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Abstract
Many technologies need to be established to realize autonomous ships. In particular, accurate state estimation in real time 
is one of the most important technologies. In the ship and ocean engineering fields, there have been many studies on state 
estimation using nonlinear Kalman filters. Several methods have been proposed for nonlinear Kalman filters. However, there 
is insufficient verification on the selection of which filter should be applied among them. Therefore, this study aims to vali-
date the filter selection to provide a guideline for filter selection. The effects of modeling error, observation noise, and type 
of maneuvers on the estimation accuracy of the unscented Kalman filter (UKF) and ensemble Kalman filter (EnKF) used in 
this study were investigated. In addition, it was verified whether filtering could be performed in real time. The results show 
that modeling error significantly impacts the estimation accuracy of the UKF and EnKF. However, the observation noise 
and types of maneuvers did not have an impact like the modeling error. Thus, we obtained the guideline that UKF and EnKF 
should be used differently depending on the required computation time. We also obtained that keeping the modeling error 
sufficiently small is essential to improving the estimation accuracy.

Keywords Kalman filter · UKF · EnKF · MMG model · State estimation

1 Introduction

The number of ship crews engaged in coastal shipping 
is aging, and there has been a shortage of manpower in 
recent years [1]. One of the solutions to this problem is the 
autonomous ship. Significant studies have been conducted 
across the globe on this topic to solve the various challenges 
associated with autonomous ships. For instance, automatic 
berthing/unberthing experiments using actual vessels were 
successfully conducted in the 1980s in Japan, and research 
on automatic berthing/unberthing has a long research 
history [2].

Several issues need to be resolved in establishing this 
automatic berthing/unberthing technology. For instance, 
establishing an accurate maneuvering motion model, estab-
lishing optimal berthing paths, and developing automatic 
berthing/unberthing algorithms [3–5].

To achieve automatic berthing and unberthing, accurate 
state estimation must be performed within the control period. 
Developing a real-time accurate state estimation method is 
one of the challenges. State estimation in this research refers 
to the estimation of states in a system from observed values 
obtained using sensors, filters, and other methods.

To avoid damage to the ship and pier when a vessel con-
tacts the pier during berthing, the speed at which the vessel 
hits the pier, i.e., the berthing speed, should be sufficiently 
slow [6]. Roubos conducted a statistical study of berthing 
speed in Rotterdam. The results showed that the average 
berthing speed in 555 examples of common merchant ves-
sels, including container ships, tankers, and bulk carriers, 
was approximately 4 [cm∕s] [7]. In addition, some ports 
have established the lateral (sway) velocity as a rule. For 
instance, at the Kinjo Wharf in the Port of Nagoya in Japan, 
large passenger ships are required to berth at no more than 
8 [cm∕s] [8]. As described above, it is essential for safety to 
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estimate the ship states with the highest possible accuracy to 
keep the berthing speed smaller than the criteria, even when 
performing automatic berthing. A commonly used method 
for estimating states in real time is the Kalman filter  [9, 
10]. The Kalman filter is a kind of sequential Bayesian fil-
ter proposed by Kalman. It has proven to be optimal in the 
sense that it minimizes the sum of squares of the estimation 
error within the assumptions of noise normality and linear-
ity of the state equation [11]. The Kalman filter has been 
applied for state estimation in various engineering fields, 
and many applications of nonlinear Kalman filters can be 
applied to even nonlinear systems for vehicles [12, 13], 
space crafts  [14–16], and robots [17]. It is worth noting 
that the extended Kalman filter (EKF), one of the nonlinear 
Kalman filter algorithms, was implemented on the Apollo 
spacecraft for a manned flight to the moon and used to accu-
rately calculate the spacecraft’s position [18].

In naval architecture and ocean engineering fields, there 
have been many studies on state estimation using nonlin-
ear Kalman filters. For instance, Balchen used the EKF 
for state estimation using the dynamic positioning system 
(DPS) [19]. Sorensen also used Kalman filter for DPS [20]. 
Abkowitz optimized the maneuvering model using Kalman 
filter [21]. Fossen et al. used EKF to estimate the maneu-
vering motion model [22]. Ochiai applied EKF to estimate 
the attitude of the ship, future position, and future velocity 
using the data of global positioning system (GPS) and auto-
matic radar plotting aids [23]. Miyoshi used EKF to estimate 
ship position from GPS data for tracking control. They also 
used EKF to estimate sway velocity, which is not actually 
observed and verified its performance in a real ship test [24]. 
S.Fossen and T.I. Fossen estimated the ship’s position and 
speed from AIS data using EKF [25]. T.I. Fossen also calcu-
lated course over ground and speed over ground from Global 
Navigation Satellite System data using EKF [26]. However, 
many studies using nonlinear filters other than EKF have 
been conducted. For instance, Subchan et al. estimated the 
hydrodynamic forces and moments from the experimental 
results of free-running tests using an unscented Kalman filter 
(UKF). The estimated hydrodynamic forces and moments 
were then used to estimate the hydrodynamic derivatives 
included in the maneuvering equation of motion  [27]. Deng 
et al. designed a model predictive controller for the DPS 
system that simultaneously estimates states and determines 
input control using a UKF-based observer [28].

Several nonlinear Kalman filters, including EKF, have 
been proposed, and the user must select a suitable filter 
among them according to the user’s purpose. In addition, 
there have been many studies comparing the performance 
among filters. For instance, Konatowski compared the 
estimation accuracy of EKF and UKF for constant veloc-
ity and complex motion systems. The results showed that 

UKF exhibited better estimation accuracy [29]. In addition, 
Konatowski conducted a comparison of the estimation 
accuracy of the EKF, UKF, and particle filter (PF) using a 
simulation of an object moving in a two-dimensional Car-
tesian coordinate system. Consequently, he showed that PF 
exhibited the best estimation accuracy [30]. In addition, 
Chen et al. compared the estimation accuracy when using 
the EKF, UKF, PF, and linear minimum mean square error 
filter as filters applied to the tracking filter [31]. The track-
ing filter is an algorithm that estimates the accurate value 
of the target’s position and velocity based on the observed 
values of the target object, including the observation errors 
obtained from the sensors. Thus, many studies have com-
pared the performance of nonlinear filters. Several studies 
on the implementation of Kalman filters have also been 
conducted. For instance, Nishimura presented the algo-
rithms for evaluating the effect of errors due to modeling 
errors in the Linear Kalman filter [32]. However, there 
has not been any attempt to discuss guidelines for which 
filter to use in each case. This research assumed the imple-
mentation of a nonlinear Kalman filter with a complex 
motion model applied to an actual ship system. It differs 
from other papers in that it examines possible problems 
in implementing such a filter and provides guidelines for 
filter selection.

The contributions of this study are summarized as 
follows.

– This study provides guidelines to implement UKF and 
EnKF to guide users in state estimation.

– The following three aspects are examined for their 
impact on filter estimation accuracy for the implemen-
tation. 

1. Effect of modeling error
2. Effect of observation noise
3. Effect of type of maneuvering motion

– Verifying the real-time performance of each filtering 
method

2  Notation

The notation used in this paper is explained as follows. First, 
ℝ

n denotes a Euclidean space of dimension n. The hat ( ̂  ) 
denotes the estimated value, and the superscript minus ( − ) 
denotes the prior estimate. The superscript minus denotes 
prior estimates. A diagonal matrix A ∈ ℝ

n×n is denoted as 
A = diag(a11, a22,… , ann) . Here, aij represents the elements 
of the i rows and j columns of the matrix. In addition, the 
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superscript T denotes the transpose of the matrix. Vectors 
are column vectors unless otherwise stated.

3  Overview of the Kalman filter

This section outlines the nonlinear Kalman filter used in this 
study. First, we consider the following discrete nonlinear 
system:

f (x(k), u(k)) ∶ ℝ
n ×ℝ

l
→ ℝ

n is the nonlinear system model. 
H ∈ ℝ

m×n is output matrix. Here, k denotes the number of 
steps at a given time tk , denoted as tk = Δtk, (k = 0, 1, 2,…) ; 
Δt denotes the time interval of one time step; x ∈ ℝ

n is 
the state vector; u ∈ ℝ

l is the input vector; y ∈ ℝ
m is the 

observation vector; v ∈ ℝ
n is the system noise according 

to v ∼ N(0,Q(k)) ; w ∈ ℝ
m is the additive observation noise 

according to w ∼ N(0,R(k)) . The covariance matrix Q,R 
are defined as follows:

Here, �ij is the Kronecker delta.

3.1  UKF [33–35]

��� is a nonlinear Kalman filter that uses a nonlinear transfor-
mation called the “U transform.” This transformation method 
performs a nonlinear transformation of sample points called 
sigma points and calculates the expected value and variance 
from the sample mean of the transformed sigma points. Using 
this transformation, ��� has the advantage that, unlike ��� , 
it does not require local linearization using the Jacobian 
matrix [33]. The following is the computational procedure of 
���.

First, 2n + 1 sigma points � i ∈ ℝ
n are determined using the 

state estimate x̂(k − 1) at k − 1 and the error covariance matrix 
P(k − 1) ∈ ℝ

n×n:

(1)

{
x(k + 1) = f (x(k), u(k)) + v(k)

y(k) = Hx(k) + w(k).

(2)

E
[
v(i)vT (j)

]
= �ijQ(I)

E
[
w(i)wT (j)

]
= �ijR(I), ∀i, j

E
[
v(i)wT (j)

]
= 0.

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�0(k − 1) = x̂(k − 1)

� i(k − 1) = x̂(k − 1) + (
√
(n + 𝜅)P(k − 1))i,

for i = 1, 2,… , n

� i+n(k − 1) = x̂(k − 1) − (
√
(n + 𝜅)P(k − 1)i.,

for i = 1, 2,… , n

(
√
P(k − 1))i ∈ ℝ

n denotes the i-th column of the square root 
matrix of the error covariance matrix P(k − 1) . Here, the 
square root matrix refers to the matrix B ∈ ℝ

n×n that satisfies 
the relation A = BB for some positive definite symmetric 
matrix A . This B is written as B =

√
A . For each sigma 

point, the weight Wi ∈ ℝ(i = 0, 1, 2, ...., 2n) are determined 
as follows:

Here, � ∈ ℝ is the design parameter for approximating the 
statistical moment �r of second or higher order. The statisti-
cal moment �r is defined in Eq.(5) and represents the r-order 
moment around the mean �:

where Xp is the random variable for the states. Next, 
the sigma points are updated using the system model 
f (x(k), u(k)):

By this operation, the prior state estimate x̂−(k) and prior 
error covariance matrix P−(k) are obtained from the updated 
sigma points as follows:

However, the sigma points are updated using the prior error 
covariance matrix P− as follows:

Update the output sigma point �−
i
(k) ∈ ℝ

m from the updated 
sigma point:

From these output sigma points, a prior output estimate 
ŷ−(k) is obtained:

(4)

⎧
⎪⎨⎪⎩

W0 =
�

n + �

Wi =
1

2(n + �)
.

(5)�r = E
[
(Xp − �)r

]
.

(6)�
−
i
(k) =f

(
� i(k − 1), u(k)

)
.

(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x̂−(k) =

2n�
i=0

Wi�
−
i
(k)

P−(k) =

2n�
i=0

Wi

�
�

−
i
(k) − x̂−(k)

��
�

−
i
(k) − x̂−(k)

�T

+Q(k).

(8)

⎧⎪⎨⎪⎩

�
−
0
(k) = x̂−(k)

�
−
i
(k) = x̂−(k) +

√
(n + 𝜅)P−(k)i

�
−
i+n

(k) = x̂−(k) −
√
(n + 𝜅)P−(k)i.

(9)�
−
i
(k) = H�

−
i
(k).
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The prior output error covariance matrix P−
yy
(k) ∈ ℝ

m×m is 
obtained from the output sigma points and prior output esti-
mates ŷ−:

The prior state output error covariance matrix P−
xy
(k) ∈ ℝ

m×n 
is obtained as follows:

The Kalman gain G(k) ∈ ℝ
n×m is obtained from P−

yy
(k) and 

P−
xy
(k):

The state estimate x̂(k) is obtained using the above Kalman 
gain G(k) , prior state estimate x̂−(k) , prior output estimate 
ŷ−(k) , and observables y(k) , as shown in Eq.(14). The pos-
terior error covariance matrix P(k) ∈ ℝ

n×n is also calculated 
using the prior estimation error covariance matrix P−(k) , 
Kalman gain G(k) , prior state output error covariance matrix 
P−
xy
(k) , and measurement values y(k) , as shown in Eq.(14):

3.2  EnKF [36–38]

One of the nonlinear Kalman filters, EnKF, is a filter that uses 
the probability of the system state distribution held by a set 
called the ensemble members 

{
x(i)(k)

}N

i=1
 . The method then 

updates the ensemble members using the update rule of the 
Kalman filter each time an observation value is obtained. This 
method, like UKF, does not require the computation of a Jaco-
bian matrix and has the advantage that it can be applied to non-
differentiable state-space models. The following summarizes 
the computation steps of EnKF. First, N sets of ensemble mem-
bers x(i)(k − 1) ∈ ℝ

n (i = 1, 2,… ,N) are updated based on 
the system model. Moreover, v(i)(k − 1) ∈ ℝ

n(i = 1, 2,… ,N) 
represents the ensemble member of the system noise:

(10)ŷ−(k) =

2n∑
i=0

Wi�
−
i
(k).

(11)
P−
yy
(k) =

2n∑
i=0

Wi

{
�

−
i
(k) − ŷ−(k)

}{
�

−
i
(k) − ŷ−(k)

}T

+ R(k).

(12)P−
xy
(k) =

2n∑
i=0

Wi

{
� i(k) − x̂−(k)

}{
�

−
i
(k) − ŷ−(k)

}T
.

(13)G(k) =
P−
xy
(k)

P−
yy
(k)

.

(14)

{
x̂(k) = x̂−(k) + G(k)(y(k) − ŷ−(k))

P(k) = P−(k) − G(k)(P−
xy
(k)).

(15)

{
x(i)(k − 1) = f (x(i)(k − 1), u(k − 1), v(i)(k − 1)),

v(i)(k − 1) ∼ N(0,Q(k − 1)).

Here, the system model f  is treated as Eq.(1) for conveni-
ence because it gives disturbance when updating ensemble 
members in EnKF:

Next, the sample variance-covariance matrix V̂(k − 1) of the 
state variable vector x(i)−(k − 1) and the sample variance-
covariance matrix R̂(k − 1) of the observed noise are calcu-
lated from the updated ensemble members:

Next, the Kalman gain G(k) is obtained from the sample 
variance-covariance matrix V̂(k − 1) , the sample variance-
covariance matrix of the observed noise R̂(k − 1) , and the 
matrix representing the observed state H:

Finally, the ensemble members are updated through the 
Kalman filter update rule:

4  System model

In this study, we used the maneuvering modeling group 
(MMG) model as the system model, representing the surge-
sway-yaw maneuvering motion [39]. The model used in this 
study is for a vessel with a single propeller and twin rudders. 
Space-fixed coordinate systems O − XY and ship fixed coor-
dinate systems are used o − xy , as shown in Fig. 1. The origin 
of ship fixed coordinate systems o is on midship. Here, O − XY  
represents a right-handed coordinate system, and Z-axis is 
the positive downward; o − xy is a right-handed coordinate 
system, and z-axis is the positive downward. U denotes the 
ship’s speed, and u, vm denotes the speed in the surge and 
sway directions, respectively; � and r denote the angle and 
angular velocity in the yaw direction, respectively; � denotes 
the drift angle. UT , �T denotes the wind speed and direction in 
the true direction, and UA , �A denotes the relative wind speed 
and direction.

(16)f (x(k), u(k), v(k)) = f (x(k), u(k)) + v(k).

(17)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(i)−(k − 1) = x(i)(k − 1) −
1

N

N�
j=1

x(j)(k − 1)

V̂(k − 1) =
1

N − 1

N�
j=1

x(j)−(k − 1)x(j)−(k − 1)T

R̂(k − 1) =
1

N − 1

N�
j=1

w(j)(k − 1)w(j)(k − 1)T .

(18)G(k) = V̂(k − 1)HT(HV̂(k − 1)HT + R̂(k − 1))−1.

(19)
x(i)(k) = x(i)(k − 1) + G(k)(y(k)

+ w(i)(k) −Hx(i)(k − 1)).
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The MMG model used is shown in Eq.(20). In the follow-
ing, the dots represent differentiation with respect to time t:

Here, xG denotes the longitudinal coordinate of the center 
of the ship’s gravity; m denotes the ship’s mass and mx, my 
denotes the added mass of the x-axis direction and y-axis 
direction; Izz, Jzz denote the moment of inertia and added 
moment of inertia in the yaw direction, respectively; X, Y  
denote the hydrodynamic forces at the midship in x and y 
axis, respectively; N is the force moment around the z axis. 
In addition, the elements of the hydrodynamic forces to be 
considered are represented as follows:

Here, the subscripts H , R , and P denote the hull, rudder, 
and propeller, respectively. For the hydrodynamic forces and 
moment acting on the hull, we employ the Yoshimura’s low 
speed maneuvering model shown in Eq.(22) [40]:

(20)

(
m + mx

)
u̇ − (m + my)vmr + mxGr

2 = X(
m + my

)
v̇m + mxGṙ +

(
m + mx

)
ur = Y(

Izz + mx2
G
+ Jzz

)
ṙ + mxG(v̇m + ur) = N.

(21)

X = XH + XP + XR

Y = YH + YP + YR

N = NH + NP + NR.

Here, � is the water density; L is the length between perpen-
dicular of the ship; d is the draft; X�

0(A)
, X�

0(F)
 are the resist-

ance coefficient in the forward and backward directions, 
respectively; CD is the drag coefficient; CrY , CrN are the 
modification coefficients for the sway direction force and 
yaw moments, respectively; X′

vr
, Y ′

v
, Y ′

r
, N′

v
, N′

r
, are non-

dimensionalized hydrodynamic derivatives. The states x , 
control input vector u , and measurement vector y are as fol-
lows. The non-dimensionalized values are represented by 
superscript primes, as in X�

0(A)
 . The added mass term 

included in the original Yoshimura’s low speed model is 
transferred to the left side of Eq.(20):

Here, n is the number of propeller revolutions; �s and �p are 
the starboard and port rudder angles, respectively.

The MMG model estimate the time derivative ẋ by solv-
ing g(x, u) ∶ ℝ

6 ×ℝ
3
→ ℝ

6 expressed in Eq.(20):

To use the Kalman filter in discrete time, we used the follow-
ing discretized state transitions. Let x(k) denote the state at k 
steps and u(k) denote the control input at k steps:

Here, f (x(k), u(k)) in Eq.(25) is applied to the system model 
in Eq.(1).

In this study, H is a unitary matrix ( I ) representing the 
observed model since the elements of the observed and esti-
mated states coincide, as follows:

(22)

XH =
�
�

2

�
Ld

��
X�
0(F)

+
�
X�
0(A)

− X�
0(F)

�
(�∕�)

�
uU

+X�
vr
L ⋅ vmr

�

YH =
�
�

2

�
Ld

⎡
⎢⎢⎣

Y �
v
vm�u� + Y �

r
L ⋅ ru

−
�

CD

L

�
∫

L∕2

−L∕2

��vm + CrYrx
��
�
vm + CrYrx

�
dx ]

⎤
⎥⎥⎦

NH =
�
�

2

�
L2d

⎡⎢⎢⎣

N�
v
vmu + N�

r
L ⋅ r�u�

−
�

CD

L2

�
∫

L∕2

−L∕2

��vm + CrYrx
��
�
vm + CrYrx

�
xdx

⎤⎥⎥⎦
.

(23)

x ≡ (x, u, y, v,� , r)T ∈ ℝ
6

u ≡ (n, �s, �p, )
T ∈ ℝ

3

y ≡ (x, u, y, v,� , r)T ∈ ℝ
6.

(24)ẋ = g(x, u).

(25)x(k) + g(x(k), u(k))Δt = f (x(k), u(k)).

(26)H = I ∈ ℝ
6×6.

Berth Berth

Text

Fig. 1  Coordinate systems
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5  Investigation of factors affecting 
the accuracy of filtering

As mentioned in the introduction, the choice of the Kalman 
filter determines the accuracy of the estimation of state 
quantities. In this section, these factors are outlined and their 
importance is discussed. In this study, we examine the fol-
lowing three factors. 

1. Modeling error on estimation accuracy
2. Observation noise
3. Type of maneuvering motion

For some parameters of the Kalman filter, first, the initial 
value of x(0) was taken as the initial value of the observed 
value y(0) . Thus, it was defined as in Eq. (27):

The covariance matrix Q of the system noise, the covariance 
matrix R of the observed noise, and the initial value of the 
error covariance matrix P(0) are identical to align conditions 
other than items for verification. The parameter � of ��� is 
also used with � = 3 . Q ∈ ℝ

6×6,R ∈ ℝ
6×6,P(0) ∈ ℝ

6×6 is a 
diagonal matrix. The covariance matrix of the system noise 
Q is as follows:

The covariance matrix of the observed noise R can be 
obtained from the system’s performance specification of the 
onboard sensor of the system. Since this study was based on 
simulation, it was determined by referencing the measured 
data of onboard sensors. The value of P(0) is excessively 
small, the Kalman gain may become too small [41], and to 
avoid this, we adopt a unit matrix for P(0).

The number of ensemble members was set to N = 100 as the 
parameter for EnKF. Furthermore, to compare the filtering 
performance, we used the linear Kalman filter (KF) with the 
persistence prediction model to perform the filtering time. 
The detail of the algorithms can be found in the literature [9, 
10]. In this study, KF was applied to the linear state-space 
model, as shown in Eq.(31):

Here, A is A = I ∈ ℝ
6×6 and C is C = I ∈ ℝ

6×6 . The param-
eter of KF was tuned separately by trial and error for better 
filtering performance.

(27)x(0) = y(0).

(28)Q = 0.

(29)R = diag(5.0 × 10−2,… , 5.0 × 10−2).

(30)P(0) = I ∈ ℝ
6×6.

(31)
x(k + 1) = Ax(k) + v(k)

y(k) = Cx(k) + w(k).

5.1  Effect of modeling error on estimation accuracy

In this subsection, we investigate the effect of modeling 
errors on filtering using the Kalman filter. It is impos-
sible to construct a motion model that estimates motion 
completely without error. Hence, modeling errors always 
exist. In this study, we did not consider wind in the system 
model but as a modeling error.

First, two models are prepared for comparison. The 
first is the MMG model using Eq. (21). The second is the 
MMG model mentioned above with the effect of wind, as 
shown below. The system model used for estimation does 
not incorporate a wind model. Instead, the impact of wind 
is treated as a modeling error, and the wind is only taken 
into account in the observations for filtering. The equation 
of state used in this study is as follows:

Here, the subscript A represents the effect of wind. The force 
due to wind was obtained using the Fujiwara’s equation [42] 
shown in Eq.(34):

where

Here, �A is the density of the air; AT , AL are the transverse 
projected and lateral projected areas, respectively; LOA is 
the overall length of the ship; Xi, Yi, Ni are the wind pres-
sure coefficients derived using the regression equation [42]. 
This equation is based on wind tunnel experimental data of 
many scaled models with the geometric parameters of the 
ships as explanatory variables. The model that takes wind 
into account is referred to as the w/ ‘wind model. The model 
that does not take wind into account is referred to as the 
without-wind model. An investigation of the effect of mod-
eling errors is conducted as follows:

(32)

X = XH + XP + XR + XA

Y = YH + YP + YR + YA

N = NH + NP + NR + NA.

(33)

⎧⎪⎨⎪⎩

XA = (1∕2)�AU
2
A
AT ⋅ CX

YA = (1∕2)�AU
2
A
AL ⋅ CY

NA = (1∕2)�AU
2
A
ALLOA ⋅ CN ,

(34)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

CX = X0 + X1 cos
�
2� − �A

�
+ X3 cos 3

�
2� − �A

�
+ X5 cos 5

�
2� − �A

�
CY = Y1 sin

�
2� − �A

�
+ Y3 sin 3

�
2� − �A

�
+ Y5 sin 5

�
2� − �A

�
CN = N1 sin

�
2� − �A

�
+ N2 sin 2

�
2� − �A

�
+ N3 sin 3

�
2� − �A

�
.
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– First, time-series data are generated using the w/ wind 
model for three different wind speeds. White noise, 
according to w ∼ N(0,R) , is applied to the time-series 
data as the observation noise. These generated data were 
used for filtering. Δt of the data is 0.1[s].

– In order to take the effect of wind as the modeling error, 
we apply the without-wind model to the system models 
of UKF and EnKF. The data are filtered for the three dif-
ferent wind speeds generated above.

– We use UKF and EnKF to calculate the root mean square 
error (RMSE) between the result of each filtered state and 
the true value. The definition of RMSE is given in Eq. 
(35): 

 Here, N is the number of data; yi is the filtered value; xi 
is the true value. The true values are the time-series data 
before white noise is added.

Wind direction and speed were observed from the data on 
June 10, 2021, at Inukai Pond on the Osaka University cam-
pus. Here, the wind is assumed to be a variable in time but 
constant in space. Figure 2 shows the time series of wind 
direction and speed. Table 1 presents the average wind speed 
ŪT and the average wind direction �̄�T.

For the time-series data of wind direction and speed 
applied to the simulation, only the wind speed was multi-
plied by 1, 0.5, and 0 to produce three different data with 
average wind speeds of ŪT = 1.64 [m∕s] , ŪT = 0.82 [m∕s] , 
and ŪT = 0.0 [m∕s] , respectively. When the wind speed is 

(35)RMSE =

√√√√ 1

N

N∑
i=1

(
yi − xi

)2
.

ŪT = 0.0 [m∕s] , the with-wind and without models com-
pletely coincide, and the modeling error increases as the 
average wind speed increases. First, the modeling errors of 
the with-wind and without models were compared by the 
trajectory of the turning test. The results shown in Fig. 3 
are consistent with the with-wind and without models 
when the average wind speed is ŪT = 1.64 [m∕s].

Figure 3 shows that the with-wind model trajectory 
drifts more downwind than the without-wind model 
results.

Next, we present the filtering results. Filtering is per-
formed using UKF, EnKF, and KF under each condition 
shown in Table  2. Figure  4 shows the comparison of 
RMSE in each state.

As shown in Fig. 4, the estimation accuracy became 
worse as the modeling error increased for UKF and EnKF. 
In particular, the estimation accuracy rapidly worsened 
for EnKF due to modeling error. These results suggest 
that EnKF is relatively more easily affected by the mod-
eling error of the system model than UKF. The covari-
ance matrix of the system noise was set to Q = 0 in this 
validation. Therefore, the effect of setting of Q signifi-
cantly affected the estimation accuracy, especially in 
EnKF that applied the ensemble member of the system 
noise to the state as a disturbance. Next, we show the fil-
tering results for UKF and EnKF when the system noise 
covariance matrix Q is set to Q ≠ 0 . The covariance matrix 
QUKF ∈ ℝ

6×6 of the system noise in UKF was obtained by 
trial and error for better filtering performance as follows:

The covariance matrix QEnKF ∈ ℝ
6×6 of the system noise in 

EnKF is as follows:

Here, the filtering was performed using UKF and EnKF 
under the conditions shown in Table 3. The filtering results 
for each obtained state and RMSE were compared for each 
filter. Figure 5 shows the obtained RMSE for each state. 
In addition, the estimated time-series data were those at 
ŪT = 1.64[m∕s] with the largest modeling error.

Figure 5 shows that the estimation improved when the 
system noise was considered. In particular, some states in 
EnKF significantly improve estimation accuracy. In other 
words, tuning the ensemble members of the system noise 
can improve the estimation accuracy. For UKF, tuning the 
system noise covariance matrix also improved the estima-
tion accuracy. However, the difference was not as remark-
able as in the case of EnKF. Therefore, when using UKF 
for state estimation, it is more important than for EnKF to 
reduce the modeling error of the system model as much 
as possible.

(36)QUKF = diag(1.0 × 10−4,… , 1.0 × 10−4).

(37)QEnKF = diag(1.0 × 10−2,… , 1.0 × 10−2).

Table 1  Average wind speed 
and direction

Item Value

Average of wind 
speed: Ū

T

1.64 [m∕s]

Average of wind 
direction: �̄�

T

2.63 [rad]

Fig. 2  Example of time series of wind velocity and direction
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5.2  Effect of observation noise on estimation 
accuracy

Observed values by sensors always include observation 
noise. When using the Kalman filter, it is necessary to input 
parameters, such as the covariance matrix of the noise for 
the observed noise w and the system noise v . In addition, 
several studies have been conducted on how to determine 
these parameters when implementing the Kalman filter  [41]. 
However, they are often determined by trial and error. In this 
section, we investigate the effect of the magnitude of the 
observation noise on the filtering accuracy. To achieve this, 
we implemented the following method.

– The time-series data are generated using the same 
procedure as in Sect.  5.1. Here, the time-series 

data were generated using the without-wind model. 
To verify the effect of the observed noise, we pre-
pared data with three types of noise applied to 
the covariance matrix of the observed noise: 
R = diag(0.052,… , 0.052) , R = diag(0.102,… , 0.102) , 
and R = diag(0.202,… , 0.202).

– Filtering is performed on the three types of data using 
UKF and EnKF. At this time, in order to align the condi-
tions, the covariance matrix of the observed noise used 
in UKF and the ensemble members of the observed noise 
used in EnKF are the same regardless of the data type. 
The system model applied to each filter is the without-
wind model.

– Using UKF and EnKF, we calculate the RMSE between 
the result of each filtered state and the true value.

Using the above method, we performed the filtering using 
UKF, EnKF, and KF under the conditions shown in Table 4. 
The filtering results for each obtained state and RMSE were 
compared for each filter. Figure 6 shows the obtained RMSE 
for each state.

As shown in Fig. 6, the RMSE obtained using UKF and 
EnKF showed that the observation accuracy tends to be 
worse as the variance of the observation noise increases. 

Fig. 3  Comparison of the w/ wind model and w/o wind model trajectory and time series

Table 2  System model and model to be estimated (different wind 
speeds are applied)

System model Target of estimation

w/o wind model w/ wind model ( ̄U
T
= 0.0[m∕s] , �̄�

T
= 2.63 [rad])

w/o wind model w/ wind model ( ̄U
T
= 0.82[m∕s] , �̄�

T
= 2.63 [rad])

w/o wind model w/ wind model ( ̄U
T
= 1.64[m∕s] , �̄�

T
= 2.63 [rad])
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However, the observation noise did not affect the estima-
tion accuracy significantly as the modeling error. Therefore, 
it is essential to consider the effects of observation noise 
for accurate state estimation but not the extent of modeling 
errors in the system model.

5.3  Effect of type of maneuvers on estimation 
accuracy

In this section, we investigate the effect of the type of 
maneuvers on the estimation accuracy of UKF and EnKF. 

Thus, we generate the following two types of maneuvering 
motions as time-series data. 

1. Zig-zag motion
2. Random motion

As mentioned in the introduction, Konatowski compared the 
estimation accuracy of EKF and UKF for constant velocity 
and complex motion systems [29]. For the type of maneuver-
ing motion, as long as the Zig-zag maneuvers are given input 
with periodic motion, the final result is a periodic solution 
as long as it does not diverge. The motion is broadly con-
sidered as stationary, periodic, and aperiodic solutions. For 
simplicity (Fig. 7), no verification for step response will be 
performed at this time. We examine the Zig–zag and ran-
dom maneuvers to compare periodic and aperiodic motions. 
Here, the propeller revolution was set to be constant. The 
rudder angle was given as Zig-zag maneuvers and random 
maneuvers. Here, the random maneuvers were created by 
giving the rudder angle as a uniform random number ( �s is 
[−35, 105] �p is [−105, 35] ). Figure 8 shows an example of 
rudder angle time series and the trajectory.

Fig. 4  Comparison of RMSE in wind condition (upper tile: UKF 
result, middle tile: EnKF result, and lower tile: KF result)

Table 3  System model and model to be estimated (different Q are 
applied to system model)

System model Target of estimation

w/o wind model ( Q = 0) w/ wind model 
( ̄U

T
= 1.64[m∕s] , 

�̄�
T
= 2.63 [rad])

w/o wind model ( Q ≠ 0) w/ wind model 
( ̄U

T
= 1.64[m∕s] , 

�̄�
T
= 2.63 [rad])

Fig. 5  Comparison of RMSE in wind condition ( Q = 0 and Q ≠ 0 , 
upper tile: UKF result, lower tile: EnKF result)

Table 4  System model and model to be estimated (different R are 
applied)

System model Target of estimation

w/o wind model w/o wind model ( R = diag(0.0502,… , 0.0502))
w/o wind model w/o wind model ( R = diag(0.102,… , 0.102))
w/o wind model w/o wind model ( R = diag(0.202,… , 0.202))
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We used the following procedures to examine the effect 
of the type of maneuvers.

– The same procedure as in Sect. 5.2 is used to create the 
time-series data. At this time, the two types of inputs 
shown in Fig. 8 are used. The system model is the with-
out-wind model described above. The filtering data are 
created by applying white noise of w ∼ N(0,R) to the 
time-series data.

– Filtering is performed on the two types of data using UKF 
and EnKF. In order to align the conditions, the covari-
ance matrix R of the observed noise used in UKF and the 
variance of the ensemble members of the noise used in 
EnKF were the same, regardless of the data type.

– UKF and EnKF are used to calculate the RMSE between 
the result of each filtered state and the true value.

Figure 9 compares the obtained filtering results of each state 
and RMSE for each filter.

As shown in Fig. 9, there was no significant difference 
in the estimation accuracy of each state between different 
types of maneuvers in the estimation using EnKF and UKF. 
Thus, it can be considered that the difference in the type of 
maneuvers has little effect on the estimation accuracy. From 
the dynamical perspective, the periodic or aperiodic motion 
did not have a significant difference in estimation accuracy.

Fig. 6  Comparison of RMSE under different observation noise condi-
tions (upper tile: UKF result, middle tile: EnKF result, and lower tile: 
KF result)

Fig. 7  Time series of rudder angle and trajectory(upper panel: rudder 
angle of Zig-zag motion, lower panel: trajectory of Zig-zag motion)

Fig. 8  Time series of rudder angle and trajectory( upper panel: rudder 
angle of random motion, lower panel: trajectory of random motion)
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5.4  Comparison of computation time

Real-time state estimation is important for real-time control. 
Therefore, we verify the real-time performance of the filter-
ing algorithm by comparing the computational time of UKF 
and EnKF. The sample data to be filtered are numerically 
simulated Zig-zag maneuvers explained in Sect. 5.3 was 
performed. Ten datasets with different applied noises were 
prepared, and the average computational time was obtained 
for each filter. The computational time per step ( 0.1[s] ) is 
obtained to verify the real-time performance of the filter-
ing algorithm and compare the computational time for each 
filter. Table 5 presents the computer specification used in 
this study.

The comparison of computational time is shown in 
Fig. 10.

As shown in Fig. 10, all filters took less than 0.1[s] per 
step to filter. As a result, all filters had real-time perfor-
mance. The computational time for EnKF depends on the 
number of ensemble members, which was about four times 
longer than that of UKF.

5.5  Guideline for filtering

From the results of Sects. 5.1 to 5.4, we obtained the follow-
ing guideline for filter selection.

– Modeling error:
  Modeling error had a significant effect on estimation 

accuracy for UKF and EnKF. In UKF and EnKF, it was 
possible to improve the estimation accuracy by tuning 
the covariance matrix and the ensemble members of the 
system noise given to EnKF. In particular, EnKF showed 
significant improvement. It can also happen that KF is 
better than UKF and EnKF if the modeling error is high. 
However, the accuracies of UKF and EnKF were better 
than that of the KF in all other cases.

– Covariance matrix:
  It is essential to choose the appropriate covariance 

matrix for the observed noise because it affects the 
accuracy of the UKF and EnKF estimates. However, the 
importance was not as large as the modeling error. There-
fore, even if the covariance matrix of the observed noise 
is not chosen carefully, it is possible to obtain an accept-
able estimation.

– Periodic or aperiodic motion:
  We could not confirm that filtering performance was 

affected by periodic or aperiodic motion. Thus, there is 
no need to select between UKF and EnKF for different 
maneuverings.

– Computation time:

Fig. 9  Comparison of RMSE in different maneuvering motion condi-
tions (upper tile: UKF result, middle tile: EnKF result, and lower tile: 
KF result)

Table 5  Computer specifications

CPU Apple M1

Clock 3.2 GHz
Size of memory 8 G byte
Programming language Python Fig. 10  Comparison of computational time between EnKF, UKF, and 

KF
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  For both filters, the computational time per step was 
less than 0.1 [s] , the observation period. Therefore, 
there was a real-time performance in this calculation. 
EnKF took about four times longer to compute than 
UKF. Thus, it is appropriate to use UKF when real-time 
performance is required under severe conditions.

Since UKF and EnKF do not have extreme differences in 
estimation accuracy, it is essential to select the appropriate 
filter for the computational time and purpose.

5.6  Discussion

To further improve the estimation accuracy in the future, 
it is important to keep the modeling error of the system 
model sufficiently small when using UKF and EnKF. 
Several attempts have been recently made to improve 
the performance of maneuvering motion models in ship 
maneuvering fields. For instance, Araki et al. estimated 
the maneuvering model by utilizing several experimental 
fluid dynamic systems and computational fluid dynamics 
free-running trials. They employed the EKF and the con-
strained least square method with the generalized reduced 
gradient algorithm [43]. Jian et al. identified the Abkowitz 
model from the simulation dataset using least square sup-
port vector machines [44]. Serge and Guedes developed 
an identification algorithm for ship maneuvering math-
ematical models using the classic genetic algorithm [45]. 
Wakita et al. proposed a system identification method for 
generating low speed maneuvering models using neural 
networks [46]. Miyauchi et al. estimated the parameters of 
the MMG model from the trajectories of free-running tests 
using an optimization algorithm, the covariance matrix 
adaptation evolution strategy (CMA-ES). The results show 
that the model is more consistent with the results of free-
running tests than with the parameters obtained from cap-
tive model tests [47]. Based on these studies, it is possible 
that a motion model with improved performance could be 
applied to the nonlinear Kalman filter to provide a more 
accurate state estimation. Furthermore, from a robustness 
perspective, we consider it important to develop algo-
rithms that account for the sudden deterioration of obser-
vation noise due to instrument failure. To deal with this 
problem, for example, the development of sensor fusion 
approaches would be useful. Currently, there is a lot of 
research on sensor fusion, and a sensor fusion technique 
using UKF has been proposed. For example, a study on 
sensor fusion technology using UKF for aircraft was con-
ducted by Majeed and Kar [48]. They are also developing 
a sensor fusion algorithm using a nonlinear Kalman filter 
for ships.

6  Conclusion

In this study, we investigated the performance of UKF and 
EnKF filters to provide guidance. We examined the effect of 
the type of maneuvers, observation noise, and modeling error 
on the estimation accuracy of UKF and EnKF. The results 
showed that the modeling error of the system model has a sig-
nificant effect on the estimation accuracy of EnKF and UKF. 
There was no significant difference in estimation accuracy 
between the different types of observation noise and the type 
of maneuvers. Thus, since berthing motion is considered to 
be similar to random motion, both filters are considered  to 
be applicable during berthing. In addition, the time required 
for filtering was measured to verify the online capability of 
the system, and real-time filtering was possible for EnKF and 
UKF. However, in this study, EnKF took approximately four 
times longer to compute than UKF. Therefore, we obtained 
that EnKF and UKF should be used separately depending on 
the required computational time and purpose.
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