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Abstract
In this paper, we investigate the behavior of the Miyazawa polynomial of periodic

virtual links. As applications, we give some criteria to detect possible periods of a
given oriented virtual link.

1. Introduction

A classical link L in S3 is called a p-periodic link (p � 2 an integer) if there
exists an orientation preserving auto-homeomorphismh of S3 such thath(L) = L, h is
of order p and the set of fixed points ofh is a circle disjoint fromL. In this case,
L� = L=hhi is called thefactor link of L. A link diagram D in R2 n f0g is said tohave
period p if there exists a rotation� of R2 about the origin0 through 2�=p such that�(D) = D. It is well known that everyp-periodic link has a diagram of periodp.

In 1988, Murasugi [10] found some relationships between the Jones polynomials
of a periodic link and its factor link and showed that the knot10105 has no period. In
1990, Traczyk [13] gave a periodicity criterion for links inS3 by mapping Kauffman’s
bracket polynomial homomorphically into the group ring over Zp of a cyclic group
Cpn of order pn (p a prime), and proved that the knots 10101 and 10105 have no pe-
riod seven. In addition, several people found criteria to detect possible periods for an
oriented link by using polynomial invariants [1, 6, 7, 9, 11,12, 14, 15, 16].

In 1996, Kauffman introduced the concept of a virtual link [5]. A virtual link dia-
gram is a link diagram inR2 possibly with some encircled crossings without over/under
information. Such an encircled crossing is called avirtual crossing. Fig. 1 shows an
example of a virtual link diagram. If two virtual link diagrams are related by a finite
sequence of generalized Reidemeister moves as described inFig. 2, they are said to be
equivalent. A virtual link is defined to be an equivalence class of virtual link diagrams.

In [5], Kauffman defined a polynomial invariantfL 2 Z[ A�2] for a virtual link L
which we call theJones-Kauffman polynomial. For a classical linkL, it is equal to the
Jones polynomialVL (t) after substituting

p
t for A2. In 2005, Kamada and Miyazawa

[4] introduced the concept of virtual magnetic graph diagrams and defined a 2-variable
polynomial invariant for a virtual link derived from virtual magnetic graph diagrams. In
[8], Miyazawa defined a virtual link invariant, which generalizes the Jones-Kauffman
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Fig. 1. A virtual link diagram.

Fig. 2. Generalized Reidemeister moves.

polynomial and the 2-variable polynomial invariant. In [3], Kamada gave some rela-
tions of the 2-variable polynomial invariant for a virtual skein triple.

In this paper, we investigate the behavior of the Miyazawa polynomial of periodic
virtual links. As applications, we give some criteria to detect possible periods of a
given oriented virtual link.

2. The Miyazawa polynomial

In this section, we review the Miyazawa polynomial of a virtual link [3, 4, 8].
Let G be an oriented 2-valent graph inS3. G is called magneticif the edges of

G are oriented alternately as in Fig. 3. We allowG to have components consisting
of closed edges without vertices. Amagnetic graph diagramof a magnetic graphG
is a projection image ofG on a plane equipped with over/under information on each
crossing as in Fig. 4. Avirtual magnetic graph diagram(or shortly VMG diagram) is
a magnetic graph diagram possibly with some virtual crossings as in Fig. 5. Two VMG
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Fig. 3.

Fig. 4. A magnetic graph diagram.

Fig. 5. A virtual magnetic graph diagram.

diagrams are said to beequivalentif they are related by a finite sequence of general-
ized Reidemeister moves. We note that virtual link diagramsare VMG diagrams with-
out vertices. For a VMG diagramD, we denote the sum of the signs of real crossings
of D by w(D). It is called thewrithe of D. A pure VMG diagramis a VMG diagram
whose crossings are all virtual.

Let D be a pure VMG diagram andE(D) the set of edges ofD. A weight map
of D is a map f : E(D) ! f+1,�1g such that the product of images of two adjacent
edges by f is �1. We denote the set of weight maps ofD by WM(D). For a weight
map f of D, we denoteD f a pure VMG diagram of which each edge is labeled its
weight as in Fig. 6. It is called aweighted diagramcorresponding tof . If c is a
virtual crossing of a weighted diagramD f , there exist two types of virtual crossings
on D f . If the product of weights of two edges which intersect atc is +1 (resp.�1),
c is called aregular crossing(resp. irregular crossing).

Let D be a pure VMG diagram andf a weight map ofD. Let c be an irregular
virtual crossing ofD f . Suppose thatc is formed with two edgese1 and e�1 whose
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Fig. 6. A weighted pure VMG diagram.

Fig. 7. The raised diagram of the diagram in Fig. 6.

weights are +1 and�1, respectively. Thenc can be replaced with a real crossingĉ
so that the edgese1 and e�1 are changed into the overpath and the underpath atĉ,
respectively. Such a replacement is called araise of an irregular crossing. Theraised
diagram of D with respect to f , which is denoted byD̂ f , is defined to be the VMG
diagram obtained from the weighted diagramD f by doing raises of all irregular cross-
ings of D f . For example, the raised diagram derived from the weighted diagram in
Fig. 6 is given in Fig. 7.

For a pure VMG diagramD, let FD be a map from WM(D) to Z defined by
FD( f ) = w(D̂ f ) for all weight map f of D. If we put WMn(D) = f f 2 WM(D) j
FD( f ) = ng for any integern, then we have

Lemma 2.1. For a pure VMG diagram D and an integer n, there exists a one-
to-one correspondence betweenWMn(D) and WM�n(D).

Proof. For a weight mapf of D, we define a mapf̃ from E(D) to f+1,�1g by

f̃ (e) = � f (e), for all e2 E(D).
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Fig. 8.

Then f̃ is also a weight map ofD. Let c be a real crossing of the raised diagram̂D f

and c̃ the real crossing of the raised diagram̂D f̃ corresponding toc. Then sign(̃c) =�sign(c) and hencew(D̂ f̃ ) = �w(D̂ f ). It follows that f̃ 2WM�n(D) if f 2WMn(D).
Now we define a map�n from WMn(D) to WM�n(D) by

�n( f ) = f̃ , for all f 2WMn(D).

Then �n is well-defined. Since��n Æ �n and �n Æ ��n are the identity maps,�n is a
one-to-one correspondence between WMn(D) and WM�n(D).

Let g be a map fromZ to a Laurent polynomial ringZ[h�1]. The double bracket
polynomial hhDiig of a pure VMG diagramD associated tog is a Laurent polynomial

in Z[2�1, h�1] defined by

hhDiig = 2��(D)
X

f 2WM(D)

(g Æ FD)( f ).

If c is a real crossing ofD, then there are two kinds of splices atc, which are called
0-spliceand1-spliceat c as in Fig. 8. Astateof D is a pure VMG diagram obtained
from D by doing 0-splice or1-splice at each real crossing ofD. We denote the set
of states ofD by S(D). For a states of D, let C0(D; s) (resp. C1(D; s)) be the set
of real crossings ofD where 0-splices (resp.1-splices) are applied to obtains from
D. We put

P(D; s) =
X

c2C0(D;s)

sign(c)� X
c2C1(D;s)

sign(c),

where sign(c) is the crossing sign ofc.
Let D be a virtual link diagram of a virtual linkL and g : Z! Z[h�1]. In [8],

Miyazawa gave a Laurent polynomialHD,g(A, h) (or briefly, H (D, g)) of D associated
with g in Z[2�1, A�1, h�1] defined by

HD,g(A, h) =
X

s2S(D)

AP(D;s)d�(s)�1hhsii,
whered =�A2�A�2 and�(s) is the number of components ofs. The Miyazawa poly-
nomial RL,g(A, h) (or briefly, R(L, g)) of L associated withg is a Laurent polynomial



774 J. KIM , S.Y. LEE AND M. SEO

in Z[2�1, A�1, h�1] defined by

RL,g(A, h) = RD,g(A, h) = (�A3)�w(D) HD,g(A, h).

In [8], Miyazawa showed thatRL,g(A,h) is a virtual link invariant and gave some prop-
erties.

Proposition 2.2 ([8]). (1) If g: Z! Z[h�1] is defined by g(n) = 1, then R(L, g)
is identical with the Jones-Kauffman polynomial of L.
(2) If g : Z! Z[h�1] is defined by g(n) = jnj and L is a classical link, then R(L, g)
is equal to zero.
(3) If g : Z! Z[h�1] is defined by g(n) = h(1�(�1)n)=2, then R(L, g) coincides with the
2-variable polynomial defined by Kamada and Miyazawa.
(4) If g : Z! Z[h�1] is defined by g(n) = hn and v(L) is the virtual crossing number
of L, then v(L) � max degh R(L, g).

REMARK 2.3. In [8], Miyazawa used an arbitrary Laurent polynomial ring0 over
Q as the range ofg. If 0 = Q[h�1], then hhDiig 2 Q[h�1] and R(L, g) 2 Q[h�1, A�1].

Since the ideal ofQ[h�1, A�1] generated by a non-zero integer is itself, our theorems
in Section 3 are meaningless forg : Z! Q[h�1]. On the other hand, the rage ofg in
propositions of [8] can be restricted inZ[h�1]. Thus we can use the Laurent polynomial
ring Z[h�1] as the range ofg. Since the ideals in Section 3 are proper, our theorems
are meaningful.

3. Periodic virtual links

An oriented virtual link L is said tohave period p� 2 if it admits an oriented
virtual link diagram D in R2 n f0g that invariant under the rotation� of R2 about the
origin 0 through 2�=p. The virtual link L� represented by the quotientD=h� i is called
the factor link of L. The diagram described in Fig. 1 is a virtual link diagram of a
virtual link having period 3.

Theorem 3.1 (Fermat’s little theorem, [2]). If p is a prime and a an integer
relatively prime to p, then

ap�1 � 1 mod p.

Theorem 3.2. Let p be an odd prime and L a virtual link that has period pr

(r � 1). Let g be a map fromZ to Z[h�1].
(1) If g : (Z, +)! (Z[h�1], � ) is a homomorphism, then

R(L, g) � [R(L�, g)] pr
mod (p, (�A2 � A�2)p�1 � 1).
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Fig. 9.

(2) If g : Z! Z[h�1] is defined by g(n) = h(1�(�1)n)=2, then

R(L, g) � [R(L�, g)] pr
mod (p, (�A2 � A�2)p�1 � 1, hp�1 � 1).

Proof. It suffices to prove the theorem forr = 1 (the theorem forr > 1 is proved
by applying the argument forr = 1 repeatedly). LetD be a virtual link diagram ofL
in R2 n f0g that invariant under the rotation� of R2 about the origin0 through 2�=p.
Then D can be divided intop piecesD0, D1, : : : , Dp�1 such that� (Di ) = Di +1 (i =
0, 1,: : : , p� 1) and Dp = D0. Let I (0, 2�=p) be the closed domain bounded by two
half lines � = 0 and � = 2�=p in the polar coordinate system. We may assume that
D0 = D \ I (0, 2�=p). Let A1, A2, : : : , Al be the points of intersection ofD0 and the
line � = 0 and let� (Ai ) = Bi (i = 1, 2,: : : , l ). By joining Ai and Bi on R2 n I (0, 2�=p)
by circle Ci centered 0, we obtain a diagramD� of the factor link L�. For example,
see Fig. 9. For simplicity, we writeD� = D=� . We note that the rotation� : R2! R2

maps D onto itself preserving the sign of each crossing. Ifs is a state inS(D), then
either � (s) 6= s or � (s) = s.

If � (s) 6= s, thens, � (s), � 2(s), : : : , � p�1(s) are all distinct. Since any two of these
are isomorphic, we havep identical terms inH (D, g), and they vanish by reducing
modulo p.

If � (s) = s, then s defines a unique quotient states� (= s=� ). Let � and �� be
the terms inH (D, g) and H (D�, g) which are associated withs and s�, respectively.
Since

P
C0(D;s) sign(c) = p�PC0(D�;s�) sign(c) and

P
C1(D;s) sign(c) = p�PC1(D�;s�) sign(c),

we have

P(D; s) = p � P(D�; s�).
Then we have that

� = Ap�P(D�;s�)d�(s)�1hhsii, �� = AP(D�;s�)d�(s�)�1hhs�ii.(3.1)
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We will compare�(s)�1 and�(s�)�1. Let G = fid, � , : : : , � p�1g andC = fC j C is
a component ofsg, whereid is the identity ofR2. ThenG acts onC by � i �C = � i (C).
We putCG = fC 2 C j gC = C, 8g 2 Gg andC=G = fG(C) j G(C) is the orbit ofC 2 Cg.
For a setS, we denote byjSj the number of elements inS. If � i (C) = C for some i
(1� i � p� 1), then� j (C) = C for all j becausep is prime. ThusjG(C)j = p or 1.
We note thatjG(C)j = 1 if and only if C 2 CG. Since�(s�) = jC=Gj, we calculate that

�(s) = jCj = jCGj + p(jC=Gj � jCGj) = p � �(s�)� (p� 1)jCGj.(3.2)

Since�(s)� 1 = p(�(s�)� 1)� (p� 1)(jCGj � 1), we have that

d�(s)�1 � dp�(�(s�)�1) mod (dp�1 � 1).(3.3)

By Theorem 3.1 and (3.2), it follows that

2��(s) � 2p�(��(s�)) mod p.(3.4)

Let f be a wight map ofs. We define a weight map� ( f ) of s by, for each edge
e of s,

� ( f )(e) = f (e0) whenever � (e0) = e.

If � ( f ) 6= f , then f , � ( f ), : : : , � p�1( f ) are all distinct butbsf , ds� ( f ), : : : , ŝ� p�1( f ) are
equivalent. Thusw(bsf ) = w(ds� ( f )) = � � � = w(ŝ� p�1( f )). If � ( f ) = f , then f defines a
unique weight mapf� (= f =� ) of s�. Let WD(s) denote the set of weighted diagram
of s, that is, WD(s) = fsf j f 2WM(s)g. Then G acts on WD(s) by

� (sf ) = s� ( f ).

We can put that WD(s) = fsf1, sf2, : : : , sfmg [ fsf1,0, sf1,1, : : : , sf1,p�1g [ � � � [fsfn,0, sfn,1, : : : , sfn, p�1g where � (sfi ) = sfi for all i (1 � i � m) and f j ,k = � k( f j ,0) for
eachk = 1, 2,: : : , p� 1, j = 1, 2,: : : , n. We set thatwi = w(bsfi ) andw j ,k = w(dsf j ,k )

for eachi = 1, 2,: : : , m, k = 1, 2,: : : , p� 1, j = 1, 2,: : : , n and setw�
i = w( ̂(s�)( fi )� )

for eachi = 1, 2,: : : , m. For eachi = 1, 2,: : : , m, we have

wi = p � w�
i .(3.5)

For any mapg : Z! Z[h�1], we have that

hhs�ii = 2��(s�)[g(w�
1) + � � � + g(w�

m)]

and

hhsii = 2��(s)[g(w1) + � � � + g(wm) + p � g(w1,0) + � � � + p � g(wm,0)].
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By (3.4) and (3.5), it follows that

hhsii � 2p�(��(s�))[g(p � w�
1) + � � � + g(p � w�

m)] mod p.

(1) If g : (Z, +)! (Z[h�1], � ) is a homomorphism, then

(3.6)

hhs�iip = 2p�(��(s�))[g(w�
1) + � � � + g(w�

m)] p

� 2p�(��(s�))[g(w�
1)p + � � � + g(w�

m)p] mod p

� 2p�(��(s�))[g(p � w�
1) + � � � + g(p � w�

m)] mod p

� hhsii mod p.

By (3.1), (3.3) and (3.6), it follows that

� p� � � mod (p, (�A2 � A�2)p�1 � 1).

Hence we have

H (D, g) � [H (D�, g)] p mod (p, (�A2� A�2)p�1 � 1).

Sincew(D) = p � w(D�), (�A3)�w(D) = [(�A3)�w(D�)] p. Therefore we have

R(L, g) � [R(L�, g)] p mod (p, (�A2� A�2)p�1 � 1).

(2) Suppose thatg : Z ! Z[h�1] is defined byg(n) = h(1�(�1)n)=2. Sincewi =
p � w�

i and p is an odd prime,wi and w�
i have the same parity and henceg(wi ) =

g(w�
i ). Sinceg(w�

i ) is eitherh or 1, we have

g(w�
i )p � g(w�

i ) mod (hp�1 � 1).

Then we know that

(3.7)

hhs�iip = 2p�(��(s�))[g(w�
1) + � � � + g(w�

m)] p

� 2p�(��(s�))[g(w�
1)p + � � � + g(w�

m)p] mod p

� 2p�(��(s�))[g(w�
1) + � � � + g(w�

m)] mod (p, hp�1 � 1)

� 2p�(��(s�))[g(w1) + � � � + g(wm)] mod (p, hp�1 � 1)

� hhsii mod (p, hp�1 � 1).

By (3.1), (3.3) and (3.7), it follows that

� p� � � mod (p, (�A2 � A�2)p�1 � 1, hp�1 � 1).
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Fig. 10.

Thus we have

H (D, g) � [H (D�, g)] p mod (p, (�A2 � A�2)p�1 � 1, hp�1 � 1).

Hence we get

R(L, g) � [R(L�, g)] p mod (p, (�A2 � A�2)p�1 � 1, hp�1 � 1).

This completes the proof.

EXAMPLE 3.3. Let L1 be a virtual knot as in Fig. 10. Then the Jones-Kauffman
polynomial of L1 is equal to 1 [8]. Letg: Z! Z[h�1] be a map given byg(n) = hn.
It is known [8] that

Rg
L1

=
1

2
(1 + A�8) +

1

4
(1� A�8)(h2 + h�2).

Suppose thatL1 has period 3. From Theorem 3.2, it follows that

1

4
(1� A�8) � 0 mod (3, (�A2 � A�2)2� 1).

Since (�A2 � A�2)2 � 1 = A4 + 1 + A�4 = A�4(A8 + A4 + 1) and 1� A�8 = (A�4 �
A�8)(A8 + A4 + 1) + (1� A4),

1

4
(1� A�8) � 1 + 2A4 mod (3, A8 + A4 + 1).

Let I be the ideal ofZ[2�1, A�1] generated by 3. We note that the quotient ring of
Z[2�1, A�1] by I is isomorphic to the ringZ3[ A�1]. So it is not true that 1 + 2A4 � 0
mod (3, A8 + A4 + 1). HenceL1 does not have period 3.

Theorem 3.4. Let p be a prime and L a virtual link that has period pr (r � 1).
Let g be a map fromZ to Z[h�1]. Then

RL,g(A, h) � RL,g(A�1, h) mod (p, Apr � 1).



M IYAZAWA POLYNOMIAL OF PERIODIC V IRTUAL L INKS 779

Proof. Let D be a virtual link diagram ofL in R2 n f0g that invariant under the
rotation � of R2 about the origin0 through 2�=pr and D� = D=� . Let s be a state
of D.

If � (s) 6= s, then there existpn distinct but equivalent statess, � (s), : : : , � pn�1(s)
for somen (1 � n � r ). Contribution of these states to the polynomial vanishes by
reducing modulop.

If � (s) = s, then s defines a unique quotient statess� (= s=� ). Since P(D; s) =
pr � P(D�; s�), we get

AP(D;s) = Apr �P(D�;s�) � 1 mod (Apr � 1).

Sinced = �A2 � A�2 is symmetric andhhsii 2 Z[2�1, h�1], we obtain

HD,g(A, h) � HD,g(A�1, h) mod (p, Apr � 1).

Sincew(D) = pr � w(D�),
(�A3)�w(D) � (�A�3)�w(D) mod (Apr � 1).

Hence we have

RL,g(A, h) � RL,g(A�1, h) mod (p, Apr � 1).

This completes the proof.

Corollary 3.5. Let p be a prime and L a virtual link that has period pr . Let
g : (Z, +)! (Z[h�1], � ) be a homomorphism. Then

RL,g(A, h) � RL,g(A�1, h�1) mod (p, Apr � 1).

Proof. Let D a virtual link diagram ofL in R2 n f0g that invariant under the ro-
tation � of R2 about the origin0 through 2�=pr and D� = D=� .

Let s be a state ofD. Sinceg: (Z, +)! (Z[h�1], � ) is a homomorphism, we havehhsii(h) = hhsii(h�1) by Lemma 2.1. By the similar argument to Theorem 3.4, we have

RL,g(A, h) � RL,g(A�1, h�1) mod (p, Apr � 1).

This completes the proof.

EXAMPLE 3.6. Let L1 be a virtual knot as in Fig. 10. Then

Rg
L1

(A, h)� Rg
L1

(A�1, h) =
1

2
(A�8 � A8) +

1

4
(A8� A�8)(h2 + h�2).
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We observe that

1

2
(A�8 � A8) � 2A + A2 6� 0 mod (3,A3 � 1).

Hence this is an another proof to show thatL1 does not have period 3.
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