|

) <

The University of Osaka
Institutional Knowledge Archive

Title Classification of real analytic SL(n,R) actions
on n-sphere

Author(s) |Uchida, Fuichi

Osaka Journal of Mathematics. 1979, 16(3), bp.

Citation 561-579

Version Type|VoR

URL https://doi.org/10.18910/9328

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Uchida, F.
Osaka J. Math.
16 (1979), 561-579

CLASSIFICATION OF REAL ANALYTIC
SL(n,R) ACTIONS ON n-SPHERE

Dedicated to Professor A. Komatu on his 70th birthday

Fuicur UCHIDA®

(Received March 17, 1978)

0. Introduction

C.R. Schneider [5] classified real analytic SL(2, R) actions on closed sur-
faces. Except for the work, there seems to be no work on the classification
problem about non-compact Lie group actions.

In this paper, we classify real analytic SL(n, R) actions on the standard
n-sphere for each n>3. Here SL(n, R) denotes the special linear group over
the field of real numbers. The result can be stated roughly as follows: there
is a one-to-one correspondence between real analytic SL(s, R) actions on the
a-sphere and real valued real analytic functions on an interval satisfying certain
conditions (see Theorem 2.2 and Theorem 4.2). It is important to consider
the restricted actions of SL(n, R) to a maximal compact subgroup SO(n).

It is still open to classify C actions of SL(n, R) on the standard n-sphere,
by lack of C= analogue of a local theory due to Guillemin and Sternberg (see
Lemma 4.3).

1. Real analytic SO(n) actions on certain n-manifolds

First we prepare the following two lemmas of which proof is given in the
last section.

Lemma 1.1. Let G be a closed connected subgroup of O(n). Suppose
that n>3 and

dim O(n) > dim G >dim O(n)—n .
Suppose that G is not conjugate to SO(n—1) whick is canonically imbedded in
O(n). Then the pair (O(n), G) is pairwise isomorphic to one of the following:

(0(8), Spin(7)), (0(7), G»), (0(6), U(3)), (0(4), U(2)),
(0(4), SU(2)), (0(#), SO(2)x 80(2)) and (0(3), {1}),

*) Supported by Grant-in-Aid for Scientific Research
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up to inner automorphisms of O(n). In these cases the subgroups are standardly
imbedded in O(n).

Lemma 1.2. Suppose n>3. Let h: SO(n)—O(n) be a continuous homo-
morphism with a finite kernel. Then there is an element x of O(n) such that

h(y)=xyx™! for each y of SO(n).
Now we shall prove the following result.

Theorem 1.3. Suppose n>3. Let M be a closed connected n-dimensional
real analytic manifold. Suppose that

(M) = =(M) = {1} .

Suppose that SO(n) acts on M real analytically and almost effectively. Then
the SO(n)-manifold M is real analytically diffeomorphic to the standard n-sphere
S" as SO(n)-manifolls. Here the SO(n) action on S" is the restriction of the stan-
dard SO(n+1) action on S”.

Proof. (i) First we show that the SO(n)-manifold M is C= diffeomorphic
to the standard sphere S* as SO(r)-manifolds. Let G be the identity com-
ponent of a principal isotropy group. Then

dim SO(n) > dim G >dim SO(n)—n ,

and SO(n) acts almost effectively on the homogeneous space SO(n)/G by the
assumption that SO(rn) acts almost effectively on M, and hence Lemma 1.1 is
applicable. The pair (SO(r), G) is not pairwise isomorphic to (SO(4), U(2))
nor (SO(4), SU(2)), because SU(2) is a normal subgroup of SO(4). It

dim SO(n)/G = dim M,

then the SO(n) action on M is transitive and the pair (SO(n), G) is pairwise
isomorphic to one of the following by Lemma 1.1:

(S0(7), G,), (80(6), U(3)), (SO(4), SO(2)x SO(2)) and (SO(3), {1}).
But
m(80(7)|G,) = =(SOQ)/{1}) = Z,,
7(S0(6)/U(3)) = Z and x,(SO(4)/SO22)xSO(2)) = ZX Z .

This is a contradiction to the assumption
m(M) = my(M) = {1} .

Consequently G is conjugate to SO(n—1) or the pair (SO(r), G) is pairwise
isomorphic to (SO(8), Spin(7)) by Lemma 1.1 and hence the SO(n)-manifold
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M has codimension one principal orbits and just two singular orbits (cf. [6],
Lemma 1.2.1). Since SO(n—1) in SO(n) (resp. Spin(7) in SO(8)) is a maximal
closed connected subgrou,, the singular orbits are fixed points. It follows
that the SO(n)-manifold M is C= diffeomorphic to M '=D”LIJD” as SO(n)-

manifolds. Here the SO(n) action on D" is standard by Lemma 1.2, and
f: 0D"—0D" is an SO(n) equivariant diffeomorphism. It follows that f is the
identity map or the antipodal map, and hence M’ is C= diffeomorphic to the
standard z-sphere S” as SO(n)-manifolds.

(i) Here we assume that M, and M, are n-dimensional real analytic
manifolds on which SO(n) acts real analytically. Assume that the SO(n)-
manifolds M,; and M, are C= diffeomorphic to the standard #n-sphere S" as
SO(n)-manifolds. According to a theorem of Grauert ([3], Theorem 3), M, is
real analytically imbedded in a euclidean spuce of sufficiently high dimension;
hence M; posesses a real analytic Riemannian metric. By averaging the real
analytic Riemannian metric on M; with respect to the SO(r) action, we have
an SO(n) invariant real analytic Riemannian metric g; on M;. Denote by
{N;, S;} the fixed point set of the SO(n)-manifold M;. We can assume that

dl(le Sl) = dz(Nzr Sz) ’

where d; is a distance function on M; defined by the Riemannian metric g;.
Denote by F; the fixed point set of the restricted SO(n—1) action on M;. It
follows that F; is a real analytic submanifold of M; which is NSO(n—1) in-
variant and C= diffeomorphic to S' by the assumption. Here NSO(n—1)
denotes the normalizer of SO(n—1) in SO(n). Then there exsists an isometry
@: F,—F, such that @(IN,)=N, and @(S;)=S;. The isometry ¢ is a real
analytic diffeomorphism and ¢ is compatible with the action of NSO(rn—1) on
F;. Itis easy to see that the SO(n)-manifold M;—{N;, S} is real analytically
diffeomorphic to

SO(”)N < o>(<”__ 1)(F i—1{N;, Si})

as SO(n)-manifolds; hence @ extends uniquely to an SO(n) equivariant homeo-
morphism &®: M,—M,. By the construction, the restriction of ® to M;— {V,, S}
is a real analytic diffeomorphism of M,— {N,, S;} onto M,— {N,, S;}.

(iii) Finally we show that & is real analytic on neighborhoods of N; and
S;. Notice that the tangent space of M, at N; with the induced SO(n) action
is naturally isomorphic to R" with the standard SO(r) action by the assumption.
Denote by D, an &-neighborhood of the origin 0 in R". Denote by ¢;: D,—M;
the exponential map with respect to the Riemannian metric g; such that ¢,(0)=
N;. Then ¢; is an SO(n) equiveriant real analytic diffeomorphism onto an
open neighborhood of N; for sufficiently small €. Denote by Dy the fixed
point set of the restricted SO(n—1) action on D,. Define
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@' = ¢, '®e,: D,— D,.

Then @’ is an SO(n) equivariant homeomorphism. Since @ is an extension of
the isometry @, the restriction of ®’ to D/ onto itself is the identity map or the
antipodal map. It follows that &’ is the identity map or the antipodal map
of D, onto itself, because @’ is SO(n) equivariant. Therefore @ is real analytic
on a neighborhood of N,. Similarly @ is real analytic on a neighborhood of
S;. Consequently @ is a real analytic diffeomorphism of M, onto M,.

This completes the proof of Theorem 1.3.

RemaARk. The real analytic diffeomorphism &: M,—M, in the proof of
Theorem 1.3 is not necessary an isometry with respect to the Riemannian me-
trics g, and g,.

2. Construction of real analytic SL(n, R) actions

Consider the following conditions for a real valued real analytic function

f®):
(A) f(¢) is defined on an open interval (—1—¢, 14€) and f(—1)=

f(1)=0,
(B) t-f(1)<O0for 1—e<|t| <1,
where € is a sufficiently small positive real number. If f(t) is a real analytic

function satisfying the condition (A), then the corresponding vector field f(t)%
on (—1, 1) is complete; hence the vector field induces a real analytic R action

¥ =1, RX(—1,1)—(—1,1)
such that

$»0

f(6) = im¥E D=t g i,
§

Denote by F the set of all real analytic functions satisfying the conditions
(A) and (B). Define an equivalence relation in F as follows: we say that f(¢) is
equivalent to g() if there is a real analytic diffeomorphism % of the open interval
(—1,1) onto itself such that

(10 2) =g

The relation means that the corresponding R actions +r, and +, are compatible
under the real analytic diffeomorphism 4. Denote by Fy the set of all equi-
valence classes of F.

ExampLE. The polynomial
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Fot) = at- TI (Rt 1)(t—1)

satisfies the conditions (A), (B) for each positive integer m and each positive
real number a.

Proposition 2.1. If (m, a)+(m’, a'), then the functions f,, ,(t) and f,’ /(t)
are not equivalent.

Proof. Suppose that there is a real analytic diffeomorphism % of the in-
terval (—1, 1) onto itself such that

d d
h 1)— ) = r ot .
*(fm,a( )dt> fm ,a()dt
Then it follows that
m=m', h0)=0

and
o (8) = Fn 7 O) 0

Therefore we have

4 d ml a/ d m,a
(~1a = Lol 0) = e 0)= (1.

It follows that a=a’. q.e.d.

Put

L(n) = {(a;;)€SL(n, R): ay =1, ayy = a3, =++-= a,, = 0} ,
N(n) = {(a;;)€SL(n, R): ,,>0, a5y = a;, =+--= a,, = 0} .

Then L(n) and N(n) are closed connected subgroups of SL(n, R), and L(n) is
a normal subgroup of N(n). Consider the standard action of SL(n, R) on
R". Then the action is transitive on R"— {0}, and L(#) is the isotropy group
at e,=(1, 0, --+, 0).

Let f(t) be a real analytic function satisfying the conditions (A) and (B).
Here we shall construct a real analytic SL(n, R) action on a closed connected
n-dimensional real analytic manifold M associated with the function f(¢). Let
v, be the real analytic R action on (—1, 1) corresponding to f(). Since the
factor group N(n)/L(n) is naturally isomorphic to R as Lie groups by a cor-
respondence

(a;;)-L(n) > loga,,  for (a;)EN(n),

we consider y, as a real analytic N(n)/L(n) action on (—1, 1). Define X, the
quotient manifold of the product
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SL(n, R)/L(n)X(—1, 1)
by the relation
(xL(n), 2) = (xy~'L(n), ¥(yL(n), 1));
x€SL(n, R), yeN(n), |t|<1.
Then X is an n-dimensional real analytic manifold with a natural SL(n, R) action.
Denote by [xL(n), t] the element of X, represented by (xL(n), £).

Let &’ (resp. a”) be the largest (resp. the smallest) zero of f(f) on (—1, 1).
Let a,, a_: R"—{0}—X, be the equivariant SL(n, R) maps determined by

wr=[e 5], 0 =[]

respectively, where ,=(1, 0, ---,0). Let R% and RZ be copies of R", and con-
sider a,, a_ as the maps

a,: Ri—{0} - X;, a_:R:—{0} - X,
respectively. Define M, the quotient space of a disjoint union
TUX,UR.

given by the attaching maps a,,a_. Since f(#) satisfies the conditions (A) and
(B), the space M, posesses naturally a real analytic structure as a compact con-
nected #-dimensional manifold with a natural SL(n, R) action. Notice that M,
is a two points compactification of X .

For each k<n—2, m(M,;)=m(X,) by a general position theorem. The
natural projection of X, onto SL(n, R)/N(n)=S""! is a fibre bundle with a
contractible fibre. It follows that M, is (n—2)-connected. In particular,
m(M;)=my(M;)= {1} for each n>3. Since the restricted SO(n) action on
M, is effective, M, is real analytically diffeomorphic to the standard n-sphere
S”" by Theorem 1.3.

Denote by A(n) the set of all real analytic non-trivial SL(n, R) actions on
the standard n-sphere S”. Two such actions +» and ' are said to be equi-
valent if there is a real analytic diffeomorphism & of S” onto itself such that
the following diagram is commutative:

SL(n, R)x 5"~V s

1xh h
SL(n, R)lx ;’(" —1',’—,> LlS"’ .

Denote by Ax(n) the set of all equivalence classes of A(n). By the above con-
struction of M/, the real analytic function f(¢) defines an equivalence class
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A;={a;} of real analytic SL(n, R) actions on S” such that the #-sphere S*
with a real analytic SL(n, R) action ay is real analytically diffeomorphic to M, as
SL(n, R)-manifolds. If f(t) and g(t) are equivalent, then it is easy to see that
M, and M, are real analytically diffeomorphic as SL(z, R)-manifolds. It follows
that the correspondence f(t)—A4, induces a map c,: Fy—> Ax(n) for each n>3.

Theorem 2.2. The map c,: Fy— Ay(n) is injective for each n>3.

Proof. Let f(t), g(¢) be real analytic functions satisfying the conditions (A),
(B). Suppose that the induced real analytic SL(n, R)-manifolds M, and M,
are real analytically diffeomorphic as SL(n, R)-manifolds. Then the open
manifolds X, and X, are real analytically diffeomorphic as SL(n, R)-manifolds.
Compare the fixed point sets of the restricted L(z) action. Then the fixed
point sets F(L(n), X;) and F(L(n), X,) are one dimensional real analytic sub-
manifolds of X, and X, respectively and real analytically diffeomorphic as
NL(n)-manifolds. Here NL(n) denotes the normalizer of L(n) in SL(n, R).
Since NL(n)/L(n) 1s naturally isomorphic to Z, X N(n)/L(n) as Lie groups, it is
easy to see that f(¢) and g(t) are equivalent. q.e.d.

3. Certain closed subgroups of SL(r, R)
Put

L(n) = {(a;;)SL(n, R): ay =1, a = ay == a, = 0},

N(n) = {(a;;)=SL(n, R): a,>0, ay, = a3, == a,, = 0},
L¥(n) = {(a:;)eSL(n, R): ay=1, a;, = a3 == a,, = 0} ,
N*(n) = {(a.;)ESL(n, R): ay>0, a, = a3 == ay, = 0} .

Consider SL(n—1, R) and SO(n—1) as subgroups of SL(n, R) as follows:
SL(n—1, R) = L(n) N L*(n), SO(n—1) = SO(n) N SL(n—1, R).

Lemma 3.1. Supposen>3. Let G be a connected Lie subgroup of SL(n, R).
Suppose that G contains SO(n—1) and

dim SL(n, R)—n<dim G<dim SL(n, R).
Then G is one of the following : L(n), N(n), L*(n) and N*(n).

Proof. Denote by M,(R) the set of all #Xn matrices in the field of real
numbers R. As usual we consider M,(R) as the Lie algebra of the general linear
group GL(n, R). Denote by 8l(n, R) and 30(n) the Lie subalgebras of M,(R)
corresponding to the Lie subgroups SL(n, R) and SO(n) of GL(n, R) respec-
tively. Then
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8l(n, R) = { XM/ R): trace X = 0} ,
8o(n) = {X=M,(R): X is skew-symmetric} .
Denote by 8l(n—1, R) the Lie subalgebra of 8l(n, R) corresponding to the Lie
subgroup SL(n—1, R) of SL(n, R). Put
8o(n—1) = 3o(n) N8l(n—1, R),
gym(n—1) = {X<38l(n—1, R): X is symmetric} ,
a = {(a;;)€8l(n, R): a;; = 0 fori#1},
a* = {(a;;)€8l(n, R): a,; = 0 for j#1},
b = {(a;;)E8l(n, R):a;; = 0fori#j, ap = ayp == a,,} .

These are linear subspaces of 8l(z, R) and

8l(n, R) = 8l(n—1, R)®BaPa*Ph,
8l(n—1, R) = 8o(n—1)Dsym(n—1)

as direct sums of vector spaces. Moreover we have

[a, a] = {0}, [a*, a*] = {0}, [b, b] = {0},
(1) [a, b] = a, [a*, b] = a*, [a, a*] = 8l(n—1, R)PD,
[a, 8l(n—1, R)] = a, [a*, 8l(n—1, R)] = a*.

Denote by Ad: SL(n, R)— GL(8l(n, R)) the adjoint representation. Then the
linear subspaces 8l(n—1, R), a, a* and b are Ad(SL(n—1, R)) invariant, and
the linear subspaces 8o(n—1) and 8ym(n—1) are Ad(SO(n—1)) invariant.
Moreover the linear subspaces 8ym(n—1), a, a* and b are irreducible Ad(SO
(n—1)) spaces respectively for each #>>3. The Lie subalgebras

8l(n—1, R)®a, 8l(n—1, R)Padb,

2
(2) sl(n—1, R)Pa*, 8l(n—1, R)Pa*db

of 8l(n, R) corresponds to the connected Lie subgroups L(n), N(n), L*(n) and
N*(n) of SL(n, R) respectively.

Let G be a connected Lie subgroup of SL(n, R). Denote by g the cor-
responding Lie subalgebra of 8l(n, R). Suppose that

(3) G contains SO(n—1), and
(4) dim SL(n, R)—n<dim G<dim SL(n, R) .

By (3), g is an Ad(SO(n—1)) invariant linear subspace of 8l(z, R) which contains
8o(n—1). Hence we derive that

g = 8o(n—1)DB(g N8ym(n—1))D(g N (aPa*))P(gNDb)
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as a direct sum of Ad(SO(n—1)) invariant linear subspaces. The inequality
(4) implies that g contains 8ym(n—1) or aPa*, because Sym(n—1), a and a*
are irreducible Ad(SO(n—1)) spaces respectively and

dima = dim a* = z—1, dim 8ym(n—1)>n—1

for any n>3. If a@a* is contained in g, then g=8I(», R) by (1). This is
a contradiction to (4). It follows that

(5) sym(n—1)Cg, aPa*dg.

In particular, g contains 8l(n—1, R), and hence G contains SL(n—1, R). Then
we derive that

(6) g = 8l(n—1, R)®(gN(aPa*))PD(gNb)

as a direct sum of Ad(SL(n—1, R)) invariant linear subspaces.

Suppose first n2>4. Then a and a* are mutually non-equivalent irreducible
Ad(SL(n—1, R)) spaces; hence Ad(SL(n—1, R)) invariant subspaces of a@a*
are one of the following : {0}, a, a* and a®a*. It follows that g is one of the
Lie algebras in (2), by (1), (4), (5) and (6).

Suppose next =3. 'Then a and a* are equivalent irreducible 4d(SL(2, R))
spaces. Put

S 0 gy —gx
h(p,g9)=14| px O 0 |: x,yER
py O 0

for each real numbers p, g. Then A(p, q) is an Ad(SL(2, R)) invariant linear
subspace of a@a* for each p, g. It is easy to see that any Ad(SL(2, R)) in-
variant proper linear subspace of a@a* is one of A(p, g) for certain p, ¢q. It
follows that

gN(ada*) = k(p, 9)
for certain real numbers p, g. Suppose pg#0. Then we derive
[A(p, ) K(p, 9] = b,

(A(#, 9), B] = H(—p, 9) ,
h(p, ¢+h(—p, 9) = aDa*.

It follows that g contains a@a*; this is a contradiction to (5). Hence we obtain
pg=0, namely

gN(ada*) = {0}, a or a*.
It follows that g is one of the Lie algebras in (2), by (1), (4) and (6).
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Consequently the assumptions (3) and (4) implies that the Lie algebra g is
one of the Lie algebras in (2) for each n>3, and hence the connected Lie sub-
group G is one of the following: L(rn), N(n), L*(n) and N*(n).

This completes the proof of Lemma 3.1.

4. Real analytic SL(n, R) actions on the n-sphere

Let yr: SL(n, R)x S"—S" be a real analytic non-trivial action of SL(n, R)
on the standard n-sphere S”. For each subgroup H of SL(n, R), we put

FH) = {x&S": Y(h, x) = x forall kLeH},

namely, F(H) is the fixed point set of the restricted action of +» to H. Then
F(H) is a closed subset of S”, but it is not necessary a submanifold of S”.

Lemma 4.1. Supposen>3. Then

F(S0(n)) = F(SL(n, R)) = F(L(n)) NF(L*(n)),
F(SO(n—1)) = F(L(n)) or F(L*(n))

for any real analytic non-trivial SL(n, R) action on the n-sphere.

Proof. From Lemma 3.1, we derive

F(SO(n)) = F(SL(n, R)) = F(L(n)) N F(L*(n)),
F(SO(n—1)) = F(L(n)) U F(L*(n)).

According to Theorem 1.3, we see that the set F(SO(n—1))—F(SO(n)) has just
two connected components. Each connected component is contained in

F(L(n)) or F(L*(n)). Put

Then it follows easily from Theorem 1.3 that x and gx belong distinct con-
nected components respectively for each element x of F(SO(n—1))—F(SO(n)).
Then we conclude that

F(SO(n—1)) = F(L(n)) or F(L*(n)). q.e.d.

Denote by o(g) the transpose of g~! for each g SL(n, R). Then the
correspondence g—o(g) defines an automorphism o of SL(n, R). The auto-
morphism o is an involution and
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o(L(n)) = L*(n).

Let yr be a real analytic non-trivial SL(n, R) action on S". Define a new action
ogyr of SL(n, R) on S" as follows:

(ce)(g, *) = ¥(o(g), *)  for gESL(n, R), x€S".

Then it is seen that if F(SO(n—1))=F(L(n)) (resp. F(L*(n))) for the action +,
then F(SO(n—1))=F(L*(n)) (resp. F(L(n))) for the action opn).

As in the section 2, let A(n) denote the set of all real analytic non-trivial
SL(n, R) actions on S”, and let A4(n) denote the set of all equivalence classes
of A(n). Then the mapping oy: A(n)—A(n) is an involution, and oy induces
naturally an involution o4 : Ay(n)— Ax(n).

Denote by A*(n) (resp. A™(n)) the set of all real analytic non-trivial
SL(n, R) actions on S” such that

F(SO(n—1)) = F(L(n)) (resp. F(L*(n))).

Denote by A¥(n) (resp. Ax(n)) the set of all equivalence classes represented by
an element of A*(n) (resp. A™(n)). Then we derive

o1 d*(n) = A™(n), oA"(n) = A*(n),
oxAx(n) = Ax(n), oxAx(n) = Ax(n).

Moreover Ax(n) is a disjoint union of Ag(n) and Ax(n) by Lemma 4.1. Let
¢,: Fy—> Ay(n) be the mapping defined in the section 2. Then it is seen that
the image ¢,(Fy) is contained in Aj(n).

We shall show the following result.

Theorem 4.2. ¢, (Fy)= Aj(n) for each n>3.

In order to prove this theorem, we recjuire the following result due to Guil-
lemin and Sternberg [4]:

Lemma 4.3. Let g be a real semi-simple Lie algebra and let p: g—L(M)
be a homomorphism of g intc the Lie algebra of real analytic vector fields on a
real analytic n-manifold M. Let p be a point at which the vector fields in the image
p(g) have a common zero. Then there exists an analytic system of coordinates
(U; %y, *++, %,), with origin at p, in which all of the vector fields in p(g) are linear.
Namely, there exists

a;;€g* = Homg(g, R)
such that

pX), = DauX)sla) o for Xeg, qeU.

7
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RemMARK. The correspondence X—(a;;(X)) defines a Lie algebra homo-
morphism of g into 8l(n, R).

Lemma 4.4. Suppose n>>3. Let v be a real analytic non-trivial SL(n, R)
action on S such that F(SO(n—1))=F(L(n)). Let p&S” be a fixed point of
the SL(n, R) action <. Then there is an equivariant real analytic diffeomorphism
h of R" onto an invariant open set of S” such that h(0)=p. Here SL(n, R) acts
standardly on R".

Proof. Notice that, for each #>3, any non-trivial endomorphism of
8l(n, R) is of the form Ad(g) or Ad(g)-do, where g GL(n, R) and do is the
differential of the automorphism o. Define a Lie algebra homomorphism

p: 8l(n, R) — L(S™)
as follows:

_ i fCrexp(—£X), 9)—1(9)
(1) p(X),(f) = lim :

for Xe8l(n, R), g=S”". Here f is a real valued real analytic function on S”.
Then p(X),=0 for each X&8l(n, R). According to Lemma 4.3, there exists
an analytic system of coordinates (U; %, --+, x,), with origin at p, and there exists
a;;€8l(n, R)* such that

(2) P, =3 a;,-(X)x,-(q)% for Xe8l(n, R), ¢ U .

By the above notice, it can be assumed that

(3) X = (a; (X)) for each X&3l(n, R), or
(3) do(X) = (a; (X))  for each X&38l(n, R).

From the assumption F(SO(n—1))=F(L(n)), it follows that the case (3) does not
happen.

Let k: U—R" be a real analytic diffeomorphism of U onto an open set of
R" defined by k(g)=(xi(g), -**, #,(q)) for g U. Then k(p)=0. There is a
positive real number € such that the &-neighborhood D, of the origin is con-

tained in R(U). Put
x = <£’ 0, “eey 0) .
2

Then the group L(n) is the isotropy group at x. Moreover L(n) agrees with
the identity component of the isotropy group at k7!(x) by (1), (2) and (3').
Define a map A: R"—S" as follows:

M0) = p; h(gn) = ¥(g, k() for g=SL(n, R).
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The map % is a well-defined equivariant SL(n, R) map. It follows that
k+h = identity on on D,

by the uniqueness of the solution of an ordinary differential equation defined
by (1), (2) and (3'). Hence the map A: R"—S" is a real analytic submersion
of R” onto an invariant open set of S”. Since % is injective on D,, it can be
seen that the isotropy group at h(x)=k"!(x) agrees with L(n). Then the map
h: R"—S" is injective.

This completes the proof of Lemma 4.4.

Proof of Theorem 4.2. Let 4+ be an element of A*(n). According to
Theorem 1.3 and Lemma 4.1, F(L(n)) is a real analytic submanifold of S” on
which N(n) acts naturally, and F(L(n)) is real analytically diffeomorphic to S™.
Moreover F=F(SL(n, R)) consists of two points N, S. Let k: (—1—§, 14-€)
—F(L(n)) be a real analytic imbedding such that #(1)=N and A(—1)=S, where
& is a sufficiently small positive real number. Since N(n)/L(n)= R acts real
analytically on F(L(n)), the action defines a real analytic vector field v on
F(L(n)) naturally. Then there exists a real analytic function f(z) on the

interval (—1—¢&, 14-€) such that 'v=h*(f(t)£) on the image of 4. We shall

first show that the function f(¢) satisfies the conditions (A), (B) stated in the
section 2. The condition (A) follows from F= {N, S}. Considering the
standard action of SL(n, R) on R", we can see that the condition (B) follows
from Lemma 4.4.

We shall next show that the n-sphere S” with the SL(n, R) action +r is
equivariantly real analytically diffeomorphic to M, where M, is a real analytic
SL(n, R)-manifold constructed from f{(t) as before. For this purpose, we con-
sider the following commutative diagram:

SO(m) x )(F(SO(n—l))—F)—a» S*—F

NSO(n—-1
¥ y
SL(r,R) x (F(L(x)~F) — §"F.

Here NSO(n—1) and NL(n) are the normalizers of SO(n—1) and L(n) respecti-
vely. According to Theorem 1.3, Lemma 3.1 and Lemma 4.1, we can show
that o, B and 7 are real analytic one-to-one onto mappings. Moreover o is
a diffeomorphism by the differentiable slice theorem; hence B and v are also
real analytic diffeomorphisms. It follows that S”"—F is equivariantly real analy-
tically diffeomorphic to a real analytic SL(n, R)-manifold X, constructed from
f(#) as before. Consequently the n-sphere S" with the action ) is equivariantly
real analytically diffeomorphic to M,, by making use of Lemma 4.4. Hence
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we conclude that c,(Fy)=Ax(n).
This completes the proof of Theorem 4.2.

5. Certain closed subgroups of O(n)
In this section, we shall prove Lemma 1.1 and Lemma 1.2. Put

cos@ sinf

D) = ( ) 9cR.

—sinf@ cos@

Denote by D(a,, -+, a,) the one-dimensional closed subgroup of O(r) consists
of the following matrices:

D(a,0) 0
( , /=R
0 D(a,0)
for n=2r, and
D(ala) 0
D@6) |, 6=k
0 1

for m=2r+1, respectively. Here a,, -+, a, are integers. Consider U(k) as

the centralizer of
<D(7z/2) 0 )
0  Dxf2)
in O(2k). Then we can derive easily the following result.
Lemma 5.1, Suppose that by>b,>-+->b,>0 and
(ab °t ar) = (bl’ °*% bl’ **% bs’ °t0y bs) O, “t% 0) .
——— —————

m Ny
Then the centralizer of D(ay, -+, a,) in O(n) agrees with
U(ny) X -+ X U(n,) X O(m) ,
where m=n—2(ny+-++++n,).

Here we shall prove Lemma 1.2. Let h: SO(n)—>0(n) be a continuous
homomorphism with a finite kernel. Suppose #>3. Then it is easy to see
that % is an isomorphism onto SO(n). Denote by T a maximal torus of SO(r)
defined by the direct product of the subgroups

T, = D(0, -+, 0, 1, 0, ---, 0)
k
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for 0<k<n/2. Then there is an element x, of SO(n) such that A(T)=ux,Tx,"".
Then the subgroup x,7*h(T)x, is of the form D(ay, -+, 4;,) for each k. Com-
pare the centralizer of T, and that of ®,7'4(T,)x, in O(n). We can derive

xl_lh(Tk)xl = T!-
for some j, by Lemma 5.1. Hence there is an element x, of O() such that
h(t) = xlxztxz—lxl_l, for te T .

I1 follows that the representations y—y and y—x,” ', A(y)xx, of SO(n) are
equivalent. Since the representation y—y is absolutely irreducible, there is
an element x; of O(n) such that

Xy y%371 = 2,720, " h( y)xy%,

for each yeSO(n) (cf. [6],Lemma 5.5.1). Put x=uxx»,. Then we derive
that x€O0(n) and A(y)=xyx™! for each y=SO(n).
This completes the proof of Lemma 1.2.

We shall next prove Lemma 1.1. Let G be a connected closed subgroup
of O(n). Suppose that #>3 and

(1) dim O(n)>dim G >dim O(n)—n .

The inclusion map i: G—O(n) gives an orthogonal faithful representation of G.
Suppose first that the representation 7 is reducible. Then, by an inner automor-
phism of O(n), G is isomorphic to a closed subgroup G’ of O(k)x O(n—k) for
some k such that 0<k<n/2. By (1), we derive that k=1, or k=2 and G'=
S0(2)x 80(2). The codimension of O(1)xO(n—1) in O(n) is n—1. If
n>4, then SO(n—1) is semi-simple; hence there is no closed subgroup of
codimension one in SO(z—1). We can conclude that

G' = SO(1) X SO(n—1)=S0(n—1),
G’ = S0(2)x S0(2) for n = 4, or
G = {1} forn=3.
Suppose next that the representation ¢ is irreducible and G has a one-
dimensional central subgroup. By Lemma 5.1, it can be seen that # is even

and G is isomorphic to a closed subgroup G’ of U(n/2) by an inner automor-
phism of O(n). It follows from (1) that

G'=U@B) forn=06,0r
G'=U2) forn=4%.

It remains to consider the case that G is semi-simple and the representa-
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tion 7 is irreducible. In the following, we assume that G is semi-simple and
the representation 7 is irreducible. Suppose that the complexification € of 7 is
reducible. Then the representation ¢ posesses a complex structure and z is
even. Hence G is isomorphic to a closed subgroup of U(n/2). We can derive
that n=4 by (1). Moreover, by an inner automorphism of O(4), G is isomor-
phic to SU(2) which is standardly imbedded in O(4).

Suppose that the complexification 7€ of 7 is irreducible. Then ¢ is a com-
plex irreducible representation of G of degree 7.

(i) Moreover suppose first that G is not simple. Let G* be the universal
covering group of G, and let p: G*—G be the covering projection. Since G
is not simple, there are closed semi-simple normal subgroups H, and H, of G*
such that

G* = H,x H,.

Consider the representation i€p: G*—U(n). Then there are irreducible com-
plex representations 7, and », of H, and H, respectively, such that the tensor
product 7,®r, is equivalent to Z2€p. Since i€p has a real form zp, the repre-
sentations 7, and 7, are self-conjugate; hence 7, (resp. ;) has a real form or a
quaternionic structure, but not both (cf.[1], Proposition 3.56). Moreover, if 7,
has a real form (resp. quaternionic structure), then 7, has also a real form (resp.
quaternionic structure). Put m,=deg 7, for s=1,2. Then

(2) dim O(n)—n = ”(”2—3) _ nlnz(n12n2—3) .

Suppose first that 7, has a quaternionic structure. Then it follows that #; and
n, are even, and

dim H,<dim Sp(%) fors=1,2.

Hence

dim G = dim H,+dim Hzg”l("l;r 1)+"2(”;+ 1)

Compare the above inequality with (2). We can derive easily that
dim G<dim O(n)—n

except the case my=n,=2. If m,=mn,=2, then n=4 and dim G=dim O(n).
We can conclude from (1) that 7, has no quaternionic structure. Suppose
next that r, has a real form. Then, since H, is semi-simple, it follows that

n,=3 fors=1,2.

Moreover it follows that
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dim H,<dimO(n,) fors=1,2.
Hence

dim G = dim H,+dim Hzgnl(”‘z— 1)+”2(”22—1) .

Compare the above inequality with (2). We can derive that
dim G<dim O(n)—n .

This is a contradiction to (1), and hence we can conclude that 7, has no real
form. Consequently we can conclude that G must be simple.

(i1) Suppose next that G is simple. Moreover suppose first that G is an
exceptional Lie group. Then we can derive the following result from a table
of the degrees of the basic representations (cf. [2], p. 378, Table 30): the possi-
bility remains only in the case that n=7 and G is locally isomorphic to the excep-
tional Lie group G,. Consider G, as a closed subgroup of O(7) as usual. Then
we can conclude that G is isomorphic to G, by an inner automorphism of O(7).
It remains to consider the case that G is locally isomorphic to SU(k), Sp(k) or
SO(k). Put r=rank G. Denote by G* the universal covering group of G.
Denote by L, :++, L, the fundamental weights of G*. Then there is a one-to-
one correspondence between complex irreducible representations of G* and
sequences (ay, -+, @,) of non-negative integers such that @,L,++--+a,L, is the
highest weight of a corresponding complex irreducible representation (cf. [2],
Theorem 0.8, Theorem 0.9). Denote by

d(alLl + et arLr)

the degree of the complex irreducible representation of G* with the highest
weight a,L,+--+a,L,. The degree can be computed by the Weyl’s formula
(cf. [2], Theorem 0.24; (0.148), (0.149), (0.150)). Notice that if

a1>a{s St ar>a: ’
then
ALt +a,L,)>d@ Lyt +aL,)

and the equality holds only if a,=ai, -+, a,=aj.
(a) Suppose first that G* is isomorphic to SU(r-1) for r>1. Since
rank G <rank SO(n), it follows that

(3) 2r<n.
If r > 6, then we derive from (3) that

dim G = dim SU(r+1) = r(r+2)<’i(”_2—_3’_) = dimO (n)—n.
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This is a contradiction to (1). If the pair (n, 7) satisfies the conditions (1) and
(3), then (n, 7) is one of the following:

(10,5), (8,4), (7,3), (5,2) and (4,1).
Notice that

dL) = ,C;, d2L)=d2L,)= w__z(”rz)

Thus there is no complex irreducible representation of SU(r+1) of degree 2r
for r=4,5. Hence (n, r) is not (10,5) nor (8,4). Since

d(2L,) = d(2L,) = 6, d(L,+L;)=8  forr=2;

d(2L)) = d(2Ly) = 10, d(2L;) = d(L,+L,) = d(L,+Ly) = 20,

and d(L,+L,) = 15 forr =3,

it follows that there is no complex irreducible representation of SU(r+-1) of
degree 2r+1 for r=2,3. Hence (n, r) is not (7,3) nor (5,2). It remains only
the case (n, r)=(4,1). But it is seen that the complex irreducible representa-
tion of SU(2) of degree 4 has no real form. Therefore we can derive that G
is not ,ocally isomorphic to SU(r+1).

(b) Suppose next that G* is isomorphic to Sp(r) for r>2. Since rank
G<rank SO(n), it follows that

(4) 2r<n.

On the other hand, since dim Sp(r)=7(2r+1), the inequality (1) implies that
(5) n(n—3)<2r2r+1)<n(n—1).

It follows from (4), (5) that

Therefore, if the pair (, r) satisfies the conditions (4), (5), then we derive
n=2r+2. Notice that

d(L.') = 2 1Ci—21:1Ci 1y d(ZLl) = 7(27+1) .
If >3, then we can derive that
d(L;))>2r+3 fori= 2,3, -, r;
d2L)>2r+3.
If r=2, then

d(Ly) = 4, d(L)) = 5, d2L,) = 10,
d2L) =14 and d(L,+L,) = 16.
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It follows that there is no complex irreducible representation of Sp(r) of degree
2r+2, for r>2. Therefore we can derive that G is not locally isomorphic to
Sp(r).

(c) Suppose finally that G* is isomorphic to Spin(k) for k>5. It follows
from (1) that

n(n—3)<k(k—1)<n(n—1).
Hence we have n=k-+1. Suppose k=2r. Then
d(L;) = ,C; for 1<i<r—2, d(L,.,)=d(L,)=2"",
d@L) = (+1)-@r—1), QL) = d@2L) = 5C,,
d(L,+L,.,) = d(L,+L,) = (2r—1)2"", and
d(L,.,+L,) = ,C,_;.

It follows that there is no complex irreducible representation of Spin(2r) of
degree 2r4-1. Suppose k=2r+1. Then

d(L,) = 27+XC£' for 1<l<7’—1’ d(L’) = 27 ,
d(ZLl) = 7(27—|-3), d(L1+L,) — r.27+1, and
d(ZL') = 22'.

It follows that there is no complex irreducible representation of Spin(2r+1) of
degree 2r+2 for r+#3, and there is a unique complex irreducible representa-
tion of Spin(7) of degree 8. It is seen that the representation of Spin(7) has a
real form. Therefore we can derive that =38 and G is isomorphic to Spin(7).
Here Spin(7) is considered as a closed subgroup of O(8) by the real spin represen-
tation. Then the isomorphism of G onto Spin(7) is realized by an inner
automorphism of O(8).
This completes the proof of Lemma 1.1.
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