

Title	Effects of switching weekly alendronate or risedronate to monthly minodronate in patients with rheumatoid arthritis: a 12-month prospective study
Author(s)	Ebina, K.; Noguchi, T.; Hirao, M. et al.
Citation	Osteoporosis International. 2016, 27(1), p. 351-359
Version Type	AM
URL	https://hdl.handle.net/11094/93258
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

1 1 **Original Article**2 Effects of switching weekly alendronate or risedronate to monthly minodronate in
3 patients with rheumatoid arthritis: a twelve-month prospective study4
5 **Authors**6 Kosuke Ebina, MD, PhD ^{a*}, Takaaki Noguchi, MD ^a, Makoto Hirao, MD, PhD ^a, Jun
7 Hashimoto, MD, PhD ^b, Shoichi Kaneshiro, MD, PhD ^c, Masao Yukioka, MD, PhD ^d,
8 and Hideki Yoshikawa, MD, PhD ^a9
10 **Affiliations**11 ^a Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine,
12 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan13 ^b Department of Rheumatology, National Hospital Organization, Osaka Minami
14 MedicalCenter, 2-1 Kidohigashi, Kawachinagano, Osaka 586-8521, Japan15 ^c Department of Orthopaedic Surgery, Japan Community Health Care Organization,
16 Osaka Hospital, 4-2-78 Fukushima ward, Osaka 586-8521, Japan17 ^d Department of Rheumatology, Yukioka Hospital, 2-2-3 Ukita, Kita-ku, Osaka
18 530-0021, Japan

1
2 19
3
4
5 20 *Corresponding author
6
7
8 21 Tel: +81 6 6879 3552; Fax: +81 6 6879 3559
9
10
11 22 E-mail: k-ebina@umin.ac.jp (K. Ebina)
12
13
14
15 23
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2 24 **Abstract**
3
4
5 25 *Purpose*
6
7
8 26 The aim of this prospective, observational study was to evaluate the effects of switching
9
10 27 weekly alendronate (ALN 35 mg) or risedronate (RIS 17.5 mg) to monthly minodronate
11
12 28 (MIN 50 mg) in patients with rheumatoid arthritis (RA).
13
14
15
16
17 29 *Methods*
18
19
20 30 Patient characteristics were as follows: n=172; 155 postmenopausal women; age 65.5
21
22
23
24 31 (44-87) years; T-score of lumbar spine (LS), -1.4; total hip (TH), -1.8; femoral neck
25
26
27 32 (FN), -2.1; dose and rate of oral prednisolone (2.3 mg/day), 69.1%; prior duration of
28
29
30 33 ALN or RIS, 46.6 months; were allocated, based on their preference, to either the (1)
31
32
33
34 34 continue group (n=88), (2) switch-from-ALN group (n=44), or (3) switch-from-RIS
35
36
37 35 group (n=40).
38
39
40 36 *Results*
41
42
43 37 After 12 months, increase in BMD was significantly greater in group 3 compared to
44
45
46 38 group 1: LS (4.1 vs 1.2%; $P < 0.001$), TH (1.9 vs -0.7%; $P < 0.01$), and FN (2.7 vs
47
48
49 39 -0.5%; $P < 0.05$); and in group 2 compared to group 1: LS (3.2 vs 1.2%; $P < 0.05$) and
50
51
52 40 TH (1.5 vs -0.7%; $P < 0.01$). The decrease in bone turnover markers was significantly
53
54
55 41 greater in group 3 compared to group 1: TRACP-5b (-37.3 vs 2.5%; $P < 0.001$), PINP
56
57
58
59
60
61
62
63
64
65

1
2 42 (-24.7 vs -6.2%; $P < 0.05$), and ucOC (-39.2 vs 13.0%; $P < 0.05$); and in group 2
3
4
5 43 compared to group 1: TRACP-5b (-12.5 vs 2.5%; $P < 0.05$) at 12 months.
6
7
8 44 *Conclusions*
9
10
11 45 Switching weekly ALN or RIS to monthly MIN in patients with RA may be an effective
12
13
14 46 alternative treatment option of oral bisphosphonate treatment.
15
16
17 47
18
19
20
21 48 **Keywords**
22
23
24 49 Rheumatoid arthritis; osteoporosis; minodronate; alendronate; risedronate.
25
26
27 50
28
29
30
31 51 **Mini Abstract**
32
33
34 52 Switching weekly ALN or RIS to monthly MIN in patients with RA, of whom
35
36
37 53 two-thirds were treated with low-dose PSL, significantly decreased bone turnover
38
39
40 54 markers and increased BMD at 12 months, suggesting that monthly MIN may be an
41
42
43 55 effective alternative treatment option of oral bisphosphonate treatment.
44
45
46
47 56
48
49
50 57 **Introduction**
51
52
53 58 Increased risk of fractures in patients with rheumatoid arthritis (RA) compared to
54
55
56 59 non-RA controls has been reported, with risk ratios (RR) varying from 2.0 to 3.0 at the
57
58
59
60
61
62
63
64
65

1
2 60 hip and 2.4 to 6.2 at the spine [1-3]. Pro-inflammatory cytokines, such as tumor necrosis
3
4 61 factor-alpha (TNF- α), interleukin (IL)-1, IL-6, and IL-17, are strongly involved in the
5
6 62 pathogenesis of RA, and also concerned with osteoclastogenesis and consequent bone
7
8 63 loss [4-7]. Indeed, high bone turnover and inflammation is associated with bone loss of
9
10
11 64 the femoral neck (FN) in postmenopausal RA patients [8]. Moreover, glucocorticoids
12
13 65 are often used to treat RA, which induce apoptosis of osteoblasts and osteocytes, and
14
15
16 66 result in increased fracture risk [9, 10]. Minodronate (MIN) is an oral
17
18 67 nitrogen-containing bisphosphonate (BP) developed in Japan which has a stronger
19
20
21 68 inhibitory effect on farnesyl pyrophosphate synthase in osteoclasts compared with
22
23
24 69 alendronate (ALN) or risedronate (RIS) [11]. It has been shown that switching daily or
25
26
27 70 weekly BP (mainly ALN and RIS) to monthly MIN increased bone mineral density
28
29
30 71 (BMD) of the lumbar spine (LS) and distal radius, and also decreased bone turnover
31
32
33 72 markers in patients with osteoporosis [12]. There are still considerable number of
34
35
36 73 patients who desire oral osteoporosis treatment, and we hypothesized that MIN can be a
37
38
39 74 convenient candidate of alternative oral BP treatment in patients with RA treated by
40
41
42 75 ALN and RIS, which may be more effective in decreasing bone turnover and increasing
43
44
45 76 BMD. The aim of this prospective study was to clarify the effect of switching weekly
46
47
48 77 ALN (35 mg) or RIS (17.5 mg) to monthly minodronate (50 mg) in patients with RA.

1
2 78
3
4
5 79 **Materials and methods**
6
7
8 80 *Study design and subjects*
9
10
11 81 This twelve-month observational study was conducted based on a two-center,
12
13
14 82 prospective, open-label design. A total of 172 patients with RA who were treated with
15
16
17 83 oral weekly ALN or RIS **in proportion to the Japanese guidelines for prevention and**
18
19
20 84 **treatment of osteoporosis 2011 [13]** and the guidelines on the management and
21
22
23 85 **treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and**
24
25
26 86 **Mineral Research 2004 [14]**, were enrolled in the study (Fig. 1). RA was diagnosed
27
28
29 87 based on the 1987 revised American College of Rheumatology (ACR) criteria [15].
30
31
32 88 C-reactive protein (CRP), matrix metalloproteinase-3 (MMP-3), and the Disease
33
34
35 89 Activity Score assessing 28 joints with CRP (DAS28-CRP) were evaluated as the
36
37
38 90 parameters reflecting inflammation as well as the disease activity of RA [16, 17].
39
40
41 91 Registered patients were asked their preference for a change to monthly oral BP
42
43
44 92 treatment and were allocated based on their preferences to either the “continue” group
45
46
47 93 (n=88), consisting of patients who wanted to continue their current therapies, or the
48
49
50 94 “switch-from-ALN” group (n=44) or “switch-from-RIS” group (n=40), consisting of
51
52
53 95 patients who were willing to switch over to MIN 50 mg from their current therapies.
54
55
56
57
58
59
60
61
62
63
64
65

1
2 96 Other combined osteoporosis treatments, such as active vitamin D, vitamin K₂, and
3
4 97 **calcium** were continued during the study period. Patients' treatment persistence and
5
6 98 satisfaction levels with the therapies were assessed using a self-administered
7
8 99 questionnaire at 12 months (Table 1). **Patients were asked for their drug adherence every**
9
10 100 **time visiting outpatient clinic (every 1-3 months), and patients who didn't take their**
11
12 101 **medications more than twice of their interval (more than 2 weeks for weekly ALN or**
13
14 102 **RIS, and more than 2 months for monthly MIN) were considered as drop-out.**
15
16
17
18
19
20
21
22
23
24 103 This observational study was conducted in accordance with the ethical standards of the
25
26
27 104 Declaration of Helsinki and was approved by ethical review boards at the clinical center
28
29
30 105 (approval number 11273-2; Osaka University, Graduate School of Medicine). Written
31
32
33 106 informed consent was obtained from individual patients included in the study.
34
35
36
37 107
38
39
40 108 **BMD assessment**
41
42
43 109 Areal BMD in the LS (L2-L4), total hip (TH), and femoral neck (FN) were assessed by
44
45
46 110 dual-energy x-ray absorptiometry (Discovery A, Hologic, Inc., Waltham, MA, USA) at
47
48
49 111 baseline and after 6 and 12 months of treatment. Regions of severe scoliosis, vertebral
50
51
52 112 fracture, and operated sites were excluded from BMD measurements as previously
53
54
55 113 described [18].
56
57
58
59
60
61
62
63
64
65

1
2 114
3
4
5 115 *Biochemical markers of bone turnover*
6
7
8 116 Bone turnover markers were measured in serum obtained from each patient at
9
10
11 117 approximately the same time in the morning after overnight fasting. The bone formation
12
13
14 118 marker, N-terminal type I procollagen propeptide (PINP); inter-assay coefficient of
15
16
17 119 variation (CV), 3.2%-5.2%, (Intact UniQ assay; Orion Diagnostica, Espoo, Finland),
18
19
20 120 and bone resorption marker, isoform 5b of tartrate-resistant acid phosphatase
21
22
23 121 (TRACP-5b); inter-assay CV, 5.0%-9.0%, (Immunodiagnostic Systems Ltd., Boldon,
24
25
26 122 UK) were measured by ELISA as previously described [19]. Levels of
27
28
29 123 undercarboxylated osteocalcin (ucOC) were measured by a solid-phase enzyme
30
31
32 124 immunoassay kit; inter-assay CV, 5.2%-8.3%, (Takara Bio, Shiga, Japan) with a
33
34
35 125 sensitivity of 0.25 ng/mL. **UcOC reflects not only vitamin K deficiency, but also total**
36
37
38 126 **bone turnover, as it is released from both osteoblasts and absorbed bone extracellular**
39
40
41 127 **matrix by osteoclast as previously described [20, 21]. Intact- parathyroid hormone**
42
43
44 128 (PTH) was measured using a two-site immunoradiometric assay; inter-assay CV 8.4%,
45
46
47 129 (Nichols Institute Diagnostics, Valencia, USA).
50
51
52 130
53
54
55
56 131 *Statistical analysis*
57
58
59
60
61
62
63
64
65

1
2 132 The normal distributions of the data were examined by the Shapiro-Wilk test.
3
4
5 133 Differences between each study group were tested using analysis of variance for
6
7
8 134 normally distributed data and the nonparametric Kruskal-Wallis test was used for
9
10
11 135 non-normally distributed data. Changes in BMD and ranked bone turnover marker data
12
13
14 136 from baseline to specified time points within each study group were compared using the
15
16
17 137 nonparametric Wilcoxon signed-rank test. Results are expressed as the mean \pm standard
18
19
20 138 error. A *P* value < 0.05 indicated statistical significance. All tests were performed using
21
22
23
24 139 IBM SPSS Statistics version 22 software (IBM, Armonk, NY, USA).
25
26
27
28 140
29
30
31 141 **Results**
32
33
34 142 Baseline characteristics are shown in Table 2. Of the 172 study patients, 84 (48.8%)
35
36
37 143 were willing to switch to MIN 50 mg. No significant differences were observed in
38
39
40 144 baseline age, combined dose and prescription rate of active vitamin D or vitamin K₂ or
41
42
43 145 calcium or prednisolone (PSL), BMD, or disease activity of RA between the groups.
44
45
46 146 Duration of prior BP therapy at baseline was significantly longer in the
47
48
49 147 switch-from-ALN group (57.2 months) compared to the continue group (43.6 months; *P*
50
51
52 148 < 0.05) and the switch-from-RIS group (41.0 months; *P* < 0.05). Baseline serum
53
54
55 149 TRACP-5b levels in the switch-from-ALN group were significantly lower compared to

1 150 the switch-from-RIS group (244.5 vs 309.8 mU/dL; $P < 0.05$). Eventually, 95.5%
2
3
4
5 151 (84/88) of patients in the continue group (2 patients were lost to follow up and 2
6
7
8 152 patients desired to change the medication) and 94.0% (79/84) of patients in the switch
9
10
11 153 group (3 patients were lost to follow up and 2 patients desired to change the medication)
12
13
14 154 completed the twelve-month trial (Fig. 1).
15
16
17
18 155

21 156 *Change in BMD*

24 157 BMD was monitored every 6 months (Fig. 2). Both the switch groups showed a
25
26
27 158 significant increase in LS and TH BMD from baseline to 6 and 12 months, while only
28
29
30 159 the switch-from-RIS group showed a significant increase in FN BMD from baseline to 6
31
32
33 160 and 12 months. Moreover, the switch-from-RIS group showed a significantly greater
34
35
36 161 increase compared to the continue group in the LS from 6 months (2.3 vs 0.6%; $P <$
37
38 162 0.05) to 12 months (4.1 vs 1.2%; $P < 0.001$), in the TH from 6 months (1.8 vs -0.5%; P
39
40 163 < 0.01) to 12 months (2.0 vs -0.7%; $P < 0.01$), and in the FN from 6 months (2.0 vs
41
42
43 164 -0.4%; $P < 0.05$) to 12 months (2.7 vs -0.5%; $P < 0.05$), respectively. On the other hand,
44
45
46 165 the switch-from-ALN group showed a significantly greater increase compared to the
47
48
49 166 continue group in LS BMD at 12 months (3.2 vs 1.2%; $P < 0.05$) and in the TH from 6
50
51
52 167 months (1.2 vs -0.5%; $P < 0.01$) to 12 months (1.5 vs -0.7%; $P < 0.01$). The

1
2 168 switch-from-RIS group showed a significantly greater increase compared to the
3
4 169 switch-from-ALN group in the FN from 6 months (2.1 vs -0.3%; $P < 0.05$) to 12 months
5
6 170 (2.7 vs -0.6%; $P < 0.05$).
7
8 171
9
10
11
12 172 *Bone turnover markers*
13
14
15 173 Percent changes in bone turnover markers from baseline are shown in Fig. 3. The
16
17 174 switch-from-RIS group showed a significantly greater decrease compared to the
18
19
20 175 continue group in TRACP-5b levels from 6 months (-35.8 vs 1.3%; $P < 0.001$) to 12
21
22
23 176 months (-37.3 vs 2.5%; $P < 0.001$), in PINP levels from 6 months (-22.2 vs -3.3%; $P <$
24
25
26 177 0.05) to 12 months (-24.7 vs -6.2%; $P < 0.05$), and in ucOC levels from 6 months (-22.2
27
28
29 178 vs 12.4%; $P < 0.05$) to 12 months (-39.2 vs 13.0%; $P < 0.05$). On the other hand, the
30
31 179 switch-from-ALN group showed a significantly greater decrease compared to the
32
33
34 180 continue group only in TRACP-5b levels from 6 months (-14.6 vs 1.3%; $P < 0.01$) to 12
35
36
37 181 months (-12.5 vs 2.5%; $P < 0.05$). The switch-from-RIS group showed a significantly
38
39
40 182 greater decrease than the minimum significant change of serum TRACP-5b, PINP, and
41
42
43 183 ucOC levels, while the switch-from-ALN group showed only in the serum TRACP-5b
44
45
46 184 at 12 months. There were no greater changes than the minimum significant change of
47
48
49 185 serum TRACP-5b, PINP, and ucOC levels in the continue group. **The absolute value of**

1 186 bone turnover markers are shown in Fig. 4. The average value of TRACP-5b, PINP, and
2
3
4
5 ucOC in all the groups were all within the reference value.
6
7
8
9
10

11 188
12 189 *Rate of fragility fracture*
13
14

15 190 During the twelve-month period, the continue group patients experienced 3 vertebral
16
17 and 1 non-vertebral clinical fragility fractures (4.5%). The switch-from-ALN group
18
19 experienced 1 vertebral and 1 non-vertebral clinical fragility fractures (4.5%), and no
20
21 clinical fragility fracture was observed in the switch-from-RIS group (0.0%). No
22
23 statistically significant difference in the total clinical fragility fracture rate was observed
24
25
26
27
28
29
30
31 between the groups.
32
33
34 196
35
36
37 197 *Patient preference after switching to MIN 50 mg*
38
39
40 198 Patient preference after switching to monthly MIN 50 mg is shown in Fig. 5. The
41
42 questionnaire revealed that 80.8% of patients were satisfied with the switch to monthly
43
44 therapy and 88.7% preferred to continue the monthly treatment. The main reasons for
45
46 desiring continuation of monthly dosing was both the decreased frequency (69.8%) and
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2 204 **Discussion**
3
4
5 205 In this study, we have demonstrated for the first time that in patients with RA, of whom
6
7
8 206 two-thirds were treated with low-dose PSL (< 10 mg/day), switching from weekly ALN
9
10
11 207 or RIS to monthly MIN was effective in increasing BMD and decreasing bone turnover
12
13
14 208 markers at 12 months. In addition, no previous studies have demonstrated the difference
15
16
17 209 of the effects of switching, by the difference of prior BP therapies.
18
19
20
21 210 In nitrogen-containing BP treatment, mineral binding affinities may influence their
22
23
24 211 distribution within bone and the period till anti-fracture effects are shown, and
25
26
27 212 inhibition of farnesyl diphosphate synthase (FPPS) may affect their anti-resorptive
28
29
30 213 effects by inducing apoptosis of osteoclasts [22].
31
32
33
34 214 It has been shown that ALN possesses a stronger binding affinity to hydroxyapatite
35
36
37 215 compared to RIS, while RIS possesses a stronger FPPS inhibition compared to ALN
38
39
40 216 [22]. Consequently, weekly ALN (70 mg) showed a greater increase in BMD and
41
42
43 217 decrease in bone turnover markers compared to weekly RIS (35 mg) in patients with
44
45
46 218 postmenopausal osteoporosis [23], while RIS showed lower rates of hip and
47
48
49 219 non-vertebral fractures than ALN during the first year of therapy [24].
50
51
52
53 220 Previous reports have demonstrated that MIN showed stronger FPPS inhibition [11] and
54
55
56 221 a weaker binding affinity to hydroxyapatite compared to ALN and RIS [25], which
57
58
59
60
61
62
63
64
65

1
2 222 suggests that MIN inhibits bone resorption more strongly and is more quickly
3
4 223 distributed within the bone compared to ALN and RIS. Indeed, MIN suppressed bone
5
6
7 224 remodeling of cancellous and cortical bone more strongly than ALN in vitro [26], as
8
9 225 well as in ovariectomized cynomolgus monkeys in vivo [27]. **In the previous human**
10
11 226 **study, switching ALN or RIS to monthly MIN for 6 months increased BMD +1.1% in**
12
13 227 **LS, and the reduction rate of serum TRACP-5b was approximately 35% in the**
14
15 228 **switching from RIS group at 6 months [12], which were consistent with our study.**
16
17
18 229 Finally, glucocorticoids have been shown to induce apoptosis of osteocytes, and BPs
19
20 230 inhibit osteocyte apoptosis in vitro [28] as well as in glucocorticoid-treated animals [29].
21
22
23 231 A systematic review and meta-analysis revealed that BPs can preserve bone mass and
24
25
26 232 reduce the incidence of vertebral fractures in patients with rheumatic disease, mainly for
27
28 233 those who are being treated with glucocorticoids [30], and both ALN and RIS strongly
29
30
31 234 decreased the fracture risk associated with glucocorticoid-induced osteoporosis (GIO)
32
33
34 235 [31, 32]. In this study, monthly MIN 50 mg resulted in a greater BMD increase and
35
36
37 236 bone turnover decrease when patients were switched from ALN or RIS, which suggests
38
39
40 237 its effectiveness not only in primary osteoporosis, but also in GIO.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 240 patients showed remission or low disease activity in this study, the effects of switching
2
3
4

5 241 on high disease activity patients should be assessed in further study. Although most
6
7

8 242 patients were postmenopausal, some male patients were included in this study.
9
10

11 243 **Concerning medication, the dose of ALN and RIS allowed in Japan is the half of**
12
13

14 244 **Caucasians, and the duration of prior BP therapy was significantly longer in switch-to**
15
16

17 245 **ALN group compared to other groups. In addition, only a small number of patients were**
18
19

20 246 **combined with calcium formulation, and total calcium intake couldn't be monitored.**
21
22

23 247 In conclusion, switching weekly ALN or RIS to monthly MIN in patients with RA, of
24
25

26 248 whom two-thirds were treated with low-dose PSL, significantly decreased bone
27
28

29 249 turnover markers and increased BMD at 12 months, suggesting that monthly MIN may
30
31

32 250 be an effective alternative treatment option of oral BP treatment.
33
34

35 251
36
37

38 252 **Acknowledgments**
39
40

41 253 The authors thank Dr. Kenrin Shi for his excellent cooperation in conducting the study.
42
43

44 254
45
46

47 255 **Authors' roles**
48
49

50 256 Study design: KE, MH, JH, and HY. Study conduct: KE, TN, MH, and SK. Data
51
52

53 257 collection: KE, TN, SK, and MY. Data analysis: KE, TN, and MH. Data interpretation:
54
55

56
57
58
59
60
61
62
63
64
65

1
2 258 KE and MH. Drafting the manuscript: KE and MH. Approving final version of the
3
4
5 259 manuscript: KE, TN, MH, JH, SK, and HY. KE takes responsibility for the integrity of
6
7
8 260 the data analysis.
9

10
11 261
12
13

14
15 262 **Conflicts of interest**
16

17
18 263 This research was funded by Astellas Pharma, Inc. The funder had no role in the study
19
20
21 264 design, data collection, data analysis, decision to publish, or preparation of the
22
23
24 265 manuscript. Kosuke Ebina, Takaaki Noguchi, Makoto Hirao, Jun Hashimoto, Shoichi
25
26
27 266 Kaneshiro, Masao Yukioka, and Hideki Yoshikawa declare that they have no conflict of
28
29
30 267 interest.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2 268 **References**
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

269

270 1. Peel NF, Moore DJ, Barrington NA, Bax DE, Eastell R (1995) Risk of vertebral fracture and relationship to bone mineral density in steroid treated rheumatoid arthritis. *Ann Rheum Dis* 54:801-806

273 2. van Staa TP, Geusens P, Bijlsma JW, Leufkens HG, Cooper C (2006) Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. *Arthritis Rheum* 54:3104-3112

276 3. Wright NC, Lisse JR, Walitt BT, Eaton CB, Chen Z (2011) Arthritis increases the risk for fractures--results from the Women's Health Initiative. *J Rheumatol* 38:1680-1688

278 4. Braun T, Schett G (2012) Pathways for bone loss in inflammatory disease. *Curr Osteoporos Rep* 10:101-108

280 5. Ebina K, Oshima K, Matsuda M, et al. (2009) Adenovirus-mediated gene transfer of adiponectin reduces the severity of collagen-induced arthritis in mice. *Biochem Biophys Res Commun* 378:186-191

283 6. Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M, Koizumi K, Morimoto T, Yoshikawa H, Hashimoto J (2014) IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. *J Bone Miner Metab* 32:378-392

287 7. Noguchi T, Ebina K, Hirao M, et al. (2015) Progranulin plays crucial roles in preserving bone mass by inhibiting TNF-alpha-induced osteoclastogenesis and promoting osteoblastic differentiation in mice. *Biochem Biophys Res Commun* 465:638-643

290 8. Cortet B, Guyot MH, Solau E, Pigny P, Dumoulin F, Flipo RM, Marchandise X, Delcambre B (2000) Factors influencing bone loss in rheumatoid arthritis: a longitudinal study. *Clin Exp Rheumatol* 18:683-690

293 9. Kanis JA, Johansson H, Oden A, et al. (2004) A meta-analysis of prior corticosteroid use and fracture risk. *J Bone Miner Res* 19:893-899

295 10. Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C (2000) Use of oral corticosteroids and risk of fractures. *J Bone Miner Res* 15:993-1000

297 11. Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, Ebetino FH, Rogers MJ (2001) Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. *J Pharmacol Exp Ther* 296:235-242

301 12. Sakai A, Ikeda S, Okimoto N, et al. (2014) Clinical efficacy and treatment persistence of monthly minodronate for osteoporotic patients unsatisfied with, and shifted from, daily or

303 weekly bisphosphonates: the BP-MUSASHI study. *Osteoporos Int* 25:2245-2253

304 13. Orimo H, Nakamura T, Hosoi T, et al. (2012) Japanese 2011 guidelines for prevention
305 and treatment of osteoporosis--executive summary. *Arch Osteoporos* 7:3-20

306 14. Nawata H, Soen S, Takayanagi R, et al. (2005) Guidelines on the management and
307 treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and
308 Mineral Research (2004). *J Bone Miner Metab* 23:105-109

309 15. Arnett FC, Edworthy SM, Bloch DA, et al. (1988) The American Rheumatism
310 Association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis*
311 *Rheum* 31:315-324

312 16. Ebina K, Shi K, Hirao M, Kaneshiro S, Morimoto T, Koizumi K, Yoshikawa H,
313 Hashimoto J (2013) Vitamin K2 administration is associated with decreased disease activity
314 in patients with rheumatoid arthritis. *Mod Rheumatol* 23:1001-1007

315 17. Matsui T, Kuga Y, Kaneko A, Nishino J, Eto Y, Chiba N, Yasuda M, Saisho K, Shimada
316 K, Tohma S (2007) Disease Activity Score 28 (DAS28) using C-reactive protein
317 underestimates disease activity and overestimates EULAR response criteria compared with
318 DAS28 using erythrocyte sedimentation rate in a large observational cohort of rheumatoid
319 arthritis patients in Japan. *Ann Rheum Dis* 66:1221-1226

320 18. Ebina K, Noguchi T, Hirao M, Kaneshiro S, Tsukamoto Y, Yoshikawa H (2015)
321 Comparison of the effects of 12 months of monthly minodronate monotherapy and monthly
322 minodronate combination therapy with vitamin K or eldecalcitol in patients with primary
323 osteoporosis. *J Bone Miner Metab*

324 19. Ebina K, Hashimoto J, Shi K, Kashii M, Hirao M, Yoshikawa H (2014) Comparison of
325 the effect of 18-month daily teriparatide administration on patients with rheumatoid
326 arthritis and postmenopausal osteoporosis patients. *Osteoporos Int* 25:2755-2765

327 20. Booth SL, Centi A, Smith SR, Gundberg C (2013) The role of osteocalcin in human
328 glucose metabolism: marker or mediator? *Nat Rev Endocrinol* 9:43-55

329 21. Ebina K, Hashimoto J, Shi K, Kashii M, Hirao M, Yoshikawa H (2014)
330 Undercarboxylated osteocalcin may be an attractive marker of teriparatide treatment in RA
331 patients: response to Mokuda. *Osteoporos Int*

332 22. Russell RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of
333 bisphosphonates: similarities and differences and their potential influence on clinical
334 efficacy. *Osteoporos Int* 19:733-759

335 23. Reid DM, Hosking D, Kendler D, et al. (2008) A comparison of the effect of alendronate
336 and risedronate on bone mineral density in postmenopausal women with osteoporosis:
337 24-month results from FACTS-International. *Int J Clin Pract* 62:575-584

338 24. Silverman SL, Watts NB, Delmas PD, Lange JL, Lindsay R (2007) Effectiveness of
339 bisphosphonates on nonvertebral and hip fractures in the first year of therapy: the

1 340 risedronate and alendronate (REAL) cohort study. *Osteoporos Int* 18:25-34
2 341 25. Ebetino FH, Hogan AM, Sun S, et al. (2011) The relationship between the chemistry
3 342 and biological activity of the bisphosphonates. *Bone* 49:20-33
4 343 26. Tsubaki M, Komai M, Itoh T, et al. (2014) Nitrogen-containing bisphosphonates inhibit
5 344 RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt
6 345 activation. *J Biomed Sci* 21:10
7 346 27. Yamagami Y, Mashiba T, Iwata K, Tanaka M, Nozaki K, Yamamoto T (2013) Effects of
8 347 minodronic acid and alendronate on bone remodeling, microdamage accumulation, degree of
9 348 mineralization and bone mechanical properties in ovariectomized cynomolgus monkeys.
10 349 *Bone* 54:1-7
11 350 28. Plotkin LI, Manolagas SC, Bellido T (2006) Dissociation of the pro-apoptotic effects of
12 351 bisphosphonates on osteoclasts from their anti-apoptotic effects on osteoblasts/osteocytes
13 352 with novel analogs. *Bone* 39:443-452
14 353 29. Follet H, Li J, Phipps RJ, Hui S, Condon K, Burr DB (2007) Risedronate and
15 354 alendronate suppress osteocyte apoptosis following cyclic fatigue loading. *Bone* 40:1172-1177
16 355 30. Feng Z, Zeng S, Wang Y, Zheng Z, Chen Z (2013) Bisphosphonates for the prevention
17 356 and treatment of osteoporosis in patients with rheumatic diseases: a systematic review and
18 357 meta-analysis. *PLoS One* 8:e80890
19 358 31. Adachi JD, Saag KG, Delmas PD, et al. (2001) Two-year effects of alendronate on bone
20 359 mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized,
21 360 double-blind, placebo-controlled extension trial. *Arthritis Rheum* 44:202-211
22 361 32. Wallach S, Cohen S, Reid DM, et al. (2000) Effects of risedronate treatment on bone
23 362 density and vertebral fracture in patients on corticosteroid therapy. *Calcif Tissue Int*
24 363 67:277-285
25 364
26 365
27 366
28 367
29 368
30 369
31 370

1
2 371 **Figure legends**
3
4
5
6
7
8 373 Figure 1. Study design and schedule. Patients were asked for their willingness to switch
9
10
11 374 to monthly MIN 50 mg. Bone mineral density and bone turnover markers were
12
13
14 375 evaluated every 6 months in all the patients. The switch group patients were asked to
15
16
17 376 complete a patient preference questionnaire at 12 months.
18
19
20
21 377
22
23
24 378 Figure 2. Mean \pm standard error (SE) change from baseline in bone mineral density
25
26
27 379 (BMD) at the lumbar spine (panel a), total hip (panel b), and femoral neck (panel c). *P
28
29
30 380 < 0.05 , $^{**}P < 0.01$, $^{***}P < 0.001$ change from baseline within each treatment group. $^{\#}P <$
31
32
33
34 381 < 0.05 , $^{##}P < 0.01$, $^{###}P < 0.001$ continue group versus switch-from-RIS group. $^{\dagger}P <$
35
36
37 382 0.05, switch-from-ALN group versus switch-from-RIS group.
38
39
40 383
41
42
43
44 384 Figure 3. Mean \pm standard error (SE) change from baseline in serum concentration of
45
46
47 385 bone turnover markers TRAP-5b (panel a), PINP (panel b), and ucOC (panel c).
48
49
50 386 TRAP-5b, isoform 5b of tartrate-resistant acid phosphatase; PINP, type I collagen
51
52
53 387 N-terminal propeptide; ucOC, undercarboxylated osteocalcin; $^*P < 0.05$, $^{##}P < 0.01$,
54
55
56 388 $^{###}P < 0.001$ continue group versus each switch group. $^*P < 0.05$, $^{**}P < 0.01$
57
58
59
60
61
62
63
64
65

1
2 389 switch-from-ALN group versus switch-from-RIS group.
3
4
5 390
6
7
8 391 **Figure 4.** Mean \pm standard error (SE) absolute value of bone turnover markers TRAP-5b
9
10 392 (panel a), PINP (panel b), and ucOC (panel c). TRAP-5b, isoform 5b of tartrate-resistant
11
12
13
14 393 acid phosphatase; PINP, type I collagen N-terminal propeptide; ucOC,
15
16
17
18 394 undercarboxylated osteocalcin; $^{\#}P < 0.05$, $^{\#\#}P < 0.01$, $^{\#\#\#}P < 0.001$ continue group
19
20
21 395 versus each switch group. $^{\ast}P < 0.05$ switch-from-ALN group versus switch-from-RIS
22
23
24 396 group.
25
26
27 397
28
29
30
31 398 **Figure 5.** Patient satisfaction, preference, and reasons for preference after switching
32
33
34 399 weekly ALN or RIS to monthly MIN 50 mg treatment at 12 months.
35
36
37 400
38
39
40 401
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 Table 1. Patient preference questionnaire

1. Rate your satisfaction with the current once-monthly dosing schedule ^{a)}

1 2 3 4 5

1-Low satisfaction 5-High satisfaction

2. Which dosing schedule do you prefer?

a. Once weekly b. Once monthly c. No preference

3. If you prefer once-monthly dosing schedule, check all the statements you agree with ^{b)}

- a. This dosing schedule impose less burden of frequency
- b. This dosing schedule has less worry to forget
- c. I feel this dosing schedule is more effective
- d. I expect less side effects with this dosing schedule
- e. Others

2 a) Answer 4 and 5 are evaluated as satisfied, 3 as no preference, and 1 and 2 as not satisfied.

3 b) Multiple answers allowed.

4

5

6

7

8

9

10

11

12

13

14

15 Table 2. Baseline clinical characteristics

Variable	Continue (n=88)	Switch-from-ALN (n=44)	Switch-from-RIS (n=40)
Age, (mean \pm SE years)	64.9 \pm 0.9	64.9 \pm 1.6	67.3 \pm 1.6
Gender, Females (%)	81/88 (92.0%)	40/44 (90.9%)	38/40 (95.0%)
Postmenopausal, n/N (%)	80/88 (90.9%)	38/44 (86.4%)	37/40 (92.5%)
Body mass index (kg/m ²)	21.9 \pm 0.4	21.2 \pm 0.6	22.2 \pm 0.6
Prior BP, ALN n/N(%)	58/88 (65.9%)		
Duration of prior BP therapy (months)	43.6 \pm 2.1	57.2 \pm 4.6*	41.0 \pm 5.5†
Combined vitamin D, n/N(%)	46/88 (52.3%)	26/44 (59.1%)	25/40 (62.5%)
Combined vitamin K ₂ , n/N(%)	21/88 (23.9%)	12/44 (27.3%)	10/40 (25.0%)
Combined calcium, n/N(%)	5/88 (5.7%)	3/44 (6.8%)	3/40 (7.5%)
Prior vertebral fracture(s), n/N(%)	25/88 (28.4%)	9/44 (20.5%)	8/40 (20.0%)
Prior non-vertebral fracture(s), n/N(%)	22/88 (25.0%)	10/44 (22.7%)	7/40 (17.5%)
Bone mineral density (BMD)			
Lumbar spine BMD (g/cm ²)	0.856 \pm 0.017	0.861 \pm 0.028	0.858 \pm 0.019
Lumbar spine BMD (T-score)	-1.4 \pm 0.1	-1.3 \pm 0.2	-1.4 \pm 0.2
Femoral neck BMD (g/cm ²)	0.584 \pm 0.027	0.546 \pm 0.015	0.584 \pm 0.016
Femoral neck BMD (T-score)	-2.1 \pm 0.1	-2.3 \pm 0.1	-2.0 \pm 0.1
Total hip BMD (g/cm ²)	0.698 \pm 0.028	0.658 \pm 0.017	0.677 \pm 0.018
Total hip BMD (T-score)	-1.8 \pm 0.1	-1.9 \pm 0.1	-1.8 \pm 0.2
T-score < -2.5, n/N(%)	45/88 (51.1%)	22/44 (50.0%)	16/40 (40.0%)
PINP (μ g/l)	34.2 \pm 2.7	29.7 \pm 2.7	34.5 \pm 2.5
TRACP-5b (mU/dl)	258.1 \pm 11.2	244.5 \pm 17.6	309.8 \pm 22.7†
ucOC (ng/ml)	2.7 \pm 0.3	3.6 \pm 0.9	3.7 \pm 0.6
Intact-PTH (pg/ml)	48.9 \pm 2.4	51.5 \pm 3.7	45.6 \pm 2.6
eGFR (ml/min/1.73m ²)	77.2 \pm 2.5	73.6 \pm 3.5	74.9 \pm 3.3
Duration of disease (years)	17.6 \pm 1.0	18.3 \pm 1.6	15.1 \pm 1.5
RF positivity, n/N (%)	73/88 (83.0%)	41/44(93.2%)	35/40(87.5%)
ACPA positivity, n/N (%)	75/88 (85.2%)	40/44(90.9%)	34/40(85.0%)
CRP (mg/dl)	0.7 \pm 0.1	0.6 \pm 0.1	0.5 \pm 0.1
MMP-3 (ng/ml)	158.4 \pm 16.2	118.1 \pm 16.4	118.2 \pm 30.1

DAS28-CRP	2.6±0.1	2.5±0.1	2.4±0.1
Remission (< 2.3), n/N (%)	41/88 (46.6%)	22/44 (50.0%)	22/40 (55.0%)
Low disease activity (< 2.7), n/N (%)	16/88 (18.2%)	11/44 (25.0%)	7/40 (17.5%)
Moderate disease activity (2.7 -4.1), n/N (%)	26/88 (29.5%)	10/44 (22.7%)	9/40 (22.5%)
High disease activity (> 4.1), n/N (%)	5/88 (5.7%)	1/44 (2.3%)	2/40 (5.0%)
 MHAQ	 0.5±0.1	 0.4±0.1	 0.6±0.1
Prednisolone dose (mg/day)	2.5±0.3	2.2±0.3	1.7±0.4
Prednisolone usage, n/N(%)	62/88 (70.5%)	32/44 (72.7%)	25/40 (62.5%)
MTX dose (mg/week)	5.0±0.4	5.6±0.6	4.7±0.6
MTX usage, n/N (%)	63/88 (71.6%)	35/44(79.5%)	28/40(70.0%)
Biologics usage, n/N (%)	20/88 (25.7%)	8/44(18.2%)	9/40(22.5%)

16 Mean ± Standard Error (SE), unless otherwise noted.

17 n/N (%) = number of patients with measurements / total number of patients (%)

18 ALN, Alendronate; RIS, Risedronate; BP, Bisphosphonate; PINP, Type I collagen N-terminal propeptide;
19 TRAP-5b, Isoform 5b of tartrate-resistant acid phosphatase; ucOC, Undercarboxylated osteocalcin; PTH,
20 parathyroid hormone; eGFR, Estimated glomerular filtration rate; RF, Rheumatoid factor; ACPA, Anti-
21 cyclic citrullinated peptide antibody; CRP, C-reactive protein; MMP-3, Matrix metalloproteinase-3;
22 DAS28-CRP, Disease activity score assessing 28 joints with CRP; MHAQ, Modified Health Assessment
23 Questionnaire; MTX, Methotrexate.

24 Differences between the groups were determined by ANOVA or chi-square test. *P<0.05 vs Continue
25 group. **P<0.01 vs Continue group. †P<0.05 vs Switch-from-ALN group. ††P<0.01 vs
26 Switch-from-ALN group.

27

28

29

30

31

Figure

a Lumbar Spine

b Total Hip

c Femoral neck

a**b****c**

a**TRACP-5b**

reference range: 120-420 mU/dl

b**PINP**

reference range: 14.9-68.8 µg/l

c**UcOC**

reference range: <4.5 ng/ml

