

Title	Baseline serum PINP level is associated with the increase in hip bone mineral density seen with Romosozumab treatment in previously untreated women with osteoporosis
Author(s)	Kashii, Masafumi; Kamatani, Takashi; Nagayama, Yoshio et al.
Citation	Osteoporosis International. 2023, 34(3), p. 563-572
Version Type	AM
URL	https://hdl.handle.net/11094/93245
rights	© 2023, International Osteoporosis Foundation and Bone Health and Osteoporosis Foundation.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

1 1 **Original Article**
2
3
4
5
6
7
8
9
10
11
12
13
14

3 Baseline serum PINP level is associated with the increased bone mineral density in hip by
4 romosozumab in patients with treatment-naïve postmenopausal osteoporosis
5
6
7
8
9
10
11
12
13
14

6 **Authors**
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7 Masafumi Kashii¹⁾, Takashi Kamatani¹⁾, Yoshio Nagayama²⁾, Akira Miyama³⁾, Hideki Tsuboi⁴⁾,
8 Kosuke Ebina^{5,6)*}
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 **Affiliations**
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11 1) Department of Orthopedic Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibaharacho,
12 Toyonaka, Osaka 560-8565, Japan
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15 2) Nagayama Rheumatology and Orthopaedic Clinic, 4-3-25 Hiokisounishimachi, Higashi-ku,
16 Sakai 599-8114, Japan
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19 3) Department of Orthopaedic Surgery, Osaka Toneyama Medical Center, 5-1-1
20 Toneyama, Toyonaka, Osaka 560-8552, Japan
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21 4) Department of Orthopaedic Surgery, Osaka Rosai Hospital, 1179-3 Nagasonecho, Kita-ku,
22 Sakai 591-8025, Japan
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25 5) Department of Musculoskeletal Regenerative Medicine, Osaka University, Graduate School
26 of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 6) Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2
29 Yamada-oka, Suita, Osaka 565-0871, Japan
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 ***Corresponding author:**
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

35 Phone: +81-6-6210-8439; Fax: +81-6-6210-8438
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

39 E-mail: k-ebina@ort.med.osaka-u.ac.jp
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2 **ORCIDs**

3 Kosuke Ebina: 0000-0002-2426-1024

5 **Acknowledgments**

6 The authors thank Yasunori Tsukamoto, Yasuji Kato, and Hideki Yoshikawa, as well as all the
7 medical staff, for their excellent cooperation in the conduct of this study.

9 **Funding**

10 This research did not receive any specific grant from funding agencies in the public, commercial,
11 or not-for-profit sectors.

1 Abstract

2 Purpose

3 Some patients fail to obtain a sufficiently increased hip bone mineral density (BMD) by
4 romosozumab (ROMO) treatment. This study aimed to investigate the prognostic factor for
5 increased hip BMD with ROMO in patients with treatment-naïve postmenopausal osteoporosis.

6 Methods

7 This prospective, observational, and multicenter study included patients (n = 63: mean age, 72.6
8 years; T-scores of the lumbar spine [LS], -3.3; total hip [TH], -2.6; femoral neck [FN], -3.3;
9 serum type I procollagen N-terminal propeptide [PINP], 68.5 µg/L) treated by ROMO for 12
10 months. BMD and serum bone turnover markers were evaluated at each time point. A responder
11 analysis was performed to assess the patient percentage, and both univariate and multivariate
12 analyses were performed to investigate the factors associated with clinically significant
13 increased BMD (>3%) in both TH and FN

14 Results

Percentage changes of BMD from baseline in the LS, TH, and FN areas were 17.5%, 4.9%, and 4.3%, respectively. In LS, 96.8% of patients achieved $\geq 6\%$ increased LS-BMD, although 57.1% could not achieve $\geq 3\%$ increased BMD in either TH or FN. Multiple regression analysis revealed that only the baseline PINP value was significantly and independently associated with $\geq 3\%$ increased BMD in both TH and FN ($p = 0.019$, 95% confidence interval = 1.006–1.054). The optimal cut-off PINP value was 53.7 $\mu\text{g/L}$ with 54.3% sensitivity and 92.3% specificity (area under the curve = 0.752).

22 Conclusions

1 In a real-world setting, baseline PINP value was associated with increased BMD of TH and FN
2 by ROMO in treatment-naïve patients.

3

4 **Keywords:** Bone mineral density, Type I procollagen N-terminal propeptide, Postmenopausal
5 osteoporosis, Responder analysis, Romosozumab

6

7 **Mini Abstract**

8 Baseline serum PINP value was significantly and independently associated with increased bone
9 mineral density ($\geq 3\%$) in both total hip and femoral necks by 12 months of romosozumab
10 treatment in patients with treatment-naïve postmenopausal osteoporosis.

11

12

13

1
2 1 **Introduction**
3
4
5 2 Osteoporosis is a metabolic disease that is characterized by a progressive loss of bone mass
6
7 3 and microarchitectural deterioration, leading to an increased risk of fragility fractures [1].
8
9
10 4 Among all osteoporotic fractures, the hip fracture has the greatest impact on morbidity,
11
12 5 mortality, and health care costs [2,3]. Recent meta-regression analyses revealed that increased
13
14 6 treatment-related bone mineral density (BMD), especially in the total hip (TH) and femoral neck
15
16 7 (FN), was more strongly associated with all types of fracture reduction compared to the lumbar
17
18 8 spine (LS) [4]. Thus, obtaining sufficient BMD in TH and FN is of great interest.
19
20
21
22
23
24 9 Initiating treatment with anabolic agents, such as teriparatide, abaloparatide, and romosozumab
25
26 10 (ROMO), is recommended in patients at a high risk of fracture to promptly reduce the imminent
27
28 11 fracture risk [1,5,6]. ROMO is a humanized monoclonal antisclerostin antibody that rapidly
29
30 12 increases bone mass by increasing bone formation and decreasing bone resorption, in contrast to
31
32 13 teriparatide and abaloparatide, which stimulate both bone formation and bone resorption [7,8].
33
34
35 14 Presently, ROMO is recommended as a first-line drug for osteoporosis with extremely low
36
37 15 BMD in both LS and hip [9]. The FRAME study revealed that ROMO treatment for 12 months
38
39 16 increased BMD by approximately 13.3%, 6.9%, and 5.9% in LS, TH, and FN, respectively, in
40
41 17 patients with treatment-naïve postmenopausal osteoporosis [10]. Previous studies identified the
42
43 18 clinically significant increased BMD, which represents the least significant change, as 3% in
44
45 19 three measured sites by ROMO treatment [11,12]. Previous well-organized studies showed the
46
47 20 positive effects of ROMO in increasing hip BMD [7,10,11,12,13], and 96% and 78% of patients
48
49 21 who obtained $\geq 3\%$ increased BMD by 12 months of ROMO treatment was in LS and TH,
50
51 22 respectively [11].
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 In March 2019, Japan became the first country to approve the use of ROMO, and its clinical
2 data based on the real-world setting is of great interest. We previously reported that BMD
3 increase induced by ROMO was significantly diminished by the prior anti-bone resorptive
4 treatment [14,15], and the increased BMD in LS, TH, and FN in treatment-naïve patients was
5 similar to that reported in Japanese populations of the FRAME study [12]. However, we
6 realized that some patients show difficulty in increasing TH or FN-BMD by ROMO treatment
7 in a real-world setting. Tominga et al. reported that the mean percent change in the TH-BMD
8 was below the least significant change and suggested that ROMO showed minor effect in
9 TH-BMD increase of treatment-naïve patients [16]. Therefore, this study aimed to investigate
10 surrogate biomarkers for predicting increased hip BMD to distinguish the therapeutic
11 responders from nonresponders by ROMO treatment.

12

13 **Methods**

14 ***Study design and participants***

15 This open-label, prospective study was conducted in six centers. Female patients who were
16 firstly diagnosed with postmenopausal osteoporosis with a high risk of osteoporotic fracture,
17 and were never administrated osteoporosis agents were recruited from March 2019 to October
18 2021. All patients were subcutaneously administered ROMO at 210 mg every month for 12
19 months, and completed this treatment. A high risk of osteoporotic fracture is defined according
20 to the World Health Organization 1998 definition or the diagnostic criteria for primary
21 osteoporosis used by the Japanese Society of Bone Metabolism and the Japanese Osteoporosis
22 Society [17]: patients with (1) BMD T-score of <-2.5 and ≥ 1 fragility fracture, (2) LS-BMD

1 T-score of <-3.3, (3) ≥2 vertebral fractures, (4) semiquantitative grade of 3 vertebral fracture
2 [18]. The exclusion criteria were as follows: patients who received previous osteoporosis agents,
3 patients with contraindications to ROMO (who had major cardiovascular events within a past
4 year), patients with diseases affecting bone metabolisms, such as thyroid or parathyroid diseases,
5 those undergoing hormone replacement therapy, those with cancer undergoing radiation therapy
6 involving the skeleton, those with suspicion of osteomalacia (who showed low serum levels of
7 25(OH)D, calcium, and phosphorus, and also high serum levels of alkaline phosphatase and
8 intact parathyroid hormone), or those with severely impaired renal function (estimated
9 glomerular filtration rate of <30 mL/min/1.73 m²).

10 The study was conducted following the Declaration of Helsinki and with the approval of the
11 ethical review boards of Osaka University Graduate School of Medicine (approval no. 18258;
12 Osaka University, Graduate School of Medicine) and each of the institutes involved. Informed
13 consent was obtained from the patients, and opt-out information was posted on the hospital's
14 homepage.

15 16 ***Clinical assessments***

17 Age, height, weight, and body mass index (BMI) were recorded for all study participants at
18 recruitment. Medical history, including osteoporotic fracture history and the presence or absence
19 of prevalent vertebral or nonvertebral fractures, was assessed.

20 21 ***Radiological assessment***

22 Frontal and lateral whole-spine radiographs (T4–L4) were obtained at baseline and 12 months

1 after ROMO administration. The presence or absence of vertebral deformity in the coronal and
2 sagittal planes occurring after vertebral fractures was also assessed.

3 BMD values were measured by dual-energy X-ray absorptiometry (DXA) (Horizon W;
4 Hologic, Inc., Marlborough, MA, USA / PRODIGY; GE Healthcare, Tokyo, Japan) at baseline
5 and 12 months after ROMO administration. Areal BMD of LS (L1–4), FN, and TH were
6 assessed by DXA. A BMD T-score was calculated for all measured sites. Percent coefficient of
7 variation for L1-L4 was 0.63% in Horizon, and 0.41% in PRODIGY. BMD data were
8 standardized using the reference data obtained from the Japanese population by each equipment
9 according to the correction method proposed by the Japan Osteoporosis Society and the
10 International Society for Clinical Densitometry Guidance [19]. The BMD measurements
11 excluded the regions of severe sclerosis with a degenerative spine, vertebral fractures, and
12 surgical sites.

13

14 ***Biochemical examination***

15 Blood samples were collected in the morning after an overnight fast, and routine serum
16 chemistry tests were performed using standard automated techniques. Bone turnover markers
17 were measured at baseline and 1, 6, and 12 months during the ROMO treatment. Total type I
18 procollagen N-terminal propeptide (PINP; interassay coefficient of variation \leq 5.0%; Roche
19 Diagnostics, Basel, Switzerland) was assessed as a bone formation marker. Tartrate-resistant
20 acid phosphatase 5b (TRACP-5b; Osteolinks TRAP5b; interassay coefficient of variation \leq
21 9.0%; SB Bioscience Co. Ltd., Tokyo, Japan) was measured as a bone resorption marker. Serum
22 25-dihydroxy vitamin D (25[OH]D) was measured by electrochemiluminescence immunoassay

1 (Roche Diagnostics) as previously described [20].
2

3 ***Statistical analysis***

4 BMD and bone turnover marker changes were evaluated based on the percentage change from
5 baseline. The primary efficacy outcome was the percentage change in BMD from baseline in the
6 LS, TH, and FN areas at 12 months. A responder analysis was performed to assess the
7 percentage of patients with any BMD changes from baseline of varying magnitudes ($\geq 0\%$, $\geq 3\%$,
8 $\geq 6\%$, and $\geq 10\%$ from baseline) at the LS, TH, and FN areas at 12 months [12]. A recent
9 meta-regression analysis revealed that more than 3.18% increase in TH BMD by osteoporosis
10 treatment was significantly associated with hip fracture reduction [4]. The clinically significant
11 increased BMD, which represents the approximate least significant change, was set as 3% in
12 three measured sites according to the previous studies [11,12]. The cut-off value to distinguish
13 the responder and nonresponder regarding the increased hip area BMD was set as 3%, and
14 various parameters were analyzed between the two groups.

15 Categorical variables are presented as frequencies and percentages. Continuous data were
16 expressed as means or means \pm standard deviation. Two-sided probability values of $P < 0.05$
17 were considered statistically significant. The Mann–Whitney U test, chi-square test, and Fisher
18 exact test were used for the statistical analysis of comparisons between the two groups. Changes
19 in paired data were analyzed using the Wilcoxon signed-rank test.

20 Multivariate logistic regression analysis was performed to identify the prognostic factors for
21 $\geq 3\%$ of increased hip area BMD. Univariate analysis was initially performed to identify
22 explanatory variables (including all items of medical history, biochemical examination, and

1 radiographic examination) with P -values of <0.20 . Then, multivariate analysis was performed
2 using possible variables, such as age and BMI [21], and also explanatory variables which were
3 selected by univariate analysis. We computed the odds ratio and 95% confidence interval (CI)
4 using the proportional odds model in logistic regression to express the associations between
5 $\geq 3\%$ of increased hip area BMD and explanatory variables. Receiver operating characteristic
6 (ROC) curves were constructed to determine the best cut-off value of baseline serum PINP
7 levels discriminating hip BMD responder and non-responder subsets ($\geq 3\%$ increase in both TH
8 and FN BMD). The area under the ROC curve (AUC) was calculated as a measure of the overall
9 discriminative ability of baseline serum PINP levels. The cut-off point was identified as the one
10 closest to the sensitivity 1.0 and specificity 1.0 (0, 1) point [22], and also using Youden's index.
11 Statistical analyses were performed using JMP software (version 12.2.0; SAS Institute, Inc.,
12 Cary, NC, USA).

14 **Results**

15 **Baseline characteristics**

16 Table 1 shows the demographic data for all 63 females (mean age, 72.6 years) who met the
17 criteria for high risk of osteoporotic fracture. The mean BMI was 20.9 kg/m^2 , and BMD T-score
18 was -3.3 in LS, -2.6 in TH, and -3.3 in FN. Regarding serum bone turnover markers, PINP
19 was $68.5 \mu\text{g/L}$ and TRACP-5b was 510 mU/dL . The active form of vitamin D supplementation
20 (alfacalcidol: 28.5%, eldecalcitol: 66.7%) was given to 60 (95.2%) patients, and 74.6% of all
21 patients received calcium supplementation. The average level of serum $25(\text{OH})\text{D}$ was 15.7
22 ng/mL , and 49 (78%) patients were vitamin D-deficient ($25(\text{OH})\text{D}$ level $< 20 \text{ ng/mL}$).
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5 2 ***Changes in BMD and responder analysis***

6
7
8 3 The increased BMD from baseline was 17.5% in LS, 4.9% in TH, and 4.3% in FN,
9
10 4 respectively, after 12 months of ROMO treatment. Regarding LS-BMD, 98.4%, 96.8%, and
11
12 5 82.5% of patients achieved $\geq 3\%$, $\geq 6\%$, and $\geq 10\%$ increase, respectively (Fig. 1a). Only one
13
14 6 patient experienced a $<0\%$ increase.

15
16 7 Conversely, regarding TH-BMD, only 59.3%, 35.2%, and 16.7% of patients achieved $\geq 3\%$,
17
18 8 $\geq 6\%$, and $\geq 10\%$ increased BMD, respectively (Fig. 1b). Regarding FN-BMD, similar to TH,
19
20 9 only 54.5%, 32.7%, and 18.2% of patients achieved $\geq 3\%$, $\geq 6\%$, and $\geq 10\%$ increased BMD,
21
22 10 respectively (Fig. 1c). A clinically significant increased BMD ($\geq 3\%$) in either TH or FN could
23
24 11 not be achieved by 57.1% of patients, and 44.4% failed to achieve the $\geq 0\%$ increased BMD in
25
26 12 either TH or FN.

27
28
29 13
30
31 14 ***Bone turnover markers***

32
33
34 15 The serum PINP level (Fig. 2a) and its percentage change (Fig. 2b) as well as TRACP-5b level
35
36 16 (Fig. 2c) and its percentage change (Fig. 2d) are shown. PINP level reached its highest value at
37
38 17 1 month, followed by a gradual decrease from 6 months onwards. TRACP-5b level showed
39
40 18 marked decrease from 1 month onwards.

41
42
43 19
44
45 20 ***Prognostic factor which affects the treatment response for hip BMD***

46
47
48 21 We made three pairings responder and nonresponder groups according to the treatment
49
50 22 response for hip BMD as follows: 1) $\geq 3\%$ TH-BMD vs. $<3\%$ TH-BMD, 2) $\geq 3\%$ FN-BMD vs.

1 <3% FN-BMD, and 3) $\geq 3\%$ BMD in both TH and FN vs. <3% BMD in either TH or FN (Table
2 2). Among all three configured parings, univariate analysis revealed that absolute PINP value at
3 baseline was significantly higher in the responder group than in the nonresponder group (mean
4 PINP value; $\geq 3\%$ TH-BMD [79.0] vs. <3% TH-BMD [55.5], $p = 0.004$; $\geq 3\%$ FN-BMD [78.3]
5 vs. <3% FN-BMD [58.7], $p = 0.017$, $\geq 3\%$ TH- and FN-BMD [81.9] vs. <3% TH- or FN-BMD
6 [58.1], $p = 0.004$). In comparison between the “ $\geq 3\%$ TH-BMD vs. <3% TH-BMD” and “ $\geq 3\%$
7 TH- and FN-BMD vs. <3% TH- or FN-BMD,” the absolute PINP level at 1 month after ROMO
8 administration was significantly higher in the responder group than in the nonresponder group,
9 but without significant differences in both percentage changes from baseline, as well as the
10 amount of PINP change from baseline (Table 2). Furthermore, no significant differences were
11 found between the responder and nonresponder groups regarding bone resorption marker,
12 TRACP-5b. In comparison between the “ $\geq 3\%$ FN-BMD vs. <3% FN-BMD” and “ $\geq 3\%$ TH- and
13 FN-BMD vs. <3% TH- or FN-BMD,” the FN-BMD T-score at baseline was significantly lower
14 in the responder group than in the nonresponder group. Results were similar when the cut-off
15 value was changed from 3% to 0% (data not shown).

16 The multiple regression analysis using explanatory variables (age, BMI, presence of prevalent
17 nonvertebral fracture, FN-BMD T-score at baseline, and PINP value at baseline) revealed that
18 only PINP value (1 μ g/L) at baseline was significantly and independently associated with $\geq 3\%$
19 increased both TH- and FN-BMD (odds ratio = 1.028, $p = 0.019$, 95% CI = 1.006–1.054) (Table
20 3).

21 The ROC curves and AUC results for predicting $\geq 3\%$ increase in both TH- and FN-BMD are
22 shown in Fig. 3. The optimal PINP cut-off at baseline was 53.7 μ g/L with 54.3% sensitivity and

1 92.3% specificity (AUC = 0.752). When cut-off value was set at 53.7 $\mu\text{g/L}$, positive predictive
2 value was 58.5% (n = 24/41), and negative predictive value was 90.9% (n = 20/22).

3
4 **Discussion**

5 To our best knowledge, this is the first study to investigate the surrogate biomarker for
6 increased hip BMD in osteoporosis treatment-naïve patients treated with ROMO. This study
7 revealed that the baseline serum level of PINP, which is a bone formation marker, was identified
8 as a unique factor to distinguish the therapeutic responders from nonresponders for increased
9 BMD. A Higher PINP level before treatment predicts a greater increased hip BMD, and its
10 optimal cut-off value for clinically significant increased BMD ($\geq 3\%$) at both TH and FN was
11 53.7 $\mu\text{g/L}$.

12 The average percent change at 12 months was 17.5% for the efficacy of ROMO for increased
13 LS-BMD, and 96.8% of subjects experienced $\geq 6\%$ increase. Compared with the FRAME study
14 results [10,11,12], these results in LS were similar, and the number of poor responders to
15 ROMO in LS-BMD was minimal.

16 However, almost half of the patients in this study could not achieve a clinically significant
17 increased BMD ($\geq 3\%$) at either TH or FN areas, and 44.4% of the patients had no BMD gain
18 ($\geq 0\%$) at either TH or FN areas, contrary to the efficacy of ROMO for the LS-BMD. The global
19 FRAME study revealed that 78% of the patients obtained $\geq 3\%$ increased TH-BMD by ROMO
20 treatment [11], although the percentage decreased to 65.5% in the Japanese population [12],
21 which was similar to the present study (59%). The patients' background data of the Japanese
22 population in the FRAME study was quite similar to that of our present study in age, BMI, and

1 TH-BMD T-score at baseline [12].
2 The differences between these studies were race, BMI (the global FRAME study [24.5 kg/m²],
3 Japanese population of the FRAME study [21.3 kg/m²], and the present study [20.9 kg/m²]), and
4 serum 25(OH)D value (the global FRAME study [>20 ng/mL], Japanese population of the
5 FRAME study [30.8 kg/m²], and the present study [15.7 ng/mL]) [10,12].
6 Ominsky et al. advocated that increased FN-BMD by osteoporosis treatment may result from
7 1) modeling-based bone formation, 2) bone mineralization, and 3) remodeling space closure
8 [23]. Regarding bone modeling, lower BMI may lead to decreased mechanical loading and
9 consequent promotion of sclerostin expression with modeling inhibition [24], and lower BMI in
10 the elderly is associated with the risk of osteoporosis [25]. At first, we speculated that lower
11 BMI in the Japanese population may diminish the effects of ROMO, although BMI did not
12 show any tendency or significant correlation with increased hip BMD in this study.
13 Regarding bone mineralization, patients with baseline 25(OH)D levels of <20 ng/mL were
14 excluded from the global FRAME study [10]. In this study, 78% of patients showed vitamin D
15 deficiency (25[OH]D <20 ng/mL) at baseline. However, 95.2% of subjects received an active
16 form of vitamin D supplementation (alfacalcidol or eldecalcitol). These active forms of vitamin
17 D showed superior effects in calcium uptake [26] and increased BMD in combination with
18 bisphosphonates [27] or denosumab [28,29] compared to native vitamin D. Tominga et al.
19 concluded that ROMO had minor effect on increased TH-BMD, but only 5% of patients
20 received vitamin D supplementation, which may strongly affect their study results [16].
21 Additionally, serum 25(OH)D levels did not show any correlation with serum PINP levels in a
22 large cohort study (n = 4822) of postmenopausal women although vitamin D may promote

1 osteoblast differentiation [30]. The present study revealed no significant correlation between
2 baseline serum 25(OH)D and PINP levels ($p = 0.26$). Taken together, baseline vitamin D
3 deficiency may not affect serum PINP level, and ROMO in combination with active vitamin D
4 is in no way inferior to that of native vitamin D regarding bone mineralization.

5 Regarding remodeling space closure, serum TRACP-5b level decreased from 1 month after
6 ROMO administration, although no significant differences were observed in both absolute value
7 and decreasing value between the responder and nonresponder groups. Ominsky et al.
8 investigated the effects of sclerostin antibody in cynomolgus monkeys and revealed bone
9 histomorphometry analysis demonstrated that the initial rapid increase in bone formation on
10 femur endocortical surfaces is mainly derived from modeling-based bone formation, not from
11 remodeling-based bone formation [23,31]. The present study suggest that increased hip BMD in
12 ROMO treatment may depends on the baseline bone formation status, but not on bone
13 resorption inhibition. In addition, there was a significant difference in the absolute value of
14 serum PINP levels at both baseline ($P=0.004$) and one month ($P=0.010$), although no significant
15 difference was observed after 6 months between the responder and non-responder group (Table
16 2). These results were similar to our previous report demonstrating that increase of TH BMD by
17 18-months of daily teriparatide administration was significantly associated with baseline serum
18 PINP levels, but not with its later change in patients with postmenopausal osteoporosis [32].
19 Taken together, individuals who have more active bone formation status at early time course
20 (from baseline to 1 month) may have advantages in BMD increase of hip by 12-months ROMO
21 administration.

22 This study has some limitations. First, this study included a relatively small number of subjects

1 which may weaken the statistical power, and further studies with larger sample sizes may be
2 required in the future. Second, this study included only Japanese patients; thus, the results may
3 not be generalizable to other populations. Third, this study was a single arm and not a
4 randomized controlled study. Fourth, we failed to monitor serum CTX as a bone resorption
5 marker. Fifth, difference of DXA data between Horizon W and PRODIGY was not corrected.
6 However, this study focused on the change of BMD, so we assume that the difference of the
7 DXA model may have minor effects on the results. In conclusion, this study demonstrated for
8 the first time that baseline serum PINP level is significantly and independently associated with
9 increased BMD in hip by ROMO treatment, which may provide useful information in predicting
10 its effect in a real-world setting.

Statements and Declarations

Author contributions

14 Study design: MK and KE. Study conduct: MK, TK, and KE. Data collection: MK, TK, HT, YN,
15 AM, and KE. Data analysis: MK and KE. Data interpretation: MK and KE. Drafting the
16 manuscript: MK and KE. Approving the final version of the manuscript: MK, TK, HT, YN, AM,
17 and KE. KE takes responsibility for the integrity of the data analysis.

Conflict of interest

20 MK has received payments for lectures from Amgen, Asahi-Kasei, Astellas, Mochida, and Teijin
21 Pharma. KE is affiliated with the Department of Musculoskeletal Regenerative Medicine, Osaka
22 University, Graduate School of Medicine, which is supported by Taisho. KE has received
23 research grants from Amgen, Asahi-Kasei, Astellas, Chugai, Daiichi Sankyo, Eisai, Eli Lilly,
24 and Ono. KE has received payments for lectures from Amgen, Asahi-Kasei, Astellas, Chugai,

1 Daiichi Sankyo, Eisai, Eli Lilly, Ono, and Pfizer. HT has received a research grant from Chugai
2 and has received payments for lectures from Asahi-Kasei, Astellas, Chugai, Eisai, Eli Lilly, and
3 Pfizer. YN has received payments for lectures from Asahi-Kasei, Astellas, Chugai, Daiichi
4 Sankyo, Eisai, Eli Lilly, and Ono. TK and AM declare that they have no conflicts of interest.
5 The funders had no role in the study design, data collection and analysis, decision to publish, or
6 manuscript preparation.

7

8 **Ethical approval**

9 All procedures performed in studies involving human participants were in accordance with the
10 ethical standards of the institutional and/or national research committee and with the 1964
11 Helsinki declaration and its later amendments or comparable ethical standards.

12

13 **Informed consent**

14 Informed consent was obtained from all individual participants included in the study.

15

16 **Figure legends**

17 **Fig. 1 Percent change in bone mineral density (BMD) from baseline to 12 months after**
18 **romosozumab administration [(a) Lumbar spine, (b) Total hip, (c) Femoral neck].**

19 The x-axis represents each subject. Dotted horizontal lines reflect 3%, 6%, and 10% responses
20 relative to baseline. Dotted vertical lines which cross the x-axis represent the percentage of
21 patients with the indicated percent changes in BMD ($\geq 3\%$, $\geq 6\%$, and $\geq 10\%$). The black arrow
22 represents the percentage of patients with $<0\%$ change in BMD.

23

24 **Fig. 2 Serum PINP level (a) and its percentage change (b); serum TRACP-5b level (c) and**

1 1 **its percentage change (d)**
2
3
4

5 2 PINP, N-terminal type I procollagen propeptide; TRACP-5b, isoform 5b of tartrate-resistant
6
7 3 acid phosphatase.
8
9

10 4
11
12
13 5 **Fig. 3 Receiver operating characteristic (ROC) curve to determine the best cut-off value of**
14
15 6 **baseline serum PINP level to predict ≥3% BMD increase in both TH and FN.**
16
17

18 7 TH, total hip; FN, femoral neck; BMD, bone mineral density; AUC, area under the curve.
19
20
21 8
22
23 9 **References**
24
25 10

26
27 11 1. Meier C, Uebelhart B, Aubry-Rozier B, Birkhauser M, Bischoff-Ferrari HA, Frey D, Kressig RW,
28 12 Lamy O, Lippuner K, Stute P, Suhm N, Ferrari S (2017) Osteoporosis drug treatment: duration
29 13 and management after discontinuation. A position statement from the SVGO/ASCO. Swiss Med
30 14 Wkly 147: w14484.
31
32 15 2. Conley RB, Adib G, Adler RA, Akesson KE, Alexander IM, Amenta KC, Blank RD, Brox WT,
33 16 Carmody EE, Chapman-Novakofski K, Clarke BL, Cody KM, Cooper C, Crandall CJ, Dirschl
34 17 DR, Eagen TJ, Elderkin AL, Fujita M, Greenspan SL, Halbou P, Hochberg MC, Javaid M, Jeray
35 18 KJ, Kearns AE, King T, Koinis TF, Koontz JS, Kuzma M, Lindsey C, Lorentzon M, Lyritis GP,
36 19 Michaud LB, Miciano A, Morin SN, Mujahid N, Napoli N, Olenginski TP, Puzas JE, Rizou S,
37 20 Rosen CJ, Saag K, Thompson E, Tosi LL, Tracer H, Khosla S, Kiel DP (2020) Secondary
38 21 Fracture Prevention: Consensus Clinical Recommendations from a Multistakeholder Coalition. J
39 22 Bone Miner Res 35: 36-52.
40
41 23 3. Ip TP, Leung J, Kung AW (2010) Management of osteoporosis in patients hospitalized for hip fractures.
42 24 Osteoporos Int 21: S605-614.
43
44 25 4. Black DM, Bauer DC, Vittinghoff E, Lui LY, Grauer A, Marin F, Khosla S, de Papp A, Mitlak B,
45 26 Cauley JA, McCulloch CE, Eastell R, Bouxsein ML (2020) Treatment-related changes in bone
46 27 mineral density as a surrogate biomarker for fracture risk reduction: meta-regression analyses of
47 28 individual patient data from multiple randomised controlled trials. Lancet Diabetes Endocrinol 8:
48 29 672-682.
49
50 30 5. Cosman F (2020) Anabolic Therapy and Optimal Treatment Sequences for Patients with Osteoporosis
51 31 at High Risk for Fracture. Endocr Pract.
52
53 32 6. Kanis JA, Harvey NC, McCloskey E, Bruyere O, Veronese N, Lorentzon M, Cooper C, Rizzoli R, Adib
54 33 G, Al-Daghri N, Campusano C, Chandran M, Dawson-Hughes B, Javaid K, Jiwa F, Johansson H,
55 34 Lee JK, Liu E, Messina D, Mkinsi O, Pinto D, Prieto-Alhambra D, Saag K, Xia W, Zakraoui L,
56 35 Reginster J (2020) Algorithm for the management of patients at low, high and very high risk of

osteoporotic fractures. *Osteoporos Int* 31: 1-12.

7. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, Langdahl BL, Reginster JY, Zanchetta JR, Wasserman SM, Katz L, Maddox J, Yang YC, Libanati C, Bone HG (2014) Romosozumab in postmenopausal women with low bone mineral density. *N Engl J Med* 370: 412-420.

8. Reid IR, Billington EO (2022) Drug therapy for osteoporosis in older adults. *Lancet* 399: 1080-1092.

9. Cosman F, Dempster DW (2021) Anabolic Agents for Postmenopausal Osteoporosis: How Do You Choose? *Curr Osteoporos Rep* 19: 189-205.

10. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, Hofbauer LC, Lau E, Lewiecki EM, Miyauchi A, Zerbini CA, Milmont CE, Chen L, Maddox J, Meisner PD, Libanati C, Grauer A (2016) Romosozumab Treatment in Postmenopausal Women with Osteoporosis. *N Engl J Med* 375: 1532-1543.

11. Cosman F, Crittenden DB, Ferrari S, Khan A, Lane NE, Lippuner K, Matsumoto T, Milmont CE, Libanati C, Grauer A (2018) FRAME Study: The Foundation Effect of Building Bone With 1 Year of Romosozumab Leads to Continued Lower Fracture Risk After Transition to Denosumab. *J Bone Miner Res* 33: 1219-1226.

12. Miyauchi A, Hamaya E, Yang W, Nishi K, Libanati C, Tolman C, Shimauchi J (2021) Romosozumab followed by denosumab in Japanese women with high fracture risk in the FRAME trial. *J Bone Miner Metab* 39: 278-288.

13. Keaveny TM, Crittenden DB, Bolognese MA, Genant HK, Engelke K, Oliveri B, Brown JP, Langdahl BL, Yan C, Grauer A, Libanati C (2017) Greater Gains in Spine and Hip Strength for Romosozumab Compared With Teriparatide in Postmenopausal Women With Low Bone Mass. *J Bone Miner Res* 32: 1956-1962.

14. Ebina K, Hirao M, Tsuboi H, Nagayama Y, Kashii M, Kaneshiro S, Miyama A, Nakaya H, Kunugiza Y, Okamura G, Etani Y, Takami K, Goshima A, Nakata K (2020) Effects of prior osteoporosis treatment on early treatment response of romosozumab in patients with postmenopausal osteoporosis. *Bone* 140: 115574.

15. Ebina K, Tsuboi H, Nagayama Y, Kashii M, Kaneshiro S, Miyama A, Nakaya H, Kunugiza Y, Hirao M, Okamura G, Etani Y, Takami K, Goshima A, Miura T, Nakata K, Okada S (2021) Effects of prior osteoporosis treatment on 12-month treatment response of romosozumab in patients with postmenopausal osteoporosis. *Joint Bone Spine* 88: 105219.

16. Tominaga A, Wada K, Okazaki K, Nishi H, Terayama Y, Kato Y (2021) Early clinical effects, safety, and predictors of the effects of romosozumab treatment in osteoporosis patients: one-year study. *Osteoporos Int* 32: 1999-2009.

17. Soen S, Fukunaga M, Sugimoto T, Sone T, Fujiwara S, Endo N, Gorai I, Shiraki M, Hagino H, Hosoi T, Ohta H, Yoneda T, Tomomitsu T (2013) Diagnostic criteria for primary osteoporosis: year 2012 revision. *J Bone Miner Metab* 31: 247-257.

18. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. *J Bone Miner Res* 8: 1137-1148.

19. Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, Gordon CM, Jankowski LG, Lee JK, Leslie WD (2016) Best Practices for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance. *J Clin Densitom* 19: 127-140.

20. Ebina K, Etani Y, Tsuboi H, Nagayama Y, Kashii M, Miyama A, Kunugiza Y, Hirao M, Okamura G, Noguchi T, Takami K, Goshima A, Miura T, Fukuda Y, Kurihara T, Okada S, Nakata K (2022)

1 Impact of the duration of previous osteoporosis treatment on the effect of romosozumab in
2 patients with postmenopausal osteoporosis. *Osteoporos Int.*
3 21. Ebina K, Etani Y, Tsuboi H, Nagayama Y, Kashii M, Miyama A, Kunugiza Y, Hirao M, Okamura G,
4 Noguchi T, Takami K, Goshima A, Miura T, Fukuda Y, Kurihara T, Okada S, Nakata K (2022)
5 Effects of prior osteoporosis treatment on the treatment response of romosozumab followed by
6 denosumab in patients with postmenopausal osteoporosis. *Osteoporos Int* 33: 1807-1813.
7 22. Yukioka C, Ebina K, Shimaoka Y, Yukioka M, Yoshikawa H, Nakata K, Ochi T (2020) Establishment
8 of anti-C1q monoclonal antibodies to measure serum C1q levels discriminating disease severity
9 subsets of rheumatoid arthritis within 5 years of onset. *Mod Rheumatol* 30: 816-820.
10 23. Ominsky MS, Libanati C, Niu QT, Boyce RW, Kostenuik PJ, Wagman RB, Baron R, Dempster DW
11 (2015) Sustained Modeling-Based Bone Formation During Adulthood in Cynomolgus Monkeys
12 May Contribute to Continuous BMD Gains With Denosumab. *J Bone Miner Res* 30: 1280-1289.
13 24. Delgado-Calle J, Sato AY, Bellido T (2017) Role and mechanism of action of sclerostin in bone. *Bone*
14 96: 29-37.
15 25. Coin A, Sergi G, Beninca P, Lupoli L, Cinti G, Ferrara L, Benedetti G, Tomasi G, Pisent C, Enzi G
16 (2000) Bone mineral density and body composition in underweight and normal elderly subjects.
17 *Osteoporos Int* 11: 1043-1050.
18 26. Uenishi K, Tokiwa M, Kato S, Shiraki M (2018) Stimulation of intestinal calcium absorption by orally
19 administrated vitamin D3 compounds: a prospective open-label randomized trial in osteoporosis.
20 *Osteoporos Int* 29: 723-732.
21 27. Ringe JD, Farahmand P, Schacht E, Rozehnal A (2007) Superiority of a combined treatment of
22 Alendronate and Alfacalcidol compared to the combination of Alendronate and plain vitamin D
23 or Alfacalcidol alone in established postmenopausal or male osteoporosis (AAC-Trial).
24 *Rheumatol Int* 27: 425-434.
25 28. Ebina K, Kashii M, Hirao M, Hashimoto J, Noguchi T, Koizumi K, Kitaguchi K, Matsuoka H,
26 Iwahashi T, Tsukamoto Y, Yoshikawa H (2017) Comparison of the effects of denosumab between
27 a native vitamin D combination and an active vitamin D combination in patients with
28 postmenopausal osteoporosis. *J Bone Miner Metab* 35: 571-580.
29 29. Suzuki T, Nakamura Y, Tanaka M, Kamimura M, Ikegami S, Uchiyama S, Kato H (2018) Comparison
30 of the effects of denosumab with either active vitamin D or native vitamin D on bone mineral
31 density and bone turnover markers in postmenopausal osteoporosis. *Mod Rheumatol* 28:
32 376-379.
33 30. Gao C, Qiao J, Li SS, Yu WJ, He JW, Fu WZ, Zhang ZL (2017) The levels of bone turnover markers
34 25(OH)D and PTH and their relationship with bone mineral density in postmenopausal women
35 in a suburban district in China. *Osteoporos Int* 28: 211-218.
36 31. Boyce RW, Niu QT, Ominsky MS (2017) Kinetic reconstruction reveals time-dependent effects of
37 romosozumab on bone formation and osteoblast function in vertebral cancellous and cortical
38 bone in cynomolgus monkeys. *Bone* 101: 77-87.
39 32. Ebina K, Hashimoto J, Shi K, Kashii M, Hirao M, Yoshikawa H (2014) Comparison of the effect of
40 18-month daily teriparatide administration on patients with rheumatoid arthritis and
41 postmenopausal osteoporosis patients. *Osteoporos Int* 25: 2755-2765.
42
43

Table 1. Baseline characteristics of osteoporosis treatment-naïve patients receiving romosozumab

Characteristics (n=63)	
Age (years)	72.6 ± 7.5
BMI (kg/m ²)	20.9 ± 2.9
Presence of prevalent OVF	29 (46.0%)
No. of prevalent OVF confirmed by whole-spine radiographs (T4-L4)	1.2 ± 1.8
Presence of prevalent nonvertebral fracture	13 (20.6%)
Combined active form of vitamin D supplementation (dose [μg/day])	Alfacalcidol: 28.5% (0.47 ± 0.27) Eldecalcitol: 66.7% (0.70 ± 0.10) None: 4.9%
Combined calcium supplementation (dose [mg/day])	74.6% (421 ± 192)
LS-BMD (g/cm ²)	0.65 ± 0.13
LS-BMD T-score	-3.3 ± 1.1
TH-BMD (g/cm ²)	0.61 ± 0.08
TH-BMD T-score	-2.6 ± 0.8
FN-BMD (g/cm ²)	0.51 ± 0.08
FN-BMD T-score	-3.3 ± 0.7
eGFR (ml/min/1.73m ²)	72.5 ± 15.5
PINP (μg/L)	68.5 ± 32.6
TRACP-5b (mU/dL)	510 ± 230
25 (OH) D (ng/mL)	15.7 ± 5.2

Values are shown as mean ± standard deviation.

BMD, bone mineral density; BMI, body mass index; OVF, osteoporotic vertebral fracture; eGFR, estimated glomerular filtration rate; FN, femoral neck; LS, lumbar spine; PINP, type I collagen N-terminal propeptide; TRACP-5b, tartrate-resistant acid phosphatase 5b; 25(OH)D, 25-hydroxycholecalciferol.

Table 2

Table 2. Univariate analysis of characteristics of patients receiving romosozumab for 12 months: with or without $\geq 3\%$ hip BMD increase

Valuables	$\geq 3\%$ TH-BMD (N=34)	$< 3\%$ TH-BMD (N=29)	P value	$\geq 3\%$ FN-BMD (N=31)	$< 3\%$ FN-BMD (N=32)	P value	$\geq 3\%$ TH- and FN-BMD (N=27)	$< 3\%$ TH- or FN-BMD (N=36)	P value
Baseline									
Age (years)	72.2	73.1	0.641	71.5	73.7	0.270	70.9	73.79	0.107
BMI (kg/m^2)	20.6	21.2	0.558	21.3	20.5	0.254	21.3	20.6	0.324
Presence of prevalent vertebral fracture	41%	59%	0.064	48%	52%	0.892	44%	47%	0.827
Presence of prevalent nonvertebral fracture	27%	14%	0.215	32%	9%	0.025*	33%	11%	0.057
LS- BMD T-score	-3.6	-3.0	0.057	-3.4	-3.2	0.890	-3.5	-3.2	0.656
TH-BMD T-score	-2.7	-2.4	0.128	-2.7	-2.5	0.183	-2.8	-2.4	0.058
FN-BMD T-score	-3.3	-3.2	0.419	-3.5	-3.5	0.037*	-3.5	-3.1	0.014**
eGFR (ml/min/1.73m ²)	74.9	69.7	0.215	74.2	70.8	0.488	74.6	71.0	0.433
0M-PINP ($\mu\text{g}/\text{L}$)	79.0	55.5	0.004**	78.3	58.7	0.017*	81.9	58.1	0.004**
0M-TRACP-5b (mU/dL)	539	476	0.281	501	519	0.759	530	496	0.565
25 (OH) D (ng/mL)	16.5	14.8	0.221	15.4	16.0	0.645	15.7	15.8	0.923
1 month after starting Tx									
1M-PINP ($\mu\text{g}/\text{L}$)	144.5	115.6	0.034*	143.9	118.0	0.058	150.7	115.8	0.010**
Δ PINP (1M-0M)	65.3	59.0	0.545	65.7	59.0	0.516	68.8	57.3	0.263
% change of PINP (1M-0M)	101%	110%	0.367	101%	119%	0.347	100%	117%	0.408
1M-TRACP-5b (mU/dL)	320	295	0.487	323	293	0.406	332	290	0.235
Δ TRACP-5b(1M-0M)	-210	191	0.551	-178	-215	0.663	-197	-196	0.974
% change of TRACP-5b (1M-0M)	-31%	-33%	0.771	-30%	-34%	0.695	-32%	-32%	0.986
6 months after starting Tx									
6M-PINP	74.5	56.7	0.097	72.3	61.1	0.295	75.4	59.8	0.141
Δ PINP (6M-0M)	-4.5	0.8	0.582	-5.5	1.1	0.495	-6.5	1.3	0.423
% change of PINP (6M-0M)	2%	12%	0.544	3%	9%	0.729	-1%	11%	0.471
6M-TRACP-5b	312	279	0.283	296	299	0.925	306	290	0.611
12 months after starting Tx									
12M-PINP	51.7	49.1	0.817	48.9	53.0	0.704	50.3	51.1	0.936
12M-TRACP-5b	268	282	0.743	247	309	0.146	255	293	0.412

Values are shown as mean \pm standard deviation.

p < 0.05 was considered a statistically significant difference (*p < 0.05, **p < 0.01).

BMD, bone mineral density; BMI, body mass index; eGFR, estimated glomerular filtration rate; FN, femoral neck; LS, lumbar spine; PINP, type I collagen N-terminal propeptide; TRACP-5b, tartrate-resistant acid phosphatase 5b; Tx, treatment; 25(OH)D, 25-hydroxycholecalciferol; Δ , amount of change; 0M, at baseline; 1M, 1month after starting treatment; 6M, 6months after starting treatment; 12M, 12months after starting treatment.

Table 3. Results of multiple regression analysis: factors associated with $\geq 3\%$ increase in both total hip and femoral neck BMD increase—versus without its increase

Explanatory variables	P value	OR (95%CI)
Age (/1 year)	0.341	0.959 (0.878–1.045)
BMI (/1 kg/m ²)	0.095	1.193 (0.976–1.485)
Presence of prevalent nonvertebral fracture (yes= 1, no= 0)	0.154	3.073 (0.683–16.081)
FN-BMD T-score (/1 unit)	0.253	0.584 (0.222–1.450)
0M-PINP (/1 µg/L)	0.019*	1.028 (1.006–1.054)

p < 0.05 was considered a statistically significant difference (*p < 0.05).

BMD, bone mineral density; BMI, body mass index; CI, confidence interval; FN, femoral neck; OR, odds ratio; PINP, type I collagen N-terminal propeptide; OM, at baseline.

Figure 1

Figure 2

Figure 3

