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In [7] study of those modules MR which satisfy the following two conditions
was initiated:
(I) Every finitely generated submodule of every homomorphic image of M
is a direct sum of uniserial modules.
(II) Given two uniserial submodules U and V of a homomorphic image of M,
for any submodule W of U any non-zero homomorphism, /: W-+V can be
extended to a homomorphism £: U-> V provided the composition length d(U/W)
<d(V/f(W)).

It was shown that some of the well known decomposition theorems for
torsion abelian groups, can be generalized to modules satisfying (I) and (II).
Here we introduce another condition:
(III) For any finitely generated submodules N of M, i?/ann (iV) is right ar-
tinian.

It can be easily seen that any torsion module over a bounded (hnp)-ήng
satisfies (I), (II) and (III). Let M be a module satisfying (I) and (II). The
concept of λ-pure submodules of M was introduced in [7] if in addition M
satisfies (III) it is shown in section one, that any submodule N of M is A-pure
if and only if it is pure (Theorem (1.3)). Theorem (1.4) shows that any com-
plement of Hk(M) in M is a summand of M. In section 2, the concept of basic
submodule is introduced. It is shown that any module M satisfying (I), (II)
and (III) has a basic submodule and any two basic submodules of M are iso-
morphic (Theorem (2.7)). This result generalizes the corresponding well known
result on basic subgroups of torsion abelian groups. In section 3, a decomposi-
tion theorem is proved; which states that given any module M satisfying (I) and
(II), such that M/socle (M) is decomposable then M is decomposable.

Preliminaries: Let M be a module satisfying (I) and (II). Let us recall
some definitions from [6, 7]. An element x in M is said to be uniform if xR
is a non-zero uniform (hence uniserial) submodule. For any uniform element
x of M, its exponent e(x) is defined to be equal to the composition length d(xR)
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46 S. SINGH

the height of x is the supremυm of all d{TjxR) where T is a uniserial submodule
of M containing x. The height of x is denoted by HM(x) (or simply by H(x)).
For any k> 0, Hk(M) denotes the sυbmodule of M generated by all those uniform
elements x of M for which H(x)>k. A submodule N of M is said to be an h-
pure submodule if N Π Hk(M)=Hk(N) for all k. M is said to be bounded if
there exists a positive integer k such that H(x)<k for all uniform elements x in
M. M is said to be decomposable if it is a direct sum of uniserial modules.
For definition and elementary properties of pure submodules we refer to Sten-
strϋm [8]. For any ring i?, J(R) denotes the Jacobson radical of R.

Lemma 1.1. Let MR be a module satisfying (/), (//) and (III) and X be a
uniserial submodule of M having

as its unique composition series. If for 0<i<t— 1, P ^ a n n ^ / X ^ ) then XiPi=

Proof. Let ^ = a n n (X). Since S=RjA is right artinian, XJ(S)=^Xi+1

and/(5)cP iμ, we have XtPt=XM.

Lemma 1.2. Let a module MR satisfy (I) and (II). If for any finitely many
uniform elements xux2, •••, xn in M

where y^R are uniserial\ then m<n.

Proof. The result follows by induction on n.

The result that any submodule iV of a torsion module over a bounded
(hnp)-rmg is pure if and only if it is A-pure was proved by M. Khan in [2], The
proof of the following is adapted from [2].

Theorem 1.3. Let MR be a module satisfying (/), (//) and (III) and N a
submodule of M. Then N is h-pure if and only if it is a pure submodule.

Proof. Let N be λ-pure. Consider any finite system of linear equations

which admits a solution {xt} in M. Let i £ = Σ x{R+N. Then KjN is a finitely
generated module. So by condition (I).

where each TJN is uniserial. Then by [7, Lemma 2(i)], T<6=ycύRφN. Hence
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This gives that the above given system of equations are also solvable in N.
Hence N is a pure submodule of M.

Let now N be a pure submodule. This immediately gives MAf]N=NA
for all ideals A of R. Suppose for some ky Hk(M) Π NφHk(N). We choose k
smallest with Hk(M) Π N^Hk(N). We can find a uniform element x of smallest
exponent such that x^Hk(M)f]N but x<£Hk(N). Then xtΞH^N). By de-
finition there exists a uniform element y in M such that x^yR and d(yRlxR)=k.

x^.Hk_λ(N) shows that there exist a uniform element u^N such that x^uR
and d(uR/xR)=k-l. Let s/?=socle(*Λ) and m=e(x). Then d(uRlzR)=m+
k—2, gives HN(z)>m+k—2. Suppose HN(z)>m+k— 1. We can then find
a uniform element ^eiVsuch that z^vR and d(vRjzR)=^m-\-k—\. By condi-
tion (II), we get an isomorphism σ:yR-^vR which is identity on zR, Then
x—σ{x) is a uniform element with φc—σ(#))<£(#), #—σ(x)^Nf]Hk(M)y but
x—σ(x)$Hk(N), since σ(x)^Hk(N). This contradicts the choice of #. Hence
HN(z)=k+m—2=d(uRlzR). So by [7, Lemma 1]

iV - uR®N,

uR is also a pure submodule. Now d(uRjzR)—d(yRjzR)—\. By (1.1) we can
find prime ideals Ply P2y •••, Pm+k-ι such that RjPi is simple artinian for all i and
yR>yP1>yP1P2>~>yP1P2:.Pm+k_1^0 with zR^yP^-P^^. By condi-
tion (II) uR^yPx and hence uP2Pr"Pm+k.1-=0. However yP 2 P 3 . . P ί l l_H k_1Φθ.

Thus z^MP2Pr^Pm+k,1nuR=uP2P3"'PM+k.1=0. This is a contradiction.
Hence iV is an A-pure submodule of M.

The following theorem generalizes Erdelyi's theorem [1, Theorem (24.8)].

Theorem 1.4. Let M be a module satisfying (/), (//) and (III) then for any
k Ξ> 1, any complement of Hk(M) is a summand of M.

Proof. Let N be a complement of Hk(M). Then N is bounded. If we
show that iV is a pure submodule, the result follows from [7, Theorem 3]. In
view of (1.2) it is equivalent to showing Hn(M)Γ\N=Hn(N) for every n. Since
Hk(M) f] N~0=Hk(N)y the result holds for n>k. To apply induction we sup-
pose that for some n with 0<n<k, Hn(M)Γ\N=Hn(N)y we prove that same
for n + 1. Let the contrary hold. Then there exists a uniform element
xei/ n + 1 (M)fW such that x$Hn+1(N). Then HN(x)=n. Now there exists a
uniform element y in M such that d(yRjxR)=n-\-1. Let socle (yRjxR)=x1RlxR.
If x^Ny we get x^Nf] Hn(M)=Hn(N) and hence x<=Hn+1(N). This is a con-
tradiction. Consequently x&N and (N+xft) Π Hk(M)4=0. Thus there exists
a uniform element z^Hk(M) such that z=u+x1s for some ι/eiV and s^R. If

JR, then x^RdxR and z<=N; this is a contradiction to the fact that
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Nf]Hk(M) = O. So Λ?1ίΛ = Λ?1Λ and x1 = x1ss\ s'<=R. Then zs/

(N-j-XiR) Π Hk{M) and w'Φ0. So we can suppose that x1s=x1. Thus ̂ =
Let P=ann(x1RlxR). By (1.1) xR=^xxP. So for any r e P , s r = 0 and

ur=—x1r. Now H(z)>k>n, H(xλ)>n, gives u<^Hn(M)Γ)N = Hn(N). For
some ro&P, χ=χ1r0=—ur0 If wi? is uniform and ur0R<CuRf then HN(ur0)>
HN(u)-\-\>n-\-\ and hence i / ^ t f ^ w + l ; this is a contradiction. Hence the
following two cases arise.

Case I: uR is uniform and ur0R=uR. In this case u=x1b0—xrb fof some
b^R and #=#lr06-|-ff1==ff1i;, £Gi?. Thus zR=xλR and x1^Hk(M). This shows
that //ifo) > & and hence H(x) > k+1. This contradicts the fact that N Π Hk+1(N)
= 0 .

Case II : wi? is not uniform. The fact that u^zR+x{R and that zR, xλR
are uniform together with (1.2) yields uR=uιR®u2R with uu u2 both uniform.
Further we can take u=u1+u2. Then xR=uP=u1P®u2P. So z^P^O or u2P=0.
To be definite let u2P=0. Then w2i? is a simple i?-module and x1R=u1P. Let
tt1P<M12? then xR=u1P=v1R for some v^ujl. Now i / ^ ^ m i n (i/(^), #(#))
>w. So by induction hypothesis ux^Hn{N) and hence i/^(zΊ)>w+l. Con-
sequently xR=vxR gives i / ^ ^ ^ n + l . This is a contradiction. Thus 1̂ 1?=
UγP—xR. Hence Wj=^a, αe]?. Consequently z=υ2

J

rxa-\-xι=u2-\-xιs, s^R.
This reduces to case I and hence again gives a contradiction. Hence N is a pure
submodule. This proves the theorem.

2. Basic submodules

DEFINITION 2.1. Let M be a module satisfying (I) and (II). A subset
{#λ: λGΛ} of uniform elements of M is called A-pure independent if it is in-
dependent in the sense that 2 χ\R is direct, and 2 χ\R is an λ-pure submodule
ofM.

The following Lemma generalizes [1, Lemma (29.1)].

Lemma 2.2. Let a module MR satisfy (I) and (II). An h-pure independent

subset {xλ: λ G Λ } is maximal if and only if MIL, where I > = Σ X\R>ι#ί a direct sum

of infinite length uniform submodules.

Proof. The result follows from [7, Lemma 2 and Theorem 5].

This motivates the following:

DEFINITION 2.3. Let M be a module satisfying (I) and (II). A submodule
B of M is called a basic submodule of M if it satisfies the following:
( i ) B is an A-pure submodule.
(iί) B is a direct sum of uniserial modules.
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(iii) MjB is a direct sum of uniform modules of infinite lengths.
[7, Lemma 2 and Theorem 5] and the fact that union of any chain of A-pure

submodules is an λ-pure submodule gives the following:

Lemma 2.4. Any module satisfying (I) and (//) has a basic submodule.

The main purpose of this section is to prove that any two basic submodules
of a module M satisfying (I), (II) and (III) are isomorphic. The following theo-
rem generalizes [1, Theorem (29.3)]. Since the proof is on similar lines it is
omitted.

Theorem 2.5. Let M be a module satisfying (7), (77) and (III) and B be a
CO

submodule of M such that B= φ ]Γ] Bn) where each Bn is a direct sum of uniserial
n = ι

modules each of length n. Then B is a basic submodule of My if and only if

M^(Bl+-+B})^{B*+Hn(M)) where 5 * =

The following theorem generalizes Szele's theorem [1, Theorem (29.4)].

Theorem 2.6. Let M and B be as in (2.5). B is a basic submodule if and
only if Bx-\ \-Bn is a summand of M and is maximal with respect to the
property (B1+^+Bn)Γ)Hn(M)=0.

Proof. Let B be a basic submodule of M. From (2.5) (B^ {-Bn)Γ\
Hn(M)=0. Let N be a complement of Hn(M) containing B^ \-Bn. N is a
summand of M by (1.4). By [7, Corollary 1], TV is a direct sum of uniserial
modules. Suppose iVφT^H \-Bn. Then we can find a uniform element
y&N such that β j φ φBnφyR is a summand of M. By using (2.5), we can
suppose thatyRc:B*+Hn(M). Let zR=sodt(yR). SinceyR ΠHn(M)=0, and
yR is a pure submodule, we get H(z)<n—1. Let

Mf = B*+Hn(M) ( i )

If for every / > n + l ,

Q = Σ Bj (ii)
y-n+i

each Cι being pure and bounded, is a summand of Mf. Further

M> = U,(C{+Hβ{M)).

Consequently for some /,

Again
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where j/α# are uniserial. Also

Mr = C^D (iv)

Now z=
Using (iii) and (iv) we get

Each uΛ-\-vΛ being a homomorphic image of z must be either zero or be such that
(ua-\-vΛ)R is the minimal submodule of yΛR. However as

c, = ΣB P

C, is a direct sum of uniserial modules of lengths at least n-{-1. Consequently
Ή(uΛ+vΛ)>n. Hence, as also d<=Hn(M), we get z(=Hn(M), by [6, Lemma 4].
This contradicts the fact that H(z)<n—l. This proves the necessity.

Conversely let B satisfy the given conditions. Then B^ \-Bn is a pure
submodule of M, gives B is a pure submodule of M. If B is not a basic sub-
moddle in M, we can find a uniform element u^M such that Bf]uR=0 and
Bt&uR is a pure submodule (use [7, Lemma 2 and Theorem 5]). Let d(uR)=n.
Then (β1© ©βn0M2?)Π£Γll(M)=O. This contradicts the hypothesis. Hence
the result follows.

Theorem 2.7. Let a module M satisfy (/), (//) and (III). Then M has a
basic submodule. Any two basic submodules of M are isomorphic.

Proof. Existence follows from (2.4). Let Br and B be two basic sub-
modules of M. We have

β = fi1θ52© ©J5ίl©. (i)

B' = Bi-$B'2S-®B:<3- (ϋ)

where Bn, B'n are direct sums of uniserial modules, each of length n. By (2.6)

M=(B1+-'+Bn)φNι (iii)

M=(Bί+.. +B'n)®Ni (iv)

for some submodules N{, N[ of M, containing IIn(M) such that Hn(M) is an
essential submodule of each of them. Let p: M->JB1H [-#„ be projection
given by (iii). By (2.6), BiΠN^O and hence B'n^p(B'n). For each ί = l ,
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2, •••, n, let

be natural projections. We claim that q, the restriction of pnp to B'n is a mono-

morphism. Suppose ker #Φθ. As p restricted to B'n is a monomorphism, we

can find a minimal submodule xR of B'n such that pnp(xR)=0; clearly p(x

Now H(x)~n— 1. So there exists a uniform element z^B'n, such that

and d(zR)=n. For some /<w, ̂ ^>(#)Φθ, since ^>^(#) = 0. Then from socle

(zR)=xR^ptp(χR), we get zR^pιp(zR)aBι-\ h-^-i But d(zR)=n, and

J51_| h ^ w - i has no uniserial submodule of length exceeding n—1. T h u s we

get, a contradiction. Hence q: B'n->Bn is a monomorphism. In particular we

get a monomorphism;

λ : socle {B'n) -> socle (Bn)

Similarly we get a monomorphism:

μ: socle (Bn) —> socle (B£)

Consequently socle (Bn)^socle (5,^)

Now ΰw = 9 Σ Λ

and fiί = # Σ A,

where 4̂4- and ̂  are uniseria] modules, each of length n. Then

socle (J3,) = θ Σ , socle (At)

socle (B'H) = θ Σ ; socle (^J),

we get a one-to-one mapping σ of Λ onto Γ such that socle (73^)=socle {Af

σ^)).

By condition (II), At^A'σ{%). Hence Bn^B'n. This in turn gives ΰ ^ β 7 . This

proves the theorem.

3. A decomposition theorem

Main purpose of this section is to prove the following:

Theorem 3.1. // a module M satisfying (I) and (II), is such that for its sock

S, MIS is decomposable, then M is also decomposble.

We state the following without proof, since its proof is verbatim same as of

Corollary 1 in [6].

Theorem 3.2. Let M be a module satisfying (I) and (II), and P be its socle.

M is a direct sum of uniserial modules if and only if P is a union of ascending se-

quence Pn(n—\, 2, 3, •••) of submodules such that for each n, there exists a positive
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integer kn with the property that H(x)<knfor every uniform element x of Pn.

Lemma 3.3. If a module M satisfying (/), (//) is such that for some
Hk(M) is decomposable then M is decomposable.

Proof. Let N be an λ-pure submodule of M, maximal with respect to the

property that N Π Hk(M)=0. N is bounded and decomposable. Further by [7,

Theorem 3].

M = N®K.

Let T be a complement of Hk(M) containing N. If ΓΦiV, we can find a uni-
form element z^sode(T) such that z&K. Now H{z)=t<k—\. If u is a
uniform element in K with z^uR and d(uRlzR)=t—l) we get from [7, Lemma
1], that K^uRf^K,. Then

Λf = N^uR^K,

and N-\-uR is an λ-pure submodule of M containing TV properly, having zero
intersection with Hk(M). This contradicts the choice of N. Hence N is a com-
plement of Hk(M). Further

Hk(M) = Hk(N)+Hk(K) =

Thus Hk(M) C 'iί. Hence to prove that M is decomposable we only need to show7

that i£ is decomposable. So without loss of generality we may suppose that
Hk(M)c'M. So S-socle(M)=socle(#*(M)). By hypothesis Hk{M) is decom-
posable. So by (3.1), S= U5W, where Sn (w=l, 2, •••) is an ascending sequence

of submodules, such that for each n, we have a positive integer ln such that the
height of any uniform element x of Sn taken in Hk{M) does not exceed ln. Then
the height of any uniform element x in Sn taken in M does not exceed ln+k. So
by (3.2) M is decomposable.

Proof of (3.1). In view of (3.3) it is enough to prove that H^M) is decom-
posable. Now by hypothesis

M - MIS - θ Σ y«R

where yΛR are uniserial.
As seen in the proof of (3.3), without loss of generality we can suppose

that H1(M)d/M. In view of the condition (I) we take each ya to be uniform in

M. Now d{yaR)>2. Let x«R<y«R with d(yΛRlxΛR)=\. Then
We claim,

and this will prove the result. Suppose



SOMK DiίcoMPOsmoN THEORMIΪS ON ABELIAN GROUPS 53

with xaR^x{R for \<i<n. Then

zΛR = * Λ R Π ( Σ *,-*) = socle (*Λi?) - ;yΛi? Π (£ytR)
ι = l ι = l

Now Σ^=ΐΣttR

where w;.JR are uniserial and by (1.2) m<n. If for some/, rf(wyJR)=l, we have

Φ Σ P ^ Θ Σ M (mod S)

and the right hand side has less than n terms. This is a contradiction. There-
fore d(UjR)>2 for every/ and m=n. We write

-« = *>i+*>2H ha* , vt^utR

We can find ta&yΛR such that d(taRlzaR)=\. By condition (II), we get homo-
morphisms

σ,: t^R-^UjR

such that σ ; (# α )=ϋ ; . Define

by σ(y) = ^ σ J ( y

Then σ is identity on ̂ ΛJR. Let

A =

Then 4̂ is a maximal right ideal of R with z(,R=tcύA. So forr<=A, tar=σ(tΛr)=

Σ σj(ta)r- Consequently ίΛ—cr(fα) is a uniform element such thatΣ

This gives ta—σ(ta)eS. Hence,

ία = σ(ία) (mod S)

_ « _

Consequently ^Λ<Ξ>'αjRn(Σ yjR)=0. Htnce ί Λ ε S . This is a contradiction.

Therefore

This also yields ΣjV«^— ^ Σ > ' < Λ since each j r tί? is an essential extension
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of xΛR. Consider any uniform element x^Hλ(M) such that x$.S. We can find
a uniform element }/6M such that, x^yR and d(yRjxR)=\. If

A = {r^R; yr^xR}

then A is a maximal right ideal of R and xR=yA. Now

for some yly y2, *", jp» among j>Λ's, αEΛ. We take ξt^ytR. If for any z, l^φO,
then the natural homomorphism ηt: yR-*ζtR is non-zero; since yR is uniserial,
it follows that Ker vtdxR= yA and so ξiRjξiA ss yR/aJf? Φ 0. Thus I, Φ 0 implies
%tAdxtR. Consequently # ^ Σ ^ ^ a n d hence

This proves:
We claim: Sd^xΛR. If not we can find a uniform element x^S such that
^ $ 2 X Λ Then xR Π Σ ^ = f . We can find a uniform element J G M such

that *eji? and d{yRlxR)=\. Now let N'=yR+^yaR=yR@(J}yaR). Then

M/5 = (ΣlyaR+S)/S = (N'+S)IS^N'lsoch (N')

Therefore

Φ Σ J««/socle Cv.Λ)«(yΛ/*/?)e Σj«-R/socle (yaR)
ft Oύ

This isomorphism is natural. Hence yRjxR=Q. This is a contradiction.
Hence S c Σ xJR. This yields

Hence the result follows.
We end this paper with a few remarks.

(1) Any module M over a commutative ring R satisfying (I) and (II) must
satisfy (III). However, a simple faithful module over a nonartinian primitive
ring trivially satisfies (I) and (II), but not (III).
(2) If a module M satisfies (I) and (II), then (II) gives that any uniserial sub-
module xR of M is quasi-injective. The example on page 362 in [3] is of a
uniserial module which is not quasi-injective. This shows that although a
uniserial module always satisfies (I), but it need not satisfy (II).
(3) If a commutative ring R, admits a faithful finitely generated module satisfy-
ing (I) and (II), then R is a principal ideal ring with d.c.c. It will be interesting
to investigate the structure of noncommutative rings admitting faithful, finitely
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generated modules satisfying conditions (I), (II) and (III).

(4) Consider a local ring R, with maximal ideal W, such that W2— 0, Q=R/W,

a field with the property that dim.QW=lf and άimWQ=2. R is not a right

principal ideal ring. However for any ,τφθ in W, R/xR is a uniserial, injective,

faithful, right .R-module of length two, so it satisfies (I), (II) and (III). (See V.

Dlab, and C. M. Ringel, Math. Ann. 195, (1972) Proposition 2)
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