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Monte Carlo Study of Critical Relaxation near a Surface

Macoto Kikuchi and Yutaka Okabe
Department ofPhysics, Tohoku University, Sendai 980, Japan

(Received 22 March 1985)

We report the first Monte Carlo simulation on the critical relaxation of the three-dimensional
Pl /v2

kinetic Ising model with free surfaces. The surface-layer magnetization is shown to relax as t
at T = T„while the bulk magnetization relaxes as t ~ "'. The dynamic bulk-to-surface crossover is
discussed in view of the dynamic scaling theory.

PACS numbers: 75.40.Dy, 05.70.Jk, 64.60.Ht

The time scale characterizing the dynamics of a sys-
tem becomes longer near a second-order phase transi-
tion point. This phenomenon is called critical slowing
down. The dynamic property of critical phenomena is
one of the most attractive subjects in statistical
mechanics. '

The existence of a surface brings about several in-
teresting effects on critical phenomena. Various
theoretical techniques have been successfully applied
to the study of the surface effects on static critical
phenomena. However, little attention has been
given to dynamic properties. One exception is the re-
cent work by Dietrich and Diehl. ' Using the renor-
malized field theory, they have investigated the effects
of surfaces on dynamic critical behavior. They assert
that the surface dynamic critical phenomena are
described in terms of static bulk and surface critical ex-
ponents, and the dynamic bulk exponent; there exists
no dynamic exponent peculiar to the surface.

The Monte Carlo method is a powerful technique
for the simulation of a wide variety of physical prob-
lems of interest. The static properties of surface criti-
cal phenomena have been recently investigated by
means of Monte Carlo simulation. " ' This Letter is
the first report on the Monte Carlo study of the
dynamic critical behavior of a system with surfaces.
We investigate the critical slowing down at the critical
temperature T = T, for the three-dimensional kinetic
Ising model with free surfaces. We restrict ourselves
to the ordinary transition in this Letter. We show that
the critical slowing down of the magnetization of the
surface layer differs from that of the bulk magnetiza-
tion. We also point out that the dynamic behavior of
the inner-layer magnetization shows a crossover from
bulklike relaxation to surfacelike relaxation with time.

Let us study first the surface dynamic critical
phenomena from the viewpoint of scaling theory. Our
treatment has something in common with Suzuki's
theory' of dynamic finite-size scaling. The parame-
ters of the present system are the reduced temperature
e = (T —T, )/T„magnetic field h, surface magnetic
field h&, and time t. Following Suzuki's idea, ' we
consider the generating function of the nonequilibrium
system, which is a generalization of the free energy.

m, (e, h, hit) —e 'm, (he, hie ', te"),

m, (e,h, h, t) —e 'm, (he, h, e ', te"')

(2)

(3)

respectively. The scaling relations among static critical
exponents have been used in deriving Eqs. (2) and
(3) . In the same way the surface susceptibility
X, (= Bm, /Bh), the layer susceptibility Xi (= Bm, /
t)h), and the local susceptibility X» (=Bmi/Bhi)
scale as

X, (e, h, hit) —e 'X, (h e, h ie ', te"),

Xi( e, A, Ait) e Xi(Ae, hie, te ),

(4)

(5)

Xi i( hehit) e ' Xi i(he, hie, te ). (6)

In particular, at criticality, e= h = h~ =0, we find that
Pl /vz

the layer magnetization relaxes as m& —t, in
contrast to the relaxation of the bulk magnetization,
mt,

—t t'/"'. Since pi ) p for the ordinary transition,
the relaxation rate of mI is expected to be faster than
that of the bulk magnetization.

We study the critical slowing down of the three-
dimensional kinetic Ising model by the Monte Carlo
method. We deal with a simple cubic lattice of sizes
64x 64x 32, 128x 128x 32, and 256x 256x 32, with
the free boundary condition on the short direction and
periodic boundary conditions otherwise for taking ac-
count of the surface effects. The simulation is per-
formed at T = T, (1/T, =0.221654), 's with no mag-
netic field, h = h& =0. The critical behavior varies as
the value of the surface-to-bulk ratio of the exchange
interaction, iv = J, /J. We restrict ourselves to the or-
dinary transition and take ~ as 0.25, 0.5, and 0.75,

In the present case, the scaling assumption implies that
the surface part of the generating function, 4„can be
written in the following scaling form:

4&s( e, A, Ait) e @s(he,Aie, te" ), (1)

where z is the dynamic critical exponent, and other ex-
ponents are static bulk and surface ones. From Eq.
(1), it follows that the surface magnetization m,
( = —84, /8 h) and the layer magnetization mi
(= —84, /Bhi) scale as
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which are typical values of w for an ordinary transition.
For the initial condition, we start with all spins up. We
flip spins according to the transition probability
p = [1+exp(AE/T) ] ', where b, E denotes the energy
change at the spin flip. We employ the Tausworthe-
Lewis-Payne method' for generating random
numbers, and apply multispin coding' to the surface
problem.

The variations of the Lth-layer magnetization mL
with time for L = 1, 2, 4, 8, and 16 are shown in Fig.
1. We use a log-log plot, and the time is measured by
the number of Monte Carlo steps per spin. We show
the result of the 128 & 128 x 32 lattice for w = 0.75, and
the average is taken over forty samples. The straight
lines with the slope —pt /vz (= —0.613) and —p/vz
(= —0.255) are also shown. For the bulk exponents,
we have used p = 0.325, ' v = 0.630, ' and
z =2.02. '9 The surface exponent Pt was estimated
by the static Monte Carlo study" ' as pt ——0.78, which
is consistent with the high-temperature expansion
and the e expansion through the scaling relations.
Figure 1 shows that the surface-layer magnetization re-
laxes as t with time, while the bulk magnetiza-P] /v2

tion relaxes as t P "'. In the case of different w, we
have obtained the same result except for the shift of
the effective surface, which will be discussed later.
The effect of surface size has not been detected in this
simulation.

Next we consider the crossover behavior. From Fig.
1, we find that the magnetization of the inner layer,
for example, L = 4, shows bulklike relaxation for
small t, and that for large t, the slope of the magnetiza-
tion becomes the same as that of m&. This variation is
due to the crossover of the critical slowing down from

I )
0

8

bulklike to surfacelike with time. Moreover, the
characteristic time for the crossover becomes longer as
L becomes larger. We can interpret this from the scal-
ing argument that the distance from the surface is
scaled by time with the dynamic critical exponent as
t' '. In our previous paper' we showed that the static
magnetization profile for various w can be expressed in
a single scaling function using L'=L —1+X for the
distance from the surface. Here A. represents the ex-
trapolation length, ' and the lattice spacing is taken as
unity. Then we may write the dynamic scaling func-
tion for the L th-layer magnetization ml (r ) as

m (r) —L' ~ "f(rL' ').
The scaling function f'has the asymptotic behavior

(8)

We give the scaling plot of our data for w = 0.75, 0.5,
and 0.25 in Fig. 2. We have used the values of X

which were determined by the measurement of the
static magnetization profile. ' The data for various
L are collapsed on a single curve. It should be em-
phasized that the shift of distance by X is essential for
expressing all the data for different w in a single func-
tion, as in the static case. ' Figure 2 explicitly provides
the scaling description of the bulk-to-surface crossover
with time. We have taken the dynamic exponent z as
given in this study. It should be noted that we can use
the scaling analysis of Monte Carlo data based on Eq.
(7), conversely, for determining the exponent z.

We make a short comment on the transition proba-
bility. We have taken p as [I+exp(AE/T)] '. We
have also made a simulation by using the usual
Metropolis probability, min{1, exp ( —AE/ T )}. A
parallel shift of the curve in Fig. 1 is observed, but the
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FIG. 1. Variations of the Lth-layer magnetization with
time, i.e., the number of Monte Carlo steps per spin, for
L = 1, 2, 4, 8, and 16. The system size is 128 x 128 && 32, and
w( = I, /I) = 0.75. The straight lines with the slope —Pi /vz
(= —0.613) and —P/vz (= —0.255) are also shown.
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FIG. 2. Scaling plot of time-dependent L th-layer magnet-
ization for w =0.75, 0.5, and 0.25 based on Eq. (7). The
table in the figure gives the explanation of symbols.
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relaxation rate remains the same. This is, the choice
of the probability affects only the time scale, which is
the same as the bulk case.

In summary, we have performed the first Monte
Carlo simulation of the dynamic critical behavior of
the Ising model with surfaces. We have obtained the
fast relaxation for the surface layer, which is consistent
with the scaling prediction, and observed the dynamic
bulk-to-surface crossover phenomenon.
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