

Title	Heat kernel and singular variation of domains
Author(s)	Ozawa, Shin; Roppongi, Susumu
Citation	Osaka Journal of Mathematics. 1995, 32(4), p. 941–957
Version Type	VoR
URL	https://doi.org/10.18910/9321
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Ozawa, S. and Roppongi, S.
 Osaka J. Math.
 32 (1995), 941–957

HEAT KERNEL AND SINGULAR VARIATION OF DOMAINS

SHIN OZAWA and SUSUMU ROPPONGI

(Received March 9, 1994)

1. Introduction

We consider a bounded region M in \mathbb{R}^n ($n=2$ or 3) whose boundary is smooth. Let w be a fixed point in M . By $B(\varepsilon; w)$ we denote a ball of radius ε with the center w . We put $M_\varepsilon = M \setminus \overline{B(\varepsilon; w)}$.

Let $U(x, y, t)$ ($U^{(\varepsilon)}(x, y, t)$; respectively) be the heat kernel in M (M_ε ; respectively) with the Dirichlet condition on its boundary ∂M (∂M_ε ; respectively). That is, it satisfies

$$(1.1) \quad \begin{cases} (\partial_t - \Delta_x)U(x, y, t) = 0 & x, y \in M, \quad t > 0 \\ U(x, y, t) = 0 & x \in \partial M, \quad y \in M, \quad t > 0 \\ \lim_{t \rightarrow 0} U(x, y, t) = \delta(x - y) & x, y \in M \end{cases}$$

$$(1.1) \quad \begin{cases} (\partial_t - \Delta_x)U^{(\varepsilon)}(x, y, t) = 0 & x, y \in M_\varepsilon, \quad t > 0 \\ U^{(\varepsilon)}(x, y, t) = 0 & x \in \partial M_\varepsilon, \quad y \in M_\varepsilon, \quad t > 0 \\ \lim_{t \rightarrow 0} U^{(\varepsilon)}(x, y, t) = \delta(x - y) & x, y \in M_\varepsilon \end{cases}$$

We put

$$(1.2) \quad (U_t f)(x) = \int_M U(x, y, t) f(y) dy, \quad f \in L^p(M)$$

and

$$(1.3) \quad (U_t^{(\varepsilon)} f)(x) = \int_{M_\varepsilon} U^{(\varepsilon)}(x, y, t) f(y) dy, \quad f \in L^p(M_\varepsilon).$$

Then, $U_t f$ and $U_t^{(\varepsilon)} f$ satisfy the following.

$$\begin{cases} (\partial_t - \Delta_x)(U_t f)(x) = 0 & x \in M, \quad t > 0 \end{cases}$$

$$\begin{cases} (U_t f)(x) = 0 & x \in \partial M, \quad t > 0 \\ \|U_t f - f\|_{L^p(M)} \rightarrow 0 & \text{as } t \rightarrow 0 \\ (\partial_t - \Delta_x)(U_t^{(\varepsilon)} f)(x) = 0 & x \in M_\varepsilon, \quad t > 0 \\ (U_t^{(\varepsilon)} f)(x) = 0 & x \in \partial M_\varepsilon, \quad t > 0 \\ \|U_t^{(\varepsilon)} f - f\|_{L^p(M_\varepsilon)} \rightarrow 0 & \text{as } t \rightarrow 0 \end{cases}$$

We want to construct an approximate kernel of $U^{(\varepsilon)}(x, y, t)$ by using $U(x, y, t)$. We put

$$(1.4) \quad V^{(\varepsilon)}(x, y, t) = U(x, y, t) - L_n(\varepsilon) \int_0^t U(x, w, \tau) U(w, y, t - \tau) d\tau,$$

where

$$L_n(\varepsilon) = \begin{cases} -2\pi(\log \varepsilon)^{-1} & (\text{if } n = 2) \\ 4\pi\varepsilon & (\text{if } n = 3). \end{cases}$$

and we put

$$(V_t^{(\varepsilon)} f)(x) = \int_M V^{(\varepsilon)}(x, y, t) f(y) dy, \quad f \in L^p(M).$$

Let T and T_ε be operators on M and M_ε , respectively. Then, $\|T\|_p$, $\|T_\varepsilon\|_{p,\varepsilon}$ denotes the operator norm on $L^p(M)$, $L^p(M_\varepsilon)$, respectively. Let f and f_ε be functions on M and M_ε , respectively. Then, $\|f\|_p$, $\|f_\varepsilon\|_{p,\varepsilon}$ denotes the norm on $L^p(M)$, $L^p(M_\varepsilon)$, respectively.

Let χ_ε denote the characteristic function of M_ε . Then, we have the following Theorems 1 and 2.

Theorem 1. *Assume that $n=2$. Then, there exists a constant C_t , which may depend on t but which is independent of ε such that*

$$\begin{aligned} & \|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{p,\varepsilon} \\ & \leq \begin{cases} C_t \varepsilon^{1/p} |\log \varepsilon|^{-1} & \text{if } p \in (2, \infty) \\ C_t \varepsilon^{(1-s)/2} |\log \varepsilon|^{-1} & \text{if } p = 2 \\ C_t \varepsilon^{1-(1/p)} |\log \varepsilon|^{-1} & \text{if } p \in (1, 2) \end{cases} \end{aligned}$$

hold. Here $s \in (0, 1)$ is an arbitrary fixed constant.

Theorem 2. *Assume that $n=3$. Then, there exists a constant C_t independent*

of ε such that

$$\begin{aligned} & \|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{p,\varepsilon} \\ & \leq \begin{cases} C_t \varepsilon^{1+(2/p)} & \text{if } p \in (3, \infty) \\ C_t \varepsilon^{(5-s)/3} & \text{if } p \in [3/2, 3] \\ C_t \varepsilon^{3-(2/p)} & \text{if } p \in (1, 3/2) \end{cases} \end{aligned}$$

hold. Here $s \in (0,1)$ is an arbitrary fixed constant.

REMARK. Thus, by Theorems 1 and 2, we know that

$$-L_n(\varepsilon) \chi_\varepsilon(x) \chi_\varepsilon(y) \int_0^t U(x, w, \tau) U(w, y, t - \tau) d\tau$$

gives a main asymptotic term of the difference between $U^{(\varepsilon)}(x, y, t)$ and $U(x, y, t)$.

The Hadamard variation of the heat kernel was discussed in [2]. And we have various papers on singular variation of domain. See, for example, [3], [4], [5], [6].

We give the proof of Theorems 1 and 2 in section 2 and section 3, respectively. In Appendix we give some properties of $U(x, y, t)$ and $U^{(\varepsilon)}(x, y, t)$. Following an usual custom, we use the same letter C in inequalities which are independent of ε .

2. Proof of Theorem 1

Throughout this section we assume that $n=2$. We put

$$(2.1) \quad U(x, y, t) = W(x, y, t) + S(x, y, t),$$

where

$$(2.2) \quad W(x, y, t) = (4\pi t)^{-n/2} \exp(-|x - y|^2 / 4t).$$

We write $B(\varepsilon; w) = B_\varepsilon$. Without loss of generality we may assume that $w=0$.

We take arbitrary $f \in L^p(M_\varepsilon)$. Let \hat{f} be an extension of f to M which is 0 on B_ε . At first we want to estimate $|(V_t^{(\varepsilon)} \hat{f})(x)|_{|x \in \partial B_\varepsilon}$. By (2.2), we have

$$\begin{aligned} (2.3) \quad & \int_0^t W(x, w, \tau) d\tau \mid x \in \partial B_\varepsilon \\ & = \int_0^t (4\pi\tau)^{-1} \exp(-\varepsilon^2 / 4\tau) d\tau \\ & = (4\pi)^{-1} \int_{\varepsilon^2/4t}^{\infty} s^{-1} e^{-s} ds \end{aligned}$$

$$\begin{aligned}
&= (4\pi)^{-1} (e^{-s} \log s) \Big|_{s=\varepsilon^2/4t}^{s=\infty} + \int_{\varepsilon^2/4t}^{\infty} e^{-s} (\log s) ds \\
&= (4\pi)^{-1} (-2 \log \varepsilon + R(\varepsilon, t)),
\end{aligned}$$

where

$$\begin{aligned}
R(\varepsilon, t) &= 2(1 - \exp(-\varepsilon^2/4t)) \log \varepsilon + (\exp(-\varepsilon^2/4t)) \log(4t) \\
&\quad + \int_{\varepsilon^2/4t}^{\infty} e^{-s} (\log s) ds.
\end{aligned}$$

Let γ be the Euler constant. Then,

$$\gamma = - \int_0^{\infty} e^{-s} (\log s) ds.$$

Thus, we have

$$\begin{aligned}
(2.4) \quad R(\varepsilon, t) &= 2(1 - \exp(-\varepsilon^2/4t)) \log \varepsilon \\
&\quad + (\exp(-\varepsilon^2/4t)) \log(4t) \\
&\quad - \gamma - \int_0^{\varepsilon^2/4t} e^{-s} (\log s) ds \\
&= -\gamma + \log(4t) + \int_0^{\varepsilon^2/4t} e^{-s} \log(\varepsilon^2/(4ts)) ds.
\end{aligned}$$

Since $0 \leq \log(\varepsilon^2/(4ts)) \leq 2(\varepsilon^2/(4ts))^{1/2} = \varepsilon(ts)^{-1/2}$ hold for any $s \in (0, \varepsilon^2/4t)$, we have

$$\begin{aligned}
(2.5) \quad & \left| \int_0^{\varepsilon^2/4t} e^{-s} \log(\varepsilon^2/(4ts)) ds \right| \\
& \leq \varepsilon t^{-1/2} \int_0^{\varepsilon^2/4t} s^{-1/2} e^{-s} ds \\
& \leq \varepsilon t^{-1/2} \int_0^{\infty} s^{-1/2} e^{-s} ds = \pi^{1/2} \varepsilon t^{-1/2}.
\end{aligned}$$

It is easy to see that $|\log t| \leq 2(t + t^{-1/2})$ holds for any $t \in (0, \infty)$. Thus, by (2.3), (2.4) and (2.5), we get

$$(2.6) \quad \int_0^t W(x, w, \tau) d\tau|_{x \in \partial B_\varepsilon} = -(2\pi)^{-1} \log \varepsilon + R(\varepsilon, t),$$

where

$$\begin{aligned}|R(\varepsilon, t)| &\leq C(|\log t| + t^{-1/2} + 1) \\ &\leq C(t + t^{-1/2} + 1)\end{aligned}$$

hold for any sufficiently small $\varepsilon > 0$.

On the other hand, since

$$\begin{aligned}U(w, y, t - \tau) - U(w, y, t) &= \int_0^\tau \frac{\partial}{\partial s} U(w, y, t - s) ds \\ &= - \int_0^\tau \frac{\partial}{\partial t} U(w, y, t - s) ds\end{aligned}$$

hold for $\tau \in (0, t)$ and $y \in M_\varepsilon$, we see that

$$\begin{aligned}&\int_0^\tau W(x, w, \tau) U(w, y, t - \tau) d\tau \\ &= \left(\int_0^\tau W(x, w, \tau) d\tau \right) U(w, y, t) \\ &\quad - \int_0^\tau W(x, w, \tau) \left(\int_0^\tau \frac{\partial}{\partial t} U(w, y, t - s) ds \right) d\tau.\end{aligned}$$

Thus, we have

$$\begin{aligned}&\int_{M_\varepsilon} \left(\int_0^\tau W(x, w, \tau) U(w, y, t - \tau) d\tau \right) f(y) dy \\ &= \left(\int_0^\tau W(x, w, \tau) d\tau \right) \int_{M_\varepsilon} U(w, y, t) f(y) dy \\ &\quad - \int_0^\tau W(x, w, \tau) \left(\int_0^\tau \left(\int_{M_\varepsilon} \frac{\partial}{\partial t} U(w, y, t - s) f(y) dy \right) ds \right) d\tau \\ &= \left(\int_0^\tau W(x, w, \tau) d\tau \right) (U_t \hat{f})(w) - \int_0^\tau W(x, w, \tau) \left(\int_0^\tau \frac{\partial}{\partial t} (U_{t-s} \hat{f})(w) ds \right) d\tau\end{aligned}$$

for $x \in M$. Combining this equality with (1.2), (1.4) and (2.1), we can easily see

$$\begin{aligned}(2.7) \quad &(V_t^{(\varepsilon)} \hat{f})(x) \\ &= \int_{M_\varepsilon} U(x, y, t) f(y) dy \\ &\quad - L_n(\varepsilon) \int_{M_\varepsilon} \left(\int_0^\tau W(x, w, \tau) U(w, y, t - \tau) d\tau \right) f(y) dy\end{aligned}$$

$$\begin{aligned}
& -L_n(\varepsilon) \int_{M_\varepsilon} \left(\int_0^t S(x, w, \tau) U(w, y, t-\tau) d\tau \right) f(y) dy \\
& = (U_t \hat{f})(x) - L_n(\varepsilon) \left(\int_0^t W(x, w, \tau) d\tau \right) (U_t \hat{f})(w) \\
& \quad + L_n(\varepsilon) \int_0^t W(x, w, \tau) \left(\int_0^\tau \frac{\partial}{\partial t} (U_{t-s} \hat{f})(w) ds \right) d\tau \\
& \quad - L_n(\varepsilon) \int_0^t S(x, w, \tau) (U_{t-\tau} \hat{f})(w) d\tau
\end{aligned}$$

for $x \in M$.

We recall that $L_n(\varepsilon) = -2\pi(\log \varepsilon)^{-1}$ for $n=2$. Thus, by (2.6) and (2.7), we have

$$(2.8) \quad (V_t^{(\varepsilon)} \hat{f})(x) \Big|_{x \in \partial B_\varepsilon} = \sum_{i=1}^3 I_i(\varepsilon, t),$$

where

$$\begin{aligned}
I_1(\varepsilon, t) &= (U_t \hat{f})(x) \Big|_{x \in \partial B_\varepsilon} - (U_t \hat{f})(w) \\
I_2(\varepsilon, t) &= -2\pi(\log \varepsilon)^{-1} \int_0^t W(x, w, \tau) \left(\int_0^\tau \frac{\partial}{\partial t} (U_{t-s} \hat{f})(w) ds \right) d\tau \\
I_3(\varepsilon, t) &= 2\pi(\log \varepsilon)^{-1} (R(\varepsilon, t) (U_t \hat{f})(w) + \int_0^t S(x, w, \tau) (U_{t-\tau} \hat{f})(w) d\tau)
\end{aligned}$$

for $x \in \partial B_\varepsilon$.

Notice that $S(x, w, \tau)$ is uniformly bounded for $x \in M$ and $\tau \in [0, t]$. Thus, by (2.6) and Lemma A.3 in Appendix,

$$\begin{aligned}
(2.9) \quad & |R(\varepsilon, t) (U_t \hat{f})(w)| \\
& \leq C |R(\varepsilon, t)| t^{-1/p} \|\hat{f}\|_p \leq C t^{-1/p} (t + t^{-1/2} + 1) \|f\|_{p, \varepsilon}
\end{aligned}$$

and

$$\begin{aligned}
(2.10) \quad & \left| \int_0^t S(x, w, \tau) (U_{t-\tau} \hat{f})(w) d\tau \right| \\
& \leq C \int_0^t |(U_{t-\tau} \hat{f})(w)| d\tau \\
& \leq C \|\hat{f}\|_p \int_0^t (t-\tau)^{-1/p} d\tau \leq C t^{1-(1/p)} \|f\|_{p, \varepsilon}
\end{aligned}$$

hold for $p > 1$ and $x \in M$. Therefore, by (2.8), (2.9) and (2.10), we have

$$(2.11) \quad |I_3(\varepsilon, t)| \leq C |\log \varepsilon|^{-1/p} (t + t^{-1/2} + 1) \|f\|_{p, \varepsilon}$$

for $p > 1$. The same calculation as above yields

$$(2.12) \quad \begin{aligned} & \left| \int_0^\tau \frac{\partial}{\partial t} (U_{t-s} \hat{f})(w) ds \right| \\ & \leq C \|\hat{f}\|_p \int_0^\tau (t-s)^{-1-(1/p)} ds \\ & \leq C \|f\|_{p, \varepsilon} ((t-\tau)^{-1/p} - t^{-1/p}) \\ & \leq C \|f\|_{p, \varepsilon} t^{-1/p} \tau^{1/p} (t-\tau)^{-1/p} \end{aligned}$$

for $p > 1$, $\tau \in (0, t)$ and

$$(2.13) \quad \begin{aligned} |I_1(\varepsilon, t)| &= \varepsilon |\nabla_x (U_t \hat{f})(w + \theta(x-w))|_{|x \in \partial B_\varepsilon} \\ &\leq C \varepsilon t^{-(1/p)-(1/2)} \|f\|_{p, \varepsilon} \end{aligned}$$

for $p > 1$, where $\theta \in (0, 1)$ denotes some constant. Furthermore, by (2.2), (2.8) and (2.12),

$$(2.14) \quad \begin{aligned} & |I_2(\varepsilon, t)| \\ & \leq C |\log \varepsilon|^{-1} t^{-1/p} \|f\|_{p, \varepsilon} \int_0^\tau \tau^{(1/p)-1} (t-\tau)^{-1/p} \exp(-\varepsilon^2/4\tau) d\tau \\ & \leq C |\log \varepsilon|^{-1} t^{-1/p} \|f\|_{p, \varepsilon} \int_0^\tau \tau^{(1/p)-1} (t-\tau)^{-1/p} d\tau \\ & = C |\log \varepsilon|^{-1} t^{-1/p} \|f\|_{p, \varepsilon} \int_0^1 s^{(1/p)-1} (1-s)^{-1/p} ds \\ & \leq C |\log \varepsilon|^{-1} t^{-1/p} \|f\|_{p, \varepsilon} \end{aligned}$$

hold for $p > 1$.

Summing up (2.8), (2.11), (2.13) and (2.14), we get the following.

Proposition 2.1. *Fix $p > 1$ and $t > 0$. Then, there exists a constant C independent of ε , t such that*

$$|(V_t^{(\varepsilon)} \hat{f})(x)|_{|x \in \partial B_\varepsilon} \leq C t^{-1/p} (t + t^{-1/2} + 1) |\log \varepsilon|^{-1} \|f\|_{p, \varepsilon}$$

holds for any $f \in L^p(M_\varepsilon)$.

Now we are in a position to prove Theorem 1. We put $v(x,t) = (U_t^{(\varepsilon)} f)(x) - (V_t^{(\varepsilon)} \hat{f})(x)$. Then $v(x,t)$ satisfies the following.

$$(2.15) \quad \left\{ \begin{array}{ll} (\partial_t - \Delta_x) v(x,t) = 0 & x \in M_\varepsilon, \quad t > 0 \\ v(x,t) = 0 & x \in \partial M, \quad t > 0 \\ v(x,t) = -(V_t^{(\varepsilon)} \hat{f})(x) & x \in \partial B_\varepsilon, \quad t > 0 \\ \lim_{t \rightarrow 0} v(x,t) = 0 & a.a. \quad x \in M_\varepsilon. \end{array} \right.$$

By the maximum principle we have

$$\sup_{x \in M_\varepsilon} |v(x,t)| \leq \sup_{x \in \partial M_\varepsilon} |v(x,t)| \leq \sup_{x \in \partial B_\varepsilon} |(V_t^{(\varepsilon)} \hat{f})(x)|.$$

Thus, by Proposition 2.1,

$$(2.16) \quad \begin{aligned} & \|U_t^{(\varepsilon)} f - \chi_\varepsilon V_t^{(\varepsilon)} \hat{f}\|_{\infty, \varepsilon} \\ &= \|v(\cdot, t)\|_{\infty, \varepsilon} \leq C t^{-1/p} (t + t^{-1/2} + 1) |\log \varepsilon|^{-1} \|f\|_{p, \varepsilon} \end{aligned}$$

hold for $p > 1$.

On the other hand, by (1.1) _{ε} and (2.15), $v(x,t)$ is explicitly represented as follows.

$$(2.17) \quad v(x,t) = \int_0^t \left(\int_{\partial B_\varepsilon} (V_\tau^{(\varepsilon)} \hat{f})(z) \frac{\partial U^{(\varepsilon)}}{\partial v_z}(x, z, t - \tau) d\sigma_z \right) d\tau$$

Here $\partial / \partial v_z$ denotes the derivative along the exterior normal direction with respect to M_ε . Thus, by (2.17), Proposition 2.1 and Lemma A.5 in Appendix, we have

$$(2.18) \quad \begin{aligned} & \|U_t^{(\varepsilon)} f - \chi_\varepsilon V_t^{(\varepsilon)} \hat{f}\|_{1, \varepsilon} \\ &= \|v(\cdot, t)\|_{1, \varepsilon} \\ &\leq \int_0^t \left(\sup_{x \in \partial B_\varepsilon} |(V_\tau^{(\varepsilon)} \hat{f})(z)| \right) \left(\int_{\partial B_\varepsilon} \left| \frac{\partial U^{(\varepsilon)}}{\partial v_z}(x, z, t - \tau) \right| dx d\sigma_z \right) d\tau \\ &\leq C \varepsilon |\log \varepsilon|^{-1} \|f\|_{p, \varepsilon} \int_0^t \tau^{-1/p} (\tau + \tau^{-1/2} + 1) (t - \tau)^{-1/2} d\tau \\ &\leq C \varepsilon |\log \varepsilon|^{-1} \|f\|_{p, \varepsilon} t^{(1/2) - (1/p)} (t + t^{-1/2} + 1) \end{aligned}$$

for $p > 2$.

We fix $p > 2$ and $t > 0$. Then, by (2.16), (2.18) and the interpolation inequality, we see

$$(2.19) \quad \|U_t^{(\varepsilon)} f - \chi_\varepsilon V_t^{(\varepsilon)} \hat{f}\|_{p, \varepsilon}$$

$$\begin{aligned} &\leq \|U_t^{(\varepsilon)} f - \chi_\varepsilon V_t^{(\varepsilon)} \hat{f}\|_{1,\varepsilon}^{1/p} \|U_t^{(\varepsilon)} f - \chi_\varepsilon V_t^{(\varepsilon)} \hat{f}\|_{\infty,\varepsilon}^{1-(1/p)} \\ &\leq C_t \varepsilon^{1/p} |\log \varepsilon|^{-1} \|f\|_{p,\varepsilon}. \end{aligned}$$

Therefore we get the following.

Proposition 2.2. *Fix $p > 2$ and $t > 0$. Then, there exists a constant C_t independent of ε such that*

$$\|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{p,\varepsilon} \leq C_t \varepsilon^{1/p} |\log \varepsilon|^{-1}$$

holds.

From (1.4) and Lemma A.2 in Appendix, we can see that $(V_t^{(\varepsilon)})^* = V_t^{(\varepsilon)}$ and $(U_t^{(\varepsilon)})^* = U_t^{(\varepsilon)}$. Thus, by the duality argument,

$$(2.20) \quad \|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{p',\varepsilon} = \|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{p,\varepsilon}$$

holds for any $p \in (2, \infty)$, where $p' = (1 - 1/p)^{-1}$. Furthermore, by Proposition 2.2, (2.20) and the Riesz-Thorin interpolation theorem,

$$(2.21) \quad \|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{2,\varepsilon} \leq \|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{p,\varepsilon}$$

holds for any $p \in (2, \infty)$.

From Proposition 2.2, (2.20) and (2.21), we can easily get Theorem 1.

3. Proof of Theorem 2

Throughout this section we assume that $n = 3$. We recall (2.2). Then

$$\begin{aligned} &\int_0^t W(x, w, \tau) d\tau|_{x \in \partial B_\varepsilon} \\ &= \int_0^t (4\pi\tau)^{-3/2} \exp(-\varepsilon^2/4\tau) d\tau \\ &= 4^{-1} \pi^{-3/2} \varepsilon^{-1} \int_{\varepsilon^2/4t}^{\infty} s^{-1/2} e^{-s} ds. \end{aligned}$$

Since

$$\int_0^{\infty} s^{-1/2} e^{-s} ds = \pi^{1/2}$$

and

$$\left| \int_0^{\varepsilon^2/4t} s^{-1/2} e^{-s} ds \right| \leq \int_0^{\varepsilon^2/4t} s^{-1/2} ds = \varepsilon t^{-1/2}$$

hold, we have

$$(3.1) \quad \int_0^t W(x, w, \tau) d\tau|_{x \in \partial B_\varepsilon} = (4\pi\varepsilon)^{-1} + R_1(\varepsilon, t),$$

where

$$|R_1(\varepsilon, t)| \leq 4^{-1} \pi^{-3/2} t^{-1/2}.$$

We fix an arbitrary $f \in L^p(M_\varepsilon)$. We recall (2.7) and $L_n(\varepsilon) = 4\pi\varepsilon$ for $n = 3$. Thus, by (2.7) and (3.1), we have

$$(3.2) \quad (V_t^{(\varepsilon)} \hat{f})(x)|_{x \in \partial B_\varepsilon} = \sum_{i=4}^6 I_i(\varepsilon, t),$$

where

$$\begin{aligned} I_4(\varepsilon, t) &= (U_t \hat{f})(x)|_{x \in \partial B_\varepsilon} - (U_t \hat{f})(w) \\ I_5(\varepsilon, t) &= 4\pi\varepsilon \int_0^t W(x, w, \tau) \left(\int_0^\tau \frac{\partial}{\partial t} (U_{t-s} \hat{f})(w) ds \right) d\tau \\ I_6(\varepsilon, t) &= -4\pi\varepsilon (R_1(\varepsilon, t) (U_t \hat{f})(w) + \int_0^t S(x, w, \tau) (U_{t-\tau} \hat{f})(w) d\tau) \end{aligned}$$

for $x \in \partial B_\varepsilon$. By (3.1) and Lemma A.3 in Appendix,

$$\begin{aligned} (3.3) \quad |I_6(\varepsilon, t)| &\leq C\varepsilon(t^{-1/2}|(U_t \hat{f})(w)| + \int_0^t |(U_{t-\tau} \hat{f})(w)| d\tau) \\ &\leq C\varepsilon(t^{-(1/2)-(3/2)p} \|\hat{f}\|_p + \|\hat{f}\|_p \int_0^t (t-\tau)^{-3/2p} d\tau) \\ &\leq C\varepsilon t^{-3/2p} (t + t^{-1/2}) \|f\|_{p,\varepsilon} \quad (p > 3/2), \end{aligned}$$

$$\begin{aligned} (3.4) \quad |I_4(\varepsilon, t)| &= \varepsilon |\nabla_x (U_t \hat{f})(w + \theta(x-w))|_{x \in \partial B_\varepsilon} \\ &\leq C\varepsilon t^{-(3/2p)-(1/2)} \|f\|_{p,\varepsilon} \quad (p > 1) \end{aligned}$$

and

$$(3.5) \quad \left| \int_0^t \frac{\partial}{\partial t} (U_{t-s} \hat{f})(w) ds \right| \leq C \|f\|_{p,\varepsilon} \int_0^t (t-s)^{-1-(3/2p)} ds \quad (p > 1)$$

hold for $\tau \in (0, t)$, where $\theta \in (0, 1)$ denotes some constant.

Next we want to estimate $I_5(\varepsilon, t)$. By (2.2), (3.2) and (3.5), we see

$$(3.6) \quad |I_5(\varepsilon, t)| \leq C\varepsilon \|f\|_{p, \varepsilon} I_7(\varepsilon, t),$$

where

$$I_7(\varepsilon, t) = \int_0^t \tau^{-3/2} \exp(-\varepsilon^2/4\tau) \left(\int_0^\tau (t-s)^{-1-(3/2p)} ds \right) d\tau.$$

Since

$$\begin{aligned} I_7(\varepsilon, t) &= \iint_{0 \leq s \leq \tau \leq t} \tau^{-3/2} \exp(-\varepsilon^2/4\tau) (t-s)^{-1-(3/2p)} ds d\tau \\ &= \int_0^t (t-s)^{-1-(3/2p)} \left(\int_s^t \tau^{-3/2} \exp(-\varepsilon^2/4\tau) d\tau \right) ds \end{aligned}$$

and

$$\begin{aligned} &\int_s^t \tau^{-3/2} \exp(-\varepsilon^2/4\tau) d\tau \\ &= 2\varepsilon^{-1} \int_{\varepsilon^2/4t}^{\varepsilon^2/4s} r^{-1/2} e^{-r} dr \\ &\leq 2\varepsilon^{-1} \int_{\varepsilon^2/4t}^{\varepsilon^2/4s} r^{-1/2} dr \\ &= 2(st)^{-1/2} (t^{1/2} - s^{1/2}) \leq 2(st)^{-1/2} (t-s)^{1/2} \end{aligned}$$

hold for $s \in (0, t)$, we have

$$\begin{aligned} I_7(\varepsilon, t) &\leq 2t^{-1/2} \int_0^t s^{-1/2} (t-s)^{-(1/2)-(3/2p)} ds \\ &= 2t^{-(1/2)-(3/2p)} \int_0^1 \tau^{-1/2} (1-\tau)^{-(1/2)-(3/2p)} d\tau \\ &\leq Ct^{-(1/2)-(3/2p)} \end{aligned}$$

for $p > 3$. Combining this inequality with (3.6), we get

$$(3.7) \quad |I_5(\varepsilon, t)| \leq C\varepsilon t^{-(1/2)-(3/2p)} \|f\|_{p, \varepsilon}$$

for $p > 3$.

Summing up (3.2), (3.3), (3.4) and (3.7), we can get the following.

Proposition 3.1. *Fix $p > 3$ and $t > 0$. Then there exists a constant C independent of ε , t such that*

$$\|(V_t^{(\varepsilon)} \hat{f})(x)\|_{x \in \partial B_\varepsilon} \leq C\varepsilon t^{-3/2p}(t + t^{-1/2}) \|f\|_{p,\varepsilon}$$

holds for any $f \in L^p(M_\varepsilon)$.

By Proposition 3.1, Lemma A.5 in Appendix and the same argument as in section 2, we have

$$\begin{aligned} (3.8) \quad \|U_t^{(\varepsilon)} f - \chi_\varepsilon V_t^{(\varepsilon)} \hat{f}\|_{\infty,\varepsilon} &\leq \sup_{x \in \partial B_\varepsilon} \|(V_t^{(\varepsilon)} \hat{f})(x)\| \\ &\leq C\varepsilon t^{-3/2p}(t + t^{-1/2}) \|f\|_{p,\varepsilon} \end{aligned}$$

and

$$\begin{aligned} (3.9) \quad &\|U_t^{(\varepsilon)} f - \chi_\varepsilon V_t^{(\varepsilon)} \hat{f}\|_{1,\varepsilon} \\ &\leq \int_0^t \sup_{x \in \partial B_\varepsilon} \|(V_\tau^{(\varepsilon)} \hat{f})(z)\| \left(\int_{\partial B_\varepsilon} \left(\int_{M_\varepsilon} \left| \frac{\partial U^{(\varepsilon)}}{\partial v_z}(x, z, t - \tau) \right| dx \right) d\sigma_z \right) d\tau \\ &\leq C\varepsilon^3 \|f\|_{p,\varepsilon} \int_0^t \tau^{-3/2p} (\tau + \tau^{-1/2}) (t - \tau)^{-1/2} d\tau \\ &= C\varepsilon^3 \|f\|_{p,\varepsilon} t^{(1/2) - (3/2p)} \int_0^1 s^{-3/2p} (ts + (ts)^{-1/2}) (1 - s)^{-1/2} ds \\ &\leq C\varepsilon^3 t^{(1/2) - (3/2p)} (t + t^{-1/2}) \|f\|_{p,\varepsilon} \end{aligned}$$

for $p > 3$.

From (3.8), (3.9) and the interpolation inequality (see (2.19)), we get the following.

Proposition 3.2. *Fix $p > 3$ and $t > 0$. Then there exists a constant C_t independent of ε such that*

$$\|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{p,\varepsilon} \leq C_t \varepsilon^{1+(2/p)}$$

holds.

Furthermore, by the duality argument and the Riesz-Thorin interpolation theorem, we have (2.20) for any $p \in (3, \infty)$ and

$$(3.10) \quad \|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{r,\varepsilon} \leq \|U_t^{(\varepsilon)} - \chi_\varepsilon V_t^{(\varepsilon)} \chi_\varepsilon\|_{p,\varepsilon}$$

for any $p \in (3, \infty)$ and $r \in [3 \setminus 2, 3]$.

From Proposition 3.2, (2.20) and (3.10), we can easily get Theorem 2.

4. Appendix

Let M , M_v , $U(x,y,t)$, $U^{(e)}(x,y,t)$ be as in Introduction. See Friedman [1] for the fundamental properties of the heat kernel. We have the following.

Lemma 1.1. *There exists a constant C independent of x,y,t such that*

$$(A.1) \quad 0 \leq U(x,y,t) \leq Ct^{-n/2} \exp(-|x-y|^2/Ct)$$

$$(A.2) \quad \left| \frac{\partial U}{\partial x_i}(x,y,t) \right| \leq Ct^{-(n+1)/2} \exp(-|x-y|^2/Ct) \quad (1 \leq i \leq n)$$

$$(A.3) \quad \left| \frac{\partial U}{\partial t}(x,y,t) \right| \leq Ct^{-(n+2)/2} \exp(-|x-y|^2/Ct)$$

hold for $x, y \in \bar{M}$, $t > 0$.

Lemma A.2. *We have*

$$U(x,y,t) = U(y,x,t) \quad x, y \in \bar{M}, t > 0$$

and

$$U^{(e)}(x,y,t) = U^{(e)}(y,x,t) \quad x, y \in \bar{M}_v, t > 0.$$

Let U_t be as in (1.2). Then we have the following.

Lemma A.3. *Fix $p \in (1, \infty)$. Then there exists a constant C independent of t such that*

$$(A.4) \quad \sup_{x \in \bar{M}} |(U_t f)(x)| \leq Ct^{-n/2p} \|f\|_p$$

$$(A.5) \quad \sup_{x \in \bar{M}} \left| \frac{\partial}{\partial x_i} (U_t f)(x) \right| \leq Ct^{-(n/2p)-(1/2)} \|f\|_p \quad (1 \leq i \leq n)$$

$$(A.6) \quad \sup_{x \in \bar{M}} \left| \frac{\partial}{\partial t} (U_t f)(x) \right| \leq Ct^{-(n/2p)-1} \|f\|_p$$

hold for $f \in L^p(M)$ and $t > 0$.

Proof. We take an arbitrary $x \in \bar{M}$. Then, by (1.2), (A.1) and using the transformation of co-ordinates : $y = x + (Ct)^{1/2}z$, we have

$$\begin{aligned}
|(U_t f)(x)| &\leq C t^{-n/2} \int_M \exp(-|x-y|^2/Ct) |f(y)| dy \\
&\leq C t^{-n/2} \|f\|_p \left(\int_M \exp(-|x-y|^2/Ct) dy \right)^{1/p'} \\
&\leq C t^{-(n/2)+(n/2)p'} \|f\|_p \left(\int_{R^n} \exp(-|z|^2) dz \right)^{1/p'} \\
&\leq C t^{-n/2p} \|f\|_p,
\end{aligned}$$

where $(1/p) + (1/p') = 1$.

Therefore we get (A.4). By the same argument as above, we get (A.5) and (A.6) from (A.2) and (A.3), respectively.

q.e.d

By $B(r; w)$ we denote a ball of radius $r > 0$ with the center w . And we write $B_r = B(r; w)$ as before.

Lemma A.4. *There exists a constant C independent of ε , x , t such that*

$$(A.7) \quad 0 \leq -\frac{\partial U^{(\varepsilon)}}{\partial v_z}(x, z, t) \leq C t^{-(n+1)/2} \exp(-|x-z|^2/Ct)$$

hold for $z \in \partial B_\varepsilon$, $x \in M_\varepsilon$ and $t > 0$.

Here $\partial/\partial v_z$ denotes the derivative along the exterior normal direction with respect to M_ε .

Proof. Let $F^{(r)}(x, y, t)$ be the fundamental solution of the heat equation in $R^n \setminus \bar{B}_r$ under the Dirichlet condition on ∂B_r . Then we have the following identity.

$$F^{(\varepsilon)}(x, y, t) = F^{(1)}(\varepsilon^{-1}x, \varepsilon^{-1}y, \varepsilon^{-2}t) \varepsilon^{-n} \quad x, y \in R^n \setminus B_\varepsilon, t > 0$$

Thus,

$$\frac{\partial F^{(\varepsilon)}}{\partial y_i}(x, y, t) = \left(\frac{\partial F^{(1)}}{\partial y_i} \right) (\varepsilon^{-1}x, \varepsilon^{-1}y, \varepsilon^{-2}t) \varepsilon^{-(n+1)} \quad (1 \leq i \leq n)$$

holds for $x, y \in R^n \setminus B_\varepsilon$, $t > 0$.

It is well known that there exists a constant C such that

$$\begin{aligned}
|F^{(1)}(x, y, t)| &\leq C t^{-n/2} \exp(-|x-y|^2/Ct) \\
\left| \frac{\partial F^{(1)}}{\partial y_i}(x, y, t) \right| &\leq C t^{-(n+1)/2} \exp(-|x-y|^2/Ct) \quad (1 \leq i \leq n)
\end{aligned}$$

hold for $x, y \in R^n \setminus B_1$, $t > 0$. Thus, we get

$$(A.8) \quad \left| \frac{\partial F^{(\varepsilon)}}{\partial y_i}(x, y, t) \right| \leq C t^{-(n+1)/2} \exp(-|x-y|^2 / Ct) \quad (1 \leq i \leq n)$$

for $x, y \in R^n \setminus B_\varepsilon$, $t > 0$.

It should be remarked that the constant C in (A.8) does not depend on ε . Let $H^{(\varepsilon)}(x, y, t) = F^{(\varepsilon)}(x, y, t) - U^{(\varepsilon)}(x, y, t)$. Then, $H^{(\varepsilon)}(x, y, t)$ satisfies the following.

$$\left\{ \begin{array}{ll} (\partial_t - \Delta_x) H^{(\varepsilon)}(x, y, t) = 0 & x, y \in M_\varepsilon, t > 0 \\ H^{(\varepsilon)}(x, y, t) = F^{(\varepsilon)}(x, y, t) \geq 0 & x \in \partial M, y \in M_\varepsilon, t > 0 \\ H^{(\varepsilon)}(x, y, t) = 0 & x \in \partial B_\varepsilon, y \in M_\varepsilon, t > 0 \\ \lim_{t \rightarrow 0} H^{(\varepsilon)}(x, y, t) = 0 & x, y \in M_\varepsilon \end{array} \right.$$

By the maximum principle, $H^{(\varepsilon)}(x, y, t) \geq 0$ holds for $x, y \in \bar{M}_\varepsilon$, $t > 0$. Therefore,

$$(A.9) \quad 0 \leq U^{(\varepsilon)}(x, y, t) \leq F^{(\varepsilon)}(x, y, t)$$

hold for $x, y \in \bar{M}$, $t > 0$.

We fix an arbitrary $z \in \partial B_\varepsilon$. Then, $v_z = -(z-w)/|z-w|$ denotes the exterior normal unit vector at $z \in \partial B_\varepsilon$ with respect to M_ε . We recall that

$$(A.10) \quad U^{(\varepsilon)}(x, z, t) = F^{(\varepsilon)}(x, z, t) = 0$$

for $x \in M_\varepsilon$, $t > 0$. Therefore, by (A.9) and (A.10),

$$(A.11) \quad \begin{aligned} 0 &\leq (U^{(\varepsilon)}(x, z - hv_z, t) - U^{(\varepsilon)}(x, z, t)) / h \\ &\leq (F^{(\varepsilon)}(x, z - hv_z, t) - F^{(\varepsilon)}(x, z, t)) / h \end{aligned}$$

hold for $x \in M_\varepsilon$, $t > 0$ and any sufficiently small $h > 0$. Letting $h \downarrow 0$ in (A.11), we have

$$0 \leq -\frac{\partial U^{(\varepsilon)}}{\partial v_z}(x, z, t) \leq -\frac{\partial F^{(\varepsilon)}}{\partial v_z}(x, z, t)$$

for $x \in M_\varepsilon$, $t > 0$.

Combining this inequality with (A.8),

$$\begin{aligned} 0 &\leq -\frac{\partial U^{(\varepsilon)}}{\partial v_z}(x, z, t) \leq |(\nabla_z F^{(\varepsilon)})(x, z, t)| \\ &\leq C t^{-(n+1)/2} \exp(-|x-z|^2 / Ct) \end{aligned}$$

hold for $x \in M_\varepsilon$, $t > 0$.

Therefore we get (A.7).

q.e.d.

Now we have the following.

Lemma A.5. *There exists a constant C independent of ε , t such that*

$$(A.12) \quad \int_{\partial B_\varepsilon} \left(\int_{M_\varepsilon} \left| \frac{\partial U^{(\varepsilon)}}{\partial v_z}(x, z, t) \right| dx \right) d\sigma_z \leq C \varepsilon^{n-1} t^{-1/2}$$

holds for $t > 0$.

Proof. We fix an arbitrary $z \in \partial B_\varepsilon$. Then, by (A.7) and using the transformation of co-ordinates : $x = z + (Ct)^{1/2}y$,

$$\begin{aligned} \int_{M_\varepsilon} \left| \frac{\partial U^{(\varepsilon)}}{\partial v_z}(x, z, t) \right| dx &\leq Ct^{-(n+1)/2} \int_{M_\varepsilon} \exp(-|x-z|^2/Ct) dx \\ &\leq Ct^{-1/2} \int_{R^n} \exp(-|y|^2) dy \\ &\leq Ct^{-1/2} \end{aligned}$$

hold for $t > 0$. Here C denotes some different positive constants independent of ε , t . Integrating this inequality on ∂B_ε , we can immediately get (A.12).

q.e.d.

References

- [1] A. Friedman: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.
- [2] S. Ozawa: *Hadamard's variation of the Green kernels of heat equations and their traces I*, J. Math. Soc. Japan, **34** (1982), 455–473.
- [3] S. Ozawa: *Electrostatic capacity and eigenvalues of the Laplacian*, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., **30** (1983), 53–62.
- [4] S. Ozawa: *Singular variation of domain and spectra of the Laplacian with small Robin conditional boundary I*, Osaka J. Math., **29** (1992), 837–850.
- [5] S. Ozawa and S. Roppongi: *Singular variation of domain and spectra of the Laplacian with small Robin conditional boundary II*, Kodai Math. J., **15** (1992), 403–429.
- [6] S. Roppongi: *Asymptotics of eigenvalues of the Laplacian with small spherical Robin boundary*, Osaka J. Math., **30** (1993), 783–811.
- [7] M.M. Schiffer and D.C. Spencer: Functionals of Finite Riemann Surfaces. Princeton Univ. Press, Princeton 1954.

Department of Mathematics
Faculty of Sciences
Tokyo Institute of Technology
O-okayama, Meguroku,
Tokyo 152
Japan

