

| Title        | Drug retention of secondary biologics or JAK<br>inhibitors after tocilizumab or abatacept<br>failure as first biologics in patients with<br>rheumatoid arthritis -the ANSWER cohort study- |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s)    | Ebina, Kosuke; Hirano, Toru; Maeda, Yuichi et<br>al.                                                                                                                                       |
| Citation     | Clinical Rheumatology. 2020, 39(9), p. 2563-2572                                                                                                                                           |
| Version Type | АМ                                                                                                                                                                                         |
| URL          | https://hdl.handle.net/11094/93249                                                                                                                                                         |
| rights       | © 2020, International League of Associations for Rheumatology (ILAR).                                                                                                                      |
| Note         |                                                                                                                                                                                            |

# Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

| 1  | Original Article                                                                                                                                                                          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                                                                           |
| 3  | Title:                                                                                                                                                                                    |
| 4  | Drug retention of secondary biologics or JAK inhibitors after tocilizumab or abatacept failure as first                                                                                   |
| 5  | biologics in patients with rheumatoid arthritis -The ANSWER cohort study-                                                                                                                 |
| 6  |                                                                                                                                                                                           |
| 7  | Authors:                                                                                                                                                                                  |
| 8  | Kosuke Ebina <sup>1</sup> *, Toru Hirano <sup>2</sup> , Yuichi Maeda <sup>2</sup> , Wataru Yamamoto <sup>3,4</sup> , Motomu Hashimoto <sup>4</sup> , Koichi                               |
| 9  | Murata <sup>4</sup> , Tohru Takeuchi <sup>5</sup> , Koji Nagai <sup>6</sup> , Yonsu Son <sup>7</sup> , Hideki Amuro <sup>7</sup> , Akira Onishi <sup>8</sup> , Sadao Jinno <sup>8</sup> , |
| 10 | Ryota Hara9, Masaki Katayama10, Keiichi Yamamoto11, Atsushi Kumanogoh2, and Makoto Hirao12                                                                                                |
| 11 |                                                                                                                                                                                           |
| 12 | Affiliations:                                                                                                                                                                             |
| 13 | 1. Department of Musculoskeletal Regenerative Medicine, Osaka University, Graduate School of                                                                                              |
| 14 | Medicine, Osaka, Japan                                                                                                                                                                    |
| 15 | 2. Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine,                                                                                               |
| 16 | Osaka University, Osaka, Japan                                                                                                                                                            |
| 17 | 3. Department of Health Information Management, Kurashiki Sweet Hospital, Okayama, Japan                                                                                                  |

| 18 | 4.  | Department of Advanced Medicine for Rheumatic diseases, Graduate School of Medicine, Kyoto |
|----|-----|--------------------------------------------------------------------------------------------|
| 19 |     | University, Kyoto, Japan                                                                   |
| 20 | 5.  | Department of Internal Medicine (IV), Osaka Medical College, Osaka, Japan                  |
| 21 | 6.  | Rheumatology center, Koshokai Aino Hospital, Osaka, Japan                                  |
| 22 | 7.  | First Department of Internal Medicine, Kansai Medical University, Osaka, Japan             |
| 23 | 8.  | Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of     |
| 24 |     | Medicine, Hyogo, Japan                                                                     |
| 25 | 9.  | The Center for Rheumatic Diseases, Nara Medical University, Nara, Japan                    |
| 26 | 10. | Department of Rheumatology, Osaka Red Cross Hospital, Osaka, Japan                         |
| 27 | 11. | Department of Medical Informatics, Wakayama Medical University Hospital, Wakayama, Japan   |
| 28 | 12. | Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, Osaka,   |
| 29 |     | Japan                                                                                      |
| 30 | *Co | prresponding author: E-mail: <u>k-ebina@umin.ac.jp</u>                                     |
| 31 |     |                                                                                            |
| 32 | Key | words                                                                                      |

33 Abatacept, biologics, drug retention, Janus kinase inhibitors, rheumatoid arthritis, tocilizumab

# *ORCID*

| 35 | Kosuke Ebina      | 0000-0002-2426-1024 |
|----|-------------------|---------------------|
| 36 | Toru Hirano       | 0000-0001-8467-3154 |
| 37 | Yuichi Maeda      | 0000-0002-6831-8205 |
| 38 | Wataru Yamamoto   | 0000-0002-0810-4221 |
| 39 | Motomu Hashimoto  | 0000-0002-9241-060X |
| 40 | Koichi Murata     | 0000-0002-7896-3937 |
| 41 | Tohru Takeuchi    | 0000-0002-0065-929X |
| 42 | Koji Nagai        | 0000-0002-3183-4193 |
| 43 | Yonsu Son         | 0000-0001-7244-7715 |
| 44 | Hideki Amuro      | 0000-0002-7299-2884 |
| 45 | Akira Onishi      | 0000-0002-3120-1273 |
| 46 | Sadao Jinno       | 0000-0003-3021-183X |
| 47 | Ryota Hara        | 0000-0001-8000-3196 |
| 48 | Masaki Katayama   | 0000-0002-0773-7238 |
| 49 | Atsushi Kumanogoh | 0000-0003-4749-7117 |
| 50 | Makoto Hirao      | 0000-0002-1408-7851 |

### 52 Acknowledgments

We wish to thank all of the medical staff at all of the institutions that were participating in the
ANSWER cohort for providing the data.

55

## 56 Funding

57 The study reported in this publication uses ANSWER Cohort supported by grants from eight 58 pharmaceutical companies (AbbVie, Asahi Kasei, Ayumi, Chugai, Eisai, Janssen, Ono and Sanofi) 59 and an information technology services company (CAC). This study is conducted as 60 investigator-initiated study, and these companies had no role in the study design, data collection, data 61 analysis, data interpretation, and preparation of the manuscript. 62 63 64

- 66
- 67
- 68
- 69

# 70 Abstract

| 71 | Objectives: The aim of this multicenter, retrospective study was to clarify the retention of secondary |
|----|--------------------------------------------------------------------------------------------------------|
| 72 | biological disease-modifying antirheumatic drugs (bDMARDs) or Janus kinase inhibitors (JAKi) in        |
| 73 | patients with rheumatoid arthritis (RA) who were primarily treated by tocilizumab (TCZ) or abatacept   |
| 74 | (ABT) as first bDMARDs.                                                                                |
| 75 | Method: Patients who were treated by either TCZ (n=145) or ABT (n=76) and then switched to either      |
| 76 | tumor necrosis factor inhibitors (TNFi), TCZ, ABT, or JAKi (including only cases switched from         |
| 77 | TCZ) from 2001 to 2019 [female 81.0%, age 59.5 years, disease duration 8.8 years; rheumatoid factor    |
| 78 | positivity 75.4%; Disease Activity Score in 28 joints using C-reactive protein 3.7; concomitant        |
| 79 | prednisolone (PSL) dose 6.0 mg/day (51.8%) and methotrexate (MTX) dose 8.0 mg/week (56.1%);            |
| 80 | 81.9% discontinued first bDMARDs due to lack of effectiveness] were included. Drug retention and       |
| 81 | discontinuation reasons were estimated at 24 months using the Kaplan-Meier method and adjusted for     |
| 82 | potential confounders by Cox proportional hazards modeling.                                            |
| 83 | Results: Drug retentions for each of the reasons for discontinuation were as follows; lack of          |
| 84 | effectiveness in TCZ-switched group [TNFi (59.5%), ABT (82.2%), and JAKi (84.3%); TNFi vs.             |
| 85 | ABT; P=0.009] and ABT-switched group [TNFi (79.6%) and TCZ (92.6%); P=0.053]. Overall                  |
| 86 | retention excluding non-toxic reasons and remission for discontinuation were TNFi (49.9%), ABT         |

- and TCZ (72.4%) (P=0.44) in the ABT-switched group.
- 89 Conclusions: Switching to ABT in TCZ-treated patients led to higher retention as compared to TNFi.
- 90 Switching to TCZ in ABT-treated patients tended to led to higher retention due to effectiveness,
- 91 although total retention was similar as compared to TNFi.
- 92

```
93 Key-points
```

- 94 This is the first retrospective, multi-center study aimed to clarify the retention rates of secondary
- 95 bDMARDs or JAKi in patients with RA who were primarily being treated by TCZ or ABT as the first
- 96 bDMARDs.
- 97

### 98 Introduction

- 99 The recommendations of the 2016 European League Against Rheumatism (EULAR) stated that
- 100 CTLA4-Ig [abatacept (ABT)], anti-interleukin (IL)-6 receptor antibody [tocilizumab (TCZ)], and
- 101 Janus kinase inhibitors (JAKi) were considered to be equivalent to tumor necrosis factor inhibitors
- 102 (TNFi) for both the phase II and phase III treatment of rheumatoid arthritis (RA) [1]. The findings of
- 103 this report also stated that there was no difference in the outcomes among these biological
- 104 disease-modifying antirheumatic drugs (bDMARDs) and JAKi, irrespective of their target. Moreover,

| 105 | Smolen et al. reported that these agents also have a similar efficacy in previously TNFi-experienced  |
|-----|-------------------------------------------------------------------------------------------------------|
| 106 | patients, although this efficacy may be decreased as compared to the bDMARDs-naïve patients [2]. In   |
| 107 | our country, national health insurance covers 70-90% of the medical expense, and bDMARDs or JAKi      |
| 108 | can be selected by attending physicians' discretion according to the Japan College of Rheumatology    |
| 109 | guideline.                                                                                            |
| 110 | However, other cohort-based studies revealed that for the second-line bDMARDs, ABT [3] and TCZ        |
| 111 | [4] exhibited a better retention as compared to TNFi. Moreover, both ABT and TCZ administrations      |
| 112 | were reported to lead to substantial improvement of the disease activity in patients who discontinued |
| 113 | TNFi [5]. In addition, we previously reported that ABT and TCZ had a higher retention as compared     |
| 114 | to TNFi, even when adjusted in accordance with the clinical backgrounds [6,7]. Concerning JAKi, as    |
| 115 | far as we know, there have been no previous reports that have compared treatment retention with TNFi, |
| 116 | ABT, or TCZ. However, in patients who exhibited an inadequate response to TNFi, there was a higher    |
| 117 | retention for tofacitinib (TOF), which was reported to be due to a lack of efficacy compared to ABT,  |
| 118 | golimumab (GLM), and TCZ [8]. Thus, when taken together, this suggests that switching to non-TNFi     |
| 119 | (such as ABT or TCZ) or JAKi in TNFi-experienced patients may lead to better drug retention.          |
| 120 | Recent studies have reported that non-TNFi tended to be selected as the first bDMARDs due to          |
| 121 | advanced age, comorbidities, and a high ACPA titer (ABT) or monotherapy (TCZ) [9,10]. However,        |
| 122 | when choosing ABT or TCZ as the first bDMARDs, there has been a concern about the effectiveness       |

| 123 | of using a second bDMARDs or JAKi, especially in patients who originally exhibited an inadequate      |
|-----|-------------------------------------------------------------------------------------------------------|
| 124 | response to ABT or TCZ. As far as we know, there have yet to be any reports showing drug retention    |
| 125 | of secondary bDMARDs or JAKi in patients who were primarily treated by ABT or TCZ as first            |
| 126 | bDMARDs. At the present time, reliable evidence is still lacking in these types of cases.             |
| 127 | Randomized controlled trials (RCTs) often recruits patients with fewer comorbidities than that often  |
| 128 | seen in real-world settings [11]. Moreover, cohort-based observational studies have increasingly been |
| 129 | used to investigate the performance of bDMARDs [12,13,14,15,16]. In these studies, drug retention is  |
| 130 | considered to be a major index of both the safety and effectiveness [17,18,19].                       |
| 131 | Based on the findings of our cohort, we have recently reported on the drug retention found among      |
| 132 | bDMARDs [6,7,20,21], factors associated with the achievement of bDMARDs-free remission [22],          |
| 133 | and the influence of family history on treatment response [23]. The aim of current multicenter,       |
| 134 | retrospective study was to clarify within a real-world setting the retention of secondary bDMARDs or  |
| 135 | JAKi in patients who were primarily treated by ABT or TCZ as the first bDMARDs.                       |
| 136 |                                                                                                       |
| 137 | Materials and methods                                                                                 |
| 138 | Patients                                                                                              |

- 139 The Kansai Consortium for Well-being of Rheumatic Disease Patients (ANSWER) cohort is an
- 140 observational multicenter registry of patients with RA living in the Kansai district of Japan. Data were

| 141 | collected from patients who were examined at 7 major university-related hospitals (Kyoto University,     |
|-----|----------------------------------------------------------------------------------------------------------|
| 142 | Osaka University, Osaka Medical College, Kansai Medical University, Kobe University, Nara Medial         |
| 143 | University, and Osaka Red Cross Hospital). RA was diagnosed using the 1987 RA classification             |
| 144 | criteria of the American College of Rheumatology (ACR) [24] or the 2010 ACR / EULAR RA                   |
| 145 | classification criteria [25]. From 2001 to 2019, data of patients who were primarily treated by ABT or   |
| 146 | TCZ as first bDMARDs, and then switched to either TNFi [infliximab (IFX), etanercept (ETN),              |
| 147 | adalimumab (ADA), certolizumab pegol (CZP), and GLM; and which excluded bio-similar agents],             |
| 148 | ABT, TCZ (including both intravenous and subcutaneous agents), or JAKi [tofacitinib (TOF) or             |
| 149 | baricitinib (BAR)] were retrospectively collected.                                                       |
| 150 | To be included in this study, patients were required to have data on the start and discontinuation dates |
| 151 | for bDMARDs or JAKi, and the reasons for discontinuation. In addition, we also collected baseline        |
| 152 | demographic data such as age, sex, duration of disease, disease activity (Disease Activity Score in 28   |
| 153 | joints using C-reactive protein [DAS28-CRP]), Clinical Disease Activity Index (CDAI), concomitant        |
| 154 | doses and ratio of methotrexate (MTX) and prednisolone (PSL) (dose was calculated as a blank when        |
| 155 | not combined), concomitant ratio of other conventional disease-modifying antirheumatic drugs             |
| 156 | (csDMARDs) such as salazosulfapyridine (SASP), leflunomide (LEF), bucillamine (BUC), tacrolimus          |
| 157 | (TAC), and iguratimod (IGU), rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody       |
| 158 | (ACPA) positivity, and Health Assessment Questionnaire [HAQ] Disability Index [DI] score [6,7,21].       |

| 159               | Treatments were administered by the attending rheumatologists in accordance with guidelines of the                                                                                                                                                                                                                 |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 160               | Japan College of Rheumatology [26,27,28]. Drug retention was retrospectively evaluated as the                                                                                                                                                                                                                      |
| 161               | duration until definitive treatment interruption. Reasons for discontinuation were analyzed and                                                                                                                                                                                                                    |
| 162               | classified into four major categories: 1) lack of effectiveness (including primary and secondary); 2)                                                                                                                                                                                                              |
| 163               | toxic adverse events (infection, skin or systemic reaction, and other toxic events, including                                                                                                                                                                                                                      |
| 164               | hematologic, pulmonary, renal, cardiovascular complications, and malignancies, etc.); 3) non-toxic                                                                                                                                                                                                                 |
| 165               | reasons (patient preference, change in hospital, desire for pregnancy, etc.); and 4) disease remission                                                                                                                                                                                                             |
| 166               | [6,7,21]. Physicians were allowed to cite only one reason for discontinuation.                                                                                                                                                                                                                                     |
| 167               |                                                                                                                                                                                                                                                                                                                    |
| 168               | Statistical analysis                                                                                                                                                                                                                                                                                               |
| 169               |                                                                                                                                                                                                                                                                                                                    |
| 107               | The differences in the baseline clinical characteristics between the groups were assessed using the                                                                                                                                                                                                                |
| 170               | The differences in the baseline clinical characteristics between the groups were assessed using the Mann-Whitney U test (for 2 groups) or by an analysis of variance (for 3 groups) for continuous                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                    |
| 170               | Mann-Whitney U test (for 2 groups) or by an analysis of variance (for 3 groups) for continuous                                                                                                                                                                                                                     |
| 170<br>171        | Mann-Whitney U test (for 2 groups) or by an analysis of variance (for 3 groups) for continuous variables, and the Pearson's chi-squared test (for 2 groups) or the Fisher's exact test (for 3 groups) for                                                                                                          |
| 170<br>171<br>172 | Mann-Whitney U test (for 2 groups) or by an analysis of variance (for 3 groups) for continuous<br>variables, and the Pearson's chi-squared test (for 2 groups) or the Fisher's exact test (for 3 groups) for<br>categorical variables. The Kaplan-Meier method was used to examine the survival curves for each of |

176 that could have influenced drug retention as previously described (age, sex, disease duration,

| 177 | concomitant PSL and MTX, treatment duration of primary ABT or TCZ, and reasons of ABT or TCZ             |
|-----|----------------------------------------------------------------------------------------------------------|
| 178 | discontinuation) [12,14,16,29,30]. Statistical analyses were performed using EZR (Saitama Medical        |
| 179 | Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R      |
| 180 | Foundation for Statistical Computing, Vienna, Austria) [31]. P<0.05 was considered statistically         |
| 181 | significant.                                                                                             |
| 182 |                                                                                                          |
| 183 | Results                                                                                                  |
| 184 | Table 1 presents the baseline clinical characteristics of the patients initially treated by TCZ and then |
| 185 | changed to another agent. The agents switched to in the TNFi group included GLM (n=27), ETN              |
| 186 | (n=17), IFX (n=14), ADA (n=11), and CZP (n=7), while in the JAKi group, patients were switched to        |
| 187 | TOF (n=13) and BAR (n=11). The primary reason for discontinuation of TCZ in all groups was the           |
| 188 | lack of effectiveness (from 70.8% to 80.0%; P=0.13 between the groups). Significant differences in       |
| 189 | the age (P=0.011), concomitant PSL dose (P<0.001), SASP usage (%) (P=0.04), and IGU usage (%)            |
| 190 | (P=0.002) were noted between the groups.                                                                 |
| 191 | The adjusted drug retention rates due to lack of effectiveness in the TCZ-switched group were as         |
| 192 | follows: 59.5% (TNFi), 82.2% (ABT), and 84.3 (JAKi) [P=0.017 between the groups] (Fig. 1a). After        |
| 193 | excluding non-toxic reasons and remission for discontinuation, the overall retention rates were 49.9%    |
| 194 | (TNFi), 72.7% (ABT), and 72.6% (JAKi) [P=0.023 between the groups] (Fig. 1b).                            |

| 195 | Table 2 shows the adjusted HR for each of the discontinuation reasons. The HRs due to lack of         |
|-----|-------------------------------------------------------------------------------------------------------|
| 196 | effectiveness were significantly lower in ABT (HR=0.3, P=0.009), and additionally tended to be lower  |
| 197 | in the JAKi (HR=0.5, P=0.10) group as compared to TNFi (P=0.017 between the groups). There was        |
| 198 | no significant difference in the HR due to toxic adverse events between the groups (P=0.86). The HR   |
| 199 | for total discontinuation (excluding non-toxic reasons and remission) was significantly lower for the |
| 200 | ABT (HR=0.5, P=0.017), and additionally tended to be lower in the JAKi (HR=0.5, P=0.072) group as     |
| 201 | compared to TNFi (P=0.023 between the groups). Comparing non-TNFi (ABT and JAKi) and TNFi,            |
| 202 | the HRs due to lack of effectiveness were significantly lower in non-TNFi (HR=0.4, 95%CI=0.2-0.7,     |
| 203 | P=0.005), and also HRs for total discontinuation (excluding non-toxic reasons and remission) were     |
| 204 | significantly lower in non-TNFi (HR=0.5, 95%CI=0.3-0.8, P=0.006) as compared to TNFi.                 |
| 205 | Table 3 shows the baseline clinical characteristics of the patients initially treated by ABT and then |
| 206 | changed to another agent. The agents switched to in the TNFi group included GLM (n=17), ETN           |
| 207 | (n=11), ADA (n=9), IFX (n=4), and CZP (n=1). There was a significantly higher ratio (P=0.010) and     |
| 208 | dose (P=0.010) for the PSL treatment in the TCZ group, while there was also a lower ratio of MTX      |
| 209 | (P=0.029) as compared to the TNFi group.                                                              |
| 210 | The adjusted drug retention rates due to lack of effectiveness in the ABT-switched group were as      |
| 211 | follows: 79.6% (TNFi) and 92.6% (TCZ) [P=0.053 between the groups] (Fig. 2a). After excluding         |
| 212 | non-toxic reasons and remission for discontinuation, the overall retention rates were 69.6% (TNFi)    |

| 213 and 72.4% (TCZ) (P=0.44) (Fig. 2t | 213 | and 72.4% | (TCZ) | (P=0.44) | (Fig. | 2b) |
|---------------------------------------|-----|-----------|-------|----------|-------|-----|
|---------------------------------------|-----|-----------|-------|----------|-------|-----|

| Table 4 shows the adjusted HR for each of the discontinuation reasons. The HR due to a l | ack o |
|------------------------------------------------------------------------------------------|-------|
|------------------------------------------------------------------------------------------|-------|

- 215 effectiveness tended to be lower in the TCZ (HR=0.3, P=0.053) versus the TNFi group. In contrast,
- the HR due to toxic adverse events tended to be higher in the TCZ (HR=2.8, P=0.19) versus the TNFi
- 217 group, while the HRs for total discontinuation (excluding non-toxic reasons and remission) were
- similar between the TCZ and TNFi group (HR=0.7, P=0.44).
- 219

#### 220 Discussion

221 To the best of our knowledge, this is the first time that the retention rates of secondary bDMARDs or

- JAKi have been documented in patients with RA who were primarily being treated by TCZ or ABT as
- the first bDMARDs.
- 224 Previously, there have only been a few reports that have examined these types of issues with the
- administration of these drugs. Akiyama et al. examined patients with an insufficient response to TCZ
- and reported that the drug retention was comparable for both TNFi and ABT after switching [32].
- However, only 41.3% of the patients were treated by TCZ as first bDMARDs, with 55.6% of the
- 228 patients found to have a TNFi failure history, which could have affected these results.
- 229 At the present time, precise mechanisms still remain unknown with regard to TCZ failure (especially
- 230 loss of effectiveness). Previous studies have reported that TCZ showed a similar retention in both

| 231 | monotherapy and in combination with MTX [33]. Burmester et al. reported finding that anti-TCZ           |
|-----|---------------------------------------------------------------------------------------------------------|
| 232 | antibodies developed in a very small portion of patients (0.7-2.0%), regardless of the combination with |
| 233 | csDMARDs during both subcutaneous and intravenous TCZ treatments, which was not correlated with         |
| 234 | its effectiveness [34]. Furthermore, these authors also suggested that one possible mechanism for the   |
| 235 | low immunogenicity in TCZ treatment was that there could have been downregulation of the B cell         |
| 236 | activity due to blocking of the IL-6 signaling [34]. The lack of a sufficient dose has also been        |
| 237 | suggested, as some patients who initially showed an inadequate response to subcutaneous TCZ when it     |
| 238 | was given every other week (q2w), exhibited a significantly improved efficacy after shortening the      |
| 239 | dose interval to every week (qw) [35].                                                                  |
| 240 | As for ABT, a recent report stated that RF and ACPA positivity was a positive predictor of ABT          |
| 241 | retention in both bDMARDs-naïve and bDMARDs-failure patients [36]. Although the main reason for         |
| 242 | discontinuation was the lack of effectiveness [3,36], immunogenicity was not found to be associated     |
| 243 | with the loss of effectiveness [37].                                                                    |
| 244 | Taken together, the lack or loss of effectiveness in ABT or TCZ treatments when used as first           |
| 245 | bDMARDs irrespective of the dosing escalation may actually be due to an incorrect treatment target or   |
| 246 | a change of the immunological backgrounds during the treatment. Thus, in these types of cases,          |
| 247 | switching the treatment mode of action should perhaps be considered.                                    |

| 248                             | Although TNF is a common cytokine that plays a central role in the pathology of several autoimmune                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 249                             | diseases, IL-6 has been reported to be more dominant in the RA pathology [38]. However, TNF and                                                                                                                                                                                                                                                                                                                                                                                                        |
| 250                             | IL-6 are downstream cytokines of the RA pathology, with ABT or JAKi potentially regulating more                                                                                                                                                                                                                                                                                                                                                                                                        |
| 251                             | upstream inflammatory processes, including T-cells [39]. These speculations suggest that targeting the                                                                                                                                                                                                                                                                                                                                                                                                 |
| 252                             | upstream process by ABT or JAKi in TCZ failure patients could potentially be more effective than                                                                                                                                                                                                                                                                                                                                                                                                       |
| 253                             | targeting another downstream cytokine such as TNFi. However, elucidation of the mechanisms                                                                                                                                                                                                                                                                                                                                                                                                             |
| 254                             | associated with ABT failure patients has proven to be quite difficult (80.3% were ACPA positive in                                                                                                                                                                                                                                                                                                                                                                                                     |
| 255                             | this study). Thus, in such cases, targeting relatively RA-dominant cytokines such as IL-6 may be more                                                                                                                                                                                                                                                                                                                                                                                                  |
| 256                             | promising as opposed to the targeting of broad cytokines such as TNF. The effect of switching from                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 257                             | ABT to JAKi will need to be evaluated in future studies.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 257<br>258                      | ABT to JAKi will need to be evaluated in future studies.<br>It is also necessary to point out the differences that have been found for the effectiveness of low-dose                                                                                                                                                                                                                                                                                                                                   |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 258                             | It is also necessary to point out the differences that have been found for the effectiveness of low-dose                                                                                                                                                                                                                                                                                                                                                                                               |
| 258<br>259                      | It is also necessary to point out the differences that have been found for the effectiveness of low-dose MTX in Japanese versus Western populations. We previously reported that intraerythrocyte                                                                                                                                                                                                                                                                                                      |
| 258<br>259<br>260               | It is also necessary to point out the differences that have been found for the effectiveness of low-dose<br>MTX in Japanese versus Western populations. We previously reported that intraerythrocyte<br>MTX-polyglutamate (MTX-PG) concentrations, which are considered to be a useful biomarker of                                                                                                                                                                                                    |
| 258<br>259<br>260<br>261        | It is also necessary to point out the differences that have been found for the effectiveness of low-dose<br>MTX in Japanese versus Western populations. We previously reported that intraerythrocyte<br>MTX-polyglutamate (MTX-PG) concentrations, which are considered to be a useful biomarker of<br>MTX efficacy, were 65 nmol/L when a 13.4 mg/week dose of MTX was administered to patients in                                                                                                    |
| 258<br>259<br>260<br>261<br>262 | It is also necessary to point out the differences that have been found for the effectiveness of low-dose<br>MTX in Japanese versus Western populations. We previously reported that intraerythrocyte<br>MTX-polyglutamate (MTX-PG) concentrations, which are considered to be a useful biomarker of<br>MTX efficacy, were 65 nmol/L when a 13.4 mg/week dose of MTX was administered to patients in<br>the United States, whereas concentrations reached 94 nmol/L when a 10.3 mg/week dose of MTX was |

| 266 | The limitations of the current study were as follows. First, since relatively special conditions were   |
|-----|---------------------------------------------------------------------------------------------------------|
| 267 | followed during the recruitment of subjects, the number of patients in the study was small, which may   |
| 268 | have affected the results. Second, the judgment and reasons for discontinuation (such as lack of        |
| 269 | effectiveness or remission) depended on the decisions of each physician, without standardized criteria. |
| 270 | Third, the difference between the intravenous and subcutaneous bDMARDs, the presence of other           |
| 271 | csDMARDs, and the minor dose changes that occurred for the bDMARDs, MTX, and PSL, and prior             |
| 272 | treatment before TCZ or ABT introduction could not be monitored. Fourth, comorbidities, which can       |
| 273 | potentially affect the drug retention, could not be evaluated. Fifth, the differences of treatment      |
| 274 | intervals between 1st and 2nd agents (although no significant differences were observed between the     |
| 275 | groups) may have affected the results.                                                                  |
| 276 |                                                                                                         |
| 277 | Conclusions                                                                                             |
| 278 | Optimal strategy from these data is when choosing secondary agents after TCZ or ABT failure,            |
| 279 | switching TCZ to ABT may exhibit higher total retention, and switching TCZ to JAKi or switching         |
| 280 | ABT to TCZ tend to show higher retention due to the effectiveness compared to switching these           |
| 281 | non-TNFi agents to TNFi in certain conditions.                                                          |
| 282 |                                                                                                         |
|     |                                                                                                         |

283 **Figure Legends** 

# Figure 1. Adjusted drug retention due to lack of effectiveness (a) and total drug retention

#### 285 excluding non-toxic reasons and remission (b) in TCZ-switched cases.

- 286 Adjusted confounders included age, sex, disease duration, concomitant prednisolone and methotrexate,
- treatment duration and discontinuation reasons of the TCZ.
- 288 TCZ = tocilizumab, ABT = abatacept, JAKi = Janus kinase inhibitors, TNFi = tumor necrosis factor
- inhibitors.
- 290

#### Figure 2. Adjusted drug retention due to lack of effectiveness (a) and total drug retention

- 292 excluding non-toxic reasons and remission (b) in ABT-switched cases.
- 293 Adjusted confounders included age, sex, disease duration, concomitant prednisolone and methotrexate,
- treatment duration and discontinuation reasons of the ABT.
- ABT = abatacept, TCZ = tocilizumab, TNFi = tumor necrosis factor inhibitors.
- 296

#### 297 Availability of data and materials

- 298 The datasets used and/or analyzed in the current study are available from the corresponding author on
- reasonable request.
- 300

#### 301 Authors' contributions

| 302 | KE was responsible for conception and design. KE, TH, YM, MH, KM, TT, KN, YS, HA, AO, SJ, RH,        |
|-----|------------------------------------------------------------------------------------------------------|
| 303 | and MK contributed to data extraction and interpretation. KE, WY, and KY contributed to the design   |
| 304 | and conduction of statistical analysis. KE and MH prepared the manuscript. AK and MH supervised      |
| 305 | the manuscript. All authors read and approved the final manuscript.                                  |
| 306 |                                                                                                      |
| 307 | Compliance with ethical standards                                                                    |
| 308 | Conflict of interest                                                                                 |
| 309 | KE is affiliated with the Department of Musculoskeletal Regenerative Medicine, Osaka University,     |
| 310 | Graduate School of Medicine, which is supported by Taisho. KE has received research grants from      |
| 311 | Abbie, Asahi-Kasei, Astellas, Chugai, Eisai, Ono Pharmaceutical, and UCB Japan. KE has received      |
| 312 | payments for lectures from Abbie, Asahi-Kasei, Astellas, Ayumi, Bristol-Myers Squibb, Chugai, Eisai, |
| 313 | Eli Lilly, Janssen, Mitsubishi-Tanabe, Ono Pharmaceutical, Sanofi, and UCB Japan. TH received a      |
| 314 | research grant and/or speaker fee from Astellas, Chugai, Nippon Shinyaku, Abbvie, Eisai, and Ono     |
| 315 | Pharmaceutical. YM received a research grant and/or speaker fee from Eli Lilly, Chugai, Pfizer,      |
| 316 | Bristol-Myers Squibb, and Mitsubishi-Tanabe. MHashimoto and KM are affiliated with a department      |
| 317 | that is financially supported by four pharmaceutical companies (Mitsubishi-Tanabe, Chugai, Ayumi,    |
| 318 | and UCB Japan) and the city government (Nagahama City). MHashimoto received a research grant         |

319 and/or speaker fee from Astellas, Mitsubishi-Tanabe, Eisai, Eli Lilly, and Bristol-Myers Squibb. KM

| 320 | received a speaking fee, and/or consulting fee from Eisai. TT is affiliated with a department that is  |
|-----|--------------------------------------------------------------------------------------------------------|
| 321 | financially supported by six pharmaceutical companies (Mitsubishi-Tanabe, Chugai, Ayumi, Astellas,     |
| 322 | Eisai, and Takeda). TT received a research grant from Chugai, CoverLetter and a speaker fee from       |
| 323 | Astellas, Chugai, Eisai, Mitsubishi-Tanabe, Abbvie, Bristol-Myers Squibb, Ayumi, Daiichi Sankyo,       |
| 324 | Eisai, Takeda, and Asahi-Kasei. AO received a speaker fee from Chugai, Ono Pharmaceutical, Eli         |
| 325 | Lilly, Mitsubishi-Tanabe, Asahi-Kasei, and Takeda. RH received a speaker fee from AbbVie. MHirao       |
| 326 | received a speaker fee from Astellas, Ono Pharmaceutical, Eli Lilly, Mitsubishi-Tanabe, Pfizer, Ayumi, |
| 327 | and Takeda. AK received a research grant and/or speaker fee from Mitsubishi-Tanabe, Chugai, Eisai,     |
| 328 | Asahi-Kasei, Astellas, Abbvie, Bristol-Myers Squibb, Ono Pharmaceutical, and Pfizer. WY, KN, YS,       |
| 329 | HA, SJ, and KY have no financial conflicts of interest to disclose concerning this manuscript. These   |
| 330 | companies had no role in the study design, data collection, data analysis, data interpretation, and    |
| 331 | preparation of the manuscript.                                                                         |
| 332 |                                                                                                        |
| 333 | Ethical approval                                                                                       |
| 334 | The representative facility of this registry was Kyoto University, and this observational study was    |
| 335 | conducted in accordance with the Declaration of Helsinki, with approval by each of the ethics          |
| 336 | committees of the seven institutes: Kyoto University (2016-03-24/ approved number R053), Osaka         |
| 337 | University (2015-11-04/ approved number 15300), Osaka Medical College (2014-07-14/ approved            |

| 338 | number 1529), Kansai Medical University (2017-11-21/ approved number 2014625), Kobe University                     |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 339 | (2015-03-20/ approved number 1738), Nara Medial University (2018-01-23/ approved number 1692),                     |
| 340 | and Osaka Red Cross Hospital (2015-09-01/ approved number 644). The board of Osaka University                      |
| 341 | Hospital Ethical Committee waived the requirement for patients' informed consent because of the                    |
| 342 | anonymous nature of the data. Written informed consent was obtained from the participants in other                 |
| 343 | institutes.                                                                                                        |
| 344 |                                                                                                                    |
| 345 | References                                                                                                         |
| 346 |                                                                                                                    |
| 347 | 1. Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, Nam J, Ramiro S, Voshaar           |
| 348 | M, van Vollenhoven R, Aletaha D, Aringer M, Boers M, Buckley CD, Buttgereit F, Bykerk V, Cardiel M,                |
| 349 | Combe B, Cutolo M, van Eijk-Hustings Y, Emery P, Finckh A, Gabay C, Gomez-Reino J, Gossec L,                       |
| 350 | Gottenberg JE, Hazes JMW, Huizinga T, Jani M, Karateev D, Kouloumas M, Kvien T, Li Z, Mariette X,                  |
| 351 | McInnes I, Mysler E, Nash P, Pavelka K, Poor G, Richez C, van Riel P, Rubbert-Roth A, Saag K, da                   |
| 352 | Silva J, Stamm T, Takeuchi T, Westhovens R, de Wit M, van der Heijde D (2017) EULAR                                |
| 353 | recommendations for the management of rheumatoid arthritis with synthetic and biological                           |
| 354 | disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis 76: 960-977.                                     |
| 355 | 2. Smolen JS, Aletaha D (2015) Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. |
| 356 | Nat Rev Rheumatol 11: 276-289.                                                                                     |
| 357 | 3. Choquette D, Bessette L, Alemao E, Haraoui B, Postema R, Raynauld JP, Coupal L (2019) Persistence rates of      |
| 358 | abatacept and TNF inhibitors used as first or second biologic DMARDs in the treatment of rheumatoid                |
| 359 | arthritis: 9 years of experience from the Rhumadata(R) clinical database and registry. Arthritis Res Ther          |
| 360 | 21: 138.                                                                                                           |
| 361 | 4. Lauper K, Nordstrom DC, Pavelka K, Hernandez MV, Kvien TK, Kristianslund EK, Santos MJ, Rotar Z,                |
| 362 | Iannone F, Codreanu C, Lukina G, Gale SL, Sarsour K, Luder Y, Courvoisier DS, Gabay C (2018)                       |
| 363 | Comparative effectiveness of tocilizumab versus TNF inhibitors as monotherapy or in combination with               |
| 364 | conventional synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis after           |
| 365 | the use of at least one biologic disease-modifying antirheumatic drug: analyses from the pan-European              |
| 366 | TOCERRA register collaboration. Ann Rheum Dis 77: 1276-1282.                                                       |
| 367 | 5. Harrold LR, Reed GW, Solomon DH, Curtis JR, Liu M, Greenberg JD, Kremer JM (2016) Comparative                   |

- effectiveness of abatacept versus tocilizumab in rheumatoid arthritis patients with prior TNFi exposure
   in the US Corrona registry. Arthritis Res Ther 18: 280.
- 6. Ebina K, Hashimoto M, Yamamoto W, Hirano T, Hara R, Katayama M, Onishi A, Nagai K, Son Y, Amuro H,
  Yamamoto K, Maeda Y, Murata K, Jinno S, Takeuchi T, Hirao M, Kumanogoh A, Yoshikawa H (2019)
  Drug tolerability and reasons for discontinuation of seven biologics in 4466 treatment courses of
  rheumatoid arthritis-the ANSWER cohort study. Arthritis Res Ther 21: 91.
- 7. Ebina K, Hashimoto M, Yamamoto W, Ohnishi A, Kabata D, Hirano T, Hara R, Katayama M, Yoshida S,
  Nagai K, Son Y, Amuro H, Akashi K, Fujimura T, Hirao M, Yamamoto K, Shintani A, Kumanogoh A,
  Yoshikawa H (2018) Drug retention and discontinuation reasons between seven biologics in patients
  with rheumatoid arthritis -The ANSWER cohort study. PLoS One 13: e0194130.
- Vieira MC, Zwillich SH, Jansen JP, Smiechowski B, Spurden D, Wallenstein GV (2016) Tofacitinib Versus
   Biologic Treatments in Patients With Active Rheumatoid Arthritis Who Have Had an Inadequate
   Response to Tumor Necrosis Factor Inhibitors: Results From a Network Meta-analysis. Clin Ther 38:
   2628-2641 e2625.
- 9. Cantini F, Niccoli L, Nannini C, Cassara E, Kaloudi O, Giulio Favalli E, Becciolini A, Biggioggero M,
  Benucci M, Li Gobbi F, Grossi V, Infantino M, Meacci F, Manfredi M, Guiducci S, Bellando-Randone
  S, Matucci-Cerinic M, Foti R, Di Gangi M, Mosca M, Tani C, Palmieri F, Goletti D (2016) Tailored
  first-line biologic therapy in patients with rheumatoid arthritis, spondyloarthritis, and psoriatic arthritis.
  Semin Arthritis Rheum 45: 519-532.
- 10. Monti S, Klersy C, Gorla R, Sarzi-Puttini P, Atzeni F, Pellerito R, Fusaro E, Paolazzi G, Rocchetta PA,
  Favalli EG, Marchesoni A, Caporali R (2017) Factors influencing the choice of first- and second-line
  biologic therapy for the treatment of rheumatoid arthritis: real-life data from the Italian LORHEN
  Registry. Clin Rheumatol 36: 753-761.
- 391 11. Wolfe F, Michaud K, Dewitt EM (2004) Why results of clinical trials and observational studies of antitumour
   and interpretive issues. Ann Rheum Dis 63
   Suppl 2: ii13-ii17.
- 12. Du Pan SM, Dehler S, Ciurea A, Ziswiler HR, Gabay C, Finckh A (2009) Comparison of drug retention rates
   and causes of drug discontinuation between anti-tumor necrosis factor agents in rheumatoid arthritis.
   Arthritis Rheum 61: 560-568.
- 397 13. Favalli EG, Pregnolato F, Biggioggero M, Becciolini A, Penatti AE, Marchesoni A, Meroni PL (2016)
   398 Twelve-Year Retention Rate of First-Line Tumor Necrosis Factor Inhibitors in Rheumatoid Arthritis:
   399 Real-Life Data From a Local Registry. Arthritis Care Res (Hoboken) 68: 432-439.
- 400 14. Gabay C, Riek M, Scherer A, Finckh A (2015) Effectiveness of biologic DMARDs in monotherapy versus in
  401 combination with synthetic DMARDs in rheumatoid arthritis: data from the Swiss Clinical Quality
  402 Management Registry. Rheumatology (Oxford) 54: 1664-1672.
- 403 15. Hetland ML, Christensen IJ, Tarp U, Dreyer L, Hansen A, Hansen IT, Kollerup G, Linde L, Lindegaard HM,

- 404 Poulsen UE, Schlemmer A, Jensen DV, Jensen S, Hostenkamp G, Ostergaard M (2010) Direct 405 comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid 406 arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of 407 clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum 62: 22-32.
- 408 16. Jorgensen TS, Kristensen LE, Christensen R, Bliddal H, Lorenzen T, Hansen MS, Ostergaard M, Jensen J,
  409 Zanjani L, Laursen T, Butt S, Dam MY, Lindegaard HM, Espesen J, Hendricks O, Kumar P, Kincses A,
  410 Larsen LH, Andersen M, Naeser EK, Jensen DV, Grydehoj J, Unger B, Dufour N, Sorensen V, Vildhoj
  411 S, Hansen IM, Raun J, Krogh NS, Hetland ML (2015) Effectiveness and drug adherence of biologic
  412 monotherapy in routine care of patients with rheumatoid arthritis: a cohort study of patients registered
  413 in the Danish biologics registry. Rheumatology (Oxford) 54: 2156-2165.
- 414 17. Hyrich KL, Watson KD, Lunt M, Symmons DP (2011) Changes in disease characteristics and response rates
  415 among patients in the United Kingdom starting anti-tumour necrosis factor therapy for rheumatoid
  416 arthritis between 2001 and 2008. Rheumatology (Oxford) 50: 117-123.
- 417 18. Neovius M, Arkema EV, Olsson H, Eriksson JK, Kristensen LE, Simard JF, Askling J (2015) Drug survival
  418 on TNF inhibitors in patients with rheumatoid arthritis comparison of adalimumab, etanercept and
  419 infliximab. Ann Rheum Dis 74: 354-360.
- 420 19. Simard JF, Arkema EV, Sundstrom A, Geborek P, Saxne T, Baecklund E, Coster L, Dackhammar C,
  421 Jacobsson L, Feltelius N, Lindblad S, Rantapaa-Dahlqvist S, Klareskog L, van Vollenhoven RF,
  422 Neovius M, Askling J (2011) Ten years with biologics: to whom do data on effectiveness and safety
  423 apply? Rheumatology (Oxford) 50: 204-213.
- 424 20. (2008) 1958 revision of diagnostic criteria for rheumatoid arthritis. Arthritis Rheum 58: S15-19.
- 21. Ebina K, Hashimoto M, Yamamoto W, Hirano T, Hara R, Katayama M, Onishi A, Nagai K, Son Y, Amuro H,
  Yamamoto K, Maeda Y, Murata K, Jinno S, Takeuchi T, Hirao M, Kumanogoh A, Yoshikawa H (2019)
  Drug tolerability and reasons for discontinuation of seven biologics in elderly patients with rheumatoid
  arthritis -The ANSWER cohort study. PLoS One 14: e0216624.
- 429 22. Hashimoto M, Furu M, Yamamoto W, Fujimura T, Hara R, Katayama M, Ohnishi A, Akashi K, Yoshida S,
  430 Nagai K, Son Y, Amuro H, Hirano T, Ebina K, Uozumi R, Ito H, Tanaka M, Ohmura K, Fujii T, Mimori
  431 T (2018) Factors associated with the achievement of biological disease-modifying antirheumatic
  432 drug-free remission in rheumatoid arthritis: the ANSWER cohort study. Arthritis Res Ther 20: 165.
- 433 23. Murata K, Hashimoto M, Yamamoto W, Son Y, Amuro H, Nagai K, Takeuchi T, Katayama M, Maeda Y,
  434 Ebina K, Hara R, Jinno S, Onishi A, Murakami K, Tanaka M, Ito H, Mimori T, Matsuda S (2019) The
  435 family history of rheumatoid arthritis in anti-cyclic citrullinated peptide antibody-positive patient is not
  436 a predictor of poor clinical presentation and treatment response with modern classification criteria and
  437 treatment strategy: the ANSWER cohort study. Rheumatol Int.
- 438 24. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH,
  439 Luthra HS, et al. (1988) The American Rheumatism Association 1987 revised criteria for the

classification of rheumatoid arthritis. Arthritis Rheum 31: 315-324.

441 25. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, Birnbaum NS, Burmester GR,
442 Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM,

443 Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW,

- 444 Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS,
- Vencovsky J, Wolfe F, Hawker G (2010) 2010 rheumatoid arthritis classification criteria: an American
  College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum
  Dis 69: 1580-1588.
- 448 26. Kawahito Y (2016) [Guidelines for the management of rheumatoid arthritis]. Nihon Rinsho 74: 939-943.
- 449 27. Koike R, Harigai M, Atsumi T, Amano K, Kawai S, Saito K, Saito T, Yamamura M, Matsubara T, Miyasaka
  450 N (2009) Japan College of Rheumatology 2009 guidelines for the use of tocilizumab, a humanized
  451 anti-interleukin-6 receptor monoclonal antibody, in rheumatoid arthritis. Mod Rheumatol 19: 351-357.
- 452 28. Koike R, Takeuchi T, Eguchi K, Miyasaka N (2007) Update on the Japanese guidelines for the use of
  453 infliximab and etanercept in rheumatoid arthritis. Mod Rheumatol 17: 451-458.
- 454 29. Favalli EG, Biggioggero M, Marchesoni A, Meroni PL (2014) Survival on treatment with second-line
  455 biologic therapy: a cohort study comparing cycling and swap strategies. Rheumatology (Oxford) 53:
  456 1664-1668.
- 30. Greenberg JD, Reed G, Decktor D, Harrold L, Furst D, Gibofsky A, Dehoratius R, Kishimoto M, Kremer JM
  (2012) A comparative effectiveness study of adalimumab, etanercept and infliximab in biologically
  naive and switched rheumatoid arthritis patients: results from the US CORRONA registry. Ann Rheum
  Dis 71: 1134-1142.
- 461 31. Kanda Y (2013) Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone
  462 Marrow Transplant 48: 452-458.
- 32. Akiyama M, Kaneko Y, Kondo H, Takeuchi T (2016) Comparison of the clinical effectiveness of tumour
  necrosis factor inhibitors and abatacept after insufficient response to tocilizumab in patients with
  rheumatoid arthritis. Clin Rheumatol 35: 2829-2834.
- 33. Mori S, Yoshitama T, Abe Y, Hidaka T, Hirakata N, Aoyagi K, Ueki Y (2019) Retention of tocilizumab with
  and without methotrexate during maintenance therapy for rheumatoid arthritis: the ACTRA-RI cohort
  study. Rheumatology (Oxford) 58: 1274-1284.
- 469 34. Burmester GR, Choy E, Kivitz A, Ogata A, Bao M, Nomura A, Lacey S, Pei J, Reiss W, Pethoe-Schramm A,
  470 Mallalieu NL, Wallace T, Michalska M, Birnboeck H, Stubenrauch K, Genovese MC (2017) Low
  471 immunogenicity of tocilizumab in patients with rheumatoid arthritis. Ann Rheum Dis 76: 1078-1085.
- 35. Ogata A, Tanaka Y, Ishii T, Kaneko M, Miwa H, Ohsawa S (2018) A randomized, double-blind,
  parallel-group, phase III study of shortening the dosing interval of subcutaneous tocilizumab
  monotherapy in patients with rheumatoid arthritis and an inadequate response to subcutaneous
  tocilizumab every other week: Results of the 12-week double-blind period. Mod Rheumatol 28: 76-84.

- 36. Alten R, Mariette X, Lorenz HM, Nusslein H, Galeazzi M, Navarro F, Chartier M, Heitzmann J, Poncet C,
  Rauch C, Le Bars M (2019) Predictors of abatacept retention over 2 years in patients with rheumatoid
  arthritis: results from the real-world ACTION study. Clin Rheumatol 38: 1413-1424.
- 37. Genovese MC, Pacheco-Tena C, Covarrubias A, Leon G, Mysler E, Keiserman M, Valente RM, Nash P,
  Simon-Campos JA, Box J, Legerton CW, 3rd, Nasonov E, Durez P, Elegbe A, Wong R, Li X, Banerjee
  S, Alten R (2018) Longterm Safety and Efficacy of Subcutaneous Abatacept in Patients with
  Rheumatoid Arthritis: 5-year Results from a Phase IIIb Trial. J Rheumatol 45: 1085-1092.
- 38. Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF (2013) How cytokine networks fuel inflammation:
  Toward a cytokine-based disease taxonomy. Nat Med 19: 822-824.
- 39. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB,
  Solomon DH, Strand V, Yamamoto K (2018) Rheumatoid arthritis. Nat Rev Dis Primers 4: 18001.
- 487 40. Takahashi C, Kaneko Y, Okano Y, Taguchi H, Oshima H, Izumi K, Yamaoka K, Takeuchi T (2017)
  488 Association of erythrocyte methotrexate-polyglutamate levels with the efficacy and hepatotoxicity of
  489 methotrexate in patients with rheumatoid arthritis: a 76-week prospective study. RMD Open 3:
  490 e000363.
- 491
- 492

| Variable                 | TCZ→TNFi                  | TCZ→ABT                | TCZ→JAKi          | P-value |
|--------------------------|---------------------------|------------------------|-------------------|---------|
|                          | (n=76)                    | (n=45)                 | (n=24)            |         |
| Agents used for          | GLM (n=27), ETN           |                        | TOF (n=13), BAR   | NA      |
| follow-up                | (n=17), IFX (n=14), ADA   |                        | (n=11)            |         |
|                          | (n=11), CZP (n=7)         |                        |                   |         |
| Months TCZ continued     | 16.4±21.6                 | 26.7±37.8              | 18.8±22.0         | 0.26    |
| Reasons for              | Ineffectiveness (76.3%),  | Ineffectiveness        | Ineffectiveness   | 0.13    |
| discontinuing TCZ        | toxic reasons (9.2%),     | (80.0%), toxic reasons | (70.8%), toxic    |         |
|                          | non-toxic reasons (14.5%) | (17.8%), non-toxic     | reasons (16.7%),  |         |
|                          |                           | reasons (2.2%)         | non-toxic reasons |         |
|                          |                           |                        | (12.5%)           |         |
| Treatment interval       | 2.8±6.2                   | 5.8±12.0               | 9.8±14.2          | 0.053   |
| (months)                 |                           |                        |                   |         |
| Age (years)              | 54.2±16.2                 | 62.2±11.9              | 57.7±13.1         | 0.011   |
| Disease duration (years) | 7.8±8.2                   | 11.6±9.6               | 8.8±6.5           | 0.096   |
| RF positivity (%)        | 63.1                      | 80.6                   | 78.6              | 0.32    |
| ACPA positivity (%)      | 73.2                      | 87.1                   | 75.0              | 0.53    |
| DAS28-CRP                | 3.2±1.3                   | 3.9±1.4                | 3.7±1.6           | 0.17    |
| CDAI                     | 16.6±10.5                 | 17.5±10.2              | 20.3±12.9         | 0.56    |
| HAQ-DI                   | 0.9±0.7                   | 0.9±0.5                | 1.2±0.8           | 0.61    |
| PSL usage (%)            | 60.5                      | 48.9                   | 66.7              | 0.44    |
| PSL dose (mg/day)        | 6.7±5.0                   | 6.7±3.8                | 3.4±2.3           | < 0.001 |
| MTX usage (%)            | 45.8                      | 40.0                   | 45.8              | 0.073   |
| MTX dose (mg/week)       | 7.8±3.2                   | 7.1±3.7                | 9.1±3.3           | 0.34    |
| SASP usage (%)           | 6.6                       | 6.7                    | 25.0              | 0.04    |
| LEF usage (%)            | 0.0                       | 0.0                    | 0.0               | 1.0     |
| BUC usage (%)            | 3.9                       | 4.4                    | 0.0               | 0.85    |
| TAC usage (%)            | 5.3                       | 8.9                    | 12.5              | 0.39    |
| IGU usage (%)            | 1.3                       | 2.2                    | 20.8              | 0.002   |

Table 1. Baseline clinical characteristics of patients initially treated by TCZ and then changed to another agent

Values represent mean  $\pm$  standard deviation. NA = not applicable.

TCZ = tocilizumab, TNFi = tumor necrosis factor inhibitors, ABT = abatacept, JAKi = Janus kinase

inhibitors, GLM = golimumab, ETN = etanercept, IFX = infliximab, ADA = adalimumab, CZP = certolizumab pegol, TOF = tofacitinib, BAR = baricitinib, RF = rheumatoid factor, ACPA = anti-cyclic citrullinated peptide antibody, DAS28-CRP = Disease Activity Score in 28 joints using C-reactive protein, CDAI = Clinical Disease Activity Index, HAQ-DI = Health Assessment Questionnaire Disability Index, PSL = prednisolone, MTX = methotrexate, SASP = salazosulfapyridine, LEF = leflunomide, BUC = bucillamine, TAC = tacrolimus, IGU = iguratimod.

Differences between the groups were assessed using an analysis of variance or Fisher's exact test.

| Table 2. Hazard ratio for treatment discontinuation in TCZ-switched cases (          | (Cox  |
|--------------------------------------------------------------------------------------|-------|
| proportional hazards model, adjusted by baseline age, sex, disease duration, concomi | itant |
| PSL and MTX, treatment duration of TCZ, and reasons of TCZ discontinuation)          |       |

|                                                               | Reference | HR (959         | % CI)          | P-value |
|---------------------------------------------------------------|-----------|-----------------|----------------|---------|
| Variable                                                      | TCZ→TNFi  | TCZ→ABT         | ТСΖ→ЈАКі       |         |
|                                                               | (n=76)    | (n=45)          | (n=24)         |         |
| Lack of effectiveness                                         | 1         | 0.3 (0.2-0.8)** | 0.5 (0.2-1.2)  | 0.017   |
| All toxic adverse events                                      | 1         | 0.9 (0.3-2.9)   | 0.7 (0.1-3.1)  | 0.86    |
| Non-toxic events                                              | 1         | 3.9 (1.0-15.0)* | 1.4 (0.1-13.5) | 0.13    |
| Totaldiscontinuation(excludingnon-toxicreasons and remission) | 1         | 0.5 (0.2-0.9)*  | 0.5 (0.2-1.1)  | 0.023   |

TCZ = tocilizumab, PSL = prednisolone, MTX = methotrexate, HR = hazard ratio, 95% CI = 95% confidence interval, TNFi = tumor necrosis factor inhibitors, ABT = abatacept, JAKi = Janus kinase inhibitors.

Differences between the groups were assessed using the Cox P-value. \* P<0.05, \*\*P<0.01.

| Variable                      | ABT→TNFi                    | ABT→TCZ                  | P-value |
|-------------------------------|-----------------------------|--------------------------|---------|
|                               | (n=42)                      | (n=34)                   |         |
| Agents used for follow-up     | GLM (n=17), ETN (n=11), ADA |                          | NA      |
|                               | (n=9), IFX (n=4), CZP (n=1) |                          |         |
| Months ABT continued          | 11.0±14.0                   | 10.9±14.2                | 0.97    |
| Reasons for discontinuing ABT | Ineffectiveness (90.5%),    | Ineffectiveness (94.2%), | 0.26    |
|                               | non-toxic reasons (9.5%)    | toxic reasons (2.9%),    |         |
|                               |                             | non-toxic reasons (2.9%) |         |
| Treatment interval (months)   | 2.2±4.0                     | 1.9±4.8                  | 0.78    |
| Age (years)                   | 66.0±13.6                   | 60.8±11.1                | 0.070   |
| Disease duration (years)      | 6.6±8.0                     | 9.8±8.7                  | 0.10    |
| RF positivity (%)             | 82.9                        | 81.5                     | 1.0     |
| ACPA positivity (%)           | 77.8                        | 84.0                     | 0.75    |
| DAS28-CRP                     | 4.0±1.1                     | 3.8±1.3                  | 0.64    |
| CDAI                          | 16.8±9.9                    | 16.6±9.4                 | 0.94    |
| HAQ-DI                        | 0.8±0.6                     | 1.3±0.8                  | 0.15    |
| PSL usage (%)                 | 26.2                        | 55.9                     | 0.010   |
| PSL dose (mg/day)             | 3.8±2.6                     | 6.8±3.4                  | 0.010   |
| MTX usage (%)                 | 76.2                        | 50.0                     | 0.029   |
| MTX dose (mg/week)            | 8.7±2.9                     | 7.3±2.3                  | 0.076   |
| SASP usage (%)                | 21.4                        | 17.6                     | 0.78    |
| LEF usage (%)                 | 0.0                         | 0.0                      | 1.0     |
| BUC usage (%)                 | 7.1                         | 20.6                     | 0.10    |
| TAC usage (%)                 | 11.9                        | 8.8                      | 0.73    |
| IGU usage (%)                 | 0.0                         | 8.8                      | 0.085   |

 Table 3. Baseline clinical characteristics of patients initially treated by ABT and then changed to other agents

Values represent mean  $\pm$  standard deviation. NA = not applicable.

ABT = abatacept, TNFi = tumor necrosis factor inhibitors, TCZ = tocilizumab, GLM = golimumab, ETN = etanercept, IFX = infliximab, ADA = adalimumab, CZP = certolizumab pegol, RF = rheumatoid factor, ACPA = anti-cyclic citrullinated peptide antibody, DAS28-CRP = Disease Activity Score in 28 joints using C-reactive protein, CDAI = Clinical Disease Activity Index, HAQ-DI = Health Assessment Questionnaire Disability Index, PSL = prednisolone, MTX = methotrexate, SASP = salazosulfapyridine, LEF = leflunomide, BUC = bucillamine, TAC = tacrolimus, IGU = iguratimod.

Differences between the groups were assessed using a Mann-Whitney U test or Pearson's chi-squared test.

| Table         4. Hazard         ratio         for         treatment | discontinuation in   | ABT-switched      | cases (Cox  |
|---------------------------------------------------------------------|----------------------|-------------------|-------------|
| proportional hazards model, adjusted by                             | baseline age, sex, d | isease duration,  | concomitant |
| PSL and MTX, treatment duration of AB                               | T, and reasons of AB | BT discontinuatio | n)          |

|                                                                         | Reference       | HR (95% CI)    | P-value |
|-------------------------------------------------------------------------|-----------------|----------------|---------|
| Variable                                                                | ABT→TNFi (n=42) | ABT→TCZ (n=34) |         |
| Lack of effectiveness                                                   | 1               | 0.3 (0.1-1.0)  | 0.053   |
| All toxic adverse events                                                | 1               | 2.8 (0.6-13.1) | 0.19    |
| Non-toxic events                                                        | 1               | 2.1 (0.6-7.7)  | 0.25    |
| Total discontinuation<br>(excluding non-toxic reasons<br>and remission) | 1               | 0.7 (0.3-1.8)  | 0.44    |

ABT = abatacept, PSL = prednisolone, MTX = methotrexate, HR = hazard ratio, 95% CI = 95% confidence interval, TNFi = tumor necrosis factor inhibitors, TCZ = tocilizumab.

Differences between the groups were assessed using the Cox P-value.







