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Abstract Although it is known from previous studies that
porpoising in high-speed planing craft is a Hopf bifurcation,
this study examined its occurrence and disappearance using
the motion model identified from full-scale test data. Herein,
we first analyzed the stability of the system linearized near
the equilibrium point. From its results, we reconfirmed the
knowledge that porpoising occurs when the system becomes
unstable in the vicinity of the equilibrium point. We also
found that the system became unstable as the thrust or trim
angle of the outboard motor decreased. This finding was
consistent with the results of a full-scale craft test performed
in a previous study. Second, we confirmed that the limit
cycle which is a result of the nonlinearity of the system was
stable. The two analyses indicate that porpoising corresponds
to the supercritical Hopf bifurcation. Furthermore, in the
vicinity of the bifurcation point, it was found that stable
equilibrium points and stable limit cycles can coexist. Finally,
we confirmed this phenomenon in the full-scale test.

Keywords High-speed boat · Planing hull · Porpoising ·
Nonlinear analysis · Hopf bifurcation

1 Introduction

The proportion of the boat equipped with the outboard mo-
tor has increased on behalf of the stern drive boat decrease
due to the development of large-sized outboard motor and
expansion of the use of multiple motors [1]. In addition, as
the stepped hull craft gained widespread use, boats became
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faster. Because a stern drive requires the engine to be installed
in the confined engine room, it is difficult to maintain and
also takes up a lot of space inside the craft. Therefore, con-
verting a stern drive to an outboard motor helps improve the
maintainability and comfort of the boat. On the other hand,
moving the engine to the stern increases the possibility of
porpoising, a coupled heave and pitch motion [2].

System stability and the porpoising occurrence have been
extensively researched. Savitsky [3] showed the limitation
of porpoising using the experimental data from a prismatic
planing hull conducted by Day and Haag [4]. Savitsky [3]
calculated the attitude at which thrust, lift, and drag were
balanced, and if the pitch angle of the craft was less than
the porpoising limit, the craft remained stable. Based on
the research of Savitsky [3] and Brown [5], Ekman and Ry-
delius [6] investigated the effect of the height of the intercep-
tors on the porpoising limit. They added a constant value to
the trim angle to match the result of the full-scale craft test.
Hicks et al. [2] identified the limit position of the center of
gravity of the craft by analyzing changes in stability by using
a linearized system. They also showed that the occurrence
or disappearance of porpoising depends on the quadratic
terms that are included in the system in the nonlinear sim-
ulation. Katayama [7] identified the system parameters of
a linear system through constraint tests and found that por-
poising diminishes as the damping coefficients increase and
that it disappears completely when the coupling restoring
coefficients are removed. Sun and Faltinsen [8] identified the
system parameters of a linear model using a 2D+t theory and
a boundary element method. They estimated the occurrence
of porpoising via a stability analysis using the identified lin-
ear system and calculated the time history using a nonlinear
model. They also investigated the limit of porpoising based
on the position of the center of gravity of the craft using
numerical simulation based on the 2d+t theory [9]. They
compared their results with those of the test conducted by
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Day and Haag [4] and found that the critical position of the
center of gravity of the craft determined by them was similar
to the test result. Thus, many studies have investigated the
relationship between the center of gravity and the occurrence
of porpoising, recently, Zan et al. [10] investigated the ef-
fects of the center of gravity and moment of inertia on the
occurrence of porpoising in trimaran boats, and showed that
moving the center of gravity forward or increasing the mo-
ment of inertia increases the amplitude of porpoising. Some
studies have also been found using computational fluid dy-
namics (CFD) to investigate with respect to the occurrence
of porpoising. Kim et al. [11] investigated the occurrence
of porpoising by considering the differences in the side ap-
pendages using CFD. Sajedi et al. [12] also investigated the
hydrodynamic effects of wedges with different heights us-
ing experiments and CFD, and confirmed that wedging can
reduce the phenomenon of porpoising.

Meanwhile, there are some studies that deal with the
phenomenon of porpoising from the perspective of nonlin-
ear dynamics. Troesch and Falzarano [13] showed that the
occurrence and disappearance of porpoising is a Hopf bi-
furcation. Hopf bifurcation here is called a bifurcation phe-
nomenon in which periodic solutions appear from an equi-
librium state [14]. They investigated the stability of the lin-
ear system and further showed that Hopf bifurcation occurs
when the center of gravity of the craft changes by using a
nonlinear simulation based on the model test of the study by
Troesch [15]. These studies showed that porpoising is caused
by a loss of stability in the vicinity of the equilibrium point of
the system and that limit cycles occur in nonlinear systems.
We have not been able to find any reports on the stability of
porpoising as a limit cycle in our paper survey. In addition,
the aforementioned studies considered using a system based
on model tests, and it is difficult to say whether they can
reproduce the phenomena at the actual scale. Katayama et
al. [16] estimated the lift, drag, and pitch moments on the
actual scale using those obtained by a constrained model test.
Using simulations, they found that the range of porpoising
on the actual scale is greater than that estimated from the
model scale. However, this finding was not verified by an
actual scale test.

We proposed a numerical motion model of an outboard
motor planing craft running straight and a system identifica-
tion method based on full-scale test results [17,18]. In these
studies, we obtained the system parameters including those
for the nonlinear system by using covariance matrix adap-
tation evolution strategy (CMA-ES). The simulation result
obtained using the nonlinear system was similar to the test
result, and overall, it reproduced the porpoising phenomenon
and the amplitude of pitch angle well. In the present research,
we clarified the phenomenon of porpoising via bifurcation
analysis in the nonlinear dynamical theory by analyzing the

nonlinear system obtained from a full-scale test result and a
linearized system in the vicinity of the equilibrium point.

This paper is organized as follows. In Section 2, we re-
view our previous studies [17,18] and confirm the validity
of the model used in this research. In Section 3, we explain
the linearized method in the vicinity of the equilibrium point
and stability criterion. We also describe the method to find
fixed points and stability criterion of limit cycles. In Sec-
tion 4, we present the analysis of the stability around the
equilibrium point and the fixed point of the model identified
in Section 2; further, we explain the occurrence of porpois-
ing and bifurcation phenomena. Finally, Section 5 concludes
this paper.

2 Motion model and system identification [17,18]

2.1 Coordinate system and motion equation

Porpoising can be described as a motion with three degrees of
freedom: surge, heave, and pitch. A right-handed Cartesian
coordinate system is used and the coordinate system is a
space-fixed system 𝑜 − 𝑥𝑧. The forward direction along the
horizontal plane is 𝑥; the downward direction is 𝑧; the upward
rotating direction is 𝜃. Fig. 1 shows the coordinate system,
and each force and position acting on the craft and engine is
defined in Tables 1 and 2. They duplicate fig. 1, tables 1 and
2 in the literature [18]. In the tables, CoG stands for center
of gravity; CoT, for center of engine trim; and OoH, for the
origin of the craft, which is defined as the intersection of the
baseline and transom.

Table 1: List of forces and force points for an outboard motor
planing craft. This table duplicates Table 1 in the literature
[18].

Definition Notation
Drag of craft w/o engine [N] 𝐷b
Vertical position of 𝐷b from OoH [m] 𝐻D
Lift of craft w/o engine [N] 𝑁L
Longitudinal position of 𝑁L [m] 𝐿L
Buoyancy [N] 𝑁B
Longitudinal position of 𝑁B from OoH [m] 𝐿B
Longitudinal position of CoG from OoH [m] 𝐿CG
Vertical position of CoG from OoH [m] 𝐻CG
Sinkage of craft origin [m] 𝑑

Wetted keel length [m] 𝐿K
Overall length of craft [m] 𝐿OA
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Fig. 1: Coordinate system and parameter definitions. This figure duplicates fig. 1 in the literature [18].

Table 2: List of forces and force points for the engine. This
table duplicates Table 2 in the literature [18].

Definition Notation
Thrust [N] 𝑇

Vertical position of 𝑇 from CoT [m] 𝐻T
Drag of engine [N] 𝐷e
Vertical position of 𝐷e from CoT [m] 𝐻De
Vertical position of 𝐷e [m] 𝐻e
Lift of engine [N] [m] 𝑁e
Longitudinal position of 𝑁e from CoT [m] 𝐿Ne
Longitudinal position of 𝑁e [m] 𝐿e
Longitudinal position of engine from OoH [m] 𝐿CT
Vertical position of engine from OoH [m] 𝐻CT

The motion equations derived using the defined forces
and positions are as given in Eqs. (1) to (3).

(𝑀 + 𝑀x) ¥𝑥 = 𝐷b cos 𝜃 + (𝑇 + 𝐷e) cos (𝜃 + 𝜃e)
+ 𝑁L sin 𝜃 + 𝑁e sin (𝜃 + 𝜃e) (1)

(𝑀 + 𝑀z) ¥𝑧 = −𝐷b sin 𝜃 − (𝑇 + 𝐷e) sin(𝜃 + 𝜃e)
+ 𝑁L cos 𝜃 + 𝑁e cos(𝜃 + 𝜃e)
+ 𝑁B + 𝑀𝑔 − 𝑐zz ¤𝑧 − 𝑐z𝜃 ¤𝜃 (2)(

𝐼y + 𝐽y
) ¥𝜃 = 𝐷b (𝐻CG − 𝐻D) + 𝑇 (𝐻T − 𝐻De + 𝐻e)

+ 𝐷e𝐻e + 𝑁L𝐿L + 𝑁e𝐿e

+ 𝑁B (𝐿CG cos 𝜃 − 𝐿B) − 𝑐𝜃z ¤𝑧 − 𝑐𝜃 𝜃 ¤𝜃 (3)

Here, the overdot indicates the time derivative. 𝑀 [kg] rep-
resents the total mass, including the mass of engine; 𝑀x [kg]
and 𝑀z [kg] are the added masses in the 𝑥 and 𝑧 directions,
and 𝐼y [kgm2] represents the moment of inertia in the pitch
direction. 𝐽y [kgm2] is the added moment of inertia in the
pitch direction. 𝜃e [°] represents the trim angle of the engine
and 𝑐zz [Ns/m], 𝑐z𝜃 [Ns], 𝑐𝜃z [Ns], and 𝑐𝜃 𝜃 [Nms] are
damping coefficients.

2.2 Study case

In this study, we considered the system stability of a planing
craft with a 221 kW outboard motor; this craft and motor
were the same as that used in our previous research [17,18].
The specifications of the studied craft are given in Table 3,
and this table also duplicates Table 5 in the literature [18].

Table 3: Principal particulars of the studied craft. This table
duplicates Table 5 in the literature [18].

Item Value
Weight of craft with engine: 𝑀 [kg] 2709
Overall length of craft: 𝐿OA [m] 7.09
Long. pos. of CoG: 𝐿CG [m] 1.98
Vert. pos. of CoG: 𝐻CG [m] 0.70
Long. pos. of engine from OoH: 𝐿CT [m] 0.21
Vert. pos. of engine from OoH: 𝐻CT [m] 0.69
Vert. pos. of T from CoT: 𝐻T [m] 1.03
Long. pos. of Ne from CoT: 𝐿Ne [m] 0.30
Vert. pos. of De from CoT: 𝐻De [m] 1.03
Maximum speed of craft: ¤𝑥max [m/s] 22.25

2.3 System identification with experimental data

In this study, we used the experimental data of Hamada et
al. [17] for the identification of the nonlinear system. The
experimental data were obtained by running the aforemen-
tioned craft twice at a fixed throttle with a given trim angle
and engine speed. In previous studies, experimental data
measured at 100 Hz were thinned to 50 Hz, but in this study,
the 100 Hz experimental data were used as is. The experi-
mental data are listed in Table 4.
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Table 4: List of training and test data. The symbols ◦ and •
represent the training and test data, respectively.

𝜃e = 4 𝜃e = 0 𝜃e = −2 𝜃e = −4 𝜃e = −8
10.0 ≤ ¤𝑥 < 11.8 ◦◦ ◦◦ ◦• ◦• -
11.8 ≤ ¤𝑥 < 13.0 ◦• ◦• ◦◦ ◦◦ -
13.0 ≤ ¤𝑥 < 14.5 ◦◦ ◦◦ ◦◦ ◦• ◦•
14.5 ≤ ¤𝑥 < 15.5 ◦◦ ◦• ◦• ◦◦ ◦◦
15.5 ≤ ¤𝑥 < 16.5 - - - - ◦•
16.5 ≤ ¤𝑥 < 18.0 ◦• ◦◦ ◦◦ ◦• ◦◦
18.0 ≤ ¤𝑥 < 20.0 ◦• ◦• ◦◦ ◦◦ ◦◦
20.0 ≤ ¤𝑥 < 23.0 ◦◦ ◦◦ ◦• ◦◦ ◦•

The columns give the range of ¤𝑥 [m/s] for the 𝜃e [deg.]
values in different rows. The craft speed is shown in ranges
because it varies with the trim angle even for identical engine
speed. The engine speed was basically set at every 250 rpm
at low speed and every 500 rpm at high speed. The trim
angle was basically set to in 4° increments and the center
of the trim range, −2°, was additionally measured. When we
perform system identification, we identify the system using a
portion of the full-scale test result and examine the identified
system using the rest of the result. We call the former data
training data, which is marked with ◦ in the table, and the
latter data test data, which is marked with •. The test data
were randomly selected in the following manner.

– Three trial data were selected for each trim angle 𝜃e as
test data.

– Two trial were selected for each speed range ¤𝑥 as test
data.

In this study, we needed to use a model to predict the
occurrence or disappearance of porpoising. Therefore, the
data, including conditions under which porpoising occurs
and conditions under which it does not occur, were measured
to identify the system. Fig. 2 shows the maximum pitch
amplitude and thrust obtained by the full-scale test.

Fig. 2: Full-scale test result.

In the experiment, we characterized porpoising as a phe-
nomenon that occurs when the pitch amplitude is larger than
2°. Among the 68 data listed in Table 4, porpoising occurs
under 39 conditions and does not occur under 29 conditions.
The amplitude of the pitch angle was greater at smaller trim
angles, and as the speed decreased for the same trim angle,
the amplitude of the pitch angle became greater. This means
that the data can capture the change in porpoising occurrence
with changes in craft speed and trim angle.

In the system identification process, we used CMA-ES,
which is suitable for problems with a rugged search landscape
including discontinuities. On the other hand, it should be
noted that system identification requires a large amount of
experimental data, as shown in Table 4. We modified some
parameters from our previous work [17] as follows:

– initial value of 𝜆 was changed from 32 to 64.
– maximum value of 𝜆 was changed from 256 to 512.
– maximum iteration value was changed from 3 × 105 to

1 × 106.

Here, 𝜆 is the number of candidate solutions in CMA-ES.
CMA-ES explores the optimal solutions by iterative compu-
tation, and the process will end at the maximum iteration
value. Fig. 3 shows the pitch amplitude and thrust obtained
by system identification using the data given in Table 4. The
pitch amplitude of the calculation results is slightly smaller
than that of the experimental results, but the occurrence and
disappearance of porpoising are similar in both results.
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Fig. 3: System identification results. Here, "Exp." refers to
the experimental results, and "Calc." refers to the calculated
results obtained using the identified system.

3 Stability criterion of the equilibrium point and fixed
point

3.1 Equilibrium point search and stability criterion

In this section, we first show how the equilibrium point is
obtained. Then, we present a method to evaluate the stability
of the equilibrium point by defining small perturbations from
the equilibrium point. The state vector 𝑋 (𝑡) ∈ R5 and control
vector 𝑢(𝑡) ∈ R2 are defined as follows.

𝑋 (𝑡) =
[
𝑧(𝑡) 𝜃 (𝑡) ¤𝑥(𝑡) ¤𝑧(𝑡) ¤𝜃 (𝑡)

]𝑇 (4)

𝑢(𝑡) =
[
𝑇 (𝑡) 𝜃e (𝑡)

]𝑇 (5)

Here, Eqs. (1) to (3) can be expressed as nonlinear state
equations as follows.

¤𝑋 (𝑡) =


𝑓1 (𝑋 (𝑡), 𝑢(𝑡))
𝑓2 (𝑋 (𝑡), 𝑢(𝑡))
𝑓3 (𝑋 (𝑡), 𝑢(𝑡))
𝑓4 (𝑋 (𝑡), 𝑢(𝑡))
𝑓5 (𝑋 (𝑡), 𝑢(𝑡))

︸                ︷︷                ︸
𝑓 (𝑋, 𝑢)

(6)

𝑓1 (𝑋 (𝑡), 𝑢(𝑡)) to 𝑓5 (𝑋 (𝑡), 𝑢(𝑡)) are defined as follows.

𝑓1 (𝑋 (𝑡), 𝑢(𝑡)) = ¤𝑧 (7)
𝑓2 (𝑋 (𝑡), 𝑢(𝑡)) = ¤𝜃 (8)

𝑓3 (𝑋 (𝑡), 𝑢(𝑡)) =
1

(𝑀 + 𝑀x)
{𝐷b cos 𝜃

+ (𝑇 + 𝐷e) cos (𝜃 + 𝜃e) + 𝑁L sin 𝜃
+𝑁e sin (𝜃 + 𝜃e)} (9)

𝑓4 (𝑋 (𝑡), 𝑢(𝑡)) =
1

(𝑀 + 𝑀z)
{−𝐷b sin 𝜃

− (𝑇 + 𝐷e) sin(𝜃 + 𝜃e) + 𝑁L cos 𝜃
+ 𝑁e cos(𝜃 + 𝜃e) + 𝑁B

+ 𝑀𝑔 − 𝑐zz ¤𝑧 −𝑐z𝜃 ¤𝜃
}

(10)

𝑓5 (𝑋 (𝑡), 𝑢(𝑡)) =
1(

𝐼y + 𝐽y
) {𝐷b (𝐻CG − 𝐻D)

+ 𝑇 (𝐻T − 𝐻De + 𝐻e) + 𝐷e𝐻e + 𝑁L𝐿L

+ 𝑁e𝐿e + 𝑁B (𝐿CG cos 𝜃 − 𝐿B)
− 𝑐𝜃z ¤𝑧 −𝑐𝜃 𝜃 ¤𝜃

}
(11)

If the control vector is 𝑢(𝑡) = 𝑢∗ = const., then the pair of
(𝑋∗, 𝑢∗) defined by

𝑓 (𝑋∗, 𝑢∗) = 0 (12)

is called the equilibrium point. Here, ∗ represents the param-
eters at the equilibrium point. We can uniquely find 𝑋∗ using
Eq. (12), given 𝑢∗. The minute deviation from the equilibrium
point 𝑋∗ is defined as 𝜉 (𝑡) ∈ R5. The orbit corresponding to
this point can be described as follows:

𝑋 (𝑡) = 𝑋∗ + 𝜉 (𝑡) (13)

Substituting Eq. (13) into Eq. (6) we get
¤𝑋 (𝑡) = ¤𝑋∗ + ¤𝜉 (𝑡) = 𝑓 (𝑋∗ + 𝜉 (𝑡), 𝑢∗) (14)

If 𝜉 (𝑡) is sufficiently small, we can apply the Taylor expansion
for the right side and ignore terms higher than the second
order.

𝑓 (𝑋∗ + 𝜉 (𝑡), 𝑢∗) = 𝑓 (𝑋∗, 𝑢∗) + 𝜕 𝑓

𝜕𝑋

����
𝑋 (𝑡 )=𝑋∗

𝜉 (𝑡) (15)

Since 𝑋∗ = const., ¤𝑋∗ becomes 0. From Eqs. (12), (14)
and (15), we can obtain the linear state equation regarding
the equilibrium point 𝑋∗ as follows.

¤𝜉 (𝑡) = 𝜕 𝑓

𝜕𝑋

����
𝑋 (𝑡 )=𝑋∗

𝜉 (𝑡) (16)

If 𝐴 ∈ R5 is defined as

𝐴 =
𝜕 𝑓

𝜕𝑋

����
𝑋 (𝑡 )=𝑋∗

(17)

and the eigenvalues of 𝐴 are defined as 𝜆e
i , the equilibrium

point is said to be stable if the following equation holds:

Re𝜆e
i < 0 ∀i (18)
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3.2 Fixed point search and stability criterion

In a linearized system, when porpoising occurs, the origin is
destabilized and the solution diverges for any initial value.
On the other hand, in the actual phenomenon, the ampli-
tude of porpoising eventually becomes stationary, and the
limit cycle occurs because of the nonlinear nature of the sys-
tem. To analyze the stability of the limit cycle, we employed
Kawakami’s method [19–21]. In this method, by using New-
ton’s method for the nonlinear system, we can calculate not
only the fixed point on the Poincaré section but also the
characteristic multipliers of the Poincaré map. Then, the sta-
bility of the periodic orbit can be determined. This method
is unique in that it can also compute unstable periodic orbits.
In this section, we first show how this method can be used to
search for a fixed point. Then we present a method to evaluate
the stability of a fixed point by defining minute perturbations
of the fixed point.

If the control vector 𝑢 = 𝑢0 = const. is given, the orbit of
Eq. (6) starting at 𝑋 = 𝑋0 and 𝑡 = 𝑡0 can be described as

𝑋 (𝑡) = 𝜑(𝑡, 𝑋; 𝑡0, 𝑋0). (19)

We use the following function:

𝑞 : R5 → R; 𝑋 (𝑡) ↦→ 𝑞 (𝑋 (𝑡)) = ¤𝜃 (𝑡) (20)

The hypersurface Φ is defined as follows.

Φ =
{
𝑋 ∈ R5 | 𝑞 (𝑋 (𝑡)) = 0

}
(21)

Φ is the Poincaré section of 𝜑. Since porpoising is the pe-
riodic motion with craft pitch angle 𝜃, and since Eq. (19)
denotes an oscillatory solution, 𝜑(𝑡, 𝑋) will always intersect
the hypersurface Φ. Now the variable 𝑌 and hypersurface Ψ

are defined as follows.

𝑌 (𝑡) =
[
𝑧(𝑡) 𝜃 (𝑡) ¤𝑥(𝑡) ¤𝑧(𝑡)

]𝑇 (22)

Ψ =
{
𝑌 ∈ R4} (23)

The map H from Φ to Ψ is defined as follows.

H : Φ → Ψ; 𝑋 ↦→ 𝑌 (24)

Here, the crossing point between periodic solution and Φ is
𝑋0, and 𝑌0 is 𝑌0 = H(𝑋0). For 𝑌1 ∈ Ψ, which is the neigh-
borhood point of 𝑌0 ∈ Ψ, the point where 𝜑(𝑡, 𝑋; 𝑡0, 𝑋1)
whose initial value is H−1 (𝑌1) = 𝑋1 ∈ Φ intersects Φ again
is 𝑋2, and the time is 𝑡0 + 𝜏(𝑋1). Then, 𝑋2 is obtained as
follows.

𝑋2 = 𝜑 (𝑡0 + 𝜏(𝑋1), 𝑋; 𝑡0, 𝑋1) (25)

The map P from Ψ to itself using 𝜑 is defined as follows.

P : Ψ → Ψ; 𝑌1 ↦→ 𝑌2 = H
(
𝜑
(
𝑡0 + 𝜏

(
H−1 (𝑌1)

)
, 𝑋;

𝑡0, H−1 (𝑌1)
) )

(26)

If 𝑋0 ∈ R5 satisfies the following equation,

H−1 (P (H (𝑋0))) = 𝑋0, (27)

𝑋0 is called the fixed point and 𝜏0 = 𝜏
(
H−1 (𝑌0)

)
is the

period.
Next, the variable 𝑋̂ is defined as follows.

𝑋̂ =
[
𝑧 𝜃 ¤𝑥 ¤𝑧 𝜏(𝑋)

]𝑇 (28)

The fixed point can be obtained by solving the following
equation using Newton’s method.

𝐹 ( 𝑋̂) = 𝜑 (𝑡0 + 𝜏(𝑋0), 𝑋; 𝑡0, 𝑋0) − 𝑋0 = 0 (29)

Jacobian matrix 𝐽F ∈ R5×5 is defined as shown in the follow-
ing equation.

𝐽F =
d𝐹
d𝑋̂

(30)

By solving the difference equation,

𝑋̂ ( 𝑘̂+1) = 𝑋̂ ( 𝑘̂ ) − 𝛼𝐽−1
F 𝐹 ( 𝑋̂ ( 𝑘̂ ) ) (31)

until the end condition,

∥𝐹 ( 𝑋̂ ( 𝑘̂ ) )∥ < 𝜖F (32)

we get 𝑋̂ , which follows 𝐹 ( 𝑋̂) = 0. Here, ∥𝐹∥ denotes the
Euclidean norm. In this study, we defined 𝜖F = 10−10. We set
the initial value of 𝛼 as 0.1 and used the damped Newton’s
method.

∥𝐹 ( 𝑋̂ ( 𝑘̂+1) )∥ < ∥𝐹 ( 𝑋̂ ( 𝑘̂ ) )∥ (33)

If Eq. (33) is not satisfied, the value of 𝛼 is multiplied by 0.5,
and the procedure is repeated until the equation is satisfied.
The orbit 𝜑(𝑡, 𝑋; 𝑡0, 𝑋0) can be expressed in terms of its
components as follows.

𝜑(𝑡, 𝑋; 𝑡0, 𝑋0) =


𝜑1 (𝑡, 𝑋; 𝑡0, 𝑋0)
𝜑2 (𝑡, 𝑋; 𝑡0, 𝑋0)
𝜑3 (𝑡, 𝑋; 𝑡0, 𝑋0)
𝜑4 (𝑡, 𝑋; 𝑡0, 𝑋0)
𝜑5 (𝑡, 𝑋; 𝑡0, 𝑋0)


(34)

We define the partial derivative of each component of 𝑋 with
respect to 𝜑 as follows.

𝛽ij =
𝜕𝜑i (𝑡0 + 𝜏(𝑋0), 𝑋; 𝑡0, 𝑋0)

𝜕𝑋̂j
,

for 𝑖 = 1, · · · , 5, 𝑗 = 1, · · · , 5 (35)

𝐽F stands for the following.

𝐽F =


𝛽11 − 1 𝛽12 𝛽13 𝛽14 𝛽15
𝛽21 𝛽22 − 1 𝛽23 𝛽24 𝛽25
𝛽31 𝛽32 𝛽33 − 1 𝛽34 𝛽35
𝛽41 𝛽42 𝛽43 𝛽44 − 1 𝛽45
𝛽51 𝛽52 𝛽53 𝛽54 𝛽55


(36)
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Finally, we consider the stability of the fixed point. The
minute deviation from the fixed point is defined as 𝛿 (𝑘 ) ∈ R4.

𝑌 (𝑘 ) = 𝑌0 + 𝛿 (𝑘 ) (37)

Here, 𝑌 (𝑘+1) can be expressed as follows.

𝑌 (𝑘+1) = 𝑌0 + 𝛿 (𝑘+1) = P
(
𝑌0 + 𝛿 (𝑘 )

)
(38)

If 𝛿 (𝑘 ) is sufficiently small, we can perform the Taylor ex-
pansion of the right side of Eq. (38) and ignore terms beyond
the second order.

P
(
𝑌0 + 𝛿 (𝑘 )

)
= P (𝑌0) +

dP
d𝑌

����
𝑌=𝑌0

𝛿 (𝑘 )

= 𝑌0 +
dP
d𝑌

����
𝑌=𝑌0

𝛿 (𝑘 ) (39)

The following equation can be obtained from Eqs. (38)
and (39).

𝛿 (𝑘+1) =
dP
d𝑌

����
𝑌=𝑌0

𝛿 (𝑘 ) (40)

Here, the Jacobian matrix 𝐽S ∈ R4×4 is defined as follows.

𝐽S =
dP
d𝑌

����
𝑌=𝑌0

(41)

Eq. (40) is the variational equation for the fixed point 𝑌0,
and the stability of the fixed point can be distinguished by
eigenvalues of 𝐽S. Since the eigenvalues of 𝐽S are defined as
𝜆f

i , the fixed point is stable if the following equation holds,
i.e., if the eigenvalues are within the unit circle.

∥𝜆f
i ∥ < 1 ∀i (42)

These eigenvalues are called characteristic multipliers. From
Eq. (26), we can derive the following equation.

P(𝑌 ) = H (𝜑(𝑡0 + 𝜏(𝑋), 𝑋; 𝑡0, 𝑋0)) (43)

By substituting this equation into Eq. (41), we get the fol-
lowing equation.

𝐽S =
dH (𝜑(𝑡0 + 𝜏(𝑋), 𝑋; 𝑡0, 𝑋0))

d𝑌
(44)

If we expand this equation using 𝛽ij, we obtain the following.

𝐽S =


𝛽11 𝛽12 𝛽13 𝛽14
𝛽21 𝛽22 𝛽23 𝛽24
𝛽31 𝛽32 𝛽33 𝛽34
𝛽41 𝛽42 𝛽43 𝛽44

 (45)

Thus, we can get 𝐽F and 𝐽S by using 𝛽ij, and we can search
for the fixed point and obtain the characteristic multipliers
simultaneously.

4 Results and discussion

4.1 Stability in the vicinity of the equilibrium point

We calculated the stability of the equilibrium point of the
system. Troesch and Falzarano [13] analyzed the occurrence
of porpoising in relation to the center of gravity position. We
focused on the input from the outboard motor and investi-
gated how the stability of the equilibrium point changes with
respect to changes in the trim angle and thrust of the outboard
motor. Fig. 4 represents the relationship between craft speed
¤𝑥 and thrust 𝑇 at the equilibrium point of representative trim
angles 𝜃e. The stability criterion at each point was obtained
using Eq. (18).

(a) Calculation result at 𝜃e = −8°.

(b) Calculation result at 𝜃e = −2°.

(c) Calculation result at 𝜃e = 4°.

Fig. 4: Velocity of the craft at each equilibrium point. The
solid line represents stable states, and the dashed line repre-
sents unstable states.

The eigenvalues of the results corresponding to 𝜃e = −2°
are shown in Fig. 5. Each eigenvalue is identified as being on
either the left half plane or the right half plane and is plotted
on the complex plane.
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Fig. 5: Eigenvalues at 𝜃e = −2° on the complex plane.

The eigenvalues were categorized into three groups:
group A contained the eigenvalues around the origin point,
while B comprised the complex conjugate eigenvalues
around the imaginary axis, and C contained the complex
conjugates or two real eigenvalues with high damping. The
arrows indicate the change in eigenvalues with thrust for
B and C groups; for A, there is hardly any change with
thrust. As the thrust decreased, i.e., as the speed of the craft
decreased, the eigenvalues associated with B shifted to the
right half-plane, indicating that the system was becoming un-
stable. Fig. 6 shows the stability of the equilibrium point with
respect to𝑇 and 𝜃e. The stability analysis result in the vicinity

Fig. 6: Stability around the equilibrium point with varying
thrust and trim angle. The blue area is determined as stable,
and the red area is determined as unstable. The white area is
an unexplored region.

of the equilibrium point confirmed that the instability of the

region and the probability of porpoising occurrence would
increase as the outboard trim angle decreases. This result is
consistent with the tendency for the pitch angle amplitude
to increase with decreasing outboard trim angle, as seen in
Fig. 3.

4.2 Stability at the fixed point

The pitch angle amplitude 𝜃amp is defined as the amplitude of
the orbit 𝜑2

(
𝑡 ∈

[
𝑡0, 𝑡0 + 𝜏0

]
, 𝑋; 𝑡0, 𝑋0

)
calculated from

the fixed point obtained by the method explained in Sec-
tion 3.2. Fig. 7 shows the result of 𝜃amp with respect to 𝑇 .

Fig. 7: Amplitude of 𝜃 over the time history of numerical
simulation from the fixed point.

Although the absolute values were smaller compared to
the value shown in Fig. 2, the tendency of the amplitude to
increase as 𝜃e decreases, and the tendency of the amplitude
to decrease as 𝑇 increases were consistent. The stability at
each point was also determined, and the system was found
to be stable at all points. Fig. 8a shows the orbit of 𝜃 and
¤𝜃 in 𝜑

(
𝑡 ∈

[
𝑡0, 𝑡0 + 𝜏0

]
, 𝑋; 𝑡0, 𝑋0

)
computed by the Euler

method with time steps 𝜏0/1000 s = 0.00116 s. In the figure,
the red point indicates the fixed point at 𝜃e = −2° and 𝑇 =

4600 N. The light pink point indicates the point 0.1° added
to 𝜃 of the fixed point, and the green point indicates the
point −0.1° added to 𝜃 of the fixed point. Each colored line
represents an orbit from the corresponding colored point.
Fig. 8b shows a magnified view of Fig. 8a around the fixed
point. Even if a disturbance is applied to the fixed point, the
orbit asymptotically approaches the orbit with the fixed point
as the initial value, indicating that the fixed point is stable.
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(a) Overall view.

(b) Magnified view around the fixed point.

Fig. 8: Phase space of 𝜃 and ¤𝜃. The red line is the orbit starting
from the fixed point indicated by the red point. The pink
line represents the orbit starting from the point obtained by
adding 0.1° to 𝜃 of the fixed point. The green line represents
the orbit starting from the point obtained by adding −0.1° to
𝜃 of the fixed point.

Fig. 9 shows the average craft speed of
𝜑3

(
𝑡 ∈

[
𝑡0, 𝑡0 + 𝜏0

]
, 𝑋; 𝑡0, 𝑋0

)
and the craft speed at

equilibrium point with respect to 𝑇 .

(a) Calculation result at 𝜃e = −8°.

(b) Calculation result at 𝜃e = −2°.

(c) Calculation result at 𝜃e = 4°.

Fig. 9: Velocity of the craft at the equilibrium point and aver-
age velocity at the fixed point. The solid green line represents
stable equilibrium points, while the dashed green line rep-
resents unstable equilibrium points, and the dotted pink line
represents fixed points.

The craft speed at the equilibrium point is the same as
that shown in Fig. 4. As the thrust was gradually reduced,
at some point, the equilibrium point became unstable, and
simultaneously, a stable fixed point appeared. Porpoising
occurred because of supercritical Hopf bifurcation, which
was consistent with the phenomenon in the real craft where
a change in craft speed causes a transition from a stable
state to an unstable state, thereby resulting in a stable limit
cycle, i.e., porpoising. On the other hand, although there
are some research examples in the field of ship roll motion
and capsizing that show the existence of heteroclinic points
involved in a chaotic behavior [22], no such other bifurcation
phenomena were observed in this study.

At the point 𝜃e = −2° and 𝑇 = 5100 N, the equilib-
rium point was stable, and a stable fixed point was also
observed. To discuss this situation, we show the orbits from
the fixed point and the equilibrium point under this condition
in Fig. 10.
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(a) Phase space of 𝜃 and ¤𝜃 .

(b) Phase space of 𝜃 and ¤𝑥.

Fig. 10: The orbits from the fixed point, the equilibrium point,
and the points in the vicinity of both points. The red line
indicates an orbit starting from the fixed point represented
by the red point. The green line is the orbit starting from the
point obtained by adding −0.1° to 𝜃 of the fixed point. The
yellow point represents the equilibrium point. The blue line
is the orbit starting from the point obtained by adding 0.1°
to 𝜃 of the equilibrium point.

In each figure, the red and yellow points indicate the
fixed and equilibrium points, respectively. The green point
represents the point obtained by adding−0.1° to 𝜃 of the fixed
point, and the blue point represents the point obtained by
adding 0.1° to 𝜃 of the equilibrium point. Each colored line is
the orbit from the corresponding colored point. These orbits
were computed using the Euler method. The calculation time
step of the red and green lines was 𝜏0/1000 s = 0.00101 s and
that of the blue line was 0.00010 s. The blue line converges
to the point of equilibrium point marked in yellow, and the
green line converges to the trajectory with the fixed point as
the initial value, marked by the red line. From Fig. 10b, we

could see that the craft speeds at the equilibrium point and
fixed point were slightly different and that the state to which
the system converged varied depending on the initial values
even under identical input conditions.

4.3 Full-scale test

In the full-scale craft test, we observed that even a small
disturbance could cause the craft to transition from a stable
state without any porpoising to a state with porpoising and
that a stable equilibrium point and a stable limit cycle could
coexist in the vicinity of the bifurcation point. Fig. 11 shows
the full-scale craft test results with 𝜃e = 4° and 𝑇 = 4800 N.
The input conditions shown in Fig. 11 were different from
those shown in Fig. 10; however, even if the input conditions
did not change, no porpoising occurred up to 35 s, while
porpoising occurred for 35 s and beyond. Thus, in the full-
scale craft, even a small disturbance caused a transition from
a state of stable running without porpoising to a state with
porpoising, a stable equilibrium point and stable limit cycle
coexisted near the bifurcation point. This also suggests that
a slight change in state may be able to suppress porpoising,
especially near the bifurcation point. The discussion of the
dependence of initial values is a topic that is also covered in
non-linear dynamics textbooks [23], and this is one of the
examples. It is noteworthy that this could be observed in full-
scale tests. The dependence on the initial value is a subject
for future research.

5 Conclusion

Generally, systems identified by model experiments or CFD
studies are used to study the conditions under which porpois-
ing occurs. However, in this study, we performed bifurcation
analysis on a model identified using full-scale craft test data.
We observed that as the thrust on the craft was reduced,
the equilibrium point became unstable, and the limit cycle
occurred simultaneously. This limit cycle was stable, and su-
percritical Hopf bifurcation occurred at the bifurcation point.
This phenomenon was consistent with the fact that in the full-
scale craft, a stable limit cycle, i.e., porpoising, occurs when
the speed of the craft is reduced. On the other hand, it was
also found that near the bifurcation point, stable equilibrium
point and stable limit cycle can coexist, and the converged
state depends on the initial value. The exploration of this
topic is one of our future research. In addition, we will inves-
tigate a control method that stabilizes unstable porpoising in
the vicinity of the equilibrium point by controlling the trim
angle of the outboard motor in the future.
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Fig. 11: Full-scale craft test results at 𝜃e = 4° and 𝑇 = 4800 N. The dashed red line indicates 35 s.
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