

Title	An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond
Author(s)	Asai, Kai; Yamamoto, Takashi; Nagashima, Shinichi et al.
Citation	Analyst. 2020, 145(2), p. 544-549
Version Type	АМ
URL	https://hdl.handle.net/11094/93344
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Supporting information

Electrochemical aptamer-based sensor prepared by utilizing strong interaction between DNA aptamer and diamond

Kai Asai,^a Takashi Yamamoto,^a Shinichi Nagashima,^a Genki Ogata,^b Hiroshi Hibino,^b and Yasuaki Einaga*^{a,c}

- ^a Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
- ^b Department of Molecular Physiology, School of Medicine, Niigata University Niigata 951-8510, Japan
- ^c ACCEL, Japan Science and Technology Agency, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan

Calculations and curve fitting.

Curve fitting was carried out using Curve Fitting algorithm in Igor Pro 8. The following equations were used:

for signal-concentration curve (Langmuir isotherm)

$$D(c) = \frac{c}{c + K_d} D_{\text{max}}$$

and for flow measurement

adsorption:
$$D(t) = \frac{D_{\text{max}} c}{K_{\text{d}} + c} \left(1 - \frac{1}{\exp(k_{\text{on}} c + k_{\text{off}})t} \right)$$

desorption:
$$D(t) = D_0 \exp(-k_{\text{off}}t)$$

where D is signal, D_{max} is saturation value of D, D_0 is initial signal before decrease, c is concentration of ligand (DOX in this case) in bulk solution, K_d (mol L^{-1}) is apparent equilibrium dissociation constant, k_{on} (mol L^{-1} min⁻¹) and k_{off} (min⁻¹) are association and dissociation constant, and t is time.

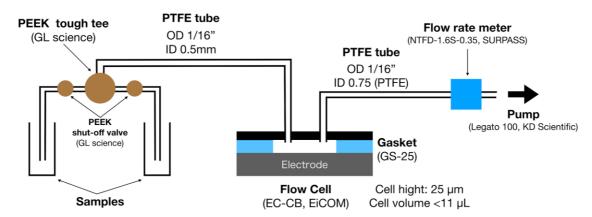
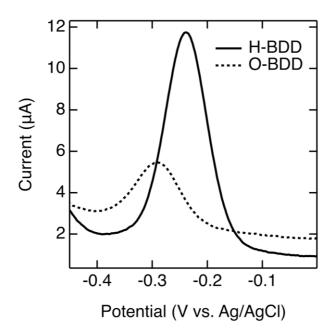
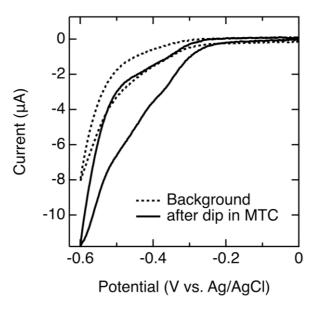




Fig. S1 Overview of the flow measurement setup.

Flow measurements were carried out using the system illustrated above. A flow rate of $10\,\text{mL/h}$ ($167\,\mu\text{L/min}$) was set in a cylinder pump and monitored by a flow rate meter to verify the flow rate. It takes less than 4 s for the flow to pass the cell volume. The time is slower enough than adsorption/desorption kinetics timescale, leading to reaction limited regime. Flowing sample was switched using two shut-off valves.

Fig. S2 Comparison of an SWV signal in PBS at BDD without any treatment (H-BDD) and BDD treated by oxygen plasma (O-BDD). Both electrodes were dipped in 1 μ M aptamer solution for 1 h. Oxygen plasma treatment: 2 min, O₂ 30 sccm, 100 W, PR301, Yamato Scientific Co., Ltd., Japan.

Fig. S3 Detection of mitomycin C (MTC) adsorption on BDD. Cyclic voltammetry was conducted before (dotted line) and after (solid line) dipping in 0.3 mM MTC solution in PBS (pH 7.4) for 5 min followed by 1 min rinse with flowing pure water. The reduction signal of MTC (around –0.45 V) was observed after the dipping treatment, indicating that MTC adsorbs quite strongly on BDD surface.