

Title	On a generalization of QF-3'rings
Author(s)	Kurata, Yoshiki; Katayama, Hisao
Citation	Osaka Journal of Mathematics. 1976, 13(2), p. 407–418
Version Type	VoR
URL	https://doi.org/10.18910/9322
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Kurata, Y. and Katayama, H. Osaka J. Math. 13 (1976), 407-418

ON A GENERALIZATION OF QF-3' RINGS*

Dedicated to Professor Kiiti Morita for the celebration of his sixtieth birthday.

YOSHIKI KURATA AND HISAO KATAYAMA

(Received February 20, 1975)

A ring R with identity is called left QF-3' if the injective hull E(R) of the left R-module R is torsionless. This class of rings and the other related generalizations of quasi-Frobenius rings have been studied by a number of authors.

Recently, Jans [7] has given a torsion theoretic characterization of left QF-3' rings (cf. also Kato [8] and Tsukerman [14]). The purpose of this paper is, generalizing this idea, to consider a module theoretic generalization of left QF-3' rings. We shall say that a left *R*-module Q is QF-3' if its injective hull E(Q) is torsionless with respect to Q, i.e., E(Q) can be embedded in a direct product of copies of Q.

The main theorem of §1 will give some equivalent conditions for Q to be QF-3'.

In §2, we shall discuss basic properties of QF-3' R-modules and study a relation between QF-3' R-modules and cogenerators for R-mod.

We shall treat, in §3, QF-3' R-modules with zero singular submodule. We shall give some results relating the notions of Q-torsionless R-modules and non-singular R-modules. In particular we shall show that, if Q is faithful, these notions coincide if and only if Q is QF-3' and has zero singular submodule. We shall also give another characterization of a QF-3' R-module with zero singular submodule making use of its injective submodules.

After completed this paper, we found that the similar results were obtained by Bican [2] and wrought a slight change in the paper.

Throughout this paper, R will denote an associative ring with identity and R-mod the category of unital left R-modules and R-homomorphisms. We shall deal only with left R-modules and so R-modules will mean unital left R-modules. E(M) will always denote the injective hull of a left R-module M and $r_M(*)$ the right annihilator of * in M.

^{*)} The authors are indebted to the referee for helpful suggestions.

Y. KURATA AND H. KATAYAMA

1. Preliminaries

A subfunctor r of the identity functor of R-mod is called a preradical of R-mod. It is called idempotent if r(r(M))=r(M) and a radical if r(M/r(M))=0 for all R-modules M. To each preradical r we associate two classes of R-modules, namely

$$\mathbf{T}(\mathbf{r}) = \{M | \mathbf{r}(M) = M\}$$
 and $\mathbf{F}(\mathbf{r}) = \{M | \mathbf{r}(M) = 0\}$.

In case a preradical r is idempotent and is a radical, the pair (T(r), F(r)) forms a torsion theory for R-mod in the sense of [5].

In the class of all preradicals of *R*-mod, there is a partial ordering in which $r_1 \leq r_2$ means that $r_1(M) \subset r_2(M)$ for all *R*-modules *M*. For each preradical *r* there exists a largest idempotent preradical \hat{r} smaller than or equal to *r* and a smallest radical \bar{r} larger than or equal to *r*. It is easy to see that $\mathbf{T}(\hat{r}) = \mathbf{T}(r)$ and $\mathbf{F}(\bar{r}) = \mathbf{F}(r)$. Moreover, if *r* is idempotent, then so is \bar{r} , and \hat{r} is a radical if *r* is.

Let Q be an R-module and let us define

$$k_Q(M) = \bigcap_{f \in \operatorname{Hom}_R(M,Q)} \operatorname{Ker}(f)$$

for each *R*-module *M*. Then k_Q is a radical of *R*-mod such that $k_Q(Q)=0$. Moreover it is a unique maximal one of those preradicals *r* of *R*-mod for which r(Q)=0, and $k_{E(Q)}$ is a unique maximal one of those left exact radicals *r* of *R*-mod for which r(Q)=0. As is well-known, every left exact radical of *R*-mod is of the form k_E for some injective *R*-module *E*. For example, we can take *E* as the direct product of injective hulls of all cyclic torsion-free *R*-modules (e.g., see [11]).

Since $k_Q \leq k_{Q'}$ for each submodule Q' of Q and $k_{E(Q)}$ is idempotent, we have $k_{E(Q)} \leq \hat{k}_Q \leq k_Q$.

The class $T(k_Q)$ coincides with the class $\{M \mid \operatorname{Hom}_R(M, Q)=0\}$ and is closed under taking homomorphic images, direct sums and extensions. So this is a torsion class in *R*-mod and the corresponding torsion-free class coincides with $F(\hat{k}_Q)$. On the other hand, the class of *R*-modules $F(k_Q)$ is not a torsionfree class in general. This is closed under taking submodules and direct products, but not extensions in general (see e.g. [16, Example B]). As is wellknown, Q is a cogenerator for $F(k_Q)$. Moreover, an *R*-module *M* is in $F(k_Q)$ if (and only if) it can be embedded in a direct product of copies of Q. However, for simple *R*-modules we have

Proposition 1.1. A simple R-module S is in $F(k_Q)$ if and only if there exists an R-monomorphism of S into Q.

The proof is easy and so we will omit it.

As was mentioned above, $F(k_Q)$ is not closed under taking extensions.

The following proposition shows when it is closed under taking extensions. Evidently this is the case if Q is injective.

Proposition 1.2. The following conditions on an R-module Q are equivalent :

- (1) $\mathbf{F}(k_{\omega})$ is closed under taking extensions, i.e., it becomes a torsion-free class.
- (2) $k_Q = \hat{k}_Q$, i.e., k_Q is idempotent.
- (3) $\mathbf{F}(k_Q) = \mathbf{F}(\hat{k}_Q)$.

Bican [2] has obtained the same result independently, and so we will omit the proof.

The class $T(k_Q)$ is a torsion class, but it is not, in general, closed under taking submodules (e.g., see [16]). Concerning this, we have

Proposition 1.3. For an R-module Q, the following conditions are equivalent:

- (1) $T(k_Q)$ is closed under taking submodules.
- (2) $\hat{k}_Q = k_{E(Q)}$, i.e., \hat{k}_Q is left exact.
- (3) $\mathbf{T}(k_Q) = \mathbf{T}(k_{E(Q)}).$

Proof. (1) \Rightarrow (2). Suppose that $\mathbf{T}(k_Q)$ is closed under taking submodules. Then, since $\hat{k}_Q \leq k_Q$, $\hat{k}_Q(Q)=0$ and, since the corresponding torsion-free class $\mathbf{F}(\hat{k}_Q)$ of $\mathbf{T}(k_Q)$ is closed under taking injective hulls, we have $\hat{k}_Q(E(Q))=0$. So $\hat{k}_Q \leq k_{E(Q)}$ and hence $\hat{k}_Q = k_{E(Q)}$.

(2) \Rightarrow (3) is clear and since $k_{E(Q)}$ is left exact, (3) implies (1).

This proposition was also proved in Bican [2] by a different method. Combining this with Proposition 1.2, we have

Theorem 1.4. The following conditions on an R-module Q are equivalent: (1) $(\mathbf{T}(k_{0}), \mathbf{F}(k_{0}))$ forms a hereditary torsion theory for R-mod.

(2) $\mathbf{T}(k_Q)$ is closed under taking submodules and $\mathbf{F}(k_Q)$ is closed under taking extensions.

- (3) $k_Q = k_{E(Q)}$.
- (4) k_Q is left exact.
- (5) $F(k_{o})$ is closed under taking injective hulls.
- (6) $\mathbf{F}(k_{\omega})$ is closed under taking essential extensions.
- (7) $\mathbf{F}(k_{\Theta})$ contains an injective R-module M with $k_{M}(Q)=0$.
- (8) $E(Q) \in \mathbf{F}(k_Q)$.
- (9) $\mathbf{T}(k_Q) = \mathbf{T}(k_{E(Q)})$ and $\mathbf{F}(k_Q) = \mathbf{F}(k_{E(Q)})$.

Proof. Here we show only that (7) implies (8). The proof of the other is easy. Since $k_M(Q)=0$, $Q \subset \prod M$, a direct product of copies of M, and hence $E(Q) \subset \prod M$. $F(k_Q)$ is closed under taking direct products and submodules and so we have $E(Q) \in F(k_Q)$.

The equivalence of (3), (4) and (8) was also proved in Bican [2]. In case Q=R, the equivalence of these conditions, except for (1), (4), (5) and (9), was shown by Colby and Rutter [4], Jans [7], and Kato [8].

2. QF-3' R-modules

Recall that a ring R is left QF-3' if the injective hull of the R-module R is torsionless, i.e., $k_R(E(R))=0$. Recently, Jans [7] has shown that R is left QF-3' if and only if $F(k_R)$ is closed under taking extensions and $T(k_R)$ is closed under taking submodules (cf. also Kato [8] and Tsukerman [14]). From this point of view we now make the following definition.

DEFINITION. An *R*-module Q is called QF-3' if Q satisfies each one of the conditions of Theorem 1.4.

It follows from this definition that every injective R-module is QF-3'. The following example pointed out by Tsukerman without proof shows that there exist non-injective QF-3' R-modules.

EXAMPLE 2.1. Every direct sum of injective R-modules is QF-3'.

To see this, let $Q = \sum_{\lambda \in \Lambda} \oplus Q_{\lambda}$ be a direct sum of injective *R*-modules. Then $\mathbf{F}(k_{Q_{\lambda}}) \subset \mathbf{F}(k_Q)$ for all λ and hence $\prod_{\lambda \in \Lambda} Q_{\lambda} \in \mathbf{F}(k_Q)$. Since $Q \subset E(Q) \subset \prod_{\lambda \in \Lambda} Q_{\lambda}$, $E(Q) \in \mathbf{F}(k_Q)$ and thus Q is QF-3'.

Proposition 2.2. (1) Every direct product of QF-3' R-modules is QF-3'.
(2) Every direct sum of QF-3' R-modules is QF-3'.

Proof. (1) Let $Q = \prod_{\lambda \in \Lambda} Q_{\lambda}$ be a direct product of QF-3' *R*-modules. Then $\mathbf{F}(k_{Q_{\lambda}}) \subset \mathbf{F}(k_Q)$ for all λ and hence $\prod_{\lambda \in \Lambda} E(Q_{\lambda}) \in \mathbf{F}(k_Q)$. Since $Q \subset E(Q) \subset \prod_{\lambda \in \Lambda} E(Q_{\lambda})$, $E(Q) \in \mathbf{F}(k_Q)$ and thus Q is QF-3'. The proof of (2) is similar to that of (1) and so it will be omitted.

It should be noted that, as we shall show later, direct summands of a QF-3'*R*-module need not be QF-3' in general.

Proposition 2.3. Every essential extension of a QF-3' R-module is QF-3'.

Proof. Suppose that Q is QF-3' and Q' is an essential extension of Q. Then we can assume that $Q \subset Q' \subset E(Q)$ and hence we have $k_{E(Q)} \leq k_{Q'} \leq k_Q$. By Theorem 1.4, $k_Q = k_{Q'}$ and thus Q' is QF-3' again by Theorem 1.4.

It follows from this that every rational extension of a QF-3' *R*-module is also QF-3'. This appeared in [13] for left QF-3' rings.

Let Q be an R-module. As is easily seen, Q is faithful if and only if $k_Q(R)=0$ and this is so if and only if $k_Q \leq k_R$. On the other hand, Q is torsionless if and only if $k_R(Q)=0$, or equivalently, $k_R \leq k_Q$. Therefore if Q is both

410

faithful and torsionless, then we have $k_Q = k_R$. Applying Theorem 1.4, we have

Theorem 2.4. For a ring R, the following conditions are equivalent:

- (1) R is a left QF-3' ring.
- (2) The R-module R is QF-3'.
- (3) There exists a QF-3' R-module Q which is both faithful and torsionless.

Proposition 2.5. Let Q be an R-module.

(1) If Q is a QF-3' R-module with non-zero socle, then the injective hull of every simple submodule of Q is isomorphic to a submodule of Q.

(2) If the injective hull of every cyclic submodule of Q is isomorphic to a submodule of Q, then Q is QF-3'.

Proof. (1) Let S be a simple submodule of Q. Take $x(\pm 0)$ in E(S). Then there exists $ax(\pm 0)$ in $Rx \cap S$. S is in $F(k_Q)$ and so E(S) is in $F(k_Q)$ by Theorem 1.4. We can find an R-homomorphism $f: E(S) \rightarrow Q$ such that $f(ax) \pm 0$. Hence we have $f(S) \pm 0$ and f must be a monomorphism.

(2) Take $x(\pm 0)$ in E(Q). There exists $ax (\pm 0)$ in $Rx \cap Q$. By assumption, $E(Rax) \subset Q$, and the inclusion mapping $Rax \rightarrow E(Rax)$ can be extended to an *R*-homomorphism $f: E(Q) \rightarrow Q$ such that $f(x) \pm 0$, which shows that Q is QF-3'.

Clearly, for a direct sum Q of injective R-modules, the injective hull of every cyclic submodule is isomorphic to a submodule of Q and so (2) above gives another proof of Example 2.1.

As an immediate consequence of this proposition, we have at once

Corollary 2.6. For an R-module Q with non-zero socle, the following conditions are equivalent:

- (1) Q is indecomposable and QF-3'.
- (2) Q=E(S) for every simple submodule S of Q.
- (3) Q = E(Q') for every non-zero submodule Q' of Q.

Proposition 2.7. Let Q be an R-module. If every cyclic submodule of Q is QF-3', then Q is itself QF-3'.

Proof. Take $x(\pm 0)$ in E(Q) and claim that there exists an *R*-homomorphism f^* : $E(Q) \rightarrow Q$ with $f^*(x) \pm 0$. Choose an element *a* in *R* such that $ax(\pm 0)$ is in *Q*. Then we have $Rax \subset E(Rax) \subset E(Q)$ and $E(Q) = E(Rax) \oplus Q_1$ for some submodule Q_1 of E(Q). By assumption, Rax is QF-3' and so there exists an *R*-homomorphism $f: E(Rax) \rightarrow Rax$ such that $f(ax) \pm 0$. Then it is easy to see that the composition $f^*: E(Q) \rightarrow Q$ of *f* and the projection mapping $E(Q) \rightarrow E(Rax)$ has the desired property.

As a direct consequence of this, we see that if every cyclic R-module is QF-3', then every R-module is also QF-3'. This was proved by Tsukerman

[14] under the assumption that R is left hereditary.

Recall that an *R*-module Q is a cogenerator for *R*-mod if $F(k_Q)=R$ -mod. Therefore, a cogenerator for *R*-mod is necessarily QF-3'. We now consider the question of when a QF-3' *R*-module becomes a cogenerator for *R*-mod. To do this we shall prove

Proposition 2.8. For an R-module $Q \ (\neq 0)$, the following conditions are equivalent:

(1) Q contains a copy of every simple R-module.

(2) Every simple R-module belongs to $\mathbf{F}(k_{Q})$.

(3) For every simple R-module S, $\operatorname{Hom}_{\mathbb{R}}(S, Q) \neq 0$.

(4) For every maximal left ideal m of R, $r_Q(m) \neq 0$.

(5) For every proper left ideal \mathfrak{m} of R, $r_Q(\mathfrak{m}) \neq 0$.

(6) For every non-zero finitely generated R-module M, $\operatorname{Hom}_{\mathbb{R}}(M, Q) \neq 0$.

(7) For every non-zero cyclic R-module M, $\operatorname{Hom}_{\mathbb{R}}(M, Q) \neq 0$.

(8) E(Q) is a cogenerator for R-mod.

(9) Every non-zero injective R-module M with $k_M(Q)=0$ is a cogenerator for R-mod.

Proof. We shall show only $(7) \Rightarrow (8) \Rightarrow (9) \Rightarrow (1)$.

 $(7) \Rightarrow (8)$. Let M be an R-module. Take $x(\pm 0)$ in M. Then by assumption there exists a non-zero R-homomorphism $f: Rx \rightarrow Q$. Since E(Q) is injective, it can be extended to an R-homomorphism $f': M \rightarrow E(Q)$ and $f'(x) = f(x) \pm 0$. This shows that E(Q) is a cogenerator for R-mod.

(8) \Rightarrow (9). Since $k_M(Q) = 0$, $Q \subset \prod M$, a direct product of copies of M, and hence $E(Q) \subset \prod M$. Then we have R-mod = $\mathbf{F}(k_{E(Q)}) \subset \mathbf{F}(k_{\Pi M})$. It follows that $\prod M$ is a cogenerator for R-mod and so is M by [12, Lemma 1].

 $(9) \Rightarrow (1)$. Since E(Q) is a cogenerator for *R*-mod, for every simple *R*-module *S*, there exists a non-zero *R*-homomorphism $f: S \rightarrow E(Q)$. *S* is simple, so *f* must be a monomorphism. Since $f(S) \cap Q \neq 0$, $f(S) \cap Q = f(S)$ and hence f(S) is contained in *Q*.

An *R*-module satisfying (1) and (8) was called lower distinguished by Azumaya [1] and a quasi-cogenerator by Morita [10] respectively.

Generalizing results due to Kato [8], Jans [6] and Sugano [12], we have

Theorem 2.9. The following conditions on an R-module Q are equivalent: (1) Q is a cogenerator for R-mod.

(2) Q is QF-3' and contains a copy of every simple R-module.

(3) $\sum_{\lambda \in \Lambda} \oplus E(S_{\lambda}) \in \mathbf{F}(k_Q)$, where $\{S_{\lambda}\}_{\lambda \in \Lambda}$ be a complete set of representatives for the isomorphism classes of simple *R*-modules.

(4) There exists a cogenerator for R-mod contained in $F(k_Q)$.

(5) Every R-module M with $k_M(Q)=0$ is a cogenerator for R-mod.

412

(6) Q is faithful QF-3' and $\mathbf{F}(k_Q)$ is closed under taking homomorphic images.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ follow from Proposition 1.1 and Theorem 1.4 and $(3) \Rightarrow (4)$ and $(5) \Rightarrow (6)$ are easy.

 $(4) \Rightarrow (5)$. Let N be a cogenerator for R-mod contained in $\mathbf{F}(k_Q)$ and let M be an R-module with $k_M(Q) = 0$. Then we have $k_M \leq k_Q \leq k_N$ and $\mathbf{F}(k_N) = R$ -mod. Hence $\mathbf{F}(k_M) = R$ -mod as desired.

 $(6) \Rightarrow (1)$. By assumption, there exists a class **T** of *R*-modules such that $(\mathbf{T}(k_Q), \mathbf{F}(k_Q), \mathbf{T})$ forms a 3-fold torsion theory for *R*-mod in the sense of [9]. It follows from Lemma 2.1 of [9] that $k_Q(M) = k_Q(R) \cdot M$ for each *R*-module *M*. Hence it results that $\mathbf{F}(k_Q) = R$ -mod since *Q* is faithful.

3. Non-singular QF-3' R-modules

In case the singular submodule Z(Q)=0, we can give a simple criterion for Q being QF-3'.

Theorem 3.1. Let Q be an R-module with Z(Q)=0. Then Q is QF-3' if and only if $T(k_Q)$ is closed under taking submodules.

This was also obtained by the same method in Bican [2] and we will omit the proof.

As is well-known, the functor Z of R-mod which assigns to each R-module M its singular submodule Z(M) is a left exact preradical of R-mod. It is to be noted that, for this preradical, F(Z) is nothing but the torsion-free class of the so-called Goldie torsion theory. We shall now give other characterizations of non-singular QF-3' R-modules by means of the functor Z. To do this, we first prove the following which appeared in Colby and Rutter [4] for the case Q=R.

Proposition 3.2. The following conditions on an R-module Q are equivalent :

- (1) Z(Q)=0.
- (2) $\mathbf{F}(k_Q) \subset \mathbf{F}(Z)$.
- (3) $\mathbf{T}(Z) \subset \mathbf{T}(k_Q)$.

Proof. (1) \Rightarrow (2). Since $Z \leq k_Q$, we have $\mathbf{F}(k_Q) \subset \mathbf{F}(Z)$.

 $(2) \Rightarrow (3)$. Let *M* be in $\mathbf{T}(Z)$. Take *f* in $\operatorname{Hom}_{R}(M, Q)$ and *x* in *M*. Then, since $\operatorname{Ann}_{R}(x)$ is essential in *R*, so is $\operatorname{Ann}_{R}(f(x))$ and hence f(x) is in Z(Q). But by assumption (2) Z(Q) = 0 and this implies that *M* is contained in $\mathbf{T}(k_Q)$.

 $(3) \Rightarrow (1)$. Since Z is an idempotent preradical, Z(Q) is in T(Z) and hence is in $T(k_Q)$. This shows that $\operatorname{Hom}_R(Z(Q), Q) = 0$ and Z(Q) = 0.

Lemma 3.3. Let Q be a faithful R-module. Then we have (1) $T(k_{E(Q)}) \subset T(Z)$, and (2) $F(Z) \subset F(k_{E(Q)})$.

Proof. (1) For every R-module M in $T(k_{E(Q)})$ and every element x in M, we shall claim that $\operatorname{Ann}_R(x)$ is essential in R. Suppose that \mathfrak{m} is a non-zero left ideal in R such that $\operatorname{Ann}_R(x) \cap \mathfrak{m}=0$. Define $f:\mathfrak{m}x \to R$ such that f(ax)=afor $a \in \mathfrak{m}$. Clearly this is a well defined R-homomorphism. Let a be a nonzero element of \mathfrak{m} . Then there exists an R-homomorphism $g: R \to E(Q)$ such that $g(a) \neq 0$ since E(Q) is faithful. The composition map $g \circ f:\mathfrak{m}x \to E(Q)$ can be extended to an R-homomorphism $h: M \to E(Q)$ and h(ax)=g(f(ax))= $g(a) \neq 0$. Thus we have $\operatorname{Hom}_R(M, E(Q)) \neq 0$, but this is a contradiction. Similarly we can show that (2) holds.

It follows from Lemma 3.3 that, if Q is faithful and non-singular, then E(Q) is a cogenerator for F(Z). However, we can show that this is also true for more general QF-3' *R*-modules.

Theorem 3.4. For a faithful R-module Q, the following conditions are equivalent:

- (1) Q is QF-3' and Z(Q)=0.
- (2) $\mathbf{T}(k_Q) = \mathbf{T}(Z)$.
- (3) $\mathbf{F}(k_Q) = \mathbf{F}(Z)$.
- (4) $k_Q = Z$.
- (5) Q is a cogenerator for $\mathbf{F}(Z)$.

Proof. (1) \Rightarrow (2) and (1) \Rightarrow (3) follow from Proposition 3.2 and Lemma 3.3. (2) \Rightarrow (1). By Proposition 3.2, Z(Q)=0. Since T(Z) is closed under taking submodules, so is $T(k_Q)$. Therefore, Q is QF-3' by Theorem 3.1.

(3) \Rightarrow (1). By Proposition 3.2, Z(Q)=0. Since F(Z) is closed under taking injective hulls, so is $F(k_Q)$. Therefore, Q is QF-3' by Theorem 1.4.

 $(4)\Rightarrow(1)$ follows from Theorem 1.4 since Z is left exact. So we assume (2) and also (3). By Proposition 3.2, Z(Q)=0 and we have $Z \leq k_Q$. $\mathbf{F}(k_Q)=\mathbf{F}(Z)$ is closed under taking extensions and so by Proposition 1.2 k_Q is idempotent. For each *R*-module *M*, $k_Q(M) \in \mathbf{T}(k_Q) = \mathbf{T}(Z)$ and $k_Q(M) = Z(k_Q(M)) \subset Z(M)$. Therefore we have $k_Q \leq Z$.

 $(3) \rightleftharpoons (5)$. The fact that Q is a cogenerator for $\mathbf{F}(Z)$ means that Z(Q)=0 and $\mathbf{F}(Z) \subset \mathbf{F}(k_Q)$, or equivalently $\mathbf{F}(Z)=\mathbf{F}(k_Q)$ by Proposition 3.2. This completes the proof of the theorem.

In [4], it was given a similar characterization, except for (4) and (5), of non-singular left QF-3 rings in case these are semi-primary, and (4) may be viewed as a generalization of a result of [15].

In Proposition 2.3 we have shown that every essential extension of a QF-3'

R-module is QF-3'. However, in case it is non-singular, we have

Corollary 3.5. Let Q be a faithful QF-3' R-module and let Q' be a nonsingular R-module such that $Q \subset Q'$. Then Q' is also QF-3'.

Proof. By Proposition 3.2 and Theorem 3.4, $\mathbf{F}(Z) = \mathbf{F}(k_Q) \subset \mathbf{F}(k_{Q'}) \subset \mathbf{F}(Z)$. Hence we have $\mathbf{F}(k_{Q'}) = \mathbf{F}(Z)$ and Q' is QF-3'.

As another corollary to this theorem, we have

Corollary 3.6. For a ring R with Z(RR)=0 and its maximal ring of left quotients Q, the following conditions are equivalent:

(1) Every non-singular R-module is torsionless, i.e., R is a cogenerator for F(Z).

(2) R is a left QF-3' ring.

(3) $_{R}Q$ is torsionless.

Recently, Cateforis [3] has given a necessary and sufficient condition for a non-singular *R*-module to be a cogenerator for F(Z). The following theorem is motivated by his Theorem 1.1, and provides alternative characterizations of non-singular QF-3' *R*-modules to that given in Theorem 3.4.

Theorem 3.7. For a non-singular R-module Q, the following conditions are equivalent:

(1) Q is faithful and QF-3'.

(2) Q contains non-zero injective submodules and the sum Q^* of all such injective submodules is faithful.

(3) There exists a faithful submodule Q_0 of Q such that Q_0 contains the injective hull of every one of its finitely generated submodules.

Before proving the theorem, we shall quote Lemma 0.2 of [3] and give its proof for the sake of completeness.

Lemma 3.8. If A is an injective R-module and B is a non-singular Rmodule, then, for every R-homomorphism $f: A \rightarrow B$, both Ker(f) and Im(f)are injective.

Proof. Since A is injective, we can assume that $\operatorname{Ker}(f) \subset E(\operatorname{Ker}(f)) \subset A$. Take $x(\pm 0)$ in $E(\operatorname{Ker}(f))$ and $a(\pm 0)$ in R. If ax=0, then a is in $Ra \cap \operatorname{Ann}_{R}(f(x))$. If $ax \pm 0$, then we can find $bax(\pm 0)$ in $Rax \cap \operatorname{Ker}(f)$ for some b in R. Since f(bax) = 0 and $ba \pm 0$, $Ra \cap \operatorname{Ann}_{R}(f(x)) \pm 0$. At any rate, we have $Ra \cap \operatorname{Ann}_{R}(f(x)) \pm 0$ and hence $\operatorname{Ann}_{R}(f(x))$ is essential in R. f(x) is then in Z(B)=0. Therefore, x is in $\operatorname{Ker}(f)$ which shows that $\operatorname{Ker}(f)=E(\operatorname{Ker}(f))$.

Proof of Theorem 3.7. (1) \Rightarrow (2). By assumption, Hom_R(E(Q), Q) \neq 0

Y. KURATA AND H. KATAYAMA

and so by Lemma 3.8 Q contains certainly non-zero injective submodules. Moreover $k_{Q^*}(E(Q)) = k_Q(E(Q))$ again by Lemma 3.8. Hence we have $k_{Q^*}(Q) = 0$ which implies that $k_{Q^*} \leq k_Q$ and Q^* is faithful. (Moreover in this case $k_Q = k_{Q^*}$ holds.)

 $(2) \Rightarrow (3)$. For every finite family $\{M_1, M_2, \dots, M_n\}$ of non-zero injective submodules of Q, $\sum_{i=1}^{n} M_i$ is a homomorphic image of an injective *R*-module $\sum_{i=1}^{n} \oplus M_i$ and so by Lemma 3.8 it is also injective. It follows from this that Q^* contains the injective hull of every one of its finitely generated submodules.

 $(3) \Rightarrow (1)$. By Proposition 2.5 Q_0 is QF-3'. Q_0 is faithful and Q is nonsingular, so by Corollary 3.5 Q is also QF-3'. (Here we shall point out that $k_Q = k_{Q_0}$ holds. To see this it is sufficient to show that $k_{Q_0}(Q) = 0$. Take $x(\pm 0)$ in E(Q). Then $\operatorname{Ann}_R(x)$ is not essential in R so we can find $a(\pm 0)$ in R such that $Ra \cap \operatorname{Ann}_R(x) = 0$. Since ax is a non-zero element of E(Q), there exists some $bax(\pm 0)$ in $Rax \cap Q$. ba is a non-zero element in R and Q_0 is faithful and so for some x_0 in Q_0 we have $bax_0 \pm 0$. Then the mapping f: $Rbax \rightarrow Rbax_0$ given by $f(rbax) = rbax_0$, for r in R, is a well-defined R-homomorphism. By assumption, $E(Rbax_0) \subset Q_0$ and so f has an extension $f^*: E(Q) \rightarrow Q_0$ and $f^*(x) \equiv 0$. Thus $k_{Q_0}(E(Q)) = 0$ and $k_{Q_0}(Q) = 0$.)

To illustrate the theorem, we shall give some examples.

EXAMPLE 3.9. Let R be the ring of 2×2 upper triangular matrices over a field K. Then it is a faithful non-singular left module over itself. It has only one non-zero injective left ideal, namely

$$\begin{pmatrix} 0 & K \\ 0 & K \end{pmatrix}$$
,

and this is also a faithful R-module. Hence R is a QF-3' R-module with

$$R^* = \begin{pmatrix} 0 & K \\ 0 & K \end{pmatrix}.$$

There is no faithful left ideal of R properly contained in R^* , so we have $R_0 = R^*$. Moreover $R = R^* \oplus R'$, where

$$R' = \begin{pmatrix} K & 0 \\ 0 & 0 \end{pmatrix}$$

and is not QF-3'.

EXAMPLE 3.10. Let R be as above and Q the ring of all 2×2 matrices over K. Then Q is also a faithful non-singular R-module and is QF-3' since $Q=E(_{R}R)$. In this case, $Q=Q^{*}$ and we may take for Q_{0} , for example, as

$$\begin{pmatrix} K & 0 \\ K & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & K \\ 0 & K \end{pmatrix}$, or $Q = \begin{pmatrix} K & K \\ K & K \end{pmatrix}$.

416

Hence the submodule Q_0 in the theorem is not uniquely determined within isomorphisms.

REMARK. Let Q be a faithful, non-singular QF-3' R-module. Then there exist faithful submodules Q^* and Q_0 of Q with properties mentioned in Theorem 3.7. As was pointed out in the proof of the theorem, $k_{Q^*}=k_{Q_0}=k_Q$ hold and hence by Theorem 1.4 both Q^* and Q_0 are also QF-3'. These, as well as Q and E(Q), are faithful, non-singular QF-3' R-modules. Clearly Q^* includes Q_0 and moreover it is a unique maximal one of those submodules of Qwhich contain the injective hull of every one of its finitely generated submodules. Since each injective submodule of Q is that of Q^* , we can conclude that Q^* coincides with the sum of all non-zero injective submodules of Q^* , i.e., $(Q^*)^*=Q^*$.

Let us suppose furthermore that every direct sum of non-singular injective *R*-modules is injective. For example, we may take a finite dimensional ring *R* in the sense that it contains no infinite direct sum of submodules. Then Q^* is itself injective and hence *Q* can be decomposed into a direct sum of submodules Q^* and $Q': Q=Q^*\oplus Q'$. Since Q^* is a unique maximal nonzero injective submodule of *Q*, if $Q' \neq 0$, then Q' does not contain any non-zero injective submodule of *Q*. Therefore by Lemma 3.8 Hom_{*R*}(*E*(*Q'*), *Q'*)=0. This shows that *Q'* can not be QF-3'.

YAMAGUCHI UNIVERSITY

References

- G. Azumaya: Completely faithful modules and self-injective rings, Nagoya Math. J. 27 (1966), 697-708.
- [2] L. Bican: QF-3' modules and rings, Comment. Math. Univ. Carolinae 14 (1973), 295-303.
- [3] V.C. Cateforis: Minimal injective cogenerators for the class of modules of zero singular submodule, Pacific J. Math. 40 (1972), 527-539.
- [4] R.R. Colby and E.A. Rutter, Jr.: Semi-primary QF-3 rings, Nagoya Math. J. 32 (1968), 253-258.
- [5] S.E. Dickson: A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235.
- [6] J.P. Jans: Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259.
- [8] T. Kato: Torsionless modules, Tôhoku Math. J. 20 (1968), 233-242.
- [9] Y. Kurata: On an n-fold torsion theory in the category _RM, J. Algebra 22 (1972), 559-572.
- [10] K. Morita: Localizations in categories of modules. I, Math. Z. 114 (1970), 121– 144.

Y. KURATA AND H. KATAYAMA

- [11] B. Stenström: Rings and Modules of Quotients, Lecture Notes in Math. 237, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
- [12] K. Sugano: A note on Azumaya's theorem, Osaka J. Math. 4 (1967), 157-160.
- [13] H. Tachikawa: On left QF-3 rings, Pacific J. Math. 32 (1970), 255-268.
- [14] G.M. Tsukerman: Pseudo-injective modules and self-pseudo-injective rings, Math. Notes. 7 (1970), 220-226.
- [15] D.Y. Wei: On the concept of torsion and divisibility for general rings, Illinois J. Math. 13 (1969), 414–431.
- [16] L.E.T. Wu, H.Y. Mochizuki and J.P. Jans: A characterization of QF-3 rings, Nagoya Math. J. 27 (1966), 7-13.