Title	Some decomposition theorems on abelian groups and their generalisations. II
Author(s)	Singh, Surjeet
Citation	Osaka Journal of Mathematics. 1979, 16(1), p. $45-55$
Version Type	VoR
URL	https://doi.org/10.18910/9335
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

SOME DECOMPOSITIONS THEOREMS ON ABELIAN GROUPS AND THEIR GENERALISATIONS-II

Surjeet SINGH

(Received December 1, 1977)

In [7] study of those modules M_{R} which satisfy the following two conditions was initiated:
(I) Every finitely generated submodule of every homomorphic image of M is a direct sum of uniserial modules.
(II) Given two uniserial submodules U and V of a homomorphic image of M, for any submodule W of U any non-zero homomorphism, $f: W \rightarrow V$ can be extended to a homomorphism $g: U \rightarrow V$ provided the composition length $d(U / W)$ $\leq d(V / f(W))$.

It was shown that some of the well known decomposition theorems for torsion abelian groups, can be generalized to modules satisfying (I) and (II). Here we introduce another condition:
(III) For any finitely generated submodules N of $M, R / \operatorname{ann}(N)$ is right artinian.

It can be easily seen that any torsion module over a bounded ($h n p$)-ring satisfies (I), (II) and (III). Let M be a module satisfying (I) and (II). The concept of h-pure submodules of M was introduced in [7]; if in addition M satisfies (III) it is shown in section one, that any submodule N of M is h-pure if and only if it is pure (Theorem (1.3)). Theorem (1.4) shows that any complement of $H_{k}(M)$ in M is a summand of M. In section 2 , the concept of basic submodule is introduced. It is shown that any module M satisfying (I), (II) and (III) has a basic submodule and any two basic submodules of M are isomorphic (Theorem (2.7)). This result generalizes the corresponding well known result on basic subgroups of torsion abelian groups. In section 3, a decomposition theorem is proved; which states that given any module M satisfying (I) and (II), such that $M / \operatorname{socle}(M)$ is decomposable then M is decomposable.

Preliminaries: Let M be a module satisfying (I) and (II). Let us recall some definitions from [6, 7]. An element x in M is said to be uniform if $x R$ is a non-zero uniform (hence uniserial) submodule. For any uniform element x of M, its exponent $e(x)$ is defined to be equal to the composition length $d(x R)$;

[^0]the height of x is the supremum of all $d(T / x R)$ where T is a uniserial submodule of M containing x. The height of x is denoted by $H_{M}(x)$ (or simply by $H(x)$). For any $k \geq 0, H_{k}(M)$ denotes the submodule of M generated by all those uniform elements x of M for which $H(x) \geq k$. A submodule N of M is said to be an h pure submodule if $N \cap H_{k}(M)=H_{k}(N)$ for all $k . \quad M$ is said to be bounded if there exists a positive integer k such that $H(x) \leq k$ for all uniform elements x in M. $\quad M$ is said to be decomposable if it is a direct sum of uniserial modules. For definition and elementary properties of pure submodules we refer to Stenström [8]. For any ring $R, J(R)$ denotes the Jacobson radical of R.

Lemma 1.1. Let M_{R} be a module satisfying (I), (II) and (III) and X be a uniserial submodule of M having

$$
X=X_{0}>X_{1}>X_{2} \cdots>X_{t}=0
$$

as its unique composition series. If for $0 \leq i \leq t-1, P_{i}=\operatorname{ann}\left(X_{i} / X_{i+1}\right)$ then $X_{i} P_{i}=$ X_{i+1}.

Proof. Let $A=$ ann (X). Since $S=R / A$ is right artinian, $X_{t} J(S)=X_{i+1}$ and $J(S) \subset P_{\imath} / A$, we have $X_{\imath} P_{i}=X_{i+1}$.

Lemma 1.2. Let a module M_{R} satisfy (I) and (II). If for any finitely many uniform elements $x_{1}, x_{2}, \cdots, x_{n}$ in M

$$
\sum_{i=1}^{n} x_{i} R=\oplus \sum_{j=1}^{m} y_{j} R
$$

where $y_{j} R$ are uniserial, then $m \leq n$.
Proof. The result follows by induction on n.
The result that any submodule N of a torsion module over a bounded ($h n p$)-ring is pure if and only if it is h-pure was proved by M. Khan in [2]. The proof of the following is adapted from [2].

Theorem 1.3. Let M_{R} be a module satisfying (I), (II) and (III) and $N a$ submodule of M. Then N is h-pure if and only if it is a pure submodule.

Proof. Let N be h-pure. Consider any finite system of linear equations

$$
\sum_{i} x_{i} \gamma_{i j}=s_{j} \in N
$$

which admits a solution $\left\{x_{i}\right\}$ in M. Let $K=\sum x_{i} R+N$. Then K / N is a finitely generated module. So by condition (I).

$$
K / N=\oplus \Sigma T_{a} / N
$$

where each T_{a} / N is uniserial. Then by [7, Lemma 2(i)], $T_{a}=y_{\alpha} R \oplus N$. Hence

$$
K=K_{1} \oplus N
$$

This gives that the above given system of equations are also solvable in N. Hence N is a pure submodule of M.

Let now N be a pure submodule. This immediately gives $M A \cap N=N A$ for all ideals A of R. Suppose for some $k, H_{k}(M) \cap N \neq H_{k}(N)$. We choose k smallest with $H_{k}(M) \cap N \neq H_{k}(N)$. We can find a uniform element x of smallest exponent such that $x \in H_{k}(M) \cap N$ but $x \notin H_{k}(N)$. Then $x \in H_{k-1}(N)$. By definition there exists a uniform element y in M such that $x \in y R$ and $d(y R / x R)=k$.
$x \in H_{k-1}(N)$ shows that there exist a uniform element $u \in N$ such that $x \in u R$ and $d(u R / x R)=k-1$. Let $z R=\operatorname{socle}(x R)$ and $m=e(x)$. Then $d(u R / z R)=m+$ $k-2$, gives $H_{N}(z) \geq m+k-2$. Suppose $H_{N}(z) \geq m+k-1$. We can then find a uniform element $v \in N$ such that $z \in v R$ and $d(v R / z R)=m+k-1$. By condition (II), we get an isomorphism $\sigma: y R \rightarrow v R$ which is identity on $z R$. Then $x-\sigma(x)$ is a uniform element with $e(x-\sigma(x))<e(x), x-\sigma(x) \in N \cap H_{k}(M)$, but $x-\sigma(x) \notin H_{k}(N)$, since $\sigma(x) \in H_{k}(N)$. This contradicts the choice of x. Hence $H_{N}(z)=k+m-2=d(u R / z R)$. So by [7, Lemma 1]

$$
N=u R \oplus N_{1}
$$

$u R$ is also a pure submodule. Now $d(u R / z R)=d(y R / z R)-1$. By (1.1) we can find prime ideals $P_{1}, P_{2}, \cdots, P_{n+k-1}$ such that R / P_{i} is simple artinian for all i and $y R>y P_{1}>y P_{1} P_{2}>\cdots>y P_{1} P_{2} \cdots P_{m+k-1}=0$ with $z R=y P_{1} P_{2} \cdots P_{m+k-2}$. By condition (II) $u R \cong y P_{1}$ and hence $u P_{2} P_{3} \cdots P_{m+k-1}=0$. However $y P_{2} P_{3} \cdots P_{m+k-1} \neq 0$. Thus $z \in M P_{2} P_{3} \cdots P_{m+k-1} \cap u R=u P_{2} P_{3} \cdots P_{m+k-1}=0$. This is a contradiction. Hence N is an h-pure submodule of M.

The following theorem generalizes Erdelyi's theorem [1, Theorem (24.8)].
Theorem 1.4. Let M be a module satisfying (I), (II) and (III) then for any $k \geq 1$, any complement of $H_{k}(M)$ is a summand of M.

Proof. Let N be a complement of $H_{k}(M)$. Then N is bounded. If we show that N is a pure submodule, the result follows from [7, Theorem 3]. In view of (1.2) it is equivalent to showing $H_{n}(M) \cap N=H_{n}(N)$ for every n. Since $H_{k}(M) \cap N=0=H_{k}(N)$, the result holds for $n \geq k$. To apply induction we suppose that for some n with $0 \leq n<k, H_{n}(M) \cap N=H_{n}(N)$, we prove that same for $n+1$. Let the contrary hold. Then there exists a uniform element $x \in H_{n+1}(M) \cap N$ such that $x \notin H_{n+1}(N)$. Then $H_{N}(x)=n$. Now there exists a uniform element y in M such that $d(y R / x R)=n+1$. Let socle $(y R / x R)=x_{1} R / x R$. If $x_{1} \in N$, we get $x_{1} \in N \cap H_{n}(M)=H_{n}(N)$ and hence $x \in H_{n+1}(N)$. This is a contradiction. Consequently $x_{1} \notin N$ and $\left(N+x_{1} R\right) \cap H_{k}(M) \neq 0$. Thus there exists a uniform element $z \in H_{k}(M)$ such that $z=u+x_{1} s$ for some $u \in N$ and $s \in R$. If $x_{1} s R \neq x_{1} R$, then $x_{1} s R \subset x R$ and $z \in N$; this is a contradiction to the fact that
$N \cap H_{k}(M)=0$. So $x_{1} s R=x_{1} R$ and $x_{1}=x_{1} s s^{\prime}, s^{\prime} \in R$. Then $z s^{\prime}=u s^{\prime}+x_{1} \in$ $\left(N+x_{1} R\right) \cap H_{k}(M)$ and $z s^{\prime} \neq 0$. So we can suppose that $x_{1} s=x_{1}$. Thus $z=u+x_{1}$.

Let $P=\operatorname{ann}\left(x_{1} R / x R\right)$. By (1.1) $x R=x_{1} P$. So for any $r \in P, z r=0$ and $u r=-x_{1} r$. Now $H(z) \geq k>n, H\left(x_{1}\right) \geq n$, gives $u \in H_{n}(M) \cap N=H_{n}(N)$. For some $r_{0} \in P, x=x_{1} r_{0}=-u r_{0} \quad$ If $u R$ is uniform and $u r_{0} R<u R$, then $H_{N}\left(u r_{0}\right) \geq$ $H_{N}(u)+1 \geq n+1$ and hence $H_{N}(x) \geq n+1$; this is a contradiction. Hence the following two cases arise.

Case I: $u R$ is uniform and $u r_{0} R=u R$. In this case $u=x_{1} b_{0}=x r b$ for some $b \in R$ and $z=x_{1} r_{0} b+x_{1}=x_{1} c, c \in R$. Thus $z R=x_{1} R$ and $x_{1} \in H_{k}(M)$. This shows that $H\left(x_{1}\right) \geq k$ and hence $H(x) \geq k+1$. This contradicts the fact that $N \cap H_{k+1}(N)$ $=0$.

Case II: $u R$ is not uniform. The fact that $u \in z R+x_{1} R$ and that $z R, x_{1} R$ are uniform together with (1.2) yields $u R=u_{1} R \oplus u_{2} R$ with u_{1}, u_{2} both uniform. Further we can take $u=u_{1}+u_{2}$. Then $x R=u P=u_{1} P \oplus u_{2} P$. So $u_{1} P=0$ or $u_{2} P=0$. To be definite let $u_{2} P=0$. Then $u_{2} R$ is a simple R-module and $x_{1} R=u_{1} P$. Let $u_{1} P<u_{1} R$ then $x R=u_{1} P=v_{1} R$ for some $v_{1} \in u_{1} R$. Now $H\left(u_{1}\right) \geq \min \left(H\left(x_{1}\right), H(x)\right)$ $\geq n$. So by induction hypothesis $u_{1} \in H_{n}(N)$ and hence $H_{N}\left(v_{1}\right) \geq n+1$. Consequently $x R=v_{1} R$ gives $H_{N}(x) \geq n+1$. This is a contradiction. Thus $u_{1} R=$ $u_{1} P=x R$. Hence $u_{1}=x a, a \in R$. Consequently $z=u_{2}+x a+x_{1}=u_{2}+x_{1} s, s \in R$. This reduces to case I and hence again gives a contradiction. Hence N is a pure submodule. This proves the theorem.

2. Basic submodules

Definition 2.1. Let M be a module satisfying (I) and (II). A subset $\left\{x_{\lambda}: \lambda \in \Lambda\right\}$ of uniform elements of M is called h-pure independent if it is independent in the sense that $\sum x_{\lambda} R$ is direct, and $\sum x_{\lambda} R$ is an h-pure submodule of M.

The following Lemma generalizes [1, Lemma (29.1)].
Lemma 2.2. Let a module M_{R} satisfy (I) and (II). An h-pure independent subset $\left\{x_{\lambda}: \lambda \in \Lambda\right\}$ is maximal if and only if M / L, where $L=\sum x_{\lambda} R$, is a direct sum of infinite length uniform submodules.

Proof. The result follows from [7, Lemma 2 and Theorem 5].
This motivates the following:
Definition 2.3. Let M be a module satisfying (I) and (II). A submodule B of M is called a basic submodule of M if it satisfies the following:
(i) B is an h-pure submodule.
(ii) B is a direct sum of uniserial modules.
(iii) M / B is a direct sum of uniform modules of infinite lengths.
[7, Lemma 2 and Theorem 5] and the fact that union of any chain of h-pure submodules is an h-pure submodule gives the following:

Lemma 2.4. Any module satisfying (I) and (II) has a basic submodule.
The main purpose of this section is to prove that any two basic submodules of a module M satisfying (I), (II) and (III) are isomorphic. The following theorem generalizes [1, Theorem (29.3)]. Since the proof is on similar lines it is omitted.

Theorem 2.5. Let M be a module satisfying (I), (II) and (III) and B be a submodule of M such that $B=\oplus \sum_{n=1}^{\infty} B_{n}$, where each B_{n} is a direct sum of uniserial modules each of length n. Then B is a basic submodule of M, if and only if

$$
M=\left(B_{1}+\cdots+B_{n}\right) \oplus\left(B_{n}^{*}+H_{n}(M)\right) \quad \text { where } \quad B_{n}^{*}=\sum_{i>n} B_{i}
$$

The following theorem generalizes Szele's theorem [1, Theorem (29.4)].
Theorem 2.6. Let M and B be as in (2.5). $\quad B$ is a basic submodule if and only if $B_{1}+\cdots+B_{n}$ is a summand of M and is maximal with respect to the property $\left(B_{1}+\cdots+B_{n}\right) \cap H_{n}(M)=0$.

Proof. Let B be a basic submodule of M. From (2.5) $\left(B_{1}+\cdots+B_{n}\right) \cap$ $H_{n}(M)=0$. Let N be a complement of $H_{n}(M)$ containing $B_{1}+\cdots+B_{n}$. N is a summand of M by (1.4). By [7, Corollary 1], N is a direct sum of uniserial modules. Suppose $N \neq B_{1}+\cdots+B_{n}$. Then we can find a uniform element $y \in N$ such that $B_{1} \cdots \not B_{n} \oplus y R$ is a summand of M. By using (2.5), we can suppose that $y R \subset B_{n}^{*}+H_{n}(M)$. Let $z R=\operatorname{socle}(y R)$. Since $y R \cap H_{n}(M)=0$, and $y R$ is a pure submodule, we get $H(z) \leq n-1$. Let

$$
\begin{equation*}
M^{\prime}=B_{n}^{*}+H_{n}(M) \tag{i}
\end{equation*}
$$

If for every $i \geq n+1$,

$$
\begin{equation*}
C_{i}=\sum_{j=n+1}^{i} B_{j} \tag{ii}
\end{equation*}
$$

each C_{i} being pure and bounded, is a summand of M^{\prime}. Further

$$
M^{\prime}=U_{i}\left(C_{i}+H_{n}(M)\right)
$$

Consequently for some i,

$$
z \in C_{i}+H_{n}(M)
$$

Again

$$
\begin{equation*}
C_{\imath}=\oplus \sum_{\alpha} y_{\alpha} R \tag{iii}
\end{equation*}
$$

where $y_{\alpha} R$ are uniserial. Also

$$
\begin{equation*}
M^{\prime}=C_{i} \oplus D \tag{iv}
\end{equation*}
$$

Now $z=c+x, c \in C_{i}, x \in H_{n}(M)$.
Using (iii) and (iv) we get

$$
\begin{aligned}
& c=\sum_{\alpha} u_{\alpha}, \quad u_{\alpha} \in y_{\alpha} R \\
& x=\sum_{\alpha} v_{\alpha}+d, \quad v_{\alpha} \in y_{\alpha} R, \quad d \in D .
\end{aligned}
$$

Each $u_{\alpha}+v_{\alpha}$ being a homomorphic image of z must be either zero or be such that $\left(u_{\alpha}+v_{\alpha}\right) R$ is the minimal submodule of $y_{\alpha} R$. However as

$$
C_{i}=\sum_{j=n+1}^{i} B_{j}
$$

C_{i} is a direct sum of uniserial modules of lengths at least $n+1$. Consequently $H\left(u_{\alpha}+v_{\alpha}\right) \geq n$. Hence, as also $d \in H_{n}(M)$, we get $z \in H_{n}(M)$, by [6, Lemma 4]. This contradicts the fact that $H(z) \leq n-1$. This proves the necessity.

Conversely let B satisfy the given conditions. Then $B_{1}+\cdots+B_{n}$ is a pure submodule of M, gives B is a pure submodule of M. If B is not a basic submodule in M, we can find a uniform element $u \in M$ such that $B \cap u R=0$ and $B \oplus u R$ is a pure submodule (use [7, Lemma 2 and Theorem 5]). Let $d(u R)=n$. Then $\left(B_{1} \oplus \cdots \oplus B_{n} \oplus u R\right) \cap H_{n}(M)=0$. This contradicts the hypothesis. Hence the result follows.

Theorem 2.7. Let a module M satisfy (I), (II) and (III). Then M has a basic submodule. Any two basic submodules of M are isomorphic.

Proof. Existence follows from (2.4). Let B^{\prime} and B be two basic submodules of M. We have

$$
\begin{align*}
& B=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{n} \oplus \cdots \tag{i}\\
& B^{\prime}=B_{1}^{\prime} \oplus B_{2}^{\prime} \oplus \cdots \oplus B_{n}^{\prime} \oplus \cdots \tag{ii}
\end{align*}
$$

where B_{n}, B_{n}^{\prime} are direct sums of uniserial modules, each of length n. By (2.6)

$$
\begin{align*}
& M=\left(B_{1}+\cdots+B_{n}\right) \oplus N_{1} \tag{iii}\\
& M=\left(B_{1}^{\prime}+\cdots+B_{n}^{\prime}\right) \bigoplus N_{1}^{\prime} \tag{iv}
\end{align*}
$$

for some submodules N_{1}, N_{1}^{\prime} of M, containing $H_{n}(M)$ such that $H_{n}(M)$ is an essential submodule of each of them. Let $p: M \rightarrow B_{1}+\cdots+B_{n}$ be projection given by (iii). By (2.6), $B_{n}^{\prime} \cap N_{1}=0$ and hence $B_{n}^{\prime} \simeq p\left(B_{n}^{\prime}\right)$. For each $i=1$,
$2, \cdots, n$, let

$$
p_{i}: B_{1}+\cdots+B_{n} \rightarrow B_{i}
$$

be natural projections. We claim that q, the restriction of $p_{n} p$ to B_{n}^{\prime} is a monomorphism. Suppose ker $q \neq 0$. As p restricted to B_{n}^{\prime} is a monomorphism, we can find a minimal submodule $x R$ of B_{n}^{\prime} such that $p_{n} p(x R)=0$; clearly $p(x R) \neq 0$. Now $H(x)=n-1$. So there exists a uniform element $z \in B_{n}^{\prime}$, such that $x \in z R$ and $d(z R)=n$. For some $i<n, p_{\imath} p(x) \neq 0$, since $p_{n} p(x)=0$. Then from socle $(z R)=x R \cong p_{i} p(x R)$, we get $z R \cong p_{i} p(z R) \subset B_{1}+\cdots+B_{n-1}$. But $d(z R)=n$, and $B_{1}+\cdots+B_{n-1}$ has no uniserial submodule of length exceeding $n-1$. Thus we get, a contradiction. Hence $q: B_{n}^{\prime} \rightarrow B_{n}$ is a monomorphism. In particular we get a monomorphism;

$$
\lambda: \operatorname{socle}\left(B_{n}^{\prime}\right) \rightarrow \operatorname{socle}\left(B_{n}\right)
$$

Similarly we get a monomorphism:

$$
\mu: \text { socle }\left(B_{n}\right) \rightarrow \operatorname{socle}\left(B_{n}^{\prime}\right)
$$

Consequently socle $\left(B_{n}\right) \cong \operatorname{socle}\left(B_{n}^{\prime}\right)$
Now

$$
B_{n}=\sum_{i \in \mathrm{~A}} A_{i}
$$

and

$$
B_{n}^{\prime}=寸 \sum_{j \in \Gamma} A_{i}
$$

where A_{i} and A^{\prime}, are uniserial modules, each of length n. Then

$$
\begin{aligned}
& \text { socle }\left(B_{n}\right)=\oplus \sum_{\imath} \text { socle }\left(A_{i}\right) \\
& \text { socle }\left(B_{n}^{\prime}\right)=\oplus \sum_{j} \text { socle }\left(A_{\jmath}^{\prime}\right),
\end{aligned}
$$

we get a one-to-one mapping σ of Λ onto Γ such that socle $\left(A_{i}\right)=\operatorname{socle}\left(A_{\sigma(i)}^{\prime}\right)$. By condition (II), $A_{\imath} \cong A_{\sigma(\imath)}^{\prime}$. Hence $B_{n} \cong B_{n}^{\prime}$. This in turn gives $B \cong B^{\prime}$. This proves the theorem.

3. A decomposition theorem

Main purpose of this section is to prove the following:
Theorem 3.1. If a module M satisfying (I) and (II), is such that for its socle $S, M / S$ is decomposable, then M is also decomposble.

We state the following without proof, since its proof is verbatim same as of Corollary 1 in [6].

Theorem 3.2. Let M be a module satisfying (I) and (II), and P be its socle. M is a direct sum of uniserial modules if and only if P is a union of ascending sequence $P_{n}(n=1,2,3, \cdots)$ of submodules such that for each n, there exists a positive
integer k_{n} with the property that $H(x) \leq k_{n}$ for every uniform element x of P_{n}.
Lemma 3.3. If a module M satisfying (I), (II) is such that for some $k \geq 0$, $H_{k}(M)$ is decomposable then M is decomposable.

Proof. Let N be an h-pure submodule of M, maximal with respect to the property that $N \cap H_{k}(M)=0 . \quad N$ is bounded and decomposable. Further by [7, Theorem 3].

$$
M=N \oplus K
$$

Let T be a complement of $H_{k}(M)$ containing N. If $T \neq N$, we can find a uniform element $z \in \operatorname{socle}(T)$ such that $z \in K$. Now $H(z)=t \leq k-1$. If u is a uniform element in K with $z \in u R$ and $d(u R / z R)=t-1$, we get from [7, Lemma 1], that $K=u R$, K_{1}. Then

$$
M=N \oplus u R \oplus K_{1}
$$

and $N+u R$ is an h-pure submodule of M containing N properly, having zero intersection with $H_{k}(M)$. This contradicts the choice of N. Hence N is a complement of $H_{k}(M)$. Further

$$
H_{k}(M)=H_{k}(N)+H_{k}(K)=H_{k}(K)
$$

Thus $H_{k}(M) \subset^{\prime} K$. Hence to prove that M is decomposable we only need to show that K is decomposable. So without loss of generality we may suppose that $H_{k}(M) \subset^{\prime} M$. So $S=\operatorname{socle}(M)=\operatorname{socle}\left(H_{k}(M)\right)$. By hypothesis $H_{k}(M)$ is decomposable. So by (3.1), $S=\bigcup_{n} S_{n}$, where $S_{n}(n=1,2, \cdots)$ is an ascending sequence of submodules, such that for each n, we have a positive integer l_{n} such that the height of any uniform element x of S_{n} taken in $H_{k}(M)$ does not exceed l_{n}. Then the height of any uniform element x in S_{n} taken in M does not exceed $l_{n}+k$. So by (3.2) M is decomposable.

Proof of (3.1). In view of (3.3) it is enough to prove that $H_{1}(M)$ is decomposable. Now by hypothesis

$$
\bar{M}=M / S=\oplus \sum_{\alpha} \bar{y}_{\alpha} R
$$

where $\bar{y}_{\alpha} R$ are uniserial.
As seen in the proof of (3.3), without loss of generality we can suppose that $H_{1}(M) \subset^{\prime} M$. In view of the condition (I) we take each y_{α} to be uniform in M. Now $d\left(y_{\alpha} R\right) \geq 2$. Let $x_{\alpha} R<y_{\alpha} R$ with $d\left(y_{\alpha} R / x_{\alpha} R\right)=1$. Then $x_{\alpha} \in H_{1}(M)$. We claim,

$$
H_{1}(M)=\oplus \sum_{\alpha} x_{\omega} R
$$

and this will prove the result. Suppose

$$
x_{\alpha} R \cap\left(\sum_{i=1}^{n} x_{i} R\right) \neq 0
$$

with $x_{\alpha} R \neq x_{i} R$ for $1 \leq i \leq n$. Then

$$
z_{\alpha} R=x_{\alpha} R \cap\left(\sum_{i=1}^{n} x_{i} R\right)=\operatorname{socle}\left(x_{\infty} R\right)=y_{\alpha} R \cap\left(\sum_{i=1}^{n} y_{i} R\right)
$$

Now $\sum_{i=1}^{n} y_{i} R=\mp \sum_{j=1}^{m} u_{j} R$
where $u_{j} R$ are uniserial and by (1.2) $m \leq n$. If for some $j, d\left(u_{j} R\right)=1$, we have

$$
\uparrow \sum_{i=1}^{n} \bar{y}_{i} R=\uparrow \sum_{j=1}^{m} \bar{u}_{j} R(\bmod S)
$$

and the right hand side has less than n terms. This is a contradiction. Therefore $d\left(u_{j} R\right) \geq 2$ for every j and $m=n$. We write

$$
\approx_{\infty}=v_{1}+v_{2}+\cdots+v_{n}, \quad v_{\imath} \in u_{\imath} R
$$

We can find $t_{\alpha} \in y_{\alpha} R$ such that $d\left(t_{\alpha} R / z_{\alpha} R\right)=1$. By condition (II), we get homomorphisms

$$
\sigma_{j}: t_{\infty} R \rightarrow u_{j} R
$$

such that $\sigma_{1}\left(z_{n}\right)=v_{,}$. Define

$$
\sigma: t_{\alpha} R \rightarrow \sum_{j=1}^{n} u_{j} R
$$

by $\quad \sigma(y)=\sum_{j} \sigma_{,}(y), y \in t_{\alpha} R$
Then σ is identity on $\approx_{\alpha} R$. Let

$$
A=\left\{r \in R: t_{\alpha} r \in z_{\alpha} R\right\}
$$

Then A is a maximal right ideal of R with $z_{\alpha} R=t_{\alpha} A$. So for $r \in A, t_{\alpha} r=\sigma\left(t_{\alpha} r\right)=$ $\sum_{j=1}^{n} \sigma_{j}\left(t_{\alpha}\right) r$. Consequently $t_{\alpha}-\sigma\left(t_{\alpha}\right)$ is a uniform element such that

$$
\left(t_{\alpha}-\sigma\left(t_{a}\right)\right) R \cong R / A
$$

This gives $t_{\alpha}-\sigma\left(t_{\alpha}\right) \in S$. Hence,

$$
t_{a} \equiv \sigma\left(t_{\alpha}\right) \quad(\bmod S)
$$

Consequently $\bar{t}_{n} \in \bar{y}_{\alpha} R \cap\left(\sum_{j=1}^{n} \bar{y}_{j} R\right)=\overline{0}$. Hence $t_{n} \in S$. This is a contradiction. Therefore

$$
\sum_{\alpha} x_{\alpha} R=\Psi \sum_{\alpha} x_{\alpha} R
$$

'This also yields $\sum_{\alpha} y_{\infty} R=+\sum_{\alpha} y_{\alpha} R$, since each $y_{n} R$ is an essential extension
of $x_{\alpha} R$. Consider any uniform element $x \in H_{1}(M)$ such that $x \notin S$. We can find a uniform element $y \in M$ such that, $x \in y R$ and $d(y R / x R)=1$. If

$$
A=\{r \in R ; y r \in x R\}
$$

then A is a maximal right ideal of R and $x R=y A$. Now

$$
\bar{y}=y+S=\bar{\xi}_{1}+\bar{\xi}_{2}+\cdots+\bar{\xi}_{n}, \quad \bar{\xi}_{2} \in \bar{y}_{i} R
$$

for some $\bar{y}_{1}, \bar{y}_{2}, \cdots, \bar{y}_{n}$ among \bar{y}_{α} 's, $\alpha \in \Lambda$. We take $\xi_{2} \in y_{2} R$. If for any $i, \bar{\xi}_{2} \neq 0$, then the natural homomorphism $\eta_{t}: \bar{y} R \rightarrow \bar{\xi}_{2} R$ is non-zero; since $\bar{y} R$ is uniserial, it follows that $\operatorname{Ker} \eta_{i} \subset \bar{x} R=\bar{y} A$ and so $\xi_{i} R / \xi_{i} A \cong \bar{y} R / \bar{x} R \neq 0$. Thus $\bar{\xi}_{i} \neq 0$ implies $\bar{\xi}_{\imath} A \subset x_{2} R$. Consequently $\bar{x} \in \sum \bar{x}_{\imath} R$ and hence

$$
\begin{aligned}
& x \in \sum_{\alpha} x_{\alpha} R+S \\
& H_{1}(M)=\sum x_{\alpha} R+S
\end{aligned}
$$

This proves:
We claim: $S \subset \sum x_{a} R$. If not we can find a uniform element $x \in S$ such that $x \notin \sum x_{a} R$. Then $x R \cap \sum_{\alpha} x_{a} R=0$. We can find a uniform element $y \in M$ such that $x \in y R$ and $d(y R / x R)=1$. Now let $N^{\prime}=y R+\sum y_{\alpha} R=y R \oplus\left(\sum y_{\alpha} R\right)$. Then

$$
\begin{aligned}
M / S= & \left(\sum y_{\alpha} R+S\right) / S=\left(N^{\prime}+S\right) / S \cong N^{\prime} / \text { socle }\left(N^{\prime}\right) \\
& \cong y R / x R \oplus \sum\left(y_{\alpha} R\right) / \operatorname{socle}\left(y_{\alpha} R\right)
\end{aligned}
$$

Therefore

$$
\oplus \sum_{\alpha} y_{\alpha} R / \operatorname{socle}\left(y_{\alpha} R\right) \cong(y R / x R) \oplus \sum_{\alpha} y_{\alpha} R / \operatorname{socle}\left(y_{\alpha} R\right)
$$

This isomorphism is natural. Hence $y R / x R=0$. This is a contradiction. Hence $S \subset \sum_{\alpha} x_{\alpha} R$. This yields

$$
H_{1}(M)=\oplus \sum_{\alpha} x_{\alpha} R
$$

Hence the result follows.
We end this paper with a few remarks.
(1) Any module M over a commutative ring R satisfying (I) and (II) must satisfy (III). However, a simple faithful module over a nonartinian primitive ring trivially satisfies (I) and (II), but not (III).
(2) If a module M satisfies (I) and (II), then (II) gives that any uniserial submodule $x R$ of M is quasi-injective. The example on page 362 in [3] is of a uniserial module which is not quasi-injective. This shows that although a uniserial module always satisfies (I), but it need not satisfy (II).
(3) If a commutative ring R, admits a faithful finitely generated module satisfying (I) and (II), then R is a principal ideal ring with d.c.c. It will be interesting to investigate the structure of noncommutative rings admitting faithful, finitely
generated modules satisfying conditions (I), (II) and (III).
(4) Consider a local ring R, with maximal ideal W, such that $W^{2}=0, Q=R / W$, a field with the property that $\operatorname{dim}_{Q} W=1$, and $\operatorname{dim} W_{Q}=2 . \quad R$ is not a right principal ideal ring. However for any $x \neq 0$ in $W, R / x R$ is a uniserial, injective, faithful, right R-module of length two, so it satisfies (I), (II) and (III). (See V. Dlab, and C. M. Ringel, Math. Ann. 195, (1972) Proposition 2)

Guru Nanak Dev University, India

Bibliography

[1] L. Fuchs: Abelian groups, Pergamon Press, New York, 1960.
[2] Musharafuddin Khan: Ph. D. Thesis, Aligarh Muslim University, Aligarh, 1976.
[3] S.K. Jain and S. Singh: Quasi-injective and pseudo-injective modules, Canad. Math. Bull. 18 (1975), 359-365.
[4] H. Marubayashı: Modules ozer bounded Dedekind prime rings, Osaka J. Math. 9 (1972), 95-110.
[5] -: Modules over bounded Dedekind prime rings II, Osaka J. Math. 9 (1972), 427-445.
[6] S. Singh: Modules over hereditary noetherian prime rings, Canad. J. Math. 27 (1975), 867-883.
[7] -: Some decomposition theorems is abelian groups and their genesalizations, Ring Theory: Proceedings of Ohio University Conference, Lecture Notes in Mathematics, Vol. 25, pp. 183-189, Marcel Dekker Inc., N.Y. 1976.
[8] B. Stenström: Rings of quotients, Die Grundlehren der mathematıschen Wissenschaften, Band 217, Springer Verlag, N.Y., 1975.

[^0]: This rescarch was supported by UGC Research Grant No. 30-5(6562)/76(SR-II).

