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Abstract 

𝛽 titanium alloys have a wide range of applications, including in aerospace and transport. The 𝛽 

phase is stable only at high temperatures, and the phase stability can be improved by adding stabilizers. 

However, the 𝛽-phase-stabilization effects of 𝛽 stabilizers have not yet been clearly elucidated. Here, 

we report the 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 prediction of the energetic phase stability of 𝛽 titanium alloys with Mo, V, 

W, Nb, and Ta as additive 𝛽 stabilizer elements. The stability is predicted using a combination of 

atomistic simulation via density functional theory and continuum micromechanics (Eshelby’s 

ellipsoidal inclusion analysis). In particular, we consider the heterogeneity of the secondary 𝜔 and 

𝛼 phases (precipitation) in the 𝛽 matrix. All 𝛽 stabilizer species led to a significant energetic and 

elastic stabilization of the 𝛽 phase. Mo and W additives turned the 𝛽 phase energetically the most 

stable and secondary 𝜔  and 𝛼  precipitates may hardly nucleate in 𝛽  phase in high concentrate 

condition. Although V, Nb, and Ta additives stabilized the 𝛽  phase significantly, the 𝛽  phase 

remained metastable. Regarding the morphology of these secondary phases, V helped 𝛼 precipitation 

and Ta helped 𝜔 precipitation. The possibility of a coexistence of 𝜔 and 𝛼 in the 𝛽 matrix was 

suggested for Nb addition. The strain fields around the precipitates were also investigated and the 

results suggested that 𝛼 precipitates cause a large residual strain around it though 𝜔 precipitates do 

not.    
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1. Introduction 

Titanium alloys are promising materials for applications in various fields—including aerospace, 

transportation, and implants—owing to their light weight and good biocompatibility [1, 2]. Pure 

titanium has three phases with different atomic structures: hexagonal close-packed (HCP) 𝛼 phase, 

body-centered cubic (BCC) 𝛽  phase, and hexagonal 𝜔  phase. 𝛽  titanium alloys are considered 

particularly suitable materials for the aforementioned applications because of their high strength and 

corrosion resistance [3–5]. For pure titanium, previous theoretical and experimental studies have 

revealed that the 𝛼 phase is stable at room temperature and ordinary pressure, the 𝜔  phase is stable 

at low temperature and high pressure, and the 𝛽 phase is stable at only high temperatures [6]. In this 

context, alloying is necessary to improve the stability of the 𝛽 phase.  

𝛽 titanium alloys primarily consist of three types of additive elements: 𝛽 stabilizers (Mo, V, W, Nb, 

Ta, Fe, Cr, Cu, etc.), 𝛼 stabilizers (Al, O, N), and elements that construct the master alloy to reduce 

the high melting point of titanium [3]. High-performance on-demand 𝛽 titanium alloys have been 

developed by varying the species and fractions of the three types of additives [2, 5, 7]. Several 

theoretical approaches have been proposed for the design of titanium alloys (for example, the d 

electron alloys designing ) [8, 9]. Nonetheless, alloy design is challenging and time-consuming 

because it usually depends on empirical trial-and-error iterative experiments. Hence, quantitative 

analyses to help design 𝛽 titanium alloys are still insufficient. For example, the 𝛽-phase-stabilization 

effects of 𝛽 stabilizers and their effects on the precipitation of secondary 𝜔 or 𝛼 phases in the 𝛽 

matrix (because β phase is usually stable) [10–14] are not yet clearly elucidated.   

However, with the development of computers, 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 atomistic simulations of materials using 

density functional theory (DFT) has become common and computationally aided material design 

based on atomistic simulation is expected. For example, Materials Project [15, 16], which provides 

access to big data on material properties and atomic structures calculated using DFT atomistic 

simulations, can help in practical material design. Moreover, alloy designs based on DFT atomistic 

simulations have been investigated [17]. In this study, we used a combination of DFT atomistic 

simulations and continuum micromechanics aim to computationally design titanium alloys. We 

predicted the phase stability of 𝛽 titanium alloys energetically for the additive elements Mo, V, W, 

Nb and Ta, which do not cause the compound [3], considering the heterogeneity of the secondary 𝜔 

and 𝛼 phases (precipitation) in 𝛽 matrix. Previous investigations on the phase stabilities of titanium 

alloys using DFT atomistic simulations [18–22], have usually focused on the analysis of homogeneous 

atomic structures of each phase due to the limitations of DFT atomistic simulations (such as high 

computational cost). To the best of our knowledge, an 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 analysis of the phase stability of 

titanium alloys that considers the heterogeneous precipitation of the secondary phase has not yet been 

conducted.  



In a previous study, we proposed an 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜  parameter-free multiscale analysis combining 

Eshelby’s ellipsoidal inclusion analysis (micromechanics) and DFT atomistic simulation. Therein, we 

successfully predicted the morphology of Zr hydride precipitates and cracks in the Zr (HCP structure) 

matrix as well as the morphology and stability of the B19’ phase in the B2 matrix of TiNi shape 

memory alloys [23–26]. In this study, we applied our method to predict the phase stability of titanium 

alloys by considering the heterogeneity of the secondary phases. For pure titanium and titanium alloys 

with the aforementioned additive elements, we first calculated the potential energy, the elastic 

constants of the 𝛽 , 𝜔 , and 𝛼  phases, and the eigenstrains for 𝛽–𝜔  and 𝜔–𝛼  phase 

transformations using DFT atomistic simulations. Thereafter, the phase stability in the limitation of 

homogeneity is discussed. Next, for cases with possible nucleation of the 𝜔 or 𝛼 secondary phase 

in the 𝛽  matrix ( 𝛽  is metastable), we employed Eshelby’s ellipsoidal inclusion analysis to 

investigate the stability of the 𝜔  or 𝛼  precipitates using the calculated elastic constants of each 

phase and eigenstrains of the phase transformations. 

2. DFT atomistic simulation 

2.1. Atomistic models and calculation setting 

The atomic models used in the DFT atomistic simulation are shown in Fig. 1.We employed two sets 

of atomic models, I and II, to compute the eigenstrains of the 𝛽–𝜔 and 𝜔–𝛼 phase transformations. 

In set I, the atomic models of the BCC structure, 𝛽 titanium, were prepared with a lattice constant of 

0.325 nm. This model included 6 Ti atoms in a unit cell. To reproduce 𝛽–𝜔 phase transformation, 

the directions of the edge vectors of the supercell, 𝒉𝟏, 𝒉𝟐, and 𝒉𝟑, were set to [111]𝛽, [011̅]𝛽, and 

[11̅0]𝛽 respectively. The atoms in the (111) layers (green and blue in Fig. 1) were shuffled along 

the direction of black arrows. The atomic structure as well as the size and shape of the supercell [27] 

were optimized to obtain a hexagonal 𝜔 atomic structure. The orientation relationships between 𝛽 

and 𝜔  were [111]𝛽 || [0001]𝜔 , [112̅]𝛽 || [11̅00]𝜔  and [11̅0]𝛽 || [112̅0]𝜔 , which are 

consistent with experimental observations [10, 27].  

In set II, to reproduce 𝜔–𝛼 phase transformation, the edge vectors of the supercell of the prepared 

𝜔 atomic model (of set I) were changed to the orthogonal [0001]𝜔, [11̅00]𝜔, and [112̅0]𝜔; the 

atomic model was reconstructed as a 12-atom unit cell. Crystallographically, 𝜔 titanium has 2 layers 

stacked along [112̅0]𝜔 (ABAB…), as shown in Fig. 1. In accordance with the suggestion by Silcock 

et al. [18, 28], the atoms in each layer were shuffled along the direction of the black arrows in the 

figure. The atomic structure as well as the size and shape of the supercell were optimized to obtain the 

HCP 𝛼 atomic model. The orientation relationships between 𝛽 and 𝛼 were [111]𝛽 || [112̅0]𝛼, 

[112̅]𝛽 || [11̅00]𝛼, and [11̅0]𝛽 || [11̅00]𝛼, which are consistent with experimental observations 

[10]. Trinkle et al. have suggested another shuffling pathway for the 𝜔–𝛼 phase transformation [6, 



18]. However, we employed the pathway suggested by Silcock et al. because it results in a smaller 

𝜔–𝛼 eigenstrain and is elastically favorable when the heterogeneity of the secondary 𝛼 phase is 

considered.  

Next, we prepared atomic models of titanium alloys Ti5X1 (where X is an additive element) by 

replacing the Ti atoms marked X with Mo, V, W, Nb, and Ta atoms, as shown in Fig. 1. We calculated 

the potential energies and elastic constants for all the phases of all the additive elements using these 

atomic models. Using the cell matrix 𝑯 = [𝒉𝟏 𝒉𝟐 𝒉𝟑] constructed using the edge vectors of the 

optimized atomic structures, the eigenstrains 𝜖𝑖𝑗  for the phase transformation can be derived in the 

form of Green strain as  

 

   𝜖𝑖𝑗 =
1

2
(𝑱𝐓𝑱 − 𝑰),      (1)  

 

where 𝑱𝐓 = 𝑯𝐟𝐢𝐧(𝑯𝐢𝐧𝐢)
−1 denotes the deformation tensor [23, 25, 26]. 𝑯𝐢𝐧𝐢 and 𝑯𝐟𝐢𝐧 denote the 

cell matrices of the atomic structure before and after phase transformation, respectively.  

The Vienna Ab initio Simulation Package [29] was used for the DFT atomistic simulations (including 

the optimization mentioned above). The electron-ion interaction in DFT is described using the 

projector-augmented wave method [30]. The exchange-correlation between electrons was treated 

using the Perdew–Burke–Ernzerhof generalized gradient approximation [31]. The energy cutoff for 

the plane-wave basis set was set to 300 eV. The energy convergence criteria for the electronic and 

ionic structure relaxations were set to 1.0 × 10−8 and 1.0 × 10−4 eV, respectively. A 6 × 6 × 12 

k-point mesh was used for the atomic models in set I, and a 12 × 4 × 12 k-point mesh was used for 

the atomic models in set II. The 𝛽 and 𝜔 atomic models of set I and the HCP atomic model of set 

II were used to calculate the potential energies and elastic constants. The finite difference approach 

was used to calculate the elastic constants. The entropy effect with respect to the temperature was not 

considered because of the calculation cost.  

 



 

Figure 1: Atomic models of 𝛽, 𝜔 and 𝛼 titanium used for DFT atomistic simulation. The circles 

indicate the positions of atoms. 𝛽 and 𝜔 atomic models (supercell) in set I, containing 6 atoms, were 

used to calculate the eigenstrain of the 𝛽–𝜔 phase transformation. 𝜔 and 𝛼 atomic models in set 

II, containing 12 atoms, were used to calculate the eigenstrain of the 𝜔–𝛼 phase transformation. The 

colors of the atoms indicate the atoms belong to same (111)𝛽 plane, corresponding to (0001)𝜔   

and (112̅0)𝛼 plane. The black arrows indicate the direction of the atomic shuffling for the 𝛽–𝜔 (set 

I) and 𝜔–𝛼 (set II) phase transformations. The red arrows in the figures indicate the edge vectors 

𝒉𝟏,  𝒉𝟐 and 𝒉𝟑 of the supercells of each atomic model. The black solid lines are included as a guide 

to clarify the crystallography of each atomic model. The Ti atoms marked X were replaced with Mo, 

V, W, Nb, and Ta to construct the atomic models of titanium alloys Ti5X1.  



2.2. Results and discussion 

Table 1 lists the calculated differences in the potential energies of the 𝜔 and 𝛼 phases from that of 

the 𝛽 phase for each additive element. For pure Ti, although the energy difference between 𝜔 and 

𝛼 is not large, the 𝜔 phase is the most stable with the lowest energy. The energy of the 𝛽 phase is 

the highest, and thus, 𝛽  is energetically unstable. However, with the addition of 𝛽  stabilizer 

elements, the energy differences generally become significantly small. In particular, with Mo and W 

addition, the 𝛽 phase becomes the most stable. Although the concentration of the additive elements 

is considerably high compared with the experimental alloy composition due to the limitation of DFT 

atomistic simulation, this suggests Mo and W not strongly stabilize 𝛽. Moreover, the addition of V, 

Nb, and Ta significantly decreases the energy difference between 𝛽 and 𝜔 as well as between 𝛽 

and 𝛼. However, the 𝛽 phase remains metastable, suggesting that the nucleation of secondary 𝜔 or 

𝛼 occurs and the effect of stabilization of them is relatively weak in these additives. 

Table 2 lists the calculated elastic constants of the 𝛽, 𝜔, and 𝛼 phases for each additive species in 

the coordinate system [111]𝛽– [112̅]𝛽– [11̅0]𝛽 . For pure Ti, 𝐶1212  and 𝐶3131  are considerably 

small (almost zero). If the coordinate system is changed to the conventional [100]𝛽– [010]𝛽– [001]𝛽, 

we find 𝐶1111 − 𝐶1112  <  0. The well-known Born criteria for the elastic instability of the BCC 

structure [32] indicate that the pure 𝛽 titanium phase is elastically unstable. However, the addition of 

𝛽  stabilizer elements neutralizes this instability; 𝐶1212  and 𝐶3131  become large, and 𝐶1111 −

𝐶1112  >  0 in the conventional [100]𝛽– [010]𝛽– [001]𝛽 coordinate system. This indicates that the 

𝛽 stabilizer elements stabilize the 𝛽 phase both energetically and elastically. We also investigated 

the elastic instabilities of 𝜔 and 𝛼 using the Born criteria for hexagonal structures [33]. The results 

indicated that the 𝜔 and 𝛼 phases are elastically stable in all cases. The 𝛽 stabilizers investigated 

in this study generally increased the elastic constants for all phases. Hence, these species may not be 

effective for designing titanium alloys for biomaterials whose elastic constants must be as low as those 

of human bones.     

Table 3 lists the calculated eigenstrains of the 𝛽–𝜔  and 𝜔–𝛼  phase transformations for each 

additive species in the coordinate system [111]𝛽– [112̅]𝛽– [11̅0]𝛽. The eigenstrains of pure Ti are 

small. However, the eigenstrains of titanium alloys—𝜖11   for 𝜔–𝛼  ([111]𝛽  normal strain) in 

particular—are large. The 𝛽–𝜔  phase transformation comprises shear components apart from 

normal components for the titanium alloys. We confirmed that the shear components originate from 

the additive-induced distortion of the 𝛽 phase from the original BCC structure. This result suggests 

that alloying increases the residual strain (or stress) caused by the secondary 𝜔 and 𝛼 precipitates 

in the 𝛽 matrix. The energies of the 𝛼 and 𝜔 phases are lower than that of the 𝛽 phase from DFT 

calculation in Table 1. However, in the case of heterogeneously nucleated 𝛼 and 𝜔 in the 𝛽 matrix, 



the energy hierarchy may change elastically owing to the large eigenstrain. Hence, the elastic energy 

increments due to the heterogeneity must be considered. The next section details Eshelby’s ellipsoidal 

inclusion analysis for the V, Nb, and Ta cases wherein the 𝛽 phase is metastable. Therein, the stability 

is discussed while considering the effect of heterogeneity of the 𝛼  and 𝜔  precipitates in the 𝛽 

matrix.   

Table 1: Potential energy differences of 𝜔  and 𝛼  titanium from 𝛽  titanium for each additive 

species calculated using DFT atomistic simulation. The potential energies are in eV/atom. 

 

 𝜔 𝛼 

Pure Ti -0.1187 -0.1105 

Ti5Mo1 0.0879 0.0286 

Ti5V1 0.0025 -0.0135 

Ti5W1 0.0475 0.0229 

Ti5Nb1 -0.0046 -0.0090 

Ti5Ta1 -0.0459 -0.0272 

 

 

Table 2: Elastic constants of 𝛽, 𝜔, and 𝛼 titanium for each additive species calculated using DFT 

atomistic simulation. Note that 𝐶𝑖𝑗𝑘𝑙  =  𝐶𝑗𝑖𝑘𝑙  =  𝐶𝑖𝑗𝑙𝑘  =  𝐶𝑘𝑙𝑖𝑗 . The values of 𝐶𝑖𝑗𝑘𝑙 that are not 

listed here are all zero. The elastic constants are in GPa. The coordinate system is 

[111]𝛽– [112̅]𝛽– [11̅0]𝛽.  

 

 Pure Ti Ti5Mo1 Ti5V1 Ti5W1 Ti5Nb1 Ti5Ta1 

𝛽       

𝐶1111 164 194 189 209 197 201 

𝐶2222 144 187 164 201 176 181 

𝐶3333 144 191 168 202 180 182 

𝐶1122 77 90 82 91 80 80 

𝐶1133 77 80 76 83 73 76 

𝐶2233 98 109 111 104 102 99 

𝐶2323 25 32 26 39 31 32 

𝐶3131 8 36 31 37 28 26 

𝐶1212 5 51 42 52 40 36 

𝐶1123 0 -8 -5 -6 -6 -4 

𝐶1131 0 0 0 0 5 7 



𝐶1112 0 0 0 0 0 4 

𝐶2223 0 9 0 10 8 8 

𝐶2231 0 0 0 -6 -6 -7 

𝐶2212 25 -6 0 0 0 8 

𝐶3323 0 -6 0 -8 -5 -8 

𝐶3331 0 -8 -5 -5 -5 -4 

𝐶3312 -25 0 5 -7 -7 -14 

𝐶2331 -25 0 0 -4 -4 -9 

𝐶3112 0 -13 -9 -14 -10 -9 

       

𝜔       

𝐶1111 252 274 261 295 251 262 

𝐶2222 201 201 197 216 182 193 

𝐶3333 200 188 200 209 181 194 

𝐶1122 51 72 63 78 70 70 

𝐶1133 51 62 56 65 64 64 

𝐶2233 81 117 104 114 114 110 

𝐶2323 60 26 39 36 30 41 

𝐶3131 56 21 44 29 37 44 

𝐶1212 56 11 43 32 34 45 

       

𝛼       

𝐶1111 170 161 140 164 139 139 

𝐶2222 170 180 174 189 166 181 

𝐶3333 195 161 174 175 169 178 

𝐶1122 90 94 104 100 103 105 

𝐶1133 75 118 118 124 121 126 

𝐶2233 75 88 72 87 75 66 

𝐶2323 43 22 59 33 53 59 

𝐶3131 43 30 37 35 35 38 

𝐶1212 40 54 60 63 63 62 

 

 

 

 

 



Table 3: Eigenstrains for the 𝛽  to 𝜔  and 𝜔  to 𝛼  phase transformations of titanium for each 

additive species calculated using DFT atomistic simulation. Note that 𝜖𝑖𝑗 = 𝜖𝑗𝑖 . The coordinate 

system is [111]𝛽– [112̅]𝛽– [11̅0]𝛽.  

 

 Pure Ti Ti5Mo1 Ti5V1 Ti5W1 Ti5Nb1 Ti5Ta1 

𝛽 to 𝜔       

𝜖11 0.0057 -0.0325 -0.0196 -0.0263 -0.0100 -0.0054 

𝜖22 -0.0063 0.0417 0.0278 0.0324 0.0233 0.0189 

𝜖33 -0.0055 -0.0032 -0.0070 -0.0049 -0.0070 -0.0100 

𝜖23 0.0 -0.0389 -0.0301 -0.0322 -0.0262 -0.0249 

𝜖31 0.0 -0.0552 -0.0568 -0.0550 -0.0531 -0.0538 

𝜖12 0.0 -0.0319 -0.0328 -0.0318 -0.0307 -0.0311 

       

𝜔 to 𝛼       

𝜖11 0.0377 0.1988 0.1741 0.2107 0.1868 0.1668 

𝜖22 -0.0364 -0.1160 -0.0863 -0.1133 -0.0970 -0.0891 

𝜖33 0.0166 -0.0271 -0.0394 -0.0357 -0.0433 -0.0360 

𝜖23 0.0 0.0 0.0 0.0 0.0 0.0 

𝜖31 0.0 0.0 0.0 0.0 0.0 0.0 

𝜖12 0.0 0.0 0.0 0.0 0.0 0.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Eshelby’s ellipsoidal inclusion analysis 

3.1 Methodlogy 

As mentioned in the previous section, the 𝜔 or 𝛼 precipitates usually nucleate heterogeneously in 

the 𝛽  matrix, and accounting for the effect of heterogeneity in conventional DFT calculations is 

usually difficult. In this study, we used a micromechanics approach—Eshelby’s ellipsoidal inclusion 

analysis—to account for the heterogeneity of 𝜔  and 𝛼  precipitates in the 𝛽  matrix [23–26]. In 

micromechanics, the original strain-free shape of the secondary phase is described using the 

eigenstrain, whereas the shape elastically deformed due to heterogeneity is described as the total strain 

(the original zero-strain shape is defined as the shape of the matrix) [34]. If we consider the 𝜔 and 

𝛼 precipitates, as an ellipsoidal inclusion (
𝑥1

2

𝑎1
2 +

𝑥2
2

𝑎2
2 +

𝑥3
2

𝑎3
2 = 1; 𝒙 = [𝑥1; 𝑥2; 𝑥3] indicates the position 

inside the 𝛽 matrix and 𝑎𝑖 (𝑖 = 1, 2, 3) is half axis of ellipsoid in each direction) [35, 36], and the 

eigenstrains are uniformly distributed in the inclusion, the total strains and eigenstrains of the inclusion, 

𝜀𝑖𝑗
inc  and 𝜖𝑖𝑗

inc , are linearly connected with Eshelby’s tensor, 𝑆𝑘𝑙𝑚𝑛 , using Einstein summation 

convention,  

 

𝜀𝑘𝑙
inc = 𝑆𝑘𝑙𝑚𝑛𝜖𝑚𝑛

inc,     (2) 

 

The general form of Eshelby’s tensor for an anisotropic matrix and an inclusion is derived as follows 

[34, 37]: 

𝑆𝑘𝑙𝑚𝑛 =
1

8𝜋
𝐶𝑝𝑞𝑚𝑛

 ∫ 𝑑𝜁3
1

−1 ∫ (
𝜉𝑙𝜉𝑞𝑁𝑘𝑝(𝜉1,𝜉2,𝜉3)+𝜉𝑘𝜉𝑞𝑁𝑙𝑝(𝜉1,𝜉2,𝜉3)

𝐷(𝜉1,𝜉2,𝜉3)
) 𝑑𝜃

2𝜋

0
,     

(3) 

where 

𝐷(𝜉1, 𝜉2, 𝜉3) = 𝑃𝑝𝑞𝑟(𝐶𝑝𝑗1𝑙
 𝜉𝑗𝜉𝑙)(𝐶𝑞𝑚2𝑛

 𝜉𝑚𝜉𝑛)(𝐶𝑟𝑠3𝑡
 𝜉𝑠𝜉𝑡), 

and 

𝑁𝑘𝑚(𝜉1, 𝜉2, 𝜉3) =
1

2
𝑃𝑘𝑠𝑡𝑃𝑚𝑛𝑟(𝐶𝑠𝑗𝑛𝑙

 𝜉𝑗𝜉𝑙)(𝐶𝑡𝑢𝑟𝑣
 𝜉𝑢𝜉𝑣),  

which correspond to the determinant and cofactor of 𝐾𝑘𝑚 = 𝐶𝑘𝑙𝑚𝑛
mat 𝜉𝑙𝜉𝑛 , respectively. 𝑃𝑝𝑞𝑟 

denotes the permutation tensor. Using 𝜁3 and 𝜃, [𝜉1;  𝜉2;  𝜉3] can be expressed as  

[

𝜉1

𝜉2

𝜉3

] =

[
 
 
 
 
 
 √1−𝜁3

2cos𝜃

𝑎1

√1−𝜁3
2sin𝜃

𝑎2

𝜁3

𝑎3 ]
 
 
 
 
 
 

. 

 



 

In general, the distributed total strain 𝜀𝑘𝑙(𝒙) and eigenstrains 𝜖𝑘𝑙(𝒙) lead to a distribution of the 

internal stress 𝜎𝑖𝑗(𝒙) [34]:  

 

𝜎𝑖𝑗(𝒙) = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙(𝒙) − 𝜖𝑘𝑙(𝒙)).     (4) 

 

Using this equation, Eshelby’s ``equivalent inclusion theory’’ for ellipsoidal inclusion describes the 

relationship between the elastic constants of the matrix 𝐶𝑖𝑗𝑘𝑙 , that of the inclusion 𝐶̃𝑖𝑗𝑘𝑙 , and the 

fictitious eigenstrains 𝜖𝑚̃𝑛 [34, 36],  

 

𝐶̃𝑖𝑗𝑘𝑙
 (𝑆𝑘𝑙𝑚𝑛𝜖𝑚̃𝑛 + 𝜀𝑘𝑙

ex − 𝜖𝑘𝑙
inc

 

 
) = 𝐶𝑖𝑗𝑘𝑙

 (𝑆𝑘𝑙𝑚𝑛𝜖𝑚̃𝑛 + 𝜀𝑘𝑙
ex − 𝜖𝑘̃𝑙)  (5) 

 

where 𝜀𝑘𝑙
ex is the elastic strain of the matrix due to the external stress 𝜎𝑖𝑗

ex. This equation replaces the 

inhomogeneity of the elastic constants with additional eigenstrains 𝜖𝑚̃𝑛. The left and right-hand sides 

of this equation are derived from equation (4) for the real and fictitious inclusions, respectively. The 

total strain term is described using fictitious eigenstrains 𝜖𝑚̃𝑛 as 𝜀𝑘𝑙
inc = 𝑆𝑘𝑙𝑚𝑛𝜖𝑚̃𝑛

 . Solving these 

simultaneous equations for 𝜖𝑚̃𝑛, the elastic energy increment Δ𝐸het (per unit volume of inclusion) 

due to the inclusion in the matrix under the external stress 𝜎𝑖𝑗
ex condition can be expressed as follows 

[34]:  

 

Δ𝐸het = −
1

2
𝜎𝑖𝑗

inc𝜖𝑖𝑗
inc − 𝜎𝑖𝑗

ex𝜖𝑖𝑗
inc −

1

2
𝜎𝑖𝑗

ex(𝜖𝑖̃𝑗 − 𝜖𝑖𝑗
inc),  (6) 

 

where 𝜎𝑖𝑗
inc is the internal stress of the ellipsoidal inclusion derived from equations (4). Considering 

the inhomogeneity between 𝛽, 𝜔 and 𝛼 and the anisotropy of the elastic constants, we numerically 

calculated 𝑆𝑘𝑙𝑚𝑛  and then determined Δ𝐸het  using the above equations. 𝑆𝑘𝑙𝑚𝑛  depends on the 

morphology of the inclusion. Hence, the minimum elastic energy increment Δ𝐸min
het  was determined 

by changing the shape and orientation of the precipitates. The total energy change from the 𝛽 matrix, 

Δ𝐸total
  (per atom unit), was then determined to discuss the stability,  

 

Δ𝐸total
 = Δ𝐸DFT + Δ𝐸min

het 𝑉atom.     (7) 

 

Δ𝐸DFT  denotes the energy difference from the 𝛽  phase listed in Table 1 and 𝑉atom  denotes the 

average atomic volume of the DFT supercell of 𝛽 titanium. The chemical interfacial energy was not 

considered in this study because the sizes of the 𝜔  or 𝛼  precipitates are generally large in 

experimental observations [10, 14]. We believe that, on a large scale, the area-dependent chemical 

interfacial energy is sufficiently small compared to the volume-dependent elastic energy and Δ𝐸DFT 



in the above equation.   

Once stable 𝜔 or 𝛼 precipitates for a certain additive species were confirmed, we calculated the 

strain field around the precipitates [26, 38] because the existence of a strain (or stress) field is related 

to the precipitation strengthening of titanium alloys, and is important to design the mechanical 

property of alloys [14]. First, we numerically calculated the gradient of the displacement 
𝜕𝑢𝑖

𝜕𝑥𝑗
 at a 

certain position 𝒙 in the matrix due to the ellipsoidal inclusion with uniform eigenstrains as follows: 

 

𝜕𝑢𝑖

𝜕𝑥𝑗
= 𝐶𝑘𝑙𝑚𝑛

 𝜖𝑚̃𝑛 ∫ 𝑑𝜁3
1

−1
∫ (

𝜉𝑗𝜉𝑙𝑁𝑖𝑘(𝜉1,𝜉2,𝜉3)

𝐷(𝜉1,𝜉2,𝜉3)
(

1

4𝜋
𝑈(𝒙 ⋅ 𝝃 − 1) −

1

2𝜋𝑥
𝛿(𝒙 ⋅ 𝝃 − 1)))𝑑𝜃

2𝜋

0
,   

(8) 

where 

𝑈(𝑥) = {
1 (𝑥 ≤ 0)
0 (𝑥 > 0)

 ,  

𝛿(𝑥) = {
1 (𝑥 = 0)

0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
 .  

 

The step function 𝑈(𝑥) and the delta function 𝛿(𝑥) limit the range of integration on the right-hand 

side to 𝒙 ⋅ 𝝃 < 1  and 𝒙 ⋅ 𝝃 = 1  for the first and second terms, respectively, and 𝑥̃ =

√(
𝑥1

𝑎1
)
2
+ (

𝑥2

𝑎2
)
2
+ (

𝑥3

𝑎3
)
2
. Note the center of the inclusion is defined as 𝒙 = [0;  0;  0]. Next, using 

above equation (8) and the following relationship  

 

𝜀𝑖𝑗(𝒙) =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
), 

 

the total strain distribution was derived. In addition, the stress distribution can be derived using 

equation (4). Note the position 𝒙 can be both the inside and outside of the inclusion in the matrix and 

the above calculation gives 𝜀𝑖𝑗(𝒙) = 𝜀𝑖𝑗
inc for the position 𝒙 inside the ellipsoidal inclusion because 

𝒙 is always satisfied 𝒙 ⋅ 𝝃 < 1 during integration.  

For the detailed calculation setting, we calculated Δ𝐸total
  of the 𝜔 and 𝛼 precipitates for the V, 

Nb, and Ta additive elements (which have negative Δ𝐸DFT
  values) using the elastic constants and 

eigenstrains listed in Table 2 and 3. The eigenstrains (𝜖𝑖𝑗
inc ) of the 𝛽  to 𝛼  transformation can be 

approximated via a simple addition of the eigenstrains of the 𝛽 to 𝜔 and 𝜔 to 𝛼 transformations 

listed in Table 3, referring to the order of transformation 𝛽 to 𝜔 to 𝛼, which is usually observed in 

experiments [10–14]. Because the eigenstrain value of the 𝛽–𝜔 phase transformation (Table 3) is 



generally smaller than that of 𝜔–𝛼, we believe that this approximation (the addition of eigenstrains) 

is reasonable.   

For simplicity, the precipitates are considered as needle or disk-shaped ellipsoidal inclusions; such 

shapes are usually stable precipitates [10, 14, 22]. Analytically, the disk and needle are shapes with 

extremely long and short half axes of inclusion (e.g., 𝑎1 = 𝑎2 and 𝑎3/𝑎1 → 0 for disk, 𝑎3/𝑎1 → ∞ 

for needle) [34, 39]. However, owing to the limitations of numerical calculations, we consider the 

(𝑎1; 𝑎2; 𝑎3) = (20; 20; 1)  and (𝑎1; 𝑎2; 𝑎3) = (1; 1; 20)  ellipsoids as disk and needle inclusions, 

respectively. For the orientations of the disk and needle-shaped inclusions, we describe the elastic 

constants and eigenstrains in the coordinate system 𝒙’ of the rotated disk and needle inclusions using 

the following rotation matrix: 

 

𝑅𝑖𝑗 = [
cos𝜓 0 −sin𝜓

0 1 0
sin𝜓 0 cos𝜓

] × [
cos𝜙 sin𝜙 0

−sin𝜙 cos𝜙 0
0 0 1

] 

   = [

cos𝜓 cos𝜙 cos𝜓 sin𝜙 −sin𝜓
−sin𝜙 cos𝜙 0

sin𝜓 cos𝜙 sin𝜓 sin𝜙 cos𝜓
]  (9) 

 

The normal direction of the disk plane and the longitudinal direction of the needle were set to 𝒙𝟑
′  [23, 

39]. We then calculated the orientation-dependent Eshelby’s tensor and the elastic energy increment 

by changing the rotation angle (𝜙, 𝜓)  from 0∘  to 180∘  per 10∘  steps. The original coordinate 

system with (𝜙, 𝜓) = (0∘, 0∘)  was set as 𝒙𝟏– 𝒙𝟐– 𝒙𝟑 = [111]𝛽– [112̅]𝛽– [11̅0]𝛽 . Considering 

the symmetry of the ellipsoids, we calculated the strain field in only the first quadrants of the 𝒙𝟏
′ – 𝒙𝟐

′  

and 𝒙𝟏
′ – 𝒙𝟑

′  planes by setting the center of the ellipsoidal inclusion at the origin of the 𝒙’ coordinate 

system. Note that determining a unit for the half axes is unnecessary because Eshelby’s tensor is 

independent of the inclusion volume, and the positions in this study are unitless. 

 

3.2 Results and discussion  

Fig. 2 shows the calculated 𝛥𝐸het(𝜙, 𝜓) distribution of the 𝜔 and 𝛼 precipitates for V, Nb 

and Ta additive species. Although the potential energy of the 𝜔 phase is higher than that of the 

𝛽  phase in Table 1 for V, we conducted Eshelby’s ellipsoidal inclusion analysis because the 

energy difference is small. As shown in the figure, although the scale of 𝛥𝐸het map changes 

with respect to the additive species, the approximate shapes of the maps appear similar. This is 

because the nonzero components of eigenstrains in Table 3 are the same for all the additive species. 

For all the additive species, the disk shapes generally have smaller 𝛥𝐸het values than the needle 

shapes; however, the difference between the 𝛥𝐸het values of the disk and needle shapes is small 

for the 𝜔 precipitates. Except for V, the 𝜔 precipitates had a smaller 𝛥𝐸het than the 𝛼 phase. 



This is due to the small eigenstrains of the 𝛽–𝜔 phase transformation. The minimum value of 

𝛥𝐸het (𝛥𝐸min
het ) is at (𝜙, 𝜓) = (20∘, 80∘) for the 𝛼 phase of all additive species. 𝛥𝐸min

het  is at 

(𝜙, 𝜓) = (150∘, 150∘) for V, at (𝜙, 𝜓) = (0∘, 90∘) for Nb, and at (𝜙, 𝜓) = (90∘, 30∘) for 

Ta 𝜔 precipitates. The 𝛼 disk with (𝜙, 𝜓) = (20∘, 80∘) is approximately a [111]𝛽 normal 

disk, which is consistent with the experimental observations; the habit plane of the 𝛼 precipitate 

is {344}𝛽  or {334}𝛽  [40–42]. Although (𝜙, 𝜓)  of 𝛥𝐸min
het   are different with respect to the 

additive species for 𝜔  precipitates, considering the 𝛥𝐸het  is relatively small in any (𝜙, 𝜓) 

and shapes (disk and needles) compared with 𝛼 phase and the rough shape of 𝛥𝐸het maps is 

similar, we think a good interpretation is that 𝜔 can take various shapes and orientations because 

of its small eigenstrains.   

Table 4 lists the data for 𝛥𝐸min
het  and 𝛥𝐸total

 . For V addition, the stability of 𝜔 precipitates is 

lower than that of the 𝛽 matrix, whereas the stability of 𝛼 precipitates is higher than that of the 

𝛽 matrix; nonetheless, the energy difference between 𝛽 and 𝛼 decreases. Thus, 𝛼 phases are 

the most stable, even if one takes into account the elastic energy increment due to the 

heterogeneity of 𝛼  secondary phases. This is consistent with the experimental observations 

which indicate the presence of 𝛼 precipitates in V additive titanium alloys after aging, which are 

transformed from the initial 𝜔 precipitates [14]. For Nb addition, DFT calculations indicated 

that the 𝜔 and 𝛼 phases were more stable than the 𝛽 phases. However, from the marginally 

positive 𝛥𝐸total
  values, we confirmed that the 𝛽 matrix was the most stable, and the 𝜔 and 𝛼 

precipitates were less stable than the 𝛽 matrix (or equally stable). This demonstrates that the 

energy hierarchy of the 𝛼, 𝛽 and 𝜔 phases, calculated using DFT atomistic simulations, may 

be altered when the effects of heterogeneity are considered. Thus, at high Nb concentrations, our 

results suggest that the secondary phase in the 𝛽 matrix is prevented. However, at relatively low 

Nb concentrations, the secondary 𝜔 or 𝛼 phases may nucleate because they are more stable 

than the 𝛽 phases of pure Ti. For Ta addition, the results suggest that the 𝜔 precipitates were 

the most stable. This is because the Δ𝐸DFT of 𝜔 in Table 1 is considerably small. However, the 

𝛼 precipitates in this case may not be nuclear because 𝛥𝐸total of 𝛼 is higher than that of 𝜔. 

In the discussion above, we focused primarily on the 𝜔  and 𝛼  precipitates in 𝛽  matrix. 

However, considering that the order of phase transformation is 𝛽 to 𝜔 to 𝛼, a coexistence of 

the three phases is also possible: 𝜔  nucleates in the 𝛽  matrix, then 𝛼  nucleates in the 𝜔 

intermediate matrix, and the 𝜔  precipitate remains in the 𝛽  matrix. We now investigate the 

stability of this situation. The intermediate 𝜔 phase can be considered as a matrix distorted by 

the original 𝛽  matrix. Considering the calculated elastic strain 𝜀𝑖𝑗
inc − 𝜖𝑖𝑗

inc  for the 𝜔 

precipitates with 𝛥𝐸min
het  as the external strain 𝜀𝑖𝑗

ex, we applied the same Eshelby’s ellipsoidal 

inclusion analysis to 𝛼  precipitates in 𝜔  matrix. Fig. 3 shows the calculated Δ𝐸het  map. 

Similar to the above results, the disk shapes are energetically favorable and 𝛥𝐸min
het  is at (𝜙,



𝜓) = (20∘, 90∘) for the V additive, and at (𝜙, 𝜓) = (140∘, 80∘) for the Nb and Ta additives. 

The (𝜙, 𝜓) value of 𝛥𝐸min
het  is almost the same as that of 𝛼 disk in 𝛽 matrix for V though 

(𝜙, 𝜓)  of 𝛥𝐸min
het   is different from that for Nb and Ta additives. However, because Δ𝐸het 

values at (𝜙, 𝜓) = (20∘, 90∘) for Nb and Ta are almost same as those at (𝜙, 𝜓) = (140∘, 80∘), 

we think the orientation (𝜙, 𝜓) = (20∘, 90∘) is also possible for Nb and Ta. Interestingly, for 

the Nb and Ta additives, although the value of 𝛥𝐸min
het  is positive for the 𝛼 precipitates in 𝛽 

matrix, the value of 𝛥𝐸min
het   is negative in this case. This means that the 𝜔–𝛼  phase 

transformation in the intermediate 𝜔  matrix and the coexistence of the three phases are 

elastically favored. This is because the elastic strains due to the 𝛼 precipitation neutralized the 

external strain 𝜀𝑖𝑗
ex in the 𝜔 intermediate matrix due to the 𝛽 matrix. Using the above results, 

we calculated Δ𝐸total as  

 

Δ𝐸total = Δ𝐸DFT(𝜔) + 𝑉atom(Δ𝐸min
het (𝜔 in 𝛽) + Δ𝐸min

het (𝛼 in 𝜔)),  

 

for the coexistence of the three phases. The values of Δ𝐸total are listed in Table 4. The results 

suggest that stable precipitates in the 𝛽 matrix does not change for the V additive as 𝛼 phase. 

Moreover, if the 𝜔 phase exists in the 𝛽 matrix, the coexistence of the three phases is favored 

for the Nb additive owing to the negative Δ𝐸min
het  (however, we note that the 𝜔 precipitate itself 

is less stable than the 𝛽 matrix). For the Ta additive, 𝜔 precipitates were favored despite the 

negative Δ𝐸min
het  because Δ𝐸DFT in Table 1 is considerably low.   

Finally, the calculated strain field around the 𝛼 disk in the 𝛽 matrix for the V additive is shown 

in Fig. 4 and that around the 𝜔 disk for the Nb and Ta additives is shown in Fig. 5. We calculated 

the strain fields for 50 discrete positions at even intervals in the range from 0 to 25 for 𝒙𝟏
′  and 

𝒙𝟐
′  and from 0 to 2 for 𝒙𝟑

′ . The strain field maps were obtained after a linear interpolation. For 

the V additive, a large strain field with various strain components was observed. In particular, 𝜀11 

was quite large and approximately 0.1 near the precipitate. This can be attributed to the mixture 

of the eigenstrains of the 𝛽–𝜔 and 𝜔–𝛼 phase transformations. This type of residual strain 

field may have both positive and negative effects on the mechanical properties of titanium alloys: 

for example, it may prevent the movement of dislocations (positive) or help the nucleation of 

cracks (negative). In contrast, only small shear components exist around the 𝜔 precipitates for 

the Nb and Ta additives. Thus, 𝜔 precipitates may not cause residual (internal) strain (or stress), 

and 𝛼  precipitates may play a more important role than 𝜔  precipitates in precipitation 

strengthening.    

 

 

 



 

 

Table 4: Potential energy differences Δ𝐸total  of 𝜔  and 𝛼  titanium precipitates from 𝛽 

titanium matrix for each additive element, calculated by considering the elastic energy increment 

due to the heterogeneity. The potential energies are in eV/atom. The Δ𝐸min
het  (eV/nm3) and 𝑉atom 

(nm3) data are also included.   

 

  𝜔 in 𝛽 matrix 𝛼 in 𝛽 matrix 𝛼 in 𝜔 matrix 

 𝑉atom Δ𝐸min
het  Δ𝐸total Δ𝐸min

het  Δ𝐸total Δ𝐸min
het  Δ𝐸total 

Ti5V1 0.0995 0.8127 0.0159 0.7423 -0.0012 3.5881 0.0059 

Ti5Nb1 0.1043 0.5588 0.0050 0.9611 0.0077 -1.2454 -0.0207 

Ti5Ta1 0.1046 0.0094 -0.0365 0.0136 -0.0136 -1.0656 -0.0358 

 

 

 

Figure 2: Change in elastic energy increment Δ𝐸 
het with respect to 𝜙 and 𝜓 for V, Nb, and 

Ta additive: 𝜔 and 𝛼 titanium precipitates in 𝛽 titanium matrix. Broken circle indicates the 

area with the minimum Δ𝐸 
het (Δ𝐸min

het ). 



 

 

 

 

Figure 3: Change in elastic energy increment Δ𝐸 
het with respect to 𝜙 and 𝜓 for V, Nb, and 

Ta additive: 𝛼 titanium precipitates in 𝜔 titanium intermediate matrix. Broken circle indicates 

the area with the minimum Δ𝐸 
het (Δ𝐸min

het ).  

 



 

 

 

Figure 4: Strain fields around (𝜙, 𝜓) = (20∘, 80∘) 𝛼 disk of Ti5V1 on the first quadrant of 

𝒙𝟏
′ – 𝒙𝟐

′   and 𝒙𝟏
′ – 𝒙𝟑

′   planes. Note that all strain components are described in the original 

coordinate system 𝒙𝟏– 𝒙𝟐– 𝒙𝟑 = [111]𝛽– [112̅]𝛽– [11̅0]𝛽  and the strain fields inside the 

ellipsoid were omitted. 

 



 

Figure 5: Strain fields around (𝜙, 𝜓) = (0∘, 90∘) 𝜔 disk of Ti5Nb1and (𝜙, 𝜓) = (90∘, 30∘) 

𝜔  disk of Ti5Ta1  on the first quadrant of 𝒙𝟏
′ – 𝒙𝟐

′   and 𝒙𝟏
′ – 𝒙𝟑

′   planes. Note that all strain 

components are described in the original coordinate system 𝒙𝟏– 𝒙𝟐– 𝒙𝟑 =

[111]𝛽– [112̅]𝛽– [11̅0]𝛽. The magnitudes of the strain fields of other strain components that are 

not shown in this figure are extremely small (lower than 10−3) and we believe that they are 

ignorable. The strain fields inside the ellipsoid were omitted.  



4. Summary  

In summary, we combined DFT atomistic simulations and Eshelby’s ellipsoidal inclusion analysis 

for the 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 energetical prediction of the phase stability of 𝛽 titanium alloys with Mo, V, W, 

Nb, and Ta additives as 𝛽 stabilizer elements. In particular, we accounted for the heterogeneity of the 

secondary 𝜔  and 𝛼  phases (precipitation) in 𝛽  matrix. For all 𝛽  stabilizer species, apart from 

significant energetic stabilization of the 𝛽 phase, significant elastic stabilization was observed. The 

addition of Mo and W turned the 𝛽  phase the most energetically stable; secondary 𝜔  and 𝛼 

precipitates may hardly nucleate in 𝛽 phase in high concentration condition. Although the V, Nb, and 

Ta additives stabilize 𝛽 phase significantly, the 𝛽 phase remains metastable. V and Ta respectively 

helped the precipitation of 𝛼 and 𝜔. For Nb addition, the possibility of a coexistence of 𝜔 and 𝛼 

in the 𝛽 matrix was suggested. The strain fields around the precipitates were also investigated, and 

the results suggested that 𝛼  precipitates cause a large residual strain around them, whereas 𝜔 

precipitates do not. The phase stability depends strongly on the concentration of the additives even 

when the same additive element is used. Hence, we intend to investigate the phase stability of 𝛽 

titanium alloys with lower concentrations of 𝛽 stabilizer elements in future work.  
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