

Title	Classification of real analytic $SL(n, R)$ actions on n -sphere
Author(s)	Uchida, Fuichi
Citation	Osaka Journal of Mathematics. 1979, 16(3), p. 561-579
Version Type	VoR
URL	https://doi.org/10.18910/9328
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Uchida, F.
Osaka J. Math.
16 (1979), 561-579

CLASSIFICATION OF REAL ANALYTIC $SL(n, R)$ ACTIONS ON n -SPHERE

Dedicated to Professor A. Komatu on his 70th birthday

FUICHI UCHIDA*)

(Received March 17, 1978)

0. Introduction

C.R. Schneider [5] classified real analytic $SL(2, R)$ actions on closed surfaces. Except for the work, there seems to be no work on the classification problem about non-compact Lie group actions.

In this paper, we classify real analytic $SL(n, R)$ actions on the standard n -sphere for each $n \geq 3$. Here $SL(n, R)$ denotes the special linear group over the field of real numbers. The result can be stated roughly as follows: there is a one-to-one correspondence between real analytic $SL(n, R)$ actions on the n -sphere and real valued real analytic functions on an interval satisfying certain conditions (see Theorem 2.2 and Theorem 4.2). It is important to consider the restricted actions of $SL(n, R)$ to a maximal compact subgroup $SO(n)$.

It is still open to classify C^∞ actions of $SL(n, R)$ on the standard n -sphere, by lack of C^∞ analogue of a local theory due to Guillemin and Sternberg (see Lemma 4.3).

1. Real analytic $SO(n)$ actions on certain n -manifolds

First we prepare the following two lemmas of which proof is given in the last section.

Lemma 1.1. *Let G be a closed connected subgroup of $O(n)$. Suppose that $n \geq 3$ and*

$$\dim O(n) > \dim G \geq \dim O(n) - n.$$

Suppose that G is not conjugate to $SO(n-1)$ which is canonically imbedded in $O(n)$. Then the pair $(O(n), G)$ is pairwise isomorphic to one of the following:

$$\begin{aligned} & (O(8), Spin(7)), (O(7), G_2), (O(6), U(3)), (O(4), U(2)), \\ & (O(4), SU(2)), (O(4), SO(2) \times SO(2)) \text{ and } (O(3), \{1\}), \end{aligned}$$

*) Supported by Grant-in-Aid for Scientific Research

up to inner automorphisms of $O(n)$. In these cases the subgroups are standardly imbedded in $O(n)$.

Lemma 1.2. Suppose $n \geq 3$. Let $h: SO(n) \rightarrow O(n)$ be a continuous homomorphism with a finite kernel. Then there is an element x of $O(n)$ such that $h(y) = xyx^{-1}$ for each y of $SO(n)$.

Now we shall prove the following result.

Theorem 1.3. Suppose $n \geq 3$. Let M be a closed connected n -dimensional real analytic manifold. Suppose that

$$\pi_1(M) = \pi_2(M) = \{1\}.$$

Suppose that $SO(n)$ acts on M real analytically and almost effectively. Then the $SO(n)$ -manifold M is real analytically diffeomorphic to the standard n -sphere S^n as $SO(n)$ -manifolds. Here the $SO(n)$ action on S^n is the restriction of the standard $SO(n+1)$ action on S^n .

Proof. (i) First we show that the $SO(n)$ -manifold M is C^∞ diffeomorphic to the standard sphere S^n as $SO(n)$ -manifolds. Let G be the identity component of a principal isotropy group. Then

$$\dim SO(n) > \dim G \geq \dim SO(n) - n,$$

and $SO(n)$ acts almost effectively on the homogeneous space $SO(n)/G$ by the assumption that $SO(n)$ acts almost effectively on M , and hence Lemma 1.1 is applicable. The pair $(SO(n), G)$ is not pairwise isomorphic to $(SO(4), U(2))$ nor $(SO(4), SU(2))$, because $SU(2)$ is a normal subgroup of $SO(4)$. If

$$\dim SO(n)/G = \dim M,$$

then the $SO(n)$ action on M is transitive and the pair $(SO(n), G)$ is pairwise isomorphic to one of the following by Lemma 1.1:

$$(SO(7), G_2), (SO(6), U(3)), (SO(4), SO(2) \times SO(2)) \quad \text{and} \quad (SO(3), \{1\}).$$

But

$$\pi_1(SO(7)/G_2) = \pi_1(SO(3)/\{1\}) = \mathbb{Z}_2,$$

$$\pi_2(SO(6)/U(3)) = \mathbb{Z} \quad \text{and} \quad \pi_2(SO(4)/SO(2) \times SO(2)) = \mathbb{Z} \times \mathbb{Z}.$$

This is a contradiction to the assumption

$$\pi_1(M) = \pi_2(M) = \{1\}.$$

Consequently G is conjugate to $SO(n-1)$ or the pair $(SO(n), G)$ is pairwise isomorphic to $(SO(8), Spin(7))$ by Lemma 1.1 and hence the $SO(n)$ -manifold

M has codimension one principal orbits and just two singular orbits (cf. [6], Lemma 1.2.1). Since $\mathbf{SO}(n-1)$ in $\mathbf{SO}(n)$ (resp. $\mathbf{Spin}(7)$ in $\mathbf{SO}(8)$) is a maximal closed connected subgroup, the singular orbits are fixed points. It follows that the $\mathbf{SO}(n)$ -manifold M is C^∞ diffeomorphic to $M' = \mathbf{D}^n \cup \mathbf{D}^n$ as $\mathbf{SO}(n)$ -manifolds. Here the $\mathbf{SO}(n)$ action on \mathbf{D}^n is standard by Lemma 1.2, and $f: \partial \mathbf{D}^n \rightarrow \partial \mathbf{D}^n$ is an $\mathbf{SO}(n)$ equivariant diffeomorphism. It follows that f is the identity map or the antipodal map, and hence M' is C^∞ diffeomorphic to the standard n -sphere S^n as $\mathbf{SO}(n)$ -manifolds.

(ii) Here we assume that M_1 and M_2 are n -dimensional real analytic manifolds on which $\mathbf{SO}(n)$ acts real analytically. Assume that the $\mathbf{SO}(n)$ -manifolds M_1 and M_2 are C^∞ diffeomorphic to the standard n -sphere S^n as $\mathbf{SO}(n)$ -manifolds. According to a theorem of Grauert ([3], Theorem 3), M_i is real analytically imbedded in a euclidean space of sufficiently high dimension; hence M_i possesses a real analytic Riemannian metric. By averaging the real analytic Riemannian metric on M_i with respect to the $\mathbf{SO}(n)$ action, we have an $\mathbf{SO}(n)$ invariant real analytic Riemannian metric g_i on M_i . Denote by $\{N_i, S_i\}$ the fixed point set of the $\mathbf{SO}(n)$ -manifold M_i . We can assume that

$$d_1(N_1, S_1) = d_2(N_2, S_2),$$

where d_i is a distance function on M_i defined by the Riemannian metric g_i . Denote by F_i the fixed point set of the restricted $\mathbf{SO}(n-1)$ action on M_i . It follows that F_i is a real analytic submanifold of M_i which is $N\mathbf{SO}(n-1)$ invariant and C^∞ diffeomorphic to S^1 by the assumption. Here $N\mathbf{SO}(n-1)$ denotes the normalizer of $\mathbf{SO}(n-1)$ in $\mathbf{SO}(n)$. Then there exists an isometry $\varphi: F_1 \rightarrow F_2$ such that $\varphi(N_1) = N_2$ and $\varphi(S_1) = S_2$. The isometry φ is a real analytic diffeomorphism and φ is compatible with the action of $N\mathbf{SO}(n-1)$ on F_i . It is easy to see that the $\mathbf{SO}(n)$ -manifold $M_i - \{N_i, S_i\}$ is real analytically diffeomorphic to

$$\mathbf{SO}(n) \times_{N\mathbf{SO}(n-1)} (F_i - \{N_i, S_i\})$$

as $\mathbf{SO}(n)$ -manifolds; hence φ extends uniquely to an $\mathbf{SO}(n)$ equivariant homeomorphism $\Phi: M_1 \rightarrow M_2$. By the construction, the restriction of Φ to $M_1 - \{N_1, S_1\}$ is a real analytic diffeomorphism of $M_1 - \{N_1, S_1\}$ onto $M_2 - \{N_2, S_2\}$.

(iii) Finally we show that Φ is real analytic on neighborhoods of N_i and S_i . Notice that the tangent space of M_i at N_i with the induced $\mathbf{SO}(n)$ action is naturally isomorphic to \mathbf{R}^n with the standard $\mathbf{SO}(n)$ action by the assumption. Denote by \mathbf{D}_ε an ε -neighborhood of the origin 0 in \mathbf{R}^n . Denote by $e_i: \mathbf{D}_\varepsilon \rightarrow M_i$ the exponential map with respect to the Riemannian metric g_i such that $e_i(0) = N_i$. Then e_i is an $\mathbf{SO}(n)$ equivariant real analytic diffeomorphism onto an open neighborhood of N_i for sufficiently small ε . Denote by \mathbf{D}'_ε the fixed point set of the restricted $\mathbf{SO}(n-1)$ action on \mathbf{D}_ε . Define

$$\Phi' = e_2^{-1} \Phi e_1: \mathbf{D}_\epsilon \rightarrow \mathbf{D}_\epsilon.$$

Then Φ' is an $SO(n)$ equivariant homeomorphism. Since Φ is an extension of the isometry φ , the restriction of Φ' to \mathbf{D}'_ϵ onto itself is the identity map or the antipodal map. It follows that Φ' is the identity map or the antipodal map of \mathbf{D}_ϵ onto itself, because Φ' is $SO(n)$ equivariant. Therefore Φ is real analytic on a neighborhood of N_1 . Similarly Φ is real analytic on a neighborhood of S_1 . Consequently Φ is a real analytic diffeomorphism of M_1 onto M_2 .

This completes the proof of Theorem 1.3.

REMARK. The real analytic diffeomorphism $\Phi: M_1 \rightarrow M_2$ in the proof of Theorem 1.3 is not necessary an isometry with respect to the Riemannian metrics g_1 and g_2 .

2. Construction of real analytic $SL(n, \mathbf{R})$ actions

Consider the following conditions for a real valued real analytic function $f(t)$:

(A) $f(t)$ is defined on an open interval $(-1-\epsilon, 1+\epsilon)$ and $f(-1) = f(1) = 0$,

(B) $t \cdot f(t) < 0$ for $1-\epsilon < |t| < 1$,

where ϵ is a sufficiently small positive real number. If $f(t)$ is a real analytic function satisfying the condition (A), then the corresponding vector field $f(t) \frac{d}{dt}$ on $(-1, 1)$ is complete; hence the vector field induces a real analytic \mathbf{R} action

$$\psi = \psi_f: \mathbf{R} \times (-1, 1) \rightarrow (-1, 1)$$

such that

$$f(t) = \lim_{s \rightarrow 0} \frac{\psi(s, t) - t}{s} \quad \text{for } -1 < t < 1.$$

Denote by \mathbf{F} the set of all real analytic functions satisfying the conditions (A) and (B). Define an equivalence relation in \mathbf{F} as follows: we say that $f(t)$ is equivalent to $g(t)$ if there is a real analytic diffeomorphism h of the open interval $(-1, 1)$ onto itself such that

$$h_* \left(f(t) \frac{d}{dt} \right) = g(t) \frac{d}{dt}.$$

The relation means that the corresponding \mathbf{R} actions ψ_f and ψ_g are compatible under the real analytic diffeomorphism h . Denote by \mathbf{F}_* the set of all equivalence classes of \mathbf{F} .

EXAMPLE. The polynomial

$$f_{m,a}(t) = at \cdot \prod_{k=1}^m (kt+1)(kt-1)$$

satisfies the conditions (A), (B) for each positive integer m and each positive real number a .

Proposition 2.1. *If $(m, a) \neq (m', a')$, then the functions $f_{m,a}(t)$ and $f_{m',a'}(t)$ are not equivalent.*

Proof. Suppose that there is a real analytic diffeomorphism h of the interval $(-1, 1)$ onto itself such that

$$h_*\left(f_{m,a}(t) \frac{d}{dt}\right) = f_{m',a'}(t) \frac{d}{dt}.$$

Then it follows that

$$m = m', \quad h(0) = 0$$

and

$$f_{m',a'}(t) = f_{m,a}(h^{-1}(t)) \frac{dh}{dt}(h^{-1}(t)).$$

Therefore we have

$$(-1)^m a' = \frac{df_{m',a'}}{dt}(0) = \frac{df_{m,a}}{dt}(0) = (-1)^m a.$$

It follows that $a = a'$.

q.e.d.

Put

$$L(n) = \{(a_{ij}) \in \mathbf{SL}(n, R) : a_{11} = 1, a_{21} = a_{31} = \dots = a_{n1} = 0\},$$

$$N(n) = \{(a_{ij}) \in \mathbf{SL}(n, R) : a_{11} > 0, a_{21} = a_{31} = \dots = a_{n1} = 0\}.$$

Then $L(n)$ and $N(n)$ are closed connected subgroups of $\mathbf{SL}(n, R)$, and $L(n)$ is a normal subgroup of $N(n)$. Consider the standard action of $\mathbf{SL}(n, R)$ on \mathbf{R}^n . Then the action is transitive on $\mathbf{R}^n - \{0\}$, and $L(n)$ is the isotropy group at $e_1 = (1, 0, \dots, 0)$.

Let $f(t)$ be a real analytic function satisfying the conditions (A) and (B). Here we shall construct a real analytic $\mathbf{SL}(n, R)$ action on a closed connected n -dimensional real analytic manifold M_f associated with the function $f(t)$. Let ψ_f be the real analytic R action on $(-1, 1)$ corresponding to $f(t)$. Since the factor group $N(n)/L(n)$ is naturally isomorphic to R as Lie groups by a correspondence

$$(a_{ij}) \cdot L(n) \rightarrow \log a_{11}, \quad \text{for } (a_{ij}) \in N(n),$$

we consider ψ_f as a real analytic $N(n)/L(n)$ action on $(-1, 1)$. Define X_f the quotient manifold of the product

$$SL(n, \mathbf{R})/L(n) \times (-1, 1)$$

by the relation

$$(xL(n), t) = (xy^{-1}L(n), \psi_f(yL(n), t));$$

$$x \in SL(n, \mathbf{R}), y \in N(n), |t| < 1.$$

Then X_f is an n -dimensional real analytic manifold with a natural $SL(n, \mathbf{R})$ action. Denote by $[xL(n), t]$ the element of X_f represented by $(xL(n), t)$.

Let a' (resp. a'') be the largest (resp. the smallest) zero of $f(t)$ on $(-1, 1)$. Let $a_+, a_-: \mathbf{R}^n - \{0\} \rightarrow X_f$ be the equivariant $SL(n, \mathbf{R})$ maps determined by

$$a_+(e_1) = \left[L(n), \frac{1+a'}{2} \right], \quad a_-(e_1) = \left[L(n), \frac{a''-1}{2} \right]$$

respectively, where $e_1 = (1, 0, \dots, 0)$. Let \mathbf{R}_+^n and \mathbf{R}_-^n be copies of \mathbf{R}^n , and consider a_+, a_- as the maps

$$a_+: \mathbf{R}_+^n - \{0\} \rightarrow X_f, \quad a_-: \mathbf{R}_-^n - \{0\} \rightarrow X_f$$

respectively. Define M_f the quotient space of a disjoint union

$$\mathbf{R}_+^n \cup X_f \cup \mathbf{R}_-^n$$

given by the attaching maps a_+, a_- . Since $f(t)$ satisfies the conditions (A) and (B), the space M_f possesses naturally a real analytic structure as a compact connected n -dimensional manifold with a natural $SL(n, \mathbf{R})$ action. Notice that M_f is a two points compactification of X_f .

For each $k \leq n-2$, $\pi_k(M_f) = \pi_k(X_f)$ by a general position theorem. The natural projection of X_f onto $SL(n, \mathbf{R})/N(n) = S^{n-1}$ is a fibre bundle with a contractible fibre. It follows that M_f is $(n-2)$ -connected. In particular, $\pi_1(M_f) = \pi_2(M_f) = \{1\}$ for each $n \geq 3$. Since the restricted $SO(n)$ action on M_f is effective, M_f is real analytically diffeomorphic to the standard n -sphere S^n by Theorem 1.3.

Denote by $A(n)$ the set of all real analytic non-trivial $SL(n, \mathbf{R})$ actions on the standard n -sphere S^n . Two such actions ψ and ψ' are said to be equivalent if there is a real analytic diffeomorphism h of S^n onto itself such that the following diagram is commutative:

$$\begin{array}{ccc} SL(n, \mathbf{R}) \times S^n & \xrightarrow{\psi} & S^n \\ \downarrow 1 \times h & & \downarrow h \\ SL(n, \mathbf{R}) \times S^n & \xrightarrow{\psi'} & S^n. \end{array}$$

Denote by $A_*(n)$ the set of all equivalence classes of $A(n)$. By the above construction of M_f , the real analytic function $f(t)$ defines an equivalence class

$A_f = \{a_f\}$ of real analytic $SL(n, R)$ actions on S^n such that the n -sphere S^n with a real analytic $SL(n, R)$ action a_f is real analytically diffeomorphic to M_f as $SL(n, R)$ -manifolds. If $f(t)$ and $g(t)$ are equivalent, then it is easy to see that M_f and M_g are real analytically diffeomorphic as $SL(n, R)$ -manifolds. It follows that the correspondence $f(t) \rightarrow A_f$ induces a map $c_n: F_* \rightarrow A_*(n)$ for each $n \geq 3$.

Theorem 2.2. *The map $c_n: F_* \rightarrow A_*(n)$ is injective for each $n \geq 3$.*

Proof. Let $f(t), g(t)$ be real analytic functions satisfying the conditions (A), (B). Suppose that the induced real analytic $SL(n, R)$ -manifolds M_f and M_g are real analytically diffeomorphic as $SL(n, R)$ -manifolds. Then the open manifolds X_f and X_g are real analytically diffeomorphic as $SL(n, R)$ -manifolds. Compare the fixed point sets of the restricted $L(n)$ action. Then the fixed point sets $F(L(n), X_f)$ and $F(L(n), X_g)$ are one dimensional real analytic submanifolds of X_f and X_g respectively and real analytically diffeomorphic as $NL(n)$ -manifolds. Here $NL(n)$ denotes the normalizer of $L(n)$ in $SL(n, R)$. Since $NL(n)/L(n)$ is naturally isomorphic to $\mathbb{Z}_2 \times N(n)/L(n)$ as Lie groups, it is easy to see that $f(t)$ and $g(t)$ are equivalent. \square

3. Certain closed subgroups of $SL(n, R)$

Put

$$\begin{aligned} L(n) &= \{(a_{i,j}) \in SL(n, R) : a_{11} = 1, a_{21} = a_{31} = \dots = a_{n1} = 0\}, \\ N(n) &= \{(a_{i,j}) \in SL(n, R) : a_{11} > 0, a_{21} = a_{31} = \dots = a_{n1} = 0\}, \\ L^*(n) &= \{(a_{i,j}) \in SL(n, R) : a_{11} = 1, a_{12} = a_{13} = \dots = a_{1n} = 0\}, \\ N^*(n) &= \{(a_{i,j}) \in SL(n, R) : a_{11} > 0, a_{12} = a_{13} = \dots = a_{1n} = 0\}. \end{aligned}$$

Consider $SL(n-1, R)$ and $SO(n-1)$ as subgroups of $SL(n, R)$ as follows:

$$SL(n-1, R) = L(n) \cap L^*(n), \quad SO(n-1) = SO(n) \cap SL(n-1, R).$$

Lemma 3.1. *Suppose $n \geq 3$. Let G be a connected Lie subgroup of $SL(n, R)$. Suppose that G contains $SO(n-1)$ and*

$$\dim SL(n, R) - n \leq \dim G < \dim SL(n, R).$$

Then G is one of the following : $L(n)$, $N(n)$, $L^(n)$ and $N^*(n)$.*

Proof. Denote by $M_n(R)$ the set of all $n \times n$ matrices in the field of real numbers R . As usual we consider $M_n(R)$ as the Lie algebra of the general linear group $GL(n, R)$. Denote by $\mathfrak{sl}(n, R)$ and $\mathfrak{so}(n)$ the Lie subalgebras of $M_n(R)$ corresponding to the Lie subgroups $SL(n, R)$ and $SO(n)$ of $GL(n, R)$ respectively. Then

$$\begin{aligned}\mathfrak{sl}(n, \mathbf{R}) &= \{X \in M_n(\mathbf{R}): \text{trace } X = 0\} , \\ \mathfrak{so}(n) &= \{X \in M_n(\mathbf{R}): X \text{ is skew-symmetric}\} .\end{aligned}$$

Denote by $\mathfrak{sl}(n-1, \mathbf{R})$ the Lie subalgebra of $\mathfrak{sl}(n, \mathbf{R})$ corresponding to the Lie subgroup $SL(n-1, \mathbf{R})$ of $SL(n, \mathbf{R})$. Put

$$\begin{aligned}\mathfrak{so}(n-1) &= \mathfrak{so}(n) \cap \mathfrak{sl}(n-1, \mathbf{R}) , \\ \mathfrak{sym}(n-1) &= \{X \in \mathfrak{sl}(n-1, \mathbf{R}): X \text{ is symmetric}\} , \\ \mathfrak{a} &= \{(a_{ij}) \in \mathfrak{sl}(n, \mathbf{R}): a_{ij} = 0 \text{ for } i \neq 1\} , \\ \mathfrak{a}^* &= \{(a_{ij}) \in \mathfrak{sl}(n, \mathbf{R}): a_{ij} = 0 \text{ for } j \neq 1\} , \\ \mathfrak{b} &= \{(a_{ij}) \in \mathfrak{sl}(n, \mathbf{R}): a_{ij} = 0 \text{ for } i \neq j, a_{22} = a_{33} = \dots = a_{nn}\} .\end{aligned}$$

These are linear subspaces of $\mathfrak{sl}(n, \mathbf{R})$ and

$$\begin{aligned}\mathfrak{sl}(n, \mathbf{R}) &= \mathfrak{sl}(n-1, \mathbf{R}) \oplus \mathfrak{a} \oplus \mathfrak{a}^* \oplus \mathfrak{b} , \\ \mathfrak{sl}(n-1, \mathbf{R}) &= \mathfrak{so}(n-1) \oplus \mathfrak{sym}(n-1)\end{aligned}$$

as direct sums of vector spaces. Moreover we have

$$\begin{aligned}[1] \quad [\mathfrak{a}, \mathfrak{a}] &= \{0\}, [\mathfrak{a}^*, \mathfrak{a}^*] = \{0\}, [\mathfrak{b}, \mathfrak{b}] = \{0\} , \\ [\mathfrak{a}, \mathfrak{b}] &= \mathfrak{a}, [\mathfrak{a}^*, \mathfrak{b}] = \mathfrak{a}^*, [\mathfrak{a}, \mathfrak{a}^*] = \mathfrak{sl}(n-1, \mathbf{R}) \oplus \mathfrak{b} , \\ [\mathfrak{a}, \mathfrak{sl}(n-1, \mathbf{R})] &= \mathfrak{a}, [\mathfrak{a}^*, \mathfrak{sl}(n-1, \mathbf{R})] = \mathfrak{a}^* .\end{aligned}$$

Denote by $Ad: SL(n, \mathbf{R}) \rightarrow GL(\mathfrak{sl}(n, \mathbf{R}))$ the adjoint representation. Then the linear subspaces $\mathfrak{sl}(n-1, \mathbf{R})$, \mathfrak{a} , \mathfrak{a}^* and \mathfrak{b} are $Ad(SL(n-1, \mathbf{R}))$ invariant, and the linear subspaces $\mathfrak{so}(n-1)$ and $\mathfrak{sym}(n-1)$ are $Ad(SO(n-1))$ invariant. Moreover the linear subspaces $\mathfrak{sym}(n-1)$, \mathfrak{a} , \mathfrak{a}^* and \mathfrak{b} are irreducible $Ad(SO(n-1))$ spaces respectively for each $n \geq 3$. The Lie subalgebras

$$\begin{aligned}(2) \quad \mathfrak{sl}(n-1, \mathbf{R}) \oplus \mathfrak{a}, \mathfrak{sl}(n-1, \mathbf{R}) \oplus \mathfrak{a}^* \oplus \mathfrak{b} , \\ \mathfrak{sl}(n-1, \mathbf{R}) \oplus \mathfrak{a}^*, \mathfrak{sl}(n-1, \mathbf{R}) \oplus \mathfrak{a}^* \oplus \mathfrak{b}\end{aligned}$$

of $\mathfrak{sl}(n, \mathbf{R})$ corresponds to the connected Lie subgroups $L(n)$, $N(n)$, $L^*(n)$ and $N^*(n)$ of $SL(n, \mathbf{R})$ respectively.

Let G be a connected Lie subgroup of $SL(n, \mathbf{R})$. Denote by \mathfrak{g} the corresponding Lie subalgebra of $\mathfrak{sl}(n, \mathbf{R})$. Suppose that

$$\begin{aligned}(3) \quad &G \text{ contains } SO(n-1), \text{ and} \\ (4) \quad &\dim SL(n, \mathbf{R}) - n \leq \dim G < \dim SL(n, \mathbf{R}) .\end{aligned}$$

By (3), \mathfrak{g} is an $Ad(SO(n-1))$ invariant linear subspace of $\mathfrak{sl}(n, \mathbf{R})$ which contains $\mathfrak{so}(n-1)$. Hence we derive that

$$\mathfrak{g} = \mathfrak{so}(n-1) \oplus (\mathfrak{g} \cap \mathfrak{sym}(n-1)) \oplus (\mathfrak{g} \cap (\mathfrak{a} \oplus \mathfrak{a}^*)) \oplus (\mathfrak{g} \cap \mathfrak{b})$$

as a direct sum of $Ad(\mathbf{SO}(n-1))$ invariant linear subspaces. The inequality (4) implies that \mathfrak{g} contains $\mathfrak{Sym}(n-1)$ or $\mathfrak{a} \oplus \mathfrak{a}^*$, because $\mathfrak{Sym}(n-1)$, \mathfrak{a} and \mathfrak{a}^* are irreducible $Ad(\mathbf{SO}(n-1))$ spaces respectively and

$$\dim \mathfrak{a} = \dim \mathfrak{a}^* = n-1, \dim \mathfrak{Sym}(n-1) \geq n-1$$

for any $n \geq 3$. If $\mathfrak{a} \oplus \mathfrak{a}^*$ is contained in \mathfrak{g} , then $\mathfrak{g} = \mathfrak{sl}(n, \mathbf{R})$ by (1). This is a contradiction to (4). It follows that

$$(5) \quad \mathfrak{Sym}(n-1) \subset \mathfrak{g}, \quad \mathfrak{a} \oplus \mathfrak{a}^* \not\subset \mathfrak{g}.$$

In particular, \mathfrak{g} contains $\mathfrak{sl}(n-1, \mathbf{R})$, and hence G contains $\mathbf{SL}(n-1, \mathbf{R})$. Then we derive that

$$(6) \quad \mathfrak{g} = \mathfrak{sl}(n-1, \mathbf{R}) \oplus (\mathfrak{g} \cap (\mathfrak{a} \oplus \mathfrak{a}^*)) \oplus (\mathfrak{g} \cap \mathfrak{b})$$

as a direct sum of $Ad(\mathbf{SL}(n-1, \mathbf{R}))$ invariant linear subspaces.

Suppose first $n \geq 4$. Then \mathfrak{a} and \mathfrak{a}^* are mutually non-equivalent irreducible $Ad(\mathbf{SL}(n-1, \mathbf{R}))$ spaces; hence $Ad(\mathbf{SL}(n-1, \mathbf{R}))$ invariant subspaces of $\mathfrak{a} \oplus \mathfrak{a}^*$ are one of the following : $\{0\}$, \mathfrak{a} , \mathfrak{a}^* and $\mathfrak{a} \oplus \mathfrak{a}^*$. It follows that \mathfrak{g} is one of the Lie algebras in (2), by (1), (4), (5) and (6).

Suppose next $n=3$. Then \mathfrak{a} and \mathfrak{a}^* are equivalent irreducible $Ad(\mathbf{SL}(2, \mathbf{R}))$ spaces. Put

$$h(p, q) = \left\{ \begin{pmatrix} 0 & qy & -qx \\ px & 0 & 0 \\ py & 0 & 0 \end{pmatrix} : x, y \in \mathbf{R} \right\}$$

for each real numbers p, q . Then $h(p, q)$ is an $Ad(\mathbf{SL}(2, \mathbf{R}))$ invariant linear subspace of $\mathfrak{a} \oplus \mathfrak{a}^*$ for each p, q . It is easy to see that any $Ad(\mathbf{SL}(2, \mathbf{R}))$ invariant proper linear subspace of $\mathfrak{a} \oplus \mathfrak{a}^*$ is one of $h(p, q)$ for certain p, q . It follows that

$$\mathfrak{g} \cap (\mathfrak{a} \oplus \mathfrak{a}^*) = h(p, q)$$

for certain real numbers p, q . Suppose $pq \neq 0$. Then we derive

$$\begin{aligned} [h(p, q), h(p, q)] &= \mathfrak{b}, \\ [h(p, q), \mathfrak{b}] &= h(-p, q), \\ h(p, q) + h(-p, q) &= \mathfrak{a} \oplus \mathfrak{a}^*. \end{aligned}$$

It follows that \mathfrak{g} contains $\mathfrak{a} \oplus \mathfrak{a}^*$; this is a contradiction to (5). Hence we obtain $pq=0$, namely

$$\mathfrak{g} \cap (\mathfrak{a} \oplus \mathfrak{a}^*) = \{0\}, \quad \mathfrak{a} \text{ or } \mathfrak{a}^*.$$

It follows that \mathfrak{g} is one of the Lie algebras in (2), by (1), (4) and (6).

Consequently the assumptions (3) and (4) implies that the Lie algebra \mathfrak{g} is one of the Lie algebras in (2) for each $n \geq 3$, and hence the connected Lie subgroup G is one of the following: $L(n)$, $N(n)$, $L^*(n)$ and $N^*(n)$.

This completes the proof of Lemma 3.1.

4. Real analytic $SL(n, \mathbf{R})$ actions on the n -sphere

Let $\psi: SL(n, \mathbf{R}) \times S^n \rightarrow S^n$ be a real analytic non-trivial action of $SL(n, \mathbf{R})$ on the standard n -sphere S^n . For each subgroup H of $SL(n, \mathbf{R})$, we put

$$F(H) = \{x \in S^n : \psi(h, x) = x \text{ for all } h \in H\},$$

namely, $F(H)$ is the fixed point set of the restricted action of ψ to H . Then $F(H)$ is a closed subset of S^n , but it is not necessary a submanifold of S^n .

Lemma 4.1. *Suppose $n \geq 3$. Then*

$$\begin{aligned} F(SO(n)) &= F(SL(n, \mathbf{R})) = F(L(n)) \cap F(L^*(n)), \\ F(SO(n-1)) &= F(L(n)) \text{ or } F(L^*(n)) \end{aligned}$$

for any real analytic non-trivial $SL(n, \mathbf{R})$ action on the n -sphere.

Proof. From Lemma 3.1, we derive

$$\begin{aligned} F(SO(n)) &= F(SL(n, \mathbf{R})) = F(L(n)) \cap F(L^*(n)), \\ F(SO(n-1)) &= F(L(n)) \cup F(L^*(n)). \end{aligned}$$

According to Theorem 1.3, we see that the set $F(SO(n-1)) - F(SO(n))$ has just two connected components. Each connected component is contained in $F(L(n))$ or $F(L^*(n))$. Put

$$g = \begin{pmatrix} -1 & & & \\ & -1 & & \\ & & 1 & \\ & & \ddots & 1 \end{pmatrix}.$$

Then it follows easily from Theorem 1.3 that x and gx belong distinct connected components respectively for each element x of $F(SO(n-1)) - F(SO(n))$. Then we conclude that

$$F(SO(n-1)) = F(L(n)) \text{ or } F(L^*(n)). \quad \text{q.e.d.}$$

Denote by $\sigma(g)$ the transpose of g^{-1} for each $g \in SL(n, \mathbf{R})$. Then the correspondence $g \rightarrow \sigma(g)$ defines an automorphism σ of $SL(n, \mathbf{R})$. The automorphism σ is an involution and

$$\sigma(L(n)) = L^*(n).$$

Let ψ be a real analytic non-trivial $SL(n, R)$ action on S^n . Define a new action $\sigma_*\psi$ of $SL(n, R)$ on S^n as follows:

$$(\sigma_*\psi)(g, x) = \psi(\sigma(g), x) \quad \text{for } g \in SL(n, R), x \in S^n.$$

Then it is seen that if $F(SO(n-1)) = F(L(n))$ (resp. $F(L^*(n))$) for the action ψ , then $F(SO(n-1)) = F(L^*(n))$ (resp. $F(L(n))$) for the action $\sigma_*\psi$.

As in the section 2, let $A(n)$ denote the set of all real analytic non-trivial $SL(n, R)$ actions on S^n , and let $A_*(n)$ denote the set of all equivalence classes of $A(n)$. Then the mapping $\sigma_*: A(n) \rightarrow A(n)$ is an involution, and σ_* induces naturally an involution $\sigma_*: A_*(n) \rightarrow A_*(n)$.

Denote by $A^+(n)$ (resp. $A^-(n)$) the set of all real analytic non-trivial $SL(n, R)$ actions on S^n such that

$$F(SO(n-1)) = F(L(n)) \text{ (resp. } F(L^*(n))\text{)}.$$

Denote by $A_*^+(n)$ (resp. $A_*^-(n)$) the set of all equivalence classes represented by an element of $A^+(n)$ (resp. $A^-(n)$). Then we derive

$$\begin{aligned} \sigma_* A^+(n) &= A^-(n), & \sigma_* A^-(n) &= A^+(n), \\ \sigma_* A_*^+(n) &= A_*^-(n), & \sigma_* A_*^-(n) &= A_*^+(n). \end{aligned}$$

Moreover $A_*(n)$ is a disjoint union of $A_*^+(n)$ and $A_*^-(n)$ by Lemma 4.1. Let $c_n: F_* \rightarrow A_*(n)$ be the mapping defined in the section 2. Then it is seen that the image $c_n(F_*)$ is contained in $A_*^+(n)$.

We shall show the following result.

Theorem 4.2. $c_n(F_*) = A_*^+(n)$ for each $n \geq 3$.

In order to prove this theorem, we require the following result due to Guillemin and Sternberg [4]:

Lemma 4.3. *Let \mathfrak{g} be a real semi-simple Lie algebra and let $\rho: \mathfrak{g} \rightarrow L(M)$ be a homomorphism of \mathfrak{g} into the Lie algebra of real analytic vector fields on a real analytic n -manifold M . Let p be a point at which the vector fields in the image $\rho(\mathfrak{g})$ have a common zero. Then there exists an analytic system of coordinates $(U; x_1, \dots, x_n)$, with origin at p , in which all of the vector fields in $\rho(\mathfrak{g})$ are linear. Namely, there exists*

$$a_{ij} \in \mathfrak{g}^* = \text{Hom}_R(\mathfrak{g}, R)$$

such that

$$\rho(X)_q = \sum_{i,j} a_{ij}(X) x_i(q) \frac{\partial}{\partial x_j} \quad \text{for } X \in \mathfrak{g}, q \in U.$$

REMARK. The correspondence $X \rightarrow (a_{ij}(X))$ defines a Lie algebra homomorphism of \mathfrak{g} into $\mathfrak{sl}(n, \mathbf{R})$.

Lemma 4.4. *Suppose $n \geq 3$. Let ψ be a real analytic non-trivial $SL(n, \mathbf{R})$ action on S^n such that $F(SO(n-1)) = F(L(n))$. Let $p \in S^n$ be a fixed point of the $SL(n, \mathbf{R})$ action ψ . Then there is an equivariant real analytic diffeomorphism h of \mathbf{R}^n onto an invariant open set of S^n such that $h(0) = p$. Here $SL(n, \mathbf{R})$ acts standardly on \mathbf{R}^n .*

Proof. Notice that, for each $n \geq 3$, any non-trivial endomorphism of $\mathfrak{sl}(n, \mathbf{R})$ is of the form $Ad(g)$ or $Ad(g) \cdot d\sigma$, where $g \in GL(n, \mathbf{R})$ and $d\sigma$ is the differential of the automorphism σ . Define a Lie algebra homomorphism

$$\rho: \mathfrak{sl}(n, \mathbf{R}) \rightarrow L(S^n)$$

as follows:

$$(1) \quad \rho(X)_q(f) = \lim_{t \rightarrow 0} \frac{f(\psi(\exp(-tX), q)) - f(q)}{t}$$

for $X \in \mathfrak{sl}(n, \mathbf{R})$, $q \in S^n$. Here f is a real valued real analytic function on S^n . Then $\rho(X)_p = 0$ for each $X \in \mathfrak{sl}(n, \mathbf{R})$. According to Lemma 4.3, there exists an analytic system of coordinates $(U; x_1, \dots, x_n)$, with origin at p , and there exists $a_{ij} \in \mathfrak{sl}(n, \mathbf{R})^*$ such that

$$(2) \quad \rho(X)_q = \sum_{i,j} a_{ij}(X) x_i(q) \frac{\partial}{\partial x_j} \quad \text{for } X \in \mathfrak{sl}(n, \mathbf{R}), q \in U.$$

By the above notice, it can be assumed that

$$(3) \quad X = (a_{ij}(X)) \quad \text{for each } X \in \mathfrak{sl}(n, \mathbf{R}), \text{ or}$$

$$(3') \quad d\sigma(X) = (a_{ij}(X)) \quad \text{for each } X \in \mathfrak{sl}(n, \mathbf{R}).$$

From the assumption $F(SO(n-1)) = F(L(n))$, it follows that the case (3) does not happen.

Let $k: U \rightarrow \mathbf{R}^n$ be a real analytic diffeomorphism of U onto an open set of \mathbf{R}^n defined by $k(q) = (x_1(q), \dots, x_n(q))$ for $q \in U$. Then $k(p) = 0$. There is a positive real number ε such that the ε -neighborhood D_ε of the origin is contained in $k(U)$. Put

$$x = \left(\frac{\varepsilon}{2}, 0, \dots, 0 \right).$$

Then the group $L(n)$ is the isotropy group at x . Moreover $L(n)$ agrees with the identity component of the isotropy group at $k^{-1}(x)$ by (1), (2) and (3'). Define a map $h: \mathbf{R}^n \rightarrow S^n$ as follows:

$$h(0) = p; \quad h(gx) = \psi(g, k^{-1}(x)) \quad \text{for } g \in SL(n, \mathbf{R}).$$

The map h is a well-defined equivariant $SL(n, R)$ map. It follows that

$$k \cdot h = \text{identity on } D_\epsilon$$

by the uniqueness of the solution of an ordinary differential equation defined by (1), (2) and (3'). Hence the map $h: R^n \rightarrow S^n$ is a real analytic submersion of R^n onto an invariant open set of S^n . Since h is injective on D_ϵ , it can be seen that the isotropy group at $h(x) = k^{-1}(x)$ agrees with $L(n)$. Then the map $h: R^n \rightarrow S^n$ is injective.

This completes the proof of Lemma 4.4.

Proof of Theorem 4.2. Let ψ be an element of $A^+(n)$. According to Theorem 1.3 and Lemma 4.1, $F(L(n))$ is a real analytic submanifold of S^n on which $N(n)$ acts naturally, and $F(L(n))$ is real analytically diffeomorphic to S^1 . Moreover $F = F(SL(n, R))$ consists of two points N, S . Let $h: (-1-\epsilon, 1+\epsilon) \rightarrow F(L(n))$ be a real analytic imbedding such that $h(1) = N$ and $h(-1) = S$, where ϵ is a sufficiently small positive real number. Since $N(n)/L(n) \cong R$ acts real analytically on $F(L(n))$, the action defines a real analytic vector field v on $F(L(n))$ naturally. Then there exists a real analytic function $f(t)$ on the interval $(-1-\epsilon, 1+\epsilon)$ such that $v = h_* \left(f(t) \frac{d}{dt} \right)$ on the image of h . We shall first show that the function $f(t)$ satisfies the conditions (A), (B) stated in the section 2. The condition (A) follows from $F = \{N, S\}$. Considering the standard action of $SL(n, R)$ on R^n , we can see that the condition (B) follows from Lemma 4.4.

We shall next show that the n -sphere S^n with the $SL(n, R)$ action ψ is equivariantly real analytically diffeomorphic to M_f , where M_f is a real analytic $SL(n, R)$ -manifold constructed from $f(t)$ as before. For this purpose, we consider the following commutative diagram:

$$\begin{array}{ccc} SO(n) & \xrightarrow[N_{SO(n-1)}]{\times} & (F(SO(n-1))-F) \xrightarrow{\alpha} S^n-F \\ & \downarrow \beta & \parallel \\ SL(n, R) & \xrightarrow[N_{L(n)}]{\times} & (F(L(n))-F) \xrightarrow{\gamma} S^n-F. \end{array}$$

Here $N_{SO(n-1)}$ and $N_{L(n)}$ are the normalizers of $SO(n-1)$ and $L(n)$ respectively. According to Theorem 1.3, Lemma 3.1 and Lemma 4.1, we can show that α , β and γ are real analytic one-to-one onto mappings. Moreover α is a diffeomorphism by the differentiable slice theorem; hence β and γ are also real analytic diffeomorphisms. It follows that $S^n - F$ is equivariantly real analytically diffeomorphic to a real analytic $SL(n, R)$ -manifold X_f constructed from $f(t)$ as before. Consequently the n -sphere S^n with the action ψ is equivariantly real analytically diffeomorphic to M_f , by making use of Lemma 4.4. Hence

we conclude that $c_n(F_*) = A_*(n)$.

This completes the proof of Theorem 4.2.

5. Certain closed subgroups of $O(n)$

In this section, we shall prove Lemma 1.1 and Lemma 1.2. Put

$$D(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad \theta \in \mathbf{R}.$$

Denote by $D(a_1, \dots, a_r)$ the one-dimensional closed subgroup of $O(n)$ consists of the following matrices:

$$\begin{pmatrix} D(a_1\theta) & & 0 \\ & \ddots & \\ 0 & & D(a_r\theta) \end{pmatrix}, \quad \theta \in \mathbf{R}$$

for $n=2r$, and

$$\begin{pmatrix} D(a_1\theta) & & 0 \\ & \ddots & \\ 0 & & D(a_r\theta) \\ & & 1 \end{pmatrix}, \quad \theta \in \mathbf{R}$$

for $n=2r+1$, respectively. Here a_1, \dots, a_r are integers. Consider $U(k)$ as the centralizer of

$$\begin{pmatrix} D(\pi/2) & & 0 \\ & \ddots & \\ 0 & & D(\pi/2) \end{pmatrix}$$

in $O(2k)$. Then we can derive easily the following result.

Lemma 5.1. *Suppose that $b_1 > b_2 > \dots > b_s > 0$ and*

$$(a_1, \dots, a_r) = (\underbrace{b_1, \dots, b_1}_{n_1}, \dots, \underbrace{b_s, \dots, b_s}_{n_s}, 0, \dots, 0).$$

Then the centralizer of $D(a_1, \dots, a_r)$ in $O(n)$ agrees with

$$U(n_1) \times \dots \times U(n_s) \times O(m),$$

where $m = n - 2(n_1 + \dots + n_s)$.

Here we shall prove Lemma 1.2. Let $h: SO(n) \rightarrow O(n)$ be a continuous homomorphism with a finite kernel. Suppose $n \geq 3$. Then it is easy to see that h is an isomorphism onto $SO(n)$. Denote by T a maximal torus of $SO(n)$ defined by the direct product of the subgroups

$$T_k = D(\underbrace{0, \dots, 0}_k, 1, 0, \dots, 0)$$

for $0 < k \leq n/2$. Then there is an element x_1 of $SO(n)$ such that $h(T) = x_1 T x_1^{-1}$. Then the subgroup $x_1^{-1} h(T_k) x_1$ is of the form $D(a_{k1}, \dots, a_{kr})$ for each k . Compare the centralizer of T_k and that of $x_1^{-1} h(T_k) x_1$ in $O(n)$. We can derive

$$x_1^{-1} h(T_k) x_1 = T_j$$

for some j , by Lemma 5.1. Hence there is an element x_2 of $O(n)$ such that

$$h(t) = x_1 x_2 t x_2^{-1} x_1^{-1}, \quad \text{for } t \in T.$$

It follows that the representations $y \rightarrow y$ and $y \rightarrow x_2^{-1} x_1^{-1} h(y) x_1 x_2$ of $SO(n)$ are equivalent. Since the representation $y \rightarrow y$ is absolutely irreducible, there is an element x_3 of $O(n)$ such that

$$x_3 y x_3^{-1} = x_2^{-1} x_1^{-1} h(y) x_1 x_2$$

for each $y \in SO(n)$ (cf. [6], Lemma 5.5.1). Put $x = x_1 x_2 x_3$. Then we derive that $x \in O(n)$ and $h(y) = x y x^{-1}$ for each $y \in SO(n)$.

This completes the proof of Lemma 1.2.

We shall next prove Lemma 1.1. Let G be a connected closed subgroup of $O(n)$. Suppose that $n \geq 3$ and

$$(1) \quad \dim O(n) > \dim G \geq \dim O(n) - n.$$

The inclusion map $i: G \rightarrow O(n)$ gives an orthogonal faithful representation of G . Suppose first that the representation i is reducible. Then, by an inner automorphism of $O(n)$, G is isomorphic to a closed subgroup G' of $O(k) \times O(n-k)$ for some k such that $0 < k \leq n/2$. By (1), we derive that $k=1$, or $k=2$ and $G' = SO(2) \times SO(2)$. The codimension of $O(1) \times O(n-1)$ in $O(n)$ is $n-1$. If $n \geq 4$, then $SO(n-1)$ is semi-simple; hence there is no closed subgroup of codimension one in $SO(n-1)$. We can conclude that

$$\begin{aligned} G' &= SO(1) \times SO(n-1) \cong SO(n-1), \\ G' &= SO(2) \times SO(2) \quad \text{for } n = 4, \text{ or} \\ G' &= \{1\} \quad \text{for } n = 3. \end{aligned}$$

Suppose next that the representation i is irreducible and G has a one-dimensional central subgroup. By Lemma 5.1, it can be seen that n is even and G is isomorphic to a closed subgroup G' of $U(n/2)$ by an inner automorphism of $O(n)$. It follows from (1) that

$$\begin{aligned} G' &= U(3) \quad \text{for } n = 6, \text{ or} \\ G' &= U(2) \quad \text{for } n = 4. \end{aligned}$$

It remains to consider the case that G is semi-simple and the representa-

tion i is irreducible. In the following, we assume that G is semi-simple and the representation i is irreducible. Suppose that the complexification i^C of i is reducible. Then the representation i possesses a complex structure and n is even. Hence G is isomorphic to a closed subgroup of $U(n/2)$. We can derive that $n=4$ by (1). Moreover, by an inner automorphism of $O(4)$, G is isomorphic to $SU(2)$ which is standardly imbedded in $O(4)$.

Suppose that the complexification i^C of i is irreducible. Then i^C is a complex irreducible representation of G of degree n .

(i) Moreover suppose first that G is not simple. Let G^* be the universal covering group of G , and let $p: G^* \rightarrow G$ be the covering projection. Since G is not simple, there are closed semi-simple normal subgroups H_1 and H_2 of G^* such that

$$G^* = H_1 \times H_2.$$

Consider the representation $i^C p: G^* \rightarrow U(n)$. Then there are irreducible complex representations r_1 and r_2 of H_1 and H_2 respectively, such that the tensor product $r_1 \otimes r_2$ is equivalent to $i^C p$. Since $i^C p$ has a real form ip , the representations r_1 and r_2 are self-conjugate; hence r_1 (resp. r_2) has a real form or a quaternionic structure, but not both (cf.[1], Proposition 3.56). Moreover, if r_1 has a real form (resp. quaternionic structure), then r_2 has also a real form (resp. quaternionic structure). Put $n_s = \deg r_s$ for $s=1, 2$. Then

$$(2) \quad \dim O(n) - n = \frac{n(n-3)}{2} = \frac{n_1 n_2 (n_1 n_2 - 3)}{2}.$$

Suppose first that r_1 has a quaternionic structure. Then it follows that n_1 and n_2 are even, and

$$\dim H_s \leq \dim Sp\left(\frac{n_s}{2}\right) \quad \text{for } s = 1, 2.$$

Hence

$$\dim G = \dim H_1 + \dim H_2 \leq \frac{n_1(n_1+1)}{2} + \frac{n_2(n_2+1)}{2}.$$

Compare the above inequality with (2). We can derive easily that

$$\dim G < \dim O(n) - n$$

except the case $n_1 = n_2 = 2$. If $n_1 = n_2 = 2$, then $n=4$ and $\dim G = \dim O(n)$. We can conclude from (1) that r_1 has no quaternionic structure. Suppose next that r_1 has a real form. Then, since H_s is semi-simple, it follows that

$$n_s \geq 3 \quad \text{for } s = 1, 2.$$

Moreover it follows that

$$\dim H_s \leq \dim O(n_s) \quad \text{for } s = 1, 2.$$

Hence

$$\dim G = \dim H_1 + \dim H_2 \leq \frac{n_1(n_1-1)}{2} + \frac{n_2(n_2-1)}{2}.$$

Compare the above inequality with (2). We can derive that

$$\dim G < \dim O(n) - n.$$

This is a contradiction to (1), and hence we can conclude that τ_1 has no real form. Consequently we can conclude that G must be simple.

(ii) Suppose next that G is simple. Moreover suppose first that G is an exceptional Lie group. Then we can derive the following result from a table of the degrees of the basic representations (cf. [2], p. 378, Table 30): the possibility remains only in the case that $n=7$ and G is locally isomorphic to the exceptional Lie group G_2 . Consider G_2 as a closed subgroup of $O(7)$ as usual. Then we can conclude that G is isomorphic to G_2 by an inner automorphism of $O(7)$. It remains to consider the case that G is locally isomorphic to $SU(k)$, $Sp(k)$ or $SO(k)$. Put $r=\text{rank } G$. Denote by G^* the universal covering group of G . Denote by L_1, \dots, L_r the fundamental weights of G^* . Then there is a one-to-one correspondence between complex irreducible representations of G^* and sequences (a_1, \dots, a_r) of non-negative integers such that $a_1L_1 + \dots + a_rL_r$ is the highest weight of a corresponding complex irreducible representation (cf. [2], Theorem 0.8, Theorem 0.9). Denote by

$$d(a_1L_1 + \dots + a_rL_r)$$

the degree of the complex irreducible representation of G^* with the highest weight $a_1L_1 + \dots + a_rL_r$. The degree can be computed by the Weyl's formula (cf. [2], Theorem 0.24; (0.148), (0.149), (0.150)). Notice that if

$$a_1 \geq a'_1, \dots, a_r \geq a'_r,$$

then

$$d(a_1L_1 + \dots + a_rL_r) \geq d(a'_1L_1 + \dots + a'_rL_r)$$

and the equality holds only if $a_1 = a'_1, \dots, a_r = a'_r$.

(a) Suppose first that G^* is isomorphic to $SU(r+1)$ for $r \geq 1$. Since $\text{rank } G \leq \text{rank } SO(n)$, it follows that

$$(3) \quad 2r \leq n.$$

If $r \geq 6$, then we derive from (3) that

$$\dim G = \dim SU(r+1) = r(r+2) < \frac{n(n-3)}{2} = \dim O(n) - n.$$

This is a contradiction to (1). If the pair (n, r) satisfies the conditions (1) and (3), then (n, r) is one of the following:

$$(10,5), (8,4), (7,3), (5,2) \text{ and } (4,1).$$

Notice that

$$d(L_i) = {}_{r+1}C_i, \quad d(2L_1) = d(2L_r) = \frac{(r+1) \cdot (r+2)}{2}.$$

Thus there is no complex irreducible representation of $SU(r+1)$ of degree $2r$ for $r=4,5$. Hence (n, r) is not $(10,5)$ nor $(8,4)$. Since

$$\begin{aligned} d(2L_1) &= d(2L_2) = 6, \quad d(L_1+L_2) = 8 \quad \text{for } r = 2; \\ d(2L_1) &= d(2L_3) = 10, \quad d(2L_2) = d(L_1+L_2) = d(L_2+L_3) = 20, \\ &\quad \text{and } d(L_1+L_3) = 15 \quad \text{for } r = 3, \end{aligned}$$

it follows that there is no complex irreducible representation of $SU(r+1)$ of degree $2r+1$ for $r=2,3$. Hence (n, r) is not $(7,3)$ nor $(5,2)$. It remains only the case $(n, r)=(4,1)$. But it is seen that the complex irreducible representation of $SU(2)$ of degree 4 has no real form. Therefore we can derive that G is not locally isomorphic to $SU(r+1)$.

(b) Suppose next that G^* is isomorphic to $Sp(r)$ for $r \geq 2$. Since $\text{rank } G \leq \text{rank } SO(n)$, it follows that

$$(4) \quad 2r \leq n.$$

On the other hand, since $\dim Sp(r) = r(2r+1)$, the inequality (1) implies that

$$(5) \quad n(n-3) \leq 2r(2r+1) < n(n-1).$$

It follows from (4), (5) that

$$1 \leq \frac{n}{2r} \leq \frac{2r+1}{n-3}.$$

Therefore, if the pair (n, r) satisfies the conditions (4), (5), then we derive $n=2r+2$. Notice that

$$d(L_i) = {}_{2r+1}C_i - {}_{2r+1}C_{i-1}, \quad d(2L_1) = r(2r+1).$$

If $r \geq 3$, then we can derive that

$$\begin{aligned} d(L_i) &\geq 2r+3 \quad \text{for } i = 2, 3, \dots, r; \\ d(2L_1) &\geq 2r+3. \end{aligned}$$

If $r=2$, then

$$\begin{aligned} d(L_1) &= 4, \quad d(L_2) = 5, \quad d(2L_1) = 10, \\ d(2L_2) &= 14 \quad \text{and} \quad d(L_1+L_2) = 16. \end{aligned}$$

It follows that there is no complex irreducible representation of $Sp(r)$ of degree $2r+2$, for $r \geq 2$. Therefore we can derive that G is not locally isomorphic to $Sp(r)$.

(c) Suppose finally that G^* is isomorphic to $Spin(k)$ for $k \geq 5$. It follows from (1) that

$$n(n-3) \leq k(k-1) < n(n-1).$$

Hence we have $n=k+1$. Suppose $k=2r$. Then

$$\begin{aligned} d(L_i) &= {}_{2r}C_i \text{ for } 1 \leq i \leq r-2, & d(L_{r-1}) &= d(L_r) = 2^{r-1}, \\ d(2L_1) &= (r+1) \cdot (2r-1), & d(2L_{r-1}) &= d(2L_r) = {}_{2r-1}C_r, \\ d(L_1 + L_{r-1}) &= d(L_1 + L_r) = (2r-1)2^{r-1}, \text{ and} \\ d(L_{r-1} + L_r) &= {}_{2r}C_{r-1}. \end{aligned}$$

It follows that there is no complex irreducible representation of $Spin(2r)$ of degree $2r+1$. Suppose $k=2r+1$. Then

$$\begin{aligned} d(L_i) &= {}_{2r+1}C_i \text{ for } 1 \leq i \leq r-1, & d(L_r) &= 2^r, \\ d(2L_1) &= r(2r+3), & d(L_1 + L_r) &= r \cdot 2^{r+1}, \text{ and} \\ d(2L_r) &= 2^{2r}. \end{aligned}$$

It follows that there is no complex irreducible representation of $Spin(2r+1)$ of degree $2r+2$ for $r \neq 3$, and there is a unique complex irreducible representation of $Spin(7)$ of degree 8. It is seen that the representation of $Spin(7)$ has a real form. Therefore we can derive that $n=8$ and G is isomorphic to $Spin(7)$. Here $Spin(7)$ is considered as a closed subgroup of $O(8)$ by the real spin representation. Then the isomorphism of G onto $Spin(7)$ is realized by an inner automorphism of $O(8)$.

This completes the proof of Lemma 1.1.

OSAKA UNIVERSITY

References

- [1] J.F. Adams: *Lectures on Lie groups*, Benjamin Inc., New York, 1969.
- [2] E.B. Dynkin: *The maximal subgroups of the classical groups*, Amer. Math. Soc. Transl. 6 (1957), 245–378.
- [3] H. Grauert: *On Levi's problem and the imbedding of real analytic manifolds*, Ann. of Math. 68 (1958), 460–472.
- [4] V.W. Guillemin and S. Sternberg: *Remarks on a paper of Hermann*, Trans. Amer. Math. Soc. 130 (1968), 110–116.
- [5] C.R. Schneider: *SL(2, R) actions on surfaces*, Amer. J. Math. 96 (1974), 511–528.
- [6] F. Uchida: *Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits*, Japan. J. Math. 3 (1977), 141–189.

