

Title	Drug retention of secondary biologics or JAK inhibitors after tocilizumab or abatacept failure as first biologics in patients with rheumatoid arthritis -the ANSWER cohort study-
Author(s)	Ebina, Kosuke; Hirano, Toru; Maeda, Yuichi et al.
Citation	Clinical Rheumatology. 2020, 39(9), p. 2563-2572
Version Type	AM
URL	https://hdl.handle.net/11094/93249
rights	© 2020, International League of Associations for Rheumatology (ILAR).
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

1 ***Original Article***

2

3 ***Title:***

4 Drug retention of secondary biologics or JAK inhibitors after tocilizumab or abatacept failure as first
5 biologics in patients with rheumatoid arthritis -The ANSWER cohort study-

6

7 ***Authors:***

8 Kosuke Ebina^{1*}, Toru Hirano², Yuichi Maeda², Wataru Yamamoto^{3,4}, Motomu Hashimoto⁴, Koichi
9 Murata⁴, Tohru Takeuchi⁵, Koji Nagai⁶, Yonsu Son⁷, Hideki Amuro⁷, Akira Onishi⁸, Sadao Jinno⁸,
10 Ryota Hara⁹, Masaki Katayama¹⁰, Keiichi Yamamoto¹¹, Atsushi Kumanogoh², and Makoto Hirao¹²

11

12 ***Affiliations:***

13 1. Department of Musculoskeletal Regenerative Medicine, Osaka University, Graduate School of
14 Medicine, Osaka, Japan
15 2. Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine,
16 Osaka University, Osaka, Japan
17 3. Department of Health Information Management, Kurashiki Sweet Hospital, Okayama, Japan

18 4. Department of Advanced Medicine for Rheumatic diseases, Graduate School of Medicine, Kyoto

19 University, Kyoto, Japan

20 5. Department of Internal Medicine (IV), Osaka Medical College, Osaka, Japan

21 6. Rheumatology center, Koshokai Aino Hospital, Osaka, Japan

22 7. First Department of Internal Medicine, Kansai Medical University, Osaka, Japan

23 8. Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of

24 Medicine, Hyogo, Japan

25 9. The Center for Rheumatic Diseases, Nara Medical University, Nara, Japan

26 10. Department of Rheumatology, Osaka Red Cross Hospital, Osaka, Japan

27 11. Department of Medical Informatics, Wakayama Medical University Hospital, Wakayama, Japan

28 12. Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, Osaka,

29 Japan

30 *Corresponding author: E-mail: k-ebina@umin.ac.jp

31

32 **Keywords**

33 Abatacept, biologics, drug retention, Janus kinase inhibitors, rheumatoid arthritis, tocilizumab

34 **ORCID**

35	Kosuke Ebina	0000-0002-2426-1024
36	Toru Hirano	0000-0001-8467-3154
37	Yuichi Maeda	0000-0002-6831-8205
38	Wataru Yamamoto	0000-0002-0810-4221
39	Motomu Hashimoto	0000-0002-9241-060X
40	Koichi Murata	0000-0002-7896-3937
41	Tohru Takeuchi	0000-0002-0065-929X
42	Koji Nagai	0000-0002-3183-4193
43	Yonsu Son	0000-0001-7244-7715
44	Hideki Amuro	0000-0002-7299-2884
45	Akira Onishi	0000-0002-3120-1273
46	Sadao Jinno	0000-0003-3021-183X
47	Ryota Hara	0000-0001-8000-3196
48	Masaki Katayama	0000-0002-0773-7238
49	Atsushi Kumanogoh	0000-0003-4749-7117
50	Makoto Hirao	0000-0002-1408-7851

51

52 **Acknowledgments**

53 We wish to thank all of the medical staff at all of the institutions that were participating in the
54 ANSWER cohort for providing the data.

55

56 **Funding**

57 The study reported in this publication uses ANSWER Cohort supported by grants from eight
58 pharmaceutical companies (AbbVie, Asahi Kasei, Ayumi, Chugai, Eisai, Janssen, Ono and Sanofi)
59 and an information technology services company (CAC). This study is conducted as
60 investigator-initiated study, and these companies had no role in the study design, data collection, data
61 analysis, data interpretation, and preparation of the manuscript.

62

63

64

65

66

67

68

69

70 **Abstract**

71 Objectives: The aim of this multicenter, retrospective study was to clarify the retention of secondary
72 biological disease-modifying antirheumatic drugs (bDMARDs) or Janus kinase inhibitors (JAKi) in
73 patients with rheumatoid arthritis (RA) who were primarily treated by tocilizumab (TCZ) or abatacept
74 (ABT) as first bDMARDs.

75 Method: Patients who were treated by either TCZ (n=145) or ABT (n=76) and then switched to either
76 tumor necrosis factor inhibitors (TNFi), TCZ, ABT, or JAKi (including only cases switched from
77 TCZ) from 2001 to 2019 [female 81.0%, age 59.5 years, disease duration 8.8 years; rheumatoid factor
78 positivity 75.4%; Disease Activity Score in 28 joints using C-reactive protein 3.7; concomitant
79 prednisolone (PSL) dose 6.0 mg/day (51.8%) and methotrexate (MTX) dose 8.0 mg/week (56.1%);
80 81.9% discontinued first bDMARDs due to lack of effectiveness] were included. Drug retention and
81 discontinuation reasons were estimated at 24 months using the Kaplan-Meier method and adjusted for
82 potential confounders by Cox proportional hazards modeling.

83 Results: Drug retentions for each of the reasons for discontinuation were as follows; lack of
84 effectiveness in TCZ-switched group [TNFi (59.5%), ABT (82.2%), and JAKi (84.3%); TNFi vs.
85 ABT; P=0.009] and ABT-switched group [TNFi (79.6%) and TCZ (92.6%); P=0.053]. Overall
86 retention excluding non-toxic reasons and remission for discontinuation were TNFi (49.9%), ABT

87 (72.7%), and JAKi (72.6%) (TNFi vs. ABT; $P=0.017$) in the TCZ-switched group and TNFi (69.6%)

88 and TCZ (72.4%) ($P=0.44$) in the ABT-switched group.

89 Conclusions: Switching to ABT in TCZ-treated patients led to higher retention as compared to TNFi.

90 Switching to TCZ in ABT-treated patients tended to led to higher retention due to effectiveness,

91 although total retention was similar as compared to TNFi.

92

93 **Key-points**

94 This is the first retrospective, multi-center study aimed to clarify the retention rates of secondary

95 bDMARDs or JAKi in patients with RA who were primarily being treated by TCZ or ABT as the first

96 bDMARDs.

97

98 **Introduction**

99 The recommendations of the 2016 European League Against Rheumatism (EULAR) stated that

100 CTLA4-Ig [abatacept (ABT)], anti-interleukin (IL)-6 receptor antibody [tocilizumab (TCZ)], and

101 Janus kinase inhibitors (JAKi) were considered to be equivalent to tumor necrosis factor inhibitors

102 (TNFi) for both the phase II and phase III treatment of rheumatoid arthritis (RA) [1]. The findings of

103 this report also stated that there was no difference in the outcomes among these biological

104 disease-modifying antirheumatic drugs (bDMARDs) and JAKi, irrespective of their target. Moreover,

105 Smolen et al. reported that these agents also have a similar efficacy in previously TNFi-experienced
106 patients, although this efficacy may be decreased as compared to the bDMARDs-naïve patients [2]. In
107 our country, national health insurance covers 70-90% of the medical expense, and bDMARDs or JAKi
108 can be selected by attending physicians' discretion according to the Japan College of Rheumatology
109 guideline.

110 However, other cohort-based studies revealed that for the second-line bDMARDs, ABT [3] and TCZ
111 [4] exhibited a better retention as compared to TNFi. Moreover, both ABT and TCZ administrations
112 were reported to lead to substantial improvement of the disease activity in patients who discontinued
113 TNFi [5]. In addition, we previously reported that ABT and TCZ had a higher retention as compared
114 to TNFi, even when adjusted in accordance with the clinical backgrounds [6,7]. Concerning JAKi, as
115 far as we know, there have been no previous reports that have compared treatment retention with TNFi,
116 ABT, or TCZ. However, in patients who exhibited an inadequate response to TNFi, there was a higher
117 retention for tofacitinib (TOF), which was reported to be due to a lack of efficacy compared to ABT,
118 golimumab (GLM), and TCZ [8]. Thus, when taken together, this suggests that switching to non-TNFi
119 (such as ABT or TCZ) or JAKi in TNFi-experienced patients may lead to better drug retention.
120 Recent studies have reported that non-TNFi tended to be selected as the first bDMARDs due to
121 advanced age, comorbidities, and a high ACPA titer (ABT) or monotherapy (TCZ) [9,10]. However,
122 when choosing ABT or TCZ as the first bDMARDs, there has been a concern about the effectiveness

123 of using a second bDMARDs or JAKi, especially in patients who originally exhibited an inadequate
124 response to ABT or TCZ. As far as we know, there have yet to be any reports showing drug retention
125 of secondary bDMARDs or JAKi in patients who were primarily treated by ABT or TCZ as first
126 bDMARDs. At the present time, reliable evidence is still lacking in these types of cases.

127 Randomized controlled trials (RCTs) often recruits patients with fewer comorbidities than that often
128 seen in real-world settings [11]. Moreover, cohort-based observational studies have increasingly been
129 used to investigate the performance of bDMARDs [12,13,14,15,16]. In these studies, drug retention is
130 considered to be a major index of both the safety and effectiveness [17,18,19].

131 Based on the findings of our cohort, we have recently reported on the drug retention found among
132 bDMARDs [6,7,20,21], factors associated with the achievement of bDMARDs-free remission [22],
133 and the influence of family history on treatment response [23]. The aim of current multicenter,
134 retrospective study was to clarify within a real-world setting the retention of secondary bDMARDs or
135 JAKi in patients who were primarily treated by ABT or TCZ as the first bDMARDs.

136

137 **Materials and methods**

138 **Patients**

139 The Kansai Consortium for Well-being of Rheumatic Disease Patients (ANSWER) cohort is an
140 observational multicenter registry of patients with RA living in the Kansai district of Japan. Data were

141 collected from patients who were examined at 7 major university-related hospitals (Kyoto University,
142 Osaka University, Osaka Medical College, Kansai Medical University, Kobe University, Nara Medical
143 University, and Osaka Red Cross Hospital). RA was diagnosed using the 1987 RA classification
144 criteria of the American College of Rheumatology (ACR) [24] or the 2010 ACR / EULAR RA
145 classification criteria [25]. From 2001 to 2019, data of patients who were primarily treated by ABT or
146 TCZ as first bDMARDs, and then switched to either TNFi [infliximab (IFX), etanercept (ETN),
147 adalimumab (ADA), certolizumab pegol (CZP), and GLM; and which excluded bio-similar agents],
148 ABT, TCZ (including both intravenous and subcutaneous agents), or JAKi [tofacitinib (TOF) or
149 baricitinib (BAR)] were retrospectively collected.

150 To be included in this study, patients were required to have data on the start and discontinuation dates
151 for bDMARDs or JAKi, and the reasons for discontinuation. In addition, we also collected baseline
152 demographic data such as age, sex, duration of disease, disease activity (Disease Activity Score in 28
153 joints using C-reactive protein [DAS28-CRP]), Clinical Disease Activity Index (CDAI), concomitant
154 doses and ratio of methotrexate (MTX) and prednisolone (PSL) (dose was calculated as a blank when
155 not combined), **concomitant ratio of other conventional disease-modifying antirheumatic drugs**
156 (**csDMARDs**) such as salazosulfapyridine (SASP), leflunomide (LEF), bucillamine (BUC), tacrolimus
157 (**TAC**), and **iguratimod (IGU)**, rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody
158 (ACPA) positivity, and Health Assessment Questionnaire [HAQ] Disability Index [DI] score [6,7,21].

159 Treatments were administered by the attending rheumatologists in accordance with guidelines of the
160 Japan College of Rheumatology [26,27,28]. Drug retention was retrospectively evaluated as the
161 duration until definitive treatment interruption. Reasons for discontinuation were analyzed and
162 classified into four major categories: 1) lack of effectiveness (including primary and secondary); 2)
163 toxic adverse events (infection, skin or systemic reaction, and other toxic events, including
164 hematologic, pulmonary, renal, cardiovascular complications, and malignancies, etc.); 3) non-toxic
165 reasons (patient preference, change in hospital, desire for pregnancy, etc.); and 4) disease remission
166 [6,7,21]. Physicians were allowed to cite only one reason for discontinuation.

167

168 **Statistical analysis**

169 The differences in the baseline clinical characteristics between the groups were assessed using the
170 Mann-Whitney U test (for 2 groups) or by an analysis of variance (for 3 groups) for continuous
171 variables, and the Pearson's chi-squared test (for 2 groups) or the Fisher's exact test (for 3 groups) for
172 categorical variables. The Kaplan-Meier method was used to examine the survival curves for each of
173 the agents as determined by the specific causes. The hazard ratio (HR) for the treatment
174 discontinuation at 24 months was analyzed and statistically compared using multivariate Cox
175 proportional hazards modeling [6,7,12,21]. This analysis was adjusted for the potential confounders
176 that could have influenced drug retention as previously described (age, sex, disease duration,

177 concomitant PSL and MTX, treatment duration of primary ABT or TCZ, and reasons of ABT or TCZ
178 discontinuation) [12,14,16,29,30]. Statistical analyses were performed using EZR (Saitama Medical
179 Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R
180 Foundation for Statistical Computing, Vienna, Austria) [31]. P<0.05 was considered statistically
181 significant.

182

183 **Results**

184 Table 1 presents the baseline clinical characteristics of the patients initially treated by TCZ and then
185 changed to another agent. The agents switched to in the TNFi group included GLM (n=27), ETN
186 (n=17), IFX (n=14), ADA (n=11), and CZP (n=7), while in the JAKi group, patients were switched to
187 TOF (n=13) and BAR (n=11). The primary reason for discontinuation of TCZ in all groups was the
188 lack of effectiveness (from 70.8% to 80.0%; P=0.13 between the groups). Significant differences in
189 the age (P=0.011), concomitant PSL dose (P<0.001), **SASP usage (%) (P=0.04)**, and **IGU usage (%)**
190 (**P=0.002**) were noted between the groups.
191 The adjusted drug retention rates due to lack of effectiveness in the TCZ-switched group were as
192 follows: 59.5% (TNFi), 82.2% (ABT), and 84.3 (JAKi) [P=0.017 between the groups] (Fig. 1a). After
193 excluding non-toxic reasons and remission for discontinuation, the overall retention rates were 49.9%
194 (TNFi), 72.7% (ABT), and 72.6% (JAKi) [P=0.023 between the groups] (Fig. 1b).

195 Table 2 shows the adjusted HR for each of the discontinuation reasons. The HRs due to lack of
196 effectiveness were significantly lower in ABT (HR=0.3, P=0.009), and additionally tended to be lower
197 in the JAKi (HR=0.5, P=0.10) group as compared to TNFi (P=0.017 between the groups). There was
198 no significant difference in the HR due to toxic adverse events between the groups (P=0.86). The HR
199 for total discontinuation (excluding non-toxic reasons and remission) was significantly lower for the
200 ABT (HR=0.5, P=0.017), and additionally tended to be lower in the JAKi (HR=0.5, P=0.072) group as
201 compared to TNFi (P=0.023 between the groups). **Comparing non-TNFi (ABT and JAKi) and TNFi,**
202 **the HRs due to lack of effectiveness were significantly lower in non-TNFi (HR=0.4, 95%CI=0.2-0.7,**
203 **P=0.005), and also HRs for total discontinuation (excluding non-toxic reasons and remission) were**
204 **significantly lower in non-TNFi (HR=0.5, 95%CI=0.3-0.8, P=0.006) as compared to TNFi.**
205 Table 3 shows the baseline clinical characteristics of the patients initially treated by ABT and then
206 changed to another agent. The agents switched to in the TNFi group included GLM (n=17), ETN
207 (n=11), ADA (n=9), IFX (n=4), and CZP (n=1). There was a significantly higher ratio (P=0.010) and
208 dose (P=0.010) for the PSL treatment in the TCZ group, while there was also a lower ratio of MTX
209 (P=0.029) as compared to the TNFi group.
210 The adjusted drug retention rates due to lack of effectiveness in the ABT-switched group were as
211 follows: 79.6% (TNFi) and 92.6% (TCZ) [P=0.053 between the groups] (Fig. 2a). After excluding
212 non-toxic reasons and remission for discontinuation, the overall retention rates were 69.6% (TNFi)

213 and 72.4% (TCZ) (P=0.44) (Fig. 2b).

214 Table 4 shows the adjusted HR for each of the discontinuation reasons. The HR due to a lack of

215 effectiveness tended to be lower in the TCZ (HR=0.3, P=0.053) versus the TNFi group. In contrast,

216 the HR due to toxic adverse events tended to be higher in the TCZ (HR=2.8, P=0.19) versus the TNFi

217 group, while the HRs for total discontinuation (excluding non-toxic reasons and remission) were

218 similar between the TCZ and TNFi group (HR=0.7, P=0.44).

219

220 **Discussion**

221 To the best of our knowledge, this is the first time that the retention rates of secondary bDMARDs or

222 JAKi have been documented in patients with RA who were primarily being treated by TCZ or ABT as

223 the first bDMARDs.

224 Previously, there have only been a few reports that have examined these types of issues with the

225 administration of these drugs. Akiyama et al. examined patients with an insufficient response to TCZ

226 and reported that the drug retention was comparable for both TNFi and ABT after switching [32].

227 However, only 41.3% of the patients were treated by TCZ as first bDMARDs, with 55.6% of the

228 patients found to have a TNFi failure history, which could have affected these results.

229 At the present time, precise mechanisms still remain unknown with regard to TCZ failure (especially

230 loss of effectiveness). Previous studies have reported that TCZ showed a similar retention in both

231 monotherapy and in combination with MTX [33]. Burmester et al. reported finding that anti-TCZ
232 antibodies developed in a very small portion of patients (0.7-2.0%), regardless of the combination with
233 csDMARDs during both subcutaneous and intravenous TCZ treatments, which was not correlated with
234 its effectiveness [34]. Furthermore, these authors also suggested that one possible mechanism for the
235 low immunogenicity in TCZ treatment was that there could have been downregulation of the B cell
236 activity due to blocking of the IL-6 signaling [34]. The lack of a sufficient dose has also been
237 suggested, as some patients who initially showed an inadequate response to subcutaneous TCZ when it
238 was given every other week (q2w), exhibited a significantly improved efficacy after shortening the
239 dose interval to every week (qw) [35].

240 As for ABT, a recent report stated that RF and ACPA positivity was a positive predictor of ABT
241 retention in both bDMARDs-naïve and bDMARDs-failure patients [36]. Although the main reason for
242 discontinuation was the lack of effectiveness [3,36], immunogenicity was not found to be associated
243 with the loss of effectiveness [37].

244 Taken together, the lack or loss of effectiveness in ABT or TCZ treatments when used as first
245 bDMARDs irrespective of the dosing escalation may actually be due to an incorrect treatment target or
246 a change of the immunological backgrounds during the treatment. Thus, in these types of cases,
247 switching the treatment mode of action should perhaps be considered.

248 Although TNF is a common cytokine that plays a central role in the pathology of several autoimmune
249 diseases, IL-6 has been reported to be more dominant in the RA pathology [38]. However, TNF and
250 IL-6 are downstream cytokines of the RA pathology, with ABT or JAKi potentially regulating more
251 upstream inflammatory processes, including T-cells [39]. These speculations suggest that targeting the
252 upstream process by ABT or JAKi in TCZ failure patients could potentially be more effective than
253 targeting another downstream cytokine such as TNFi. However, elucidation of the mechanisms
254 associated with ABT failure patients has proven to be quite difficult (80.3% were ACPA positive in
255 this study). Thus, in such cases, targeting relatively RA-dominant cytokines such as IL-6 may be more
256 promising as opposed to the targeting of broad cytokines such as TNF. The effect of switching from
257 ABT to JAKi will need to be evaluated in future studies.

258 It is also necessary to point out the differences that have been found for the effectiveness of low-dose
259 MTX in Japanese versus Western populations. We previously reported that intraerythrocyte
260 MTX-polyglutamate (MTX-PG) concentrations, which are considered to be a useful biomarker of
261 MTX efficacy, were 65 nmol/L when a 13.4 mg/week dose of MTX was administered to patients in
262 the United States, whereas concentrations reached 94 nmol/L when a 10.3 mg/week dose of MTX was
263 administered in Japanese patients [40]. Thus, a relatively low dose of MTX may exhibit positive
264 effects on bDMARD retention in Japanese populations, **although may have stronger influence on the**
265 **retention of TNFi compared to that of non-TNFi.**

266 The limitations of the current study were as follows. First, since relatively special conditions were
267 followed during the recruitment of subjects, the number of patients in the study was small, which may
268 have affected the results. Second, the judgment and reasons for discontinuation (such as lack of
269 effectiveness or remission) depended on the decisions of each physician, without standardized criteria.
270 Third, the difference between the intravenous and subcutaneous bDMARDs, the presence of other
271 csDMARDs, and the minor dose changes that occurred for the bDMARDs, MTX, and PSL, **and prior**
272 **treatment before TCZ or ABT introduction** could not be monitored. Fourth, comorbidities, which can
273 potentially affect the drug retention, could not be evaluated. **Fifth, the differences of treatment**
274 **intervals between 1st and 2nd agents (although no significant differences were observed between the**
275 **groups) may have affected the results.**

276

277 **Conclusions**

278 Optimal strategy from these data is when choosing secondary agents after TCZ or ABT failure,
279 switching TCZ to ABT may exhibit higher total retention, and switching TCZ to JAKi or switching
280 ABT to TCZ tend to show higher retention due to the effectiveness compared to switching these
281 non-TNFi agents to TNFi in certain conditions.

282

283 **Figure Legends**

284 **Figure 1. Adjusted drug retention due to lack of effectiveness (a) and total drug retention**

285 **excluding non-toxic reasons and remission (b) in TCZ-switched cases.**

286 Adjusted confounders included age, sex, disease duration, concomitant prednisolone and methotrexate,

287 treatment duration and discontinuation reasons of the TCZ.

288 TCZ = tocilizumab, ABT = abatacept, JAKi = Janus kinase inhibitors, TNFi = tumor necrosis factor

289 inhibitors.

290

291 **Figure 2. Adjusted drug retention due to lack of effectiveness (a) and total drug retention**

292 **excluding non-toxic reasons and remission (b) in ABT-switched cases.**

293 Adjusted confounders included age, sex, disease duration, concomitant prednisolone and methotrexate,

294 treatment duration and discontinuation reasons of the ABT.

295 ABT = abatacept, TCZ = tocilizumab, TNFi = tumor necrosis factor inhibitors.

296

297 **Availability of data and materials**

298 The datasets used and/or analyzed in the current study are available from the corresponding author on

299 reasonable request.

300

301 **Authors' contributions**

302 KE was responsible for conception and design. KE, TH, YM, MH, KM, TT, KN, YS, HA, AO, SJ, RH,
303 and MK contributed to data extraction and interpretation. KE, WY, and KY contributed to the design
304 and conduction of statistical analysis. KE and MH prepared the manuscript. AK and MH supervised
305 the manuscript. All authors read and approved the final manuscript.

306

307 **Compliance with ethical standards**

308 **Conflict of interest**

309 KE is affiliated with the Department of Musculoskeletal Regenerative Medicine, Osaka University,
310 Graduate School of Medicine, which is supported by Taisho. KE has received research grants from
311 Abbie, Asahi-Kasei, Astellas, Chugai, Eisai, Ono Pharmaceutical, and UCB Japan. KE has received
312 payments for lectures from Abbie, Asahi-Kasei, Astellas, Ayumi, Bristol-Myers Squibb, Chugai, Eisai,
313 Eli Lilly, Janssen, Mitsubishi-Tanabe, Ono Pharmaceutical, Sanofi, and UCB Japan. TH received a
314 research grant and/or speaker fee from Astellas, Chugai, Nippon Shinyaku, Abbvie, Eisai, and Ono
315 Pharmaceutical. YM received a research grant and/or speaker fee from Eli Lilly, Chugai, Pfizer,
316 Bristol-Myers Squibb, and Mitsubishi-Tanabe. MHashimoto and KM are affiliated with a department
317 that is financially supported by four pharmaceutical companies (Mitsubishi-Tanabe, Chugai, Ayumi,
318 and UCB Japan) and the city government (Nagahama City). MHashimoto received a research grant
319 and/or speaker fee from Astellas, Mitsubishi-Tanabe, Eisai, Eli Lilly, and Bristol-Myers Squibb. KM

320 received a speaking fee, and/or consulting fee from Eisai. TT is affiliated with a department that is
321 financially supported by six pharmaceutical companies (Mitsubishi-Tanabe, Chugai, Ayumi, Astellas,
322 Eisai, and Takeda). TT received a research grant from Chugai, CoverLetter and a speaker fee from
323 Astellas, Chugai, Eisai, Mitsubishi-Tanabe, Abbvie, Bristol-Myers Squibb, Ayumi, Daiichi Sankyo,
324 Eisai, Takeda, and Asahi-Kasei. AO received a speaker fee from Chugai, Ono Pharmaceutical, Eli
325 Lilly, Mitsubishi-Tanabe, Asahi-Kasei, and Takeda. RH received a speaker fee from AbbVie. MHirao
326 received a speaker fee from Astellas, Ono Pharmaceutical, Eli Lilly, Mitsubishi-Tanabe, Pfizer, Ayumi,
327 and Takeda. AK received a research grant and/or speaker fee from Mitsubishi-Tanabe, Chugai, Eisai,
328 Asahi-Kasei, Astellas, Abbvie, Bristol-Myers Squibb, Ono Pharmaceutical, and Pfizer. WY, KN, YS,
329 HA, SJ, and KY have no financial conflicts of interest to disclose concerning this manuscript. These
330 companies had no role in the study design, data collection, data analysis, data interpretation, and
331 preparation of the manuscript.

332

333 **Ethical approval**

334 The representative facility of this registry was Kyoto University, and this observational study was
335 conducted in accordance with the Declaration of Helsinki, with approval by each of the ethics
336 committees of the seven institutes: Kyoto University (2016-03-24/ approved number R053), Osaka
337 University (2015-11-04/ approved number 15300), Osaka Medical College (2014-07-14/ approved

338 number 1529), Kansai Medical University (2017-11-21/ approved number 2014625), Kobe University
339 (2015-03-20/ approved number 1738), Nara Medial University (2018-01-23/ approved number 1692),
340 and Osaka Red Cross Hospital (2015-09-01/ approved number 644). The board of Osaka University
341 Hospital Ethical Committee waived the requirement for patients' informed consent because of the
342 anonymous nature of the data. Written informed consent was obtained from the participants in other
343 institutes.

344

345 **References**

346

- 347 1. Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, Nam J, Ramiro S, Voshaar
348 M, van Vollenhoven R, Aletaha D, Aringer M, Boers M, Buckley CD, Buttgereit F, Bykerk V, Cardiel M,
349 Combe B, Cutolo M, van Eijk-Hustings Y, Emery P, Finckh A, Gabay C, Gomez-Reino J, Gossec L,
350 Gottenberg JE, Hazes JMW, Huizinga T, Jani M, Karateev D, Kouloumas M, Kvien T, Li Z, Mariette X,
351 McInnes I, Mysler E, Nash P, Pavelka K, Poor G, Richez C, van Riel P, Rubbert-Roth A, Saag K, da
352 Silva J, Stamm T, Takeuchi T, Westhovens R, de Wit M, van der Heijde D (2017) EULAR
353 recommendations for the management of rheumatoid arthritis with synthetic and biological
354 disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis 76: 960-977.
- 355 2. Smolen JS, Aletaha D (2015) Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges.
356 Nat Rev Rheumatol 11: 276-289.
- 357 3. Choquette D, Bessette L, Alemao E, Haraoui B, Postema R, Raynauld JP, Coupal L (2019) Persistence rates of
358 abatacept and TNF inhibitors used as first or second biologic DMARDs in the treatment of rheumatoid
359 arthritis: 9 years of experience from the Rhumadata(R) clinical database and registry. Arthritis Res Ther
360 21: 138.
- 361 4. Lauper K, Nordstrom DC, Pavelka K, Hernandez MV, Kvien TK, Kristianslund EK, Santos MJ, Rotar Z,
362 Iannone F, Codreanu C, Lukina G, Gale SL, Sarsour K, Luder Y, Courvoisier DS, Gabay C (2018)
363 Comparative effectiveness of tocilizumab versus TNF inhibitors as monotherapy or in combination with
364 conventional synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis after
365 the use of at least one biologic disease-modifying antirheumatic drug: analyses from the pan-European
366 TOCERRA register collaboration. Ann Rheum Dis 77: 1276-1282.
- 367 5. Harrold LR, Reed GW, Solomon DH, Curtis JR, Liu M, Greenberg JD, Kremer JM (2016) Comparative

368 effectiveness of abatacept versus tocilizumab in rheumatoid arthritis patients with prior TNFi exposure
369 in the US Corrona registry. *Arthritis Res Ther* 18: 280.

370 6. Ebina K, Hashimoto M, Yamamoto W, Hirano T, Hara R, Katayama M, Onishi A, Nagai K, Son Y, Amuro H,
371 Yamamoto K, Maeda Y, Murata K, Jinno S, Takeuchi T, Hirao M, Kumanogoh A, Yoshikawa H (2019)
372 Drug tolerability and reasons for discontinuation of seven biologics in 4466 treatment courses of
373 rheumatoid arthritis-the ANSWER cohort study. *Arthritis Res Ther* 21: 91.

374 7. Ebina K, Hashimoto M, Yamamoto W, Ohnishi A, Kabata D, Hirano T, Hara R, Katayama M, Yoshida S,
375 Nagai K, Son Y, Amuro H, Akashi K, Fujimura T, Hirao M, Yamamoto K, Shintani A, Kumanogoh A,
376 Yoshikawa H (2018) Drug retention and discontinuation reasons between seven biologics in patients
377 with rheumatoid arthritis -The ANSWER cohort study. *PLoS One* 13: e0194130.

378 8. Vieira MC, Zwillich SH, Jansen JP, Smiechowski B, Spurden D, Wallenstein GV (2016) Tofacitinib Versus
379 Biologic Treatments in Patients With Active Rheumatoid Arthritis Who Have Had an Inadequate
380 Response to Tumor Necrosis Factor Inhibitors: Results From a Network Meta-analysis. *Clin Ther* 38:
381 2628-2641 e2625.

382 9. Cantini F, Niccoli L, Nannini C, Cassara E, Kaloudi O, Giulio Favalli E, Becciolini A, Biggioggero M,
383 Benucci M, Li Gobbi F, Grossi V, Infantino M, Meacci F, Manfredi M, Guiducci S, Bellando-Randone
384 S, Matucci-Cerinic M, Foti R, Di Gangi M, Mosca M, Tani C, Palmieri F, Goletti D (2016) Tailored
385 first-line biologic therapy in patients with rheumatoid arthritis, spondyloarthritis, and psoriatic arthritis.
386 *Semin Arthritis Rheum* 45: 519-532.

387 10. Monti S, Klerys C, Gorla R, Sarzi-Puttini P, Atzeni F, Pellerito R, Fusaro E, Paolazzi G, Rocchetta PA,
388 Favalli EG, Marchesoni A, Caporali R (2017) Factors influencing the choice of first- and second-line
389 biologic therapy for the treatment of rheumatoid arthritis: real-life data from the Italian LORHEN
390 Registry. *Clin Rheumatol* 36: 753-761.

391 11. Wolfe F, Michaud K, Dewitt EM (2004) Why results of clinical trials and observational studies of antitumour
392 necrosis factor (anti-TNF) therapy differ: methodological and interpretive issues. *Ann Rheum Dis* 63
393 Suppl 2: ii13-ii17.

394 12. Du Pan SM, Dehler S, Ciurea A, Ziswiler HR, Gabay C, Finckh A (2009) Comparison of drug retention rates
395 and causes of drug discontinuation between anti-tumor necrosis factor agents in rheumatoid arthritis.
396 *Arthritis Rheum* 61: 560-568.

397 13. Favalli EG, Pagnolato F, Biggioggero M, Becciolini A, Penatti AE, Marchesoni A, Meroni PL (2016)
398 Twelve-Year Retention Rate of First-Line Tumor Necrosis Factor Inhibitors in Rheumatoid Arthritis:
399 Real-Life Data From a Local Registry. *Arthritis Care Res (Hoboken)* 68: 432-439.

400 14. Gabay C, Riek M, Scherer A, Finckh A (2015) Effectiveness of biologic DMARDs in monotherapy versus in
401 combination with synthetic DMARDs in rheumatoid arthritis: data from the Swiss Clinical Quality
402 Management Registry. *Rheumatology (Oxford)* 54: 1664-1672.

403 15. Hetland ML, Christensen IJ, Tarp U, Dreyer L, Hansen A, Hansen IT, Kollerup G, Linde L, Lindegaard HM,

404 Poulsen UE, Schlemmer A, Jensen DV, Jensen S, Hostenkamp G, Ostergaard M (2010) Direct
405 comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid
406 arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of
407 clinical practice in the nationwide Danish DANBIO registry. *Arthritis Rheum* 62: 22-32.

408 16. Jorgensen TS, Kristensen LE, Christensen R, Bliddal H, Lorenzen T, Hansen MS, Ostergaard M, Jensen J,
409 Zanjani L, Laursen T, Butt S, Dam MY, Lindegaard HM, Espesen J, Hendricks O, Kumar P, Kincses A,
410 Larsen LH, Andersen M, Naeser EK, Jensen DV, Grydehoj J, Unger B, Dufour N, Sorensen V, Vildhøj
411 S, Hansen IM, Raun J, Krogh NS, Hetland ML (2015) Effectiveness and drug adherence of biologic
412 monotherapy in routine care of patients with rheumatoid arthritis: a cohort study of patients registered
413 in the Danish biologics registry. *Rheumatology (Oxford)* 54: 2156-2165.

414 17. Hyrich KL, Watson KD, Lunt M, Symmons DP (2011) Changes in disease characteristics and response rates
415 among patients in the United Kingdom starting anti-tumour necrosis factor therapy for rheumatoid
416 arthritis between 2001 and 2008. *Rheumatology (Oxford)* 50: 117-123.

417 18. Neovius M, Arkema EV, Olsson H, Eriksson JK, Kristensen LE, Simard JF, Askling J (2015) Drug survival
418 on TNF inhibitors in patients with rheumatoid arthritis comparison of adalimumab, etanercept and
419 infliximab. *Ann Rheum Dis* 74: 354-360.

420 19. Simard JF, Arkema EV, Sundstrom A, Geborek P, Saxne T, Baecklund E, Coster L, Dackhammar C,
421 Jacobsson L, Feltelius N, Lindblad S, Rantapaa-Dahlqvist S, Klareskog L, van Vollenhoven RF,
422 Neovius M, Askling J (2011) Ten years with biologics: to whom do data on effectiveness and safety
423 apply? *Rheumatology (Oxford)* 50: 204-213.

424 20. (2008) 1958 revision of diagnostic criteria for rheumatoid arthritis. *Arthritis Rheum* 58: S15-19.

425 21. Ebina K, Hashimoto M, Yamamoto W, Hirano T, Hara R, Katayama M, Onishi A, Nagai K, Son Y, Amuro H,
426 Yamamoto K, Maeda Y, Murata K, Jinno S, Takeuchi T, Hirao M, Kumanogoh A, Yoshikawa H (2019)
427 Drug tolerability and reasons for discontinuation of seven biologics in elderly patients with rheumatoid
428 arthritis -The ANSWER cohort study. *PLoS One* 14: e0216624.

429 22. Hashimoto M, Furu M, Yamamoto W, Fujimura T, Hara R, Katayama M, Ohnishi A, Akashi K, Yoshida S,
430 Nagai K, Son Y, Amuro H, Hirano T, Ebina K, Uozumi R, Ito H, Tanaka M, Ohmura K, Fujii T, Mimori
431 T (2018) Factors associated with the achievement of biological disease-modifying antirheumatic
432 drug-free remission in rheumatoid arthritis: the ANSWER cohort study. *Arthritis Res Ther* 20: 165.

433 23. Murata K, Hashimoto M, Yamamoto W, Son Y, Amuro H, Nagai K, Takeuchi T, Katayama M, Maeda Y,
434 Ebina K, Hara R, Jinno S, Onishi A, Murakami K, Tanaka M, Ito H, Mimori T, Matsuda S (2019) The
435 family history of rheumatoid arthritis in anti-cyclic citrullinated peptide antibody-positive patient is not
436 a predictor of poor clinical presentation and treatment response with modern classification criteria and
437 treatment strategy: the ANSWER cohort study. *Rheumatol Int*.

438 24. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH,
439 Luthra HS, et al. (1988) The American Rheumatism Association 1987 revised criteria for the

440 classification of rheumatoid arthritis. *Arthritis Rheum* 31: 315-324.

441 25. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, Birnbaum NS, Burmester GR,
442 Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM,
443 Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW,
444 Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS,
445 Vencovsky J, Wolfe F, Hawker G (2010) 2010 rheumatoid arthritis classification criteria: an American
446 College of Rheumatology/European League Against Rheumatism collaborative initiative. *Ann Rheum
447 Dis* 69: 1580-1588.

448 26. Kawahito Y (2016) [Guidelines for the management of rheumatoid arthritis]. *Nihon Rinsho* 74: 939-943.

449 27. Koike R, Harigai M, Atsumi T, Amano K, Kawai S, Saito K, Saito T, Yamamura M, Matsubara T, Miyasaka
450 N (2009) Japan College of Rheumatology 2009 guidelines for the use of tocilizumab, a humanized
451 anti-interleukin-6 receptor monoclonal antibody, in rheumatoid arthritis. *Mod Rheumatol* 19: 351-357.

452 28. Koike R, Takeuchi T, Eguchi K, Miyasaka N (2007) Update on the Japanese guidelines for the use of
453 infliximab and etanercept in rheumatoid arthritis. *Mod Rheumatol* 17: 451-458.

454 29. Favalli EG, Biggioggero M, Marchesoni A, Meroni PL (2014) Survival on treatment with second-line
455 biologic therapy: a cohort study comparing cycling and swap strategies. *Rheumatology (Oxford)* 53:
456 1664-1668.

457 30. Greenberg JD, Reed G, Decktor D, Harrold L, Furst D, Gibofsky A, Dehoratius R, Kishimoto M, Kremer JM
458 (2012) A comparative effectiveness study of adalimumab, etanercept and infliximab in biologically
459 naive and switched rheumatoid arthritis patients: results from the US CORRONA registry. *Ann Rheum
460 Dis* 71: 1134-1142.

461 31. Kanda Y (2013) Investigation of the freely available easy-to-use software 'EZR' for medical statistics. *Bone
462 Marrow Transplant* 48: 452-458.

463 32. Akiyama M, Kaneko Y, Kondo H, Takeuchi T (2016) Comparison of the clinical effectiveness of tumour
464 necrosis factor inhibitors and abatacept after insufficient response to tocilizumab in patients with
465 rheumatoid arthritis. *Clin Rheumatol* 35: 2829-2834.

466 33. Mori S, Yoshitama T, Abe Y, Hidaka T, Hirakata N, Aoyagi K, Ueki Y (2019) Retention of tocilizumab with
467 and without methotrexate during maintenance therapy for rheumatoid arthritis: the ACTRA-RI cohort
468 study. *Rheumatology (Oxford)* 58: 1274-1284.

469 34. Burmester GR, Choy E, Kivitz A, Ogata A, Bao M, Nomura A, Lacey S, Pei J, Reiss W, Pethoe-Schramm A,
470 Mallalieu NL, Wallace T, Michalska M, Birnboeck H, Stubenrauch K, Genovese MC (2017) Low
471 immunogenicity of tocilizumab in patients with rheumatoid arthritis. *Ann Rheum Dis* 76: 1078-1085.

472 35. Ogata A, Tanaka Y, Ishii T, Kaneko M, Miwa H, Ohsawa S (2018) A randomized, double-blind,
473 parallel-group, phase III study of shortening the dosing interval of subcutaneous tocilizumab
474 monotherapy in patients with rheumatoid arthritis and an inadequate response to subcutaneous
475 tocilizumab every other week: Results of the 12-week double-blind period. *Mod Rheumatol* 28: 76-84.

476 36. Alten R, Mariette X, Lorenz HM, Nusslein H, Galeazzi M, Navarro F, Chartier M, Heitzmann J, Poncet C,
477 Rauch C, Le Bars M (2019) Predictors of abatacept retention over 2 years in patients with rheumatoid
478 arthritis: results from the real-world ACTION study. *Clin Rheumatol* 38: 1413-1424.

479 37. Genovese MC, Pacheco-Tena C, Covarrubias A, Leon G, Mysler E, Keiserman M, Valente RM, Nash P,
480 Simon-Campos JA, Box J, Legerton CW, 3rd, Nasonov E, Durez P, Elegbe A, Wong R, Li X, Banerjee
481 S, Alten R (2018) Longterm Safety and Efficacy of Subcutaneous Abatacept in Patients with
482 Rheumatoid Arthritis: 5-year Results from a Phase IIIb Trial. *J Rheumatol* 45: 1085-1092.

483 38. Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF (2013) How cytokine networks fuel inflammation:
484 Toward a cytokine-based disease taxonomy. *Nat Med* 19: 822-824.

485 39. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB,
486 Solomon DH, Strand V, Yamamoto K (2018) Rheumatoid arthritis. *Nat Rev Dis Primers* 4: 18001.

487 40. Takahashi C, Kaneko Y, Okano Y, Taguchi H, Oshima H, Izumi K, Yamaoka K, Takeuchi T (2017)
488 Association of erythrocyte methotrexate-polyglutamate levels with the efficacy and hepatotoxicity of
489 methotrexate in patients with rheumatoid arthritis: a 76-week prospective study. *RMD Open* 3:
490 e000363.

491

492

Table 1. Baseline clinical characteristics of patients initially treated by TCZ and then changed to another agent

Variable	TCZ→TNFi (n=76)	TCZ→ABT (n=45)	TCZ→JAKi (n=24)	P-value
Agents used for follow-up	GLM (n=27), ETN (n=17), IFX (n=14), ADA (n=11), CZP (n=7)	TOF (n=13), BAR (n=11)		NA
Months TCZ continued	16.4±21.6	26.7±37.8	18.8±22.0	0.26
Reasons for discontinuing TCZ	Ineffectiveness (76.3%), toxic reasons (9.2%), non-toxic reasons (14.5%)	Ineffectiveness (80.0%), toxic reasons (17.8%), non-toxic reasons (2.2%)	Ineffectiveness (70.8%), toxic reasons (16.7%), non-toxic reasons (12.5%)	0.13
Treatment interval (months)	2.8±6.2	5.8±12.0	9.8±14.2	0.053
Age (years)	54.2±16.2	62.2±11.9	57.7±13.1	0.011
Disease duration (years)	7.8±8.2	11.6±9.6	8.8±6.5	0.096
RF positivity (%)	63.1	80.6	78.6	0.32
ACPA positivity (%)	73.2	87.1	75.0	0.53
DAS28-CRP	3.2±1.3	3.9±1.4	3.7±1.6	0.17
CDAI	16.6±10.5	17.5±10.2	20.3±12.9	0.56
HAQ-DI	0.9±0.7	0.9±0.5	1.2±0.8	0.61
PSL usage (%)	60.5	48.9	66.7	0.44
PSL dose (mg/day)	6.7±5.0	6.7±3.8	3.4±2.3	<0.001
MTX usage (%)	45.8	40.0	45.8	0.073
MTX dose (mg/week)	7.8±3.2	7.1±3.7	9.1±3.3	0.34
SASP usage (%)	6.6	6.7	25.0	0.04
LEF usage (%)	0.0	0.0	0.0	1.0
BUC usage (%)	3.9	4.4	0.0	0.85
TAC usage (%)	5.3	8.9	12.5	0.39
IGU usage (%)	1.3	2.2	20.8	0.002

Values represent mean ± standard deviation. NA = not applicable.

TCZ = tocilizumab, TNFi = tumor necrosis factor inhibitors, ABT = abatacept, JAKi = Janus kinase

inhibitors, GLM = golimumab, ETN = etanercept, IFX = infliximab, ADA = adalimumab, CZP = certolizumab pegol, TOF = tofacitinib, BAR = baricitinib, RF = rheumatoid factor, ACPA = anti-cyclic citrullinated peptide antibody, DAS28-CRP = Disease Activity Score in 28 joints using C-reactive protein, CDAI = Clinical Disease Activity Index, HAQ-DI = Health Assessment Questionnaire Disability Index, PSL = prednisolone, MTX = methotrexate, **SASP** = salazosulfapyridine, LEF = leflunomide, BUC = bucillamine, TAC = tacrolimus, IGU = iguratimod.

Differences between the groups were assessed using an analysis of variance or Fisher's exact test.

Table 2. Hazard ratio for treatment discontinuation in TCZ-switched cases (Cox proportional hazards model, adjusted by baseline age, sex, disease duration, concomitant PSL and MTX, treatment duration of TCZ, and reasons of TCZ discontinuation)

	Reference	HR (95% CI)	P-value
Variable	TCZ→TNFi (n=76)	TCZ→ABT (n=45)	TCZ→JAKi (n=24)
Lack of effectiveness	1	0.3 (0.2-0.8)**	0.5 (0.2-1.2)
All toxic adverse events	1	0.9 (0.3-2.9)	0.7 (0.1-3.1)
Non-toxic events	1	3.9 (1.0-15.0)*	1.4 (0.1-13.5)
Total discontinuation (excluding non-toxic reasons and remission)	1	0.5 (0.2-0.9)*	0.5 (0.2-1.1)

TCZ = tocilizumab, PSL = prednisolone, MTX = methotrexate, HR = hazard ratio, 95% CI = 95% confidence interval, TNFi = tumor necrosis factor inhibitors, ABT = abatacept, JAKi = Janus kinase inhibitors.

Differences between the groups were assessed using the Cox P-value. * P<0.05, **P<0.01.

Table 3. Baseline clinical characteristics of patients initially treated by ABT and then changed to other agents

Variable	ABT→TNFi (n=42)	ABT→TCZ (n=34)	P-value
Agents used for follow-up	GLM (n=17), ETN (n=11), ADA (n=9), IFX (n=4), CZP (n=1)		NA
Months ABT continued	11.0±14.0	10.9±14.2	0.97
Reasons for discontinuing ABT	Ineffectiveness (90.5%), non-toxic reasons (9.5%)	Ineffectiveness (94.2%), toxic reasons (2.9%), non-toxic reasons (2.9%)	0.26
Treatment interval (months)	2.2±4.0	1.9±4.8	0.78
Age (years)	66.0±13.6	60.8±11.1	0.070
Disease duration (years)	6.6±8.0	9.8±8.7	0.10
RF positivity (%)	82.9	81.5	1.0
ACPA positivity (%)	77.8	84.0	0.75
DAS28-CRP	4.0±1.1	3.8±1.3	0.64
CDAI	16.8±9.9	16.6±9.4	0.94
HAQ-DI	0.8±0.6	1.3±0.8	0.15
PSL usage (%)	26.2	55.9	0.010
PSL dose (mg/day)	3.8±2.6	6.8±3.4	0.010
MTX usage (%)	76.2	50.0	0.029
MTX dose (mg/week)	8.7±2.9	7.3±2.3	0.076
SASP usage (%)	21.4	17.6	0.78
LEF usage (%)	0.0	0.0	1.0
BUC usage (%)	7.1	20.6	0.10
TAC usage (%)	11.9	8.8	0.73
IGU usage (%)	0.0	8.8	0.085

Values represent mean ± standard deviation. NA = not applicable.

ABT = abatacept, TNFi = tumor necrosis factor inhibitors, TCZ = tofacitinib, GLM = golimumab, ETN = etanercept, IFX = infliximab, ADA = adalimumab, CZP = certolizumab pegol, RF = rheumatoid factor, ACPA = anti-cyclic citrullinated peptide antibody, DAS28-CRP = Disease Activity Score in 28 joints using C-reactive protein, CDAI = Clinical Disease Activity Index, HAQ-DI = Health Assessment Questionnaire Disability Index, PSL = prednisolone, MTX = methotrexate, **SASP** = salazosulfapyridine,

LEF = leflunomide, BUC = bucillamine, TAC = tacrolimus, IGU = iguratimod.

Differences between the groups were assessed using a Mann-Whitney U test or Pearson's chi-squared test.

Table 4. Hazard ratio for treatment discontinuation in ABT-switched cases (Cox proportional hazards model, adjusted by baseline age, sex, disease duration, concomitant PSL and MTX, treatment duration of ABT, and reasons of ABT discontinuation)

Variable	Reference	HR (95% CI)	P-value
	ABT→TNFi (n=42)	ABT→TCZ (n=34)	
Lack of effectiveness	1	0.3 (0.1-1.0)	0.053
All toxic adverse events	1	2.8 (0.6-13.1)	0.19
Non-toxic events	1	2.1 (0.6-7.7)	0.25
Total discontinuation (excluding non-toxic reasons and remission)	1	0.7 (0.3-1.8)	0.44

ABT = abatacept, PSL = prednisolone, MTX = methotrexate, HR = hazard ratio, 95% CI = 95% confidence interval, TNFi = tumor necrosis factor inhibitors, TCZ = tocilizumab.

Differences between the groups were assessed using the Cox P-value.

Figure 1

Number at risk

	45	34	31	24	20
ABT	45	34	31	24	20
JAKi	24	20	12	11	10

Number at risk

	45	34	31	24	20
ABT	45	34	31	24	20
JAKi	24	20	12	11	10

	76	50	42	39	37
TNFi	76	50	42	39	37

Figure 2

a Drug retention due to lack of effectiveness
(ABT switched to TCZ or TNFi)

Number at risk

TCZ	34	26	24	19	16
TNF α	42	33	27	23	18

b Total drug retention excluding non-toxic reasons and remission
(ABT switched to TCZ or TNFi)

Number at risk

TCZ	34	26	24	19	16
TNF α	42	33	27	23	18