/2p
for p>3. Combining this inequality with (3.6), we get
(3.7) s(e0) < Cet~D=CEP| £,

for p>3.
Summing up (3.2), (3.3), (3.4) and (3.7), we can get the following.
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Proposition 3.1. Fixp>3andt>0. Then there exists a constant C independent
of &, t such that

(V1Yo xeom, < Cet 322t + 1~ 12)| 1],

holds for any fe L*(M,).

By Proposition 3.1, Lemma A.5 in Appendix and the same argument as in
section 2, we have

(3.8) NULf= 1 VOl e < sup (V@ )l

<Cet™ 3/2p(l 4+t 1/2)"f"p,z:

and
(3.9 1UE =2V e
ou®
< | sup|(V )X (J. [——(x,z,t —1)ldx)do,)dt
o*<0Be B, JM, OV;
<CEIf e f R e (WL
(4]
1
=C¢3 ||fl|p,£t‘”2"‘3/2”"[ 5T32P(ts 4 (ts) " V21 —5) " V2ds
0
S CeUR=I( 7 12)| £,
for p>3.

From (3.8), (3.9) and the interpolation inequality (see (2.19)), we get
the following.

Proposition3.2. Fixp>3andt>0. Then there exists a constant C, independent
of ¢ such that

NU® =1 VXl p o< Ce' 2P

holds.

Furthermore, by the duality argument and the Riesz-Thorin interpolation
theorem, we have (2.20) for any pe(3,00) and

(3.10) 1T =4 V%M e < NUE = 1 VEO2M e

for any pe(3,00) and re[3\2, 3].
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From Proposition 3.2, (2.20) and (3.10), we can easily get Theorem 2.

4. Appendix

Let M, M,, U(x,y,t), U®(x,p,7) be as in Introduction. See Friendman [1] for
the fundamental properties of the heat kernel. We have the following.

Lemma 1.1. There exists a constant C independent of x,y,t such that

(A.1) 0< Ulx,y,f) < Ct"?exp(—|x—y|* | Ct)
(A2) IZ—U(x,y,,t)I <CIme Dzexp(—x—p2/Cl)  (1<i<n)
Xi
ou —(n+2)2 2
(A3) IE(x,yJ)l < Ctm O exp(—|x —y|* / C1)

hold for x, ye M, t>0.

Lemma A.2. We have
Ulx,y,t) = U@y,x,t) x, yeM, t>0
and

U9xp,)=UNyx,t) x, yeM,, t>0.
Let U, be as in (1.2). Then we have the following.

Lemma A.3. Fix pe(l,00). Then there exists a constant C independent of t
such that

(A4 supl(U /)l < Cr 1,
xeM
(A5) supl (Ul G0 =0 £, (1)
xeM 0X;
0 - _
(A6) supl (U, Nl < CE~ 1 11,

hold for fe L*(M) and t>0.

Proof. We take an arabitrary xe M. Then, by (1.2), (A.1) and using the
transformation of co-ordinates : y=x+(Ct)'/?z, we have
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UNE<Ce™? f exp(—[x—yI*/ Co)lf ()dy

M

< Ct""zllfli,,(f exp(—|x—y|*/ Ct)dy)'"”

M

< Ct—(n/2)+(n/2p’)”f"p(J‘

R

exp(—|2|*)dz)' "

<Ct™"??||f}|,,

where (1/p)+(1/p)=1.
Therefore we get (A.4). By the same argument as above, we get (A.5) and
(A.6) from (A.2) and (A.3), respectively.

q.ed

By B(r;w) we denote a ball of radius »>0 with the center w. And we
write B,=B(r;w) as before.
Lemma A.4. There exists a constant C independent of ¢, x, t such that

(¢)
(A7) 0< —aaLv(x,z,t) < Ct~®+ Di2exp(—|x—z|? / Ct)

hold for zedB,, xe M, and t>0.
Here 0/0v, denotes the derivative along the exterior normal direction with respect
to M,.

Proof. Let F™(x,y,H) be the fundamental solution of the heat equation in
R™ B, under the Dirichlet condition on dB,. Then we have the following identity.

FOx,y,0)=FMe x,e " y,e”2f)e " X, yER\B,, t>0

Thus,

1)
)e Ixe"lye e "t (1<i<n)

OF® OF!
——(xp.0)=(
0y; oy

holds for x, ye R"\B,, t>0.
It is well known that there exists a constant C such that

[FO(xp,0l < Ct™"exp(—x—y|* / Ci)

OFW
la—{x,y,t)i S Ct™ O Di2exp(—|x—y*/Ct)  (1<i<n)
Vi
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hold for x, ye R"\B,, t>0. Thus, we get

OF®

(A8) vl Ct™ O+ Dl2exp(—|x—y[*/Ct)  (1<i<n)
Vi

for x, ye R"\B,, t>0.
It should be remarked that the constant C in (A.8) does not depend on e.
Let HO(x,y,0))=F®(x,,f)— U (x,p,t). Then, H®(x,y,!) satisfies the following.

0,~A)HO(xy,)=0  x, ye M, >0
Hxy,)=F®(x,y,)>0 xeoM, yeM,, t>0
Hxy,)=0  xedB, yeM,, t>0

limH®(x,y,)=0 x, yeM,
t—0

By the maximum principle, H®(x,y,f)>0 holds for x,ye M,, t>0. Therefore,
(A9) 0< Ux,y,0) SFO(x,p,1)

hold for x,ye M, t>0.
We fix an arbitrary ze€dB,. Then, v,= —(z—w)/|z—w| denotes the exterior
normal unit vector at zedB, with respect to M,. We recall that

(A.10) UY9(x,z,f)=F®(x,z,{)=0

for xe M, t>0. Therefore, by (A.9) and (A.10),

(A.11) 0< (U (x,z—hv,,0)— U (x,z,t)) / h
<(FO(x,z—hv,,0)—F(x,z,0)) | h

hold for xe M,, t >0 and any sufficiently small />0. Letting 2|0in (A.11), we have

@ )
0<-— aaL(x,z,t) <- aaL(x,z,t)
vZ vz

for xe M,, t>0.
Combining this inequality with (A.8),

ouU®
0= —— —(x20) SIV.F )
vz

< Ct™®+ Di2exp(—|x—2|%/ CY)
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hold for xe M,, t>0.

Therefore we get (A.7).

Now we have teh following.

Lemma A.5. There exists a constant C independent of ¢, t such that
au®
(A.12) (| F=——(x.z0)dx)do, < Ce"~ 1t~ 112
o8, Im, OV:

holds. for 1>0.

Proof. We fix an arbitrary zedB, Then, by (A7) and using
transformation of co-ordinates : x=z+(Ct)'/?y,

(e)
J I—(aaU x,z,t)ldstt_("“”zJ exp(—|x—z|*/ Ct)dx

z €

SC!"’ZJ exp(—[y|*)dy
R'l

<Ct 12

q.ed.

the

hold for t>0. Here C denotes some different positive constants independent

of ¢ t. Integrating this inequality on 0B,, we can immediately get (A.12).
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