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Abstract
In this paper, we investigate the behavior of the Miyazawgmahial of periodic
virtual links. As applications, we give some criteria to elgtpossible periods of a
given oriented virtual link.

1. Introduction

A classical link L in S® is called ap-periodic link (p > 2 an integer) if there
exists an orientation preserving auto-homeomorphisof S* such thath(L) =L, h is
of order p and the set of fixed points di is a circle disjoint fromL. In this case,
L, =L/(h) is called thefactor link of L. A link diagram D in R?\ {0} is said tohave
period pif there exists a rotatiomy of R? about the origin0 through 2r/p such that
¢(D) = D. It is well known that everyp-periodic link has a diagram of periog.

In 1988, Murasugi [10] found some relationships between thees polynomials
of a periodic link and its factor link and showed that the k&6tos has no period. In
1990, Traczyk [13] gave a periodicity criterion for links 8 by mapping Kauffman’s
bracket polynomial homomorphically into the group ring 0w, of a cyclic group
Cyn of order p” (p a prime), and proved that the knots;d0and 1Q¢s have no pe-
riod seven. In addition, several people found criteria ttedepossible periods for an
oriented link by using polynomial invariants [1, 6, 7, 9, 1P, 14, 15, 16].

In 1996, Kauffman introduced the concept of a virtual link [B. virtual link dia-
gramis a link diagram inR? possibly with some encircled crossings without over/under
information. Such an encircled crossing is calledidual crossing Fig. 1 shows an
example of a virtual link diagram. If two virtual link diagres are related by a finite
sequence of generalized Reidemeister moves as descritigd. i@, they are said to be
equivalent A virtual link is defined to be an equivalence class of virtual link diagrams

In [5], Kauffman defined a polynomial invariarfi, e Z[ A*?] for a virtual link L
which we call theJones-Kauffman polynomiaFor a classical link_, it is equal to the
Jones polynomiaV, (t) after substitutingy/t for A%. In 2005, Kamada and Miyazawa
[4] introduced the concept of virtual magnetic graph diaggaand defined a 2-variable
polynomial invariant for a virtual link derived from virtbanagnetic graph diagrams. In
[8], Miyazawa defined a virtual link invariant, which genézak the Jones-Kauffman
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Fig. 1. A virtual link diagram.
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Fig. 2. Generalized Reidemeister moves.

polynomial and the 2-variable polynomial invariant. In,[3{amada gave some rela-
tions of the 2-variable polynomial invariant for a virtuddedn triple.

In this paper, we investigate the behavior of the Miyazawgmmhial of periodic
virtual links. As applications, we give some criteria to et possible periods of a
given oriented virtual link.

2. The Miyazawa polynomial

In this section, we review the Miyazawa polynomial of a viftliak [3, 4, 8].

Let G be an oriented 2-valent graph ®. G is called magneticif the edges of
G are oriented alternately as in Fig. 3. We all@vto have components consisting
of closed edges without vertices. magnetic graph diagranof a magnetic graplc
is a projection image of5 on a plane equipped with over/under information on each
crossing as in Fig. 4. Avirtual magnetic graph diagranfor shortly VMG diagran) is
a magnetic graph diagram possibly with some virtual cra@sses in Fig. 5. Two VMG
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Fig. 5. A virtual magnetic graph diagram.

diagrams are said to bequivalentif they are related by a finite sequence of general-
ized Reidemeister moves. We note that virtual link diagrames VMG diagrams with-
out vertices. For a VMG diagrar®, we denote the sum of the signs of real crossings
of D by w(D). It is called thewrithe of D. A pure VMG diagramis a VMG diagram
whose crossings are all virtual.

Let D be a pure VMG diagram ané&(D) the set of edges ob. A weight map
of Disamapf: E(D) — {+1,—1} such that the product of images of two adjacent
edges byf is —1. We denote the set of weight maps Bf by WM(D). For a weight
map f of D, we denoteD; a pure VMG diagram of which each edge is labeled its
weight as in Fig. 6. It is called aveighted diagramcorresponding tof. If c is a
virtual crossing of a weighted diagram;, there exist two types of virtual crossings
on Ds. If the product of weights of two edges which intersectcas +1 (resp.—1),
c is called aregular crossing(resp. irregular crossing.

Let D be a pure VMG diagram and a weight map ofD. Let ¢ be an irregular
virtual crossing ofD;. Suppose that is formed with two edge®; and e ; whose



772 J. KM, S.Y. LEE AND M. SEO

Fig. 6. A weighted pure VMG diagram.

Fig. 7. The raised diagram of the diagram in Fig. 6.

weights are +1 and-1, respectively. Thert can be replaced with a real crossifg
so that the edges; and e_; are changed into the overpath and the underpath, at
respectively. Such a replacement is calledaie of an irregular crossing. Theised
diagram of D with respect tof, which is denoted byD+, is defined to be the VMG
diagram obtained from the weighted diagrdm by doing raises of all irregular cross-
ings of D¢. For example, the raised diagram derived from the weighiedrdm in
Fig. 6 is given in Fig. 7.

For a pure VMG diagranD, let Fp be a map from WMD) to Z defined by
Fo(f) = w(D;) for all weight map f of D. If we put WM,(D) = {f € WM(D) |
Fpo(f) =n} for any integemn, then we have

Lemma 2.1. For a pure VMG diagram D and an integer, there exists a one-
to-one correspondence betwedfM,(D) and WM _,(D).

Proof. For a weight mad of D, we define a mapf from E(D) to {+1,—1} by

f(e=—f(e), forall ec E(D).
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Fig. 8.

Then f is also a weight map ob. Let ¢ be a real crossing of the raised diagrdm
and € the real crossing of the raised diagrdfrr corresponding ta. Then sign) =
—sign() and hencew(D7) = —w(Dy). It follows that f € WM_,(D) if f € WM(D).
Now we define a magy, from WMp(D) to WM_p(D) by

on(f)=f, forall feWM,(D).

Then ¢, is well-defined. Sincep , o ¢, and ¢, o ¢_,, are the identity mapse, is a
one-to-one correspondence between WB) and WM_,(D). ]

Let g be a map fron%Z to a Laurent polynomial ringZ[h*1]. The double bracket
polynomial (D)4 of a pure VMG diagranmD associated t@ is a Laurent polynomial
in Z[271, h*1] defined by

(Dhg=27® 3" (go Fp)(f).

f eWM(D)

If cis a real crossing oD, then there are two kinds of splices @twhich are called
O-splice and co-spliceat ¢ as in Fig. 8. Astateof D is a pure VMG diagram obtained
from D by doing O-splice orco-splice at each real crossing &f. We denote the set
of states ofD by S(D). For a states of D, let Cy(D;s) (resp.Cx(D; s)) be the set
of real crossings oD where 0-splices (respxo-splices) are applied to obtam from
D. We put

P(D;s)= ) signe)— ) sign@),

ceCy(D;s) ceCu(D;s)

where sign€) is the crossing sign of.

Let D be a virtual link diagram of a virtual linke andg: Z — Z[h*Y]. In [8],
Miyazawa gave a Laurent polynomi&lp ¢(A, h) (or briefly, H(D, g)) of D associated
with g in Z[271, A*1, h*1] defined by

Hog(A h)= Y APORGE-1(s),
seS(D)

whered = —A?— A=? and u(s) is the number of components sf The Miyazawa poly-
nomial R 4(A, h) (or briefly, R(L, g)) of L associated witlg is a Laurent polynomial
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in Z[271, A*L, h*!] defined by
RLg(A h) = Rp g(A, h) = (=A%) Hp 4(A, h).

In [8], Miyazawa showed thaR_ 4(A,h) is a virtual link invariant and gave some prop-
erties.

Proposition 2.2 ([8]). (1) If g: Z — Z[h*'] is defined by ¢n) =1, then RL, g)
is identical with the Jones-Kauffman polynomial of L
(2) If g: Z — Z[h*Y] is defined by (n) = |n| and L is a classical linkthen RL, g)
is equal to zero
(3) If g: Z — Z[h*"] is defined by (n) = h@-C1"/2 then RL, g) coincides with the
2-variable polynomial defined by Kamada and Miyazawa
(4) If g: Z — Z[h*'] is defined by (n) =h" and v(L) is the virtual crossing number
of L, thenv(L) > max deg R(L, 9).

REMARK 2.3. In [8], Miyazawa used an arbitrary Laurent polynomiabrl™ over
Q as the range ofl. If I' = Q[h*!], then (D), € Q[h*'] and R(L, g) € Q[h*!, A*1].
Since the ideal ofg[h*!, A*!] generated by a non-zero integer is itself, our theorems
in Section 3 are meaningless fgr Z — Q[h*]. On the other hand, the rage gfin
propositions of [8] can be restricted & h*']. Thus we can use the Laurent polynomial
ring Z[h*1] as the range ofj. Since the ideals in Section 3 are proper, our theorems
are meaningful.

3. Periodic virtual links

An oriented virtual linkL is said tohave period p> 2 if it admits an oriented
virtual link diagramD in R?\ {0} that invariant under the rotation of R? about the
origin 0 through 2r/p. The virtual link L, represented by the quotiebt/(¢) is called
the factor link of L. The diagram described in Fig. 1 is a virtual link diagram of a
virtual link having period 3.

Theorem 3.1 (Fermat’s little theorem, [2]). If p is a prime and a an integer
relatively prime to p then

aP~! =1 modp.
Theorem 3.2. Let p be an odd prime and L a virtual link that has period p
(r > 1). Let g be a map fronZ to Z[h*!].
(1) If g: (Z, +) = (Z[h*1], -) is a homomorphismthen

R(L, 9) = [R(Ls, 9)]® mod (p, (—A2 — A"3)P-1_ 1)
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Fig. 9.
(2) If g: Z — Z[h*] is defined by () = h-CD"Y/2 then
R(L, g) = [R(L+, g)]” mod (p, (—A> — A?)P1_1 hP1_1)

Proof. It suffices to prove the theorem for= 1 (the theorem for > 1 is proved
by applying the argument far = 1 repeatedly). LeD be a virtual link diagram ofiL
in R?\ {0} that invariant under the rotation of R? about the origin0 through 2r/p.
Then D can be divided intop piecesDy, Dy, ..., Dp_1 such that(D;) = Di+1 (i =
0,1,...,p—1) andDy = Dg. Let I (0, 2r/p) be the closed domain bounded by two
half lines6 =0 and6 = 2z/p in the polar coordinate system. We may assume that
Do=DnNI(0, 27r/p). Let Aq, Ay, ..., A be the points of intersection dd, and the
line # =0 and letz(A)=B; (i=1,2,...,1). By joining A; and B; on R?\ 1 (0, 27/ p)
by circle C; centered 0, we obtain a diagraB, of the factor linkL,. For example,
see Fig. 9. For simplicity, we writ®, = D/¢z. We note that the rotation: R? — R?
maps D onto itself preserving the sign of each crossingslis a state inS(D), then
eitherz(s) #s or ¢(s) =s.

If z(s) #s, thens, ¢(s), ¢2(S), ..., ¢P~Y(s) are all distinct. Since any two of these
are isomorphic, we have identical terms inH(D, g), and they vanish by reducing
modulo p.

If ¢(s) =s, thens defines a unique quotient state (= s/¢). Let « and «, be
the terms inH(D, g) and H(D,, g) which are associated wite and s,, respectively.

Since) ¢ p:5SIANE) = P+ ¢ (p.:5)SIINEC) and 3 ¢ p.5SIANEC) = P+ ¢ (p.:s,)SIINC),
we have

P(D;s) = p- P(Ds; s).
Then we have that

(3.1) o= AD-P(D*;&)du(S)fl«S»' o, = AP(D*;S*)du(S*)fl«Sk»_
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We will compareu(s)—1 andu(s,)—1. LetG ={id,¢,...,cP 1} andC={C|C is
a component o6}, whereid is the identity ofR2. ThenG acts onC by ¢'-C =¢/(C).
We putCg ={C e(C|gC=C, Vge G} andC/G ={G(C) | G(C) is the orbit ofC € C}.
For a setS, we denote by|S| the number of elements i6. If ¢'(C) = C for somei
(L<i<p=1), thenzi(C)=C for all j becausep is prime. Thus|G(C)| = p or 1.
We note that|G(C)| =1 if and only if C € Cg. Sincepu(s,) =|C/G|, we calculate that

(3.2) u(s) = ICI = |Csl + p(IC/G| — |Cs]) = p - u(ss) — (P — 1)ICq.
Since u(s) — 1 = p(u(sy) — 1) — (p — 1)(Cs| — 1), we have that

(3.3) d*®-1 = gP )= mod dP~t — 1).

By Theorem 3.1 and (3.2), it follows that

(3.4) 2—1(8) = 2P(=1()) mod p.

Let f be a wight map ok. We define a weight map(f) of s by, for each edge
e of s,

c(f)e) = f(€) whenever ¢(€)=e

If ¢(f) # f, then f, ¢(f),..., ¢P~}(f) are all distinct buts;, S7), ..., Se1(r) are
equivalent. Thusw(Si) = w(s; (1)) = - -+ = w(Sry1)). If ¢(f) = f, then f defines a

unique weight mapf, (= f/¢) of s,. Let WD(s) denote the set of weighted diagram
of s, that is, WD) = {s¢ | f € WM(s)}. ThenG acts on WD§) by

¢(st) = sy(h)-
We can put that WD¥) = {st,, S, .., St} U {Sfigr Stygsev-s St} U oo U
{St.0s Sfgr -« s St,,.) Wherez(sg) =sq foralli (1<i <m)and fj = ¢%(fj0) for

eachk=1,2,..., p—1,j=1,2,..,n We set thatw; = w(S;) and w; x = w(St,,)

for eachi =1,2,...,m k=1,2,...,p—1,j =1,2,...,n and setw’ = w((S.)1).)
for eachi =1, 2,..., m. For eachi =1, 2,..., m, we have

(3.5) wi = p-w.
For any mapg: Z — Z[h*!], we have that

(s) =2 " g(wy) + - - -+ g(wp)]
and

(s) =27 *O[g(wr) + - - - + g(wm) + P- Y(w1,0) +- - -+ P - G(wm,0)]-
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By (3.4) and (3.5), it follows that
() = 2P0V [g(p-wy) +- - +g(p - wy)] mod p.
(1) If g:(Z,+) — (Z[h*Y], ) is a homomorphism, then
(80P = 2PCHEDg(w]) + - -+ g(wy)]P
(3.6) = 2P CHE[gwi)P + - -+ g(wy)P] mod p
= 2PCHD[g(p - wi) +- - - +g(p- wpy)] mod p
= ((s)) mod p.
By (3.1), (3.3) and (3.6), it follows that
aP =a mod (p, (A2 — A2)P1 1),
Hence we have
H(D, g) = [H(D., )]’ mod (p, (-A* — A73)P* —1).
Sincew(D) = p- w(D,), (—A3)~*(D) = [(—A3)~w(P)]P, Therefore we have
R(L, g) = [R(L., g)]° mod (p, (~A® — A?)P~1 —1).
(2) Suppose thay: Z — Z[h*'] is defined byg(n) = h@=CD"/2 " Since w;

p-w and p is an odd prime,w; and w;* have the same parity and hengéw;)
g(wi). Sinceg(wy") is eitherh or 1, we have

g(w)? = g(w;’) mod (P~* —1).
Then we know that

()P = 20 CHEMgw) +- - + glwy)]?

2P [g(wy)P + - - - + g(wy)Pl mod p

(3.7) = 2P [g(wy) + -+ + g(wp)] mod (p, hPH — 1)
= 2PCHDg(wy) + - - +g(wm)] mod (p, hP* — 1)
= ((s) mod (p, hP~1 —1).

By (3.1), (3.3) and (3.7), it follows that

aP =amod (p, (—A> — A 2Pt _1 hP1 1),
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L,
Fig. 10.

Thus we have

H(D, g) = [H(D., )]° mod (p, (-A? — A7%)P~+ — 1, hP~* — 1),
Hence we get

R(L, g) = [R(L, 9)I° mod (p, (A% — A7?)P~1 — 1, hP~t —1).
This completes the proof. ]

ExAmMPLE 3.3. LetlL; be a virtual knot as in Fig. 10. Then the Jones-Kauffman

polynomial of L, is equal to 1 [8]. Lety: Z — Z[h*'] be a map given byg(n) = h".
It is known [8] that

1 1
RY, = S+ A8+ 24— A8)(h? + h™2).

Suppose that ; has period 3. From Theorem 3.2, it follows that
1 -8 2 —2\2
Z(l_A )=0mod (3, FA°— A7) —1).

Since A2 -~ A2 —1=A+1+A*=A4%A8+A*+1)and 1- A 8= (A4 -
A8)(AB+ A%+ 1)+ (1— AY,

1
21(1 — A8 =1+2A%mod (3,A%+ A*+1).

Let 7 be the ideal ofZ[2~%, A*1] generated by 3. We note that the quotient ring of
Z[2~1, A*1] by T is isomorphic to the ringZs[ A*Y]. So it is not true that 1+2* =0
mod (3,A%+ A*+ 1). Hencel, does not have period 3.

Theorem 3.4. Let p be a prime and L a virtual link that has period fr > 1).
Let g be a map fronZ to Z[h*!]. Then

RLg(A h) = R_4(A™%, h) mod (p, AP —1).



MIYAZAWA POLYNOMIAL OF PERIODIC VIRTUAL LINKS 779

Proof. LetD be a virtual link diagram ofL in R?\ {0} that invariant under the
rotation ¢ of R? about the originO through 2r/p’ and D, = D/¢. Let s be a state
of D.

If z(s) #s, then there exisp” distinct but equivalent states z(s), . .., ¢P"~(s)
for somen (1 < n <r). Contribution of these states to the polynomial vanishgs b
reducing modulop.

If ¢(s) =s, thens defines a unique quotient states (= s/¢). Since P(D;s) =
p" - P(D,;s.), we get

APD:S) = AP P(DS) = 1 mod (AP — 1).
Sinced = —A? — A2 is symmetric and(s)) € Z[2" 1, h*'], we obtain
Hb.g(A, h) = Hp g(A™%, h) mod (p, AP — 1).
Sincew(D) = p" - w(D,),
(=A%) ®) = (—A3) () mod (AP — 1).
Hence we have
RLg(A, h) = R g(A™%, h) mod (p, AP — 1).

This completes the proof. O

Corollary 3.5. Let p be a prime and L a virtual link that has period.pLet
g: (Z, +) = (Z[h*Y], -) be a homomorphisniThen

RLg(A h) = R_g(A™%, h™) mod (p, A" —1).
Proof. LetD a virtual link diagram ofL in R?\ {0} that invariant under the ro-
tation ¢ of R? about the origin0 through 2r/p" and D, = D/¢.
Let s be a state oD. Sinceg: (Z, +) — (Z[h*'], -) is a homomorphism, we have
(sy(h) = (s)(h~) by Lemma 2.1. By the similar argument to Theorem 3.4, we have
RLg(A h) = R_g(A™, h™Y) mod (p, AP — 1).

This completes the proof. ]

ExXAMPLE 3.6. LetL; be a virtual knot as in Fig. 10. Then

1 1
RY(A h)— R (A h)= E(A*S — A+ Z(AB — A ®(Mh?+h7?).
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We observe that
1 -8 8 2 3
E(A — A®) = 2A+ A 0 mod (3,A° - 1).
Hence this is an another proof to show that does not have period 3.
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