<table>
<thead>
<tr>
<th>Title</th>
<th>The Miyazawa polynomial of periodic virtual links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kim, Joonoh; Lee, Sang Youl; Seo, Myoungsoo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 46(3) P.769-P.781</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-09</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9330</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9330</td>
</tr>
</tbody>
</table>
THE MIYAZAWA POLYNOMIAL OF PERIODIC VIRTUAL LINKS

JOONOH KIM, SANG YOUL LEE and MYOUNGSOO SEO

(Received January 28, 2008, revised May 9, 2008)

Abstract

In this paper, we investigate the behavior of the Miyazawa polynomial of periodic virtual links. As applications, we give some criteria to detect possible periods of a given oriented virtual link.

1. Introduction

A classical link \(L \) in \(S^3 \) is called a \(p \)-periodic link \((p \geq 2 \text{ an integer})\) if there exists an orientation preserving auto-homeomorphism \(h \) of \(S^3 \) such that \(h(L) = L \), \(h \) is of order \(p \) and the set of fixed points of \(h \) is a circle disjoint from \(L \). In this case, \(L_0 = L/h \) is called the factor link of \(L \). A link diagram \(D \) in \(\mathbb{R}^2 \) is said to have period \(p \) if there exists a rotation \(\phi \) of \(\mathbb{R}^2 \) about the origin \(0 \) through \(2\pi/p \) such that \(\phi(D) = D \). It is well known that every \(p \)-periodic link has a diagram of period \(p \).

In 1988, Murasugi [10] found some relationships between the Jones polynomials of a periodic link and its factor link and showed that the knot 10\(_{105}\) has no period. In 1990, Traczyk [13] gave a periodicity criterion for links in \(S^3 \) by mapping Kauffman’s bracket polynomial homomorphically into the group ring over \(\mathbb{Z}_p \) of a cyclic group \(C_{p^n} \) of order \(p^n \) (\(p \) a prime), and proved that the knots 10\(_{101}\) and 10\(_{105}\) have no period seven. In addition, several people found criteria to detect possible periods for an oriented link by using polynomial invariants [1, 6, 7, 9, 11, 12, 14, 15, 16].

In 1996, Kauffman introduced the concept of a virtual link [5]. A virtual link diagram is a link diagram in \(\mathbb{R}^2 \) possibly with some encircled crossings without over/under information. Such an encircled crossing is called a virtual crossing. Fig. 1 shows an example of a virtual link diagram. If two virtual link diagrams are related by a finite sequence of generalized Reidemeister moves as described in Fig. 2, they are said to be equivalent. A virtual link is defined to be an equivalence class of virtual link diagrams.

In [5], Kauffman defined a polynomial invariant \(f_L \in \mathbb{Z}[A^{\pm 2}] \) for a virtual link \(L \) which we call the Jones-Kauffman polynomial. For a classical link \(L \), it is equal to the Jones polynomial \(V_L(t) \) after substituting \(\sqrt{t} \) for \(A^{\pm 2} \). In 2005, Kamada and Miyazawa [4] introduced the concept of virtual magnetic graph diagrams and defined a 2-variable polynomial invariant for a virtual link derived from virtual magnetic graph diagrams. In [8], Miyazawa defined a virtual link invariant, which generalizes the Jones-Kauffman polynomial.
polynomial and the 2-variable polynomial invariant. In [3], Kamada gave some relations of the 2-variable polynomial invariant for a virtual skein triple.

In this paper, we investigate the behavior of the Miyazawa polynomial of periodic virtual links. As applications, we give some criteria to detect possible periods of a given oriented virtual link.

2. The Miyazawa polynomial

In this section, we review the Miyazawa polynomial of a virtual link [3, 4, 8].

Let G be an oriented 2-valent graph in S^3. G is called magnetic if the edges of G are oriented alternately as in Fig. 3. We allow G to have components consisting of closed edges without vertices. A magnetic graph diagram of a magnetic graph G is a projection image of G on a plane equipped with over/under information on each crossing as in Fig. 4. A virtual magnetic graph diagram (or shortly VMG diagram) is a magnetic graph diagram possibly with some virtual crossings as in Fig. 5. Two VMG
diagrams are said to be *equivalent* if they are related by a finite sequence of generalized Reidemeister moves. We note that virtual link diagrams are VMG diagrams without vertices. For a VMG diagram D, we denote the sum of the signs of real crossings of D by $w(D)$. It is called the *writhe* of D. A *pure VMG diagram* is a VMG diagram whose crossings are all virtual.

Let D be a pure VMG diagram and $E(D)$ the set of edges of D. A *weight map* of D is a map $f: E(D) \to \{+1, -1\}$ such that the product of images of two adjacent edges by f is -1. We denote the set of weight maps of D by $\text{WM}(D)$. For a weight map f of D, we denote D_f a pure VMG diagram of which each edge is labeled its weight as in Fig. 6. It is called a *weighted diagram* corresponding to f. If c is a virtual crossing of a weighted diagram D_f, there exist two types of virtual crossings on D_f. If the product of weights of two edges which intersect at c is $+1$ (resp. -1), c is called a *regular crossing* (resp. *irregular crossing*).

Let D be a pure VMG diagram and f a weight map of D. Let c be an irregular virtual crossing of D_f. Suppose that c is formed with two edges e_1 and e_{-1} whose
weights are +1 and −1, respectively. Then c can be replaced with a real crossing \(\hat{c} \) so that the edges \(e_1 \) and \(e_{-1} \) are changed into the overpath and the underpath at \(\hat{c} \), respectively. Such a replacement is called a raise of an irregular crossing. The raised diagram of \(D \) with respect to \(f \), which is denoted by \(\hat{D}_f \), is defined to be the VMG diagram obtained from the weighted diagram \(D_f \) by doing raises of all irregular crossings of \(D_f \). For example, the raised diagram derived from the weighted diagram in Fig. 6 is given in Fig. 7.

For a pure VMG diagram \(D \), let \(F_D \) be a map from \(\text{WM}(D) \) to \(\mathbb{Z} \) defined by

\[
F_D(f) = \omega(\hat{D}_f)
\]

for all weight map \(f \) of \(D \). If we put \(\text{WM}_n(D) = \{ f \in \text{WM}(D) \mid F_D(f) = n \} \) for any integer \(n \), then we have

Lemma 2.1. For a pure VMG diagram \(D \) and an integer \(n \), there exists a one-to-one correspondence between \(\text{WM}_n(D) \) and \(\text{WM}_{-n}(D) \).

Proof. For a weight map \(f \) of \(D \), we define a map \(\tilde{f} \) from \(E(D) \) to \(\{+1, -1\} \) by

\[
\tilde{f}(e) = -f(e), \quad \text{for all } e \in E(D).
\]
Then \tilde{f} is also a weight map of D. Let c be a real crossing of the raised diagram \hat{D}_f and \tilde{c} the real crossing of the raised diagram $\hat{D}_{\tilde{f}}$ corresponding to c. Then $\text{sign}(\tilde{c}) = -\text{sign}(c)$ and hence $w(\hat{D}_{\tilde{f}}) = -w(\hat{D}_f)$. It follows that $\tilde{f} \in \text{WM}_{-n}(D)$ if $f \in \text{WM}_n(D)$. Now we define a map ϕ_n from $\text{WM}_n(D)$ to $\text{WM}_{-n}(D)$ by

$$\phi_n(f) = \tilde{f}, \quad \text{for all } f \in \text{WM}_n(D).$$

Then ϕ_n is well-defined. Since $\phi_{-n} \circ \phi_n$ and $\phi_n \circ \phi_{-n}$ are the identity maps, ϕ_n is a one-to-one correspondence between $\text{WM}_n(D)$ and $\text{WM}_{-n}(D)$. □

Let g be a map from \mathbb{Z} to a Laurent polynomial ring $\mathbb{Z}[h^{\pm 1}]$. The double bracket polynomial $\llangle D \rrangle_g$ of a pure VMG diagram D associated to g is a Laurent polynomial in $\mathbb{Z}[2^{-1}, h^{\pm 1}]$ defined by

$$\llangle D \rrangle_g = 2^{-h(D)} \sum_{f \in \text{WM}(D)} (g \circ F_D)(f).$$

If c is a real crossing of D, then there are two kinds of splices at c, which are called 0-splice and ∞-splice at c as in Fig. 8. A state of D is a pure VMG diagram obtained from D by doing 0-splice or ∞-splice at each real crossing of D. We denote the set of states of D by $S(D)$. For a state s of D, let $C_0(D; s)$ (resp. $C_\infty(D; s)$) be the set of real crossings of D where 0-splices (resp. ∞-splices) are applied to obtain s from D. We put

$$P(D; s) = \sum_{c \in C_0(D; s)} \text{sign}(c) - \sum_{c \in C_\infty(D; s)} \text{sign}(c),$$

where $\text{sign}(c)$ is the crossing sign of c.

Let D be a virtual link diagram of a virtual link L and $g : \mathbb{Z} \to \mathbb{Z}[h^{\pm 1}]$. In [8], Miyazawa gave a Laurent polynomial $H_{D, g}(A, h)$ (or briefly, $H(D, g)$) of D associated with g in $\mathbb{Z}[2^{-1}, A^{\pm 1}, h^{\pm 1}]$ defined by

$$H_{D, g}(A, h) = \sum_{s \in S(D)} A^{P(D; s)} d^{\mu(s)-1} \llangle s \rrangle,$$

where $d = -A^2 + A^{-2}$ and $\mu(s)$ is the number of components of s. The Miyazawa polynomial $R_{L, g}(A, h)$ (or briefly, $R(L, g)$) of L associated with g is a Laurent polynomial.
in $\mathbb{Z}[2^{-1}, A^{\pm 1}, h^{\pm 1}]$ defined by

$$R_{L,g}(A, h) = R_{D,g}(A, h) = (-A^{3})^{-w(D)}H_{D,g}(A, h).$$

In [8], Miyazawa showed that $R_{L,g}(A, h)$ is a virtual link invariant and gave some properties.

Proposition 2.2 ([8]). (1) If $g: \mathbb{Z} \rightarrow \mathbb{Z}[h^{\pm 1}]$ is defined by $g(n) = 1$, then $R(L, g)$ is identical with the Jones-Kauffman polynomial of L.

(2) If $g: \mathbb{Z} \rightarrow \mathbb{Z}[h^{\pm 1}]$ is defined by $g(n) = n$ and L is a classical link, then $R(L, g)$ is equal to zero.

(3) If $g: \mathbb{Z} \rightarrow \mathbb{Z}[h^{\pm 1}]$ is defined by $g(n) = h(n)$ and L is the virtual crossing number of L, then $v(L) \geq \max \deg h R(L, g)$.

(4) If $g: \mathbb{Z} \rightarrow \mathbb{Z}[h^{\pm 1}]$ is defined by $g(n) = h(n)$ and L is the virtual crossing number of L, then $v(L) \geq \max \deg h R(L, g)$.

Remark 2.3. In [8], Miyazawa used an arbitrary Laurent polynomial ring Γ over \mathbb{Q} as the range of g. If $\Gamma = \mathbb{Q}[h^{\pm 1}]$, then $\langle D \rangle g \in \mathbb{Q}[h^{\pm 1}]$ and $R(L, g) \in \mathbb{Q}[h^{\pm 1}, A^{\pm 1}]$. Since the ideal of $\mathbb{Q}[h^{\pm 1}, A^{\pm 1}]$ generated by a non-zero integer is itself, our theorems in Section 3 are meaningless for $g: \mathbb{Z} \rightarrow \mathbb{Q}[h^{\pm 1}]$. On the other hand, the range of g in propositions of [8] can be restricted in $\mathbb{Z}[h^{\pm 1}]$. Thus we can use the Laurent polynomial ring $\mathbb{Z}[h^{\pm 1}]$ as the range of g. Since the ideals in Section 3 are proper, our theorems are meaningful.

3. Periodic virtual links

An oriented virtual link L is said to have period $p \geq 2$ if it admits an oriented virtual link diagram D in $\mathbb{R}^2 \setminus \{0\}$ that invariant under the rotation ζ of \mathbb{R}^2 about the origin 0 through $2\pi/p$. The virtual link L_ζ represented by the quotient $D/\langle \zeta \rangle$ is called the factor link of L. The diagram described in Fig. 1 is a virtual link diagram of a virtual link having period 3.

Theorem 3.1 (Fermat’s little theorem, [2]). If p is a prime and a an integer relatively prime to p, then

$$a^{p-1} \equiv 1 \mod p.$$

Theorem 3.2. Let p be an odd prime and L a virtual link that has period p^r ($r \geq 1$). Let g be a map from \mathbb{Z} to $\mathbb{Z}[h^{\pm 1}]$.

(1) If $g: (\mathbb{Z}, +) \rightarrow (\mathbb{Z}[h^{\pm 1}], \cdot)$ is a homomorphism, then

$$R(L, g) \equiv [R(L_\zeta, g)]^{p^r} \mod (p, (-A^{2} - A^{-2})^{p^r} - 1).$$
(2) If $g : \mathbb{Z} \to \mathbb{Z}[h^{\pm 1}]$ is defined by $g(n) = h^{(1 - (-1)^n)/2}$, then

$$R(L, g) = [R(L_s, g)] = (p, (-A^2 - A^{-2})^{p-1} - 1, h^{p-1} - 1).$$

Proof. It suffices to prove the theorem for $r = 1$ (the theorem for $r > 1$ is proved by applying the argument for $r = 1$ repeatedly). Let D be a virtual link diagram of L in $\mathbb{R}^2 \setminus \{0\}$ that invariant under the rotation ζ of \mathbb{R}^2 about the origin 0 through $2\pi/p$. Then D can be divided into p pieces $D_0, D_1, \ldots, D_{p-1}$ such that $\zeta(D_i) = D_{i+1} (i = 0, 1, \ldots, p - 1)$ and $D_p = D_0$. Let $I(0, 2\pi/p)$ be the closed domain bounded by two half lines $\theta = 0$ and $\theta = 2\pi/p$ in the polar coordinate system. We may assume that $D_0 = D \cap I(0, 2\pi/p)$. Let A_1, A_2, \ldots, A_l be the points of intersection of D_0 and the line $\theta = 0$ and let $\zeta(A_i) = B_i (i = 1, 2, \ldots, l)$. By joining A_i and B_i on $\mathbb{R}^2 \setminus I(0, 2\pi/p)$ by circle C_i centered 0, we obtain a diagram D_s of the factor link L_s. For example, see Fig. 9. For simplicity, we write $D_s = D/\zeta$. We note that the rotation $\zeta : \mathbb{R}^2 \to \mathbb{R}^2$ maps D onto itself preserving the sign of each crossing. If s is a state in $\mathcal{S}(D)$, then either $\zeta(s) \neq s$ or $\zeta(s) = s$.

If $\zeta(s) \neq s$, then s, $\zeta(s)$, $\zeta^2(s)$, \ldots, $\zeta^{p-1}(s)$ are all distinct. Since any two of these are isomorphic, we have p identical terms in $H(D, g)$, and they vanish by reducing modulo p.

If $\zeta(s) = s$, then s defines a unique quotient state $s_a (= s/\zeta)$. Let α and α_a be the terms in $H(D, g)$ and $H(D_a, g)$ which are associated with s and s_a, respectively. Since $\sum_{C_i(D,s)} \text{sign}(c) = p \cdot \sum_{C_i(D,s_a)} \text{sign}(c)$ and $\sum_{C_i(D,s)} \text{sign}(c) = p \cdot \sum_{C_i(D_a,s_a)} \text{sign}(c)$, we have

$$P(D; s) = p \cdot P(D_a; s_a).$$

Then we have that

$$\alpha = A^{p-P(D_a,s_a)} d^{p(s)-1} \langle s \rangle, \quad \alpha_a = A^{P(D_a,s_a)} d^{p(s)-1} \langle s_a \rangle.$$
We will compare $\mu(s) - 1$ and $\mu(s_s) - 1$. Let $G = \{id, \zeta, \ldots, \zeta^{p-1}\}$ and $C = \{C \mid C$ is a component of $s\}$, where id is the identity of \mathbb{R}^2. Then G acts on C by $\zeta^i \cdot C = \zeta^i(C)$. We put $C_G = \{C \in C \mid gC = C, \forall g \in G\}$ and $C/G = \{G(C) \mid G(C)$ is the orbit of $C \in C\}$. For a set S, we denote by $|S|$ the number of elements in S. If $\zeta^i(C) = C$ for some i ($1 \leq i \leq p - 1$), then $\zeta^i(C) = C$ for all j because p is prime. Thus $|G(C)| = p$ or 1. We note that $|G(C)| = 1$ if and only if $C \in C_G$. Since $\mu(s_s) = |C/G|$, we calculate that

$$
(3.2) \quad \mu(s) = |C| = |C_G| + p(|C/G| - |C_G|) = p \cdot \mu(s_s) - (p - 1)|C_G|.
$$

Since $\mu(s) - 1 = p(\mu(s_s) - 1) - (p - 1)(|C_G| - 1)$, we have that

$$
(3.3) \quad d^{\mu(s) - 1} = d^{p(\mu(s_s) - 1)} \mod (d^{p-1} - 1).
$$

By Theorem 3.1 and (3.2), it follows that

$$
(3.4) \quad 2^{-\mu(s)} \equiv 2^{p(-\mu(s_s))} \mod p.
$$

Let f be a weight map of s. We define a weight map $\zeta(f)$ of s by, for each edge e of s,

$$
\zeta(f)(e) = f(e') \quad \text{whenever} \quad \zeta(e') = e.
$$

If $\zeta(f) \neq f$, then $f, \zeta(f), \ldots, \zeta^{p-1}(f)$ are all distinct but $\hat{s}_f, \hat{s}_{\zeta(f)}, \ldots, \hat{s}_{\zeta^{p-1}(f)}$ are equivalent. Thus $w(\hat{s}_f) = w(\hat{s}_{\zeta(f)}) = \cdots = w(\hat{s}_{\zeta^{p-1}(f)})$. If $\zeta(f) = f$, then f defines a unique weight map $f_s = f/\zeta$ of s_s. Let $WD(s)$ denote the set of weighted diagram of s, that is, $WD(s) = \{s_f \mid f \in WM(s)\}$. Then G acts on $WD(s)$ by

$$
\zeta(s_f) = s_{\zeta(f)}.
$$

We can put that $WD(s) = \{s_{f_1}, s_{f_2}, \ldots, s_{f_n}\} \cup \{s_{f_{1,0}}, s_{f_{1,1}}, \ldots, s_{f_{1,p-1}}\} \cup \cdots \cup \{s_{f_{m,0}}, s_{f_{m,1}}, \ldots, s_{f_{m,p-1}}\}$ where $\zeta(s_{f_i}) = s_{f_i}$ for all i ($1 \leq i \leq m$) and $f_{j,k} = \zeta^k(f_{j,0})$ for each $k = 1, 2, \ldots, p - 1, j = 1, 2, \ldots, n$. We set that $w_i = w(\hat{s}_{f_i})$ and $w_{j,k} = w(\hat{s}_{f_{j,k}})$ for each $i = 1, 2, \ldots, m, k = 1, 2, \ldots, p - 1, j = 1, 2, \ldots, n$ and set $w^*_i = w(s_{f_{(i,0)}})$ for each $i = 1, 2, \ldots, m$. For each $i = 1, 2, \ldots, m$, we have

$$
(3.5) \quad w_i = p \cdot w_i^*.
$$

For any map $g : \mathbb{Z} \to \mathbb{Z}[h^{\pm 1}]$, we have that

$$
\langle s_s \rangle = 2^{-\mu(s_s)}[g(w_1^*) + \cdots + g(w_m^*)]
$$

and

$$
\langle s \rangle = 2^{-\mu(s)}[g(w_1) + \cdots + g(w_m) + p \cdot g(w_{1,0}) + \cdots + p \cdot g(w_{m,0})].
$$
By (3.4) and (3.5), it follows that

$$\langle s \rangle \equiv 2^{p(-\mu(s))}[g(p \cdot w_i^p) + \cdots + g(p \cdot w_m^p)] \mod p.$$

(1) If \(g: (Z, +) \to (\mathbb{Z}[h^{\pm 1}], \cdot) \) is a homomorphism, then

$$\langle s \rangle^p = 2^{p(-\mu(s))}[g(w_1^p) + \cdots + g(w_m^p)]^p$$

$$\equiv 2^{p(-\mu(s))}[g(w_1^p)^p + \cdots + g(w_m^p)^p] \mod p$$

$$\equiv 2^{p(-\mu(s))}[g(p \cdot w_1^p) + \cdots + g(p \cdot w_m^p)] \mod p$$

$$\equiv \langle s \rangle \mod p.$$

By (3.1), (3.3) and (3.6), it follows that

$$\alpha_s^p \equiv \alpha \mod (p, (-A^2 - A^{-2})^{p-1} - 1).$$

Hence we have

$$H(D, g) \equiv [H(D_s, g)]^p \mod (p, (-A^2 - A^{-2})^{p-1} - 1).$$

Since \(w(D) = p \cdot w(D_s), (-A^3)^{-w(D')} = [(-A^3)^{-w(D'_s)}]^p \). Therefore we have

$$R(L, g) \equiv [R(L_s, g)]^p \mod (p, (-A^2 - A^{-2})^{p-1} - 1).$$

(2) Suppose that \(g: \mathbb{Z} \to \mathbb{Z}[h^{\pm 1}] \) is defined by \(g(n) = h^{(1-(-1)^n)/2} \). Since \(w_i = p \cdot w_i^p \) and \(p \) is an odd prime, \(w_i \) and \(w_i^p \) have the same parity and hence \(g(w_i) = g(w_i^p) \). Since \(g(w_i^p) \) is either \(h \) or 1, we have

$$g(w_i^p)^p \equiv g(w_i^p) \mod (h^{p-1} - 1).$$

Then we know that

$$\langle s \rangle^p = 2^{p(-\mu(s))}[g(w_1^p) + \cdots + g(w_m^p)]^p$$

$$\equiv 2^{p(-\mu(s))}[g(w_1^p)^p + \cdots + g(w_m^p)^p] \mod p$$

$$\equiv 2^{p(-\mu(s))}[g(p \cdot w_1^p) + \cdots + g(p \cdot w_m^p)] \mod (p, h^{p-1} - 1)$$

$$\equiv \langle s \rangle \mod (p, h^{p-1} - 1).$$

By (3.1), (3.3) and (3.7), it follows that

$$\alpha_s^p \equiv \alpha \mod (p, (-A^2 - A^{-2})^{p-1} - 1, h^{p-1} - 1).$$
Thus we have
\[H(D, g) \equiv [H(D_s, g)]^p \mod (p, (-A^2 - A^{-2})^{p-1} - 1, h^{p-1} - 1). \]
Hence we get
\[R(L, g) \equiv [R(L_s, g)]^p \mod (p, (-A^2 - A^{-2})^{p-1} - 1, h^{p-1} - 1). \]
This completes the proof.

Example 3.3. Let \(L_1 \) be a virtual knot as in Fig. 10. Then the Jones-Kauffman polynomial of \(L_1 \) is equal to 1 [8]. Let \(g: \mathbb{Z} \to \mathbb{Z}[h^{\pm 1}] \) be a map given by \(g(n) = h^n \). It is known [8] that
\[R_{L_1}^g = \frac{1}{2}(1 + A^{-8}) + \frac{1}{4}(1 - A^{-8})(h^2 + h^{-2}). \]
Suppose that \(L_1 \) has period 3. From Theorem 3.2, it follows that
\[\frac{1}{4}(1 - A^{-8}) \equiv 0 \mod (3, (-A^2 - A^{-2})^2 - 1). \]
Since \((-A^2 - A^{-2})^2 - 1 = A^4 + 1 + A^{-4} = A^{-4}(A^8 + A^4 + 1) \) and \(1 - A^{-8} = (A^{-4} - A^{-8})(A^8 + A^4 + 1) + (1 - A^4), \)
\[\frac{1}{4}(1 - A^{-8}) \equiv 1 + 2A^4 \mod (3, A^8 + A^4 + 1). \]
Let \(\mathcal{I} \) be the ideal of \(\mathbb{Z}[2^{-1}, A^{\pm 1}] \) generated by 3. We note that the quotient ring of \(\mathbb{Z}[2^{-1}, A^{\pm 1}] \) by \(\mathcal{I} \) is isomorphic to the ring \(\mathbb{Z}_3[A^{\pm 1}] \). So it is not true that \(1 + 2A^4 \equiv 0 \mod (3, A^8 + A^4 + 1) \). Hence \(L_1 \) does not have period 3.

Theorem 3.4. Let \(p \) be a prime and \(L \) a virtual link that has period \(p' \) (\(r \geq 1 \)). Let \(g \) be a map from \(\mathbb{Z} \) to \(\mathbb{Z}[h^{\pm 1}] \). Then
\[R_{L,g}(A, h) \equiv R_{L,g}(A^{-1}, h) \mod (p, A^{p'} - 1). \]
Proof. Let D be a virtual link diagram of L in $\mathbb{R}^2 \setminus \{0\}$ that invariant under the rotation ζ of \mathbb{R}^2 about the origin 0 through $2\pi/p'$ and $D_s = D/\zeta$. Let s be a state of D.

If $\zeta(s) \neq s$, then there exist p^n distinct but equivalent states $s, \zeta(s), \ldots, \zeta^{p^n-1}(s)$ for some n ($1 \leq n \leq r$). Contribution of these states to the polynomial vanishes by reducing modulo p.

If $\zeta(s) = s$, then s defines a unique quotient states $s_s (= s/\zeta)$. Since $P(D; s) = p' \cdot P(D_s; s_s)$, we get

$$A^{P(D; s)} = A^{p' \cdot P(D_s; s_s)} \equiv 1 \mod (A^{p'} - 1).$$

Since $d = -A^2 - A^{-2}$ is symmetric and $\langle s \rangle \in \mathbb{Z}[2^{-1}, h^{\pm 1}]$, we obtain

$$H_{D,g}(A, h) \equiv H_{D,g}(A^{-1}, h) \mod (p, A^{p'} - 1).$$

Since $w(D) = p' \cdot w(D_s)$,

$$(-A^3)^{-w(D)} \equiv (-A^{-3})^{-w(D)} \mod (A^{p'} - 1).$$

Hence we have

$$R_{L,g}(A, h) \equiv R_{L,g}(A^{-1}, h) \mod (p, A^{p'} - 1).$$

This completes the proof.

\begin{corollary}
Let p be a prime and L a virtual link that has period p'. Let $g: (\mathbb{Z}, +) \rightarrow (\mathbb{Z}[h^{\pm 1}], \cdot)$ be a homomorphism. Then

$$R_{L,g}(A, h) \equiv R_{L,g}(A^{-1}, h^{-1}) \mod (p, A^{p'} - 1).$$

\end{corollary}

Proof. Let D be a virtual link diagram of L in $\mathbb{R}^2 \setminus \{0\}$ that invariant under the rotation ζ of \mathbb{R}^2 about the origin 0 through $2\pi/p'$ and $D_s = D/\zeta$.

Let s be a state of D. Since $g: (\mathbb{Z}, +) \rightarrow (\mathbb{Z}[h^{\pm 1}], \cdot)$ is a homomorphism, we have $\langle s \rangle(h) = \langle s \rangle(h^{-1})$ by Lemma 2.1. By the similar argument to Theorem 3.4, we have

$$R_{L,g}(A, h) \equiv R_{L,g}(A^{-1}, h^{-1}) \mod (p, A^{p'} - 1).$$

This completes the proof.

\begin{example}
Let L_1 be a virtual knot as in Fig. 10. Then

$$R_{L_1}^g(A, h) - R_{L_1}^g(A^{-1}, h) = \frac{1}{2}(A^{-8} - A^8) + \frac{1}{4}(A^8 - A^{-8})(h^2 + h^{-2}).$$

\end{example}
We observe that
\[\frac{1}{2}(A^{-8} - A^8) \equiv 2A + A^2 \not\equiv 0 \mod (3, A^3 - 1). \]

Hence this is an another proof to show that \(L_1 \) does not have period 3.

ACKNOWLEDGEMENTS. The authors would like to thank the referee for many valuable comments. This work was supported for two years by Pusan National University Research Grant.

References

Miyazawa Polynomial of Periodic Virtual Links

Joonoh Kim
Department of Mathematics
Graduate School of Natural Sciences
Pusan National University
Pusan 609–735
Korea

e-mail: sangyoul@pusan.ac.kr

Sang Youl Lee
Department of Mathematics
Pusan National University
Pusan 609–735
Korea

e-mail: sangyoul@pusan.ac.kr

Myoungsoo Seo
Department of Mathematics
Kyungpook National University
Daegu 702–701
Korea

e-mail: myseo@knu.ac.kr