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Abstract A passive dynamic walker is a mechanical
system that walks down a slope without any control,
and gives useful insights into the dynamic mechanism
of stable walking. This system shows specific attrac-
tor characteristics depending on the slope angle due to
nonlinear dynamics, such as period-doubling to chaos
and its disappearance by a boundary crisis. However, it
remains unclear what happens to the basin of attraction.
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In our previous studies, we showed that a fractal basin
of attraction is generated using a simple model over a
critical slope angle by iteratively applying the inverse
image of the Poincaré map, which has stretching and
bending effects. In the present study, we show that the
size and fractality of the basin of attraction sharply
change many times by changing the slope angle. Fur-
thermore, we improved our previous analysis to clarify
the mechanisms for these changes and the disappear-
ance of the basin of attraction based on the stretching
and bending deformation in the basin formation pro-
cess. These findings will improve our understanding of
the governing dynamics to generate the basin of attrac-
tion in walking.
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1 Introduction

A passive dynamic walker is a mechanical system that
walks down a slope without any control [27], and gives
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useful insights into the dynamic mechanism of sta-
ble walking. This system has been used extensively
for the study of human walking with low energy con-
sumption [4,5,9,21,23–25,29,33,37] and has been the
basis for the design of energy-efficient bipedal robots
[2,3,6,7,20,22,28,38,39]. Because the walking speed
for this system changes with slope angle, it is impor-
tant to clarify its influence on walking. In particular,
this system shows specific characteristics due to non-
linear dynamics depending on the slope angle. For
example, a chaotic attractor appears through a period-
doubling cascade when the slope angle increases [12],
and it abruptly disappears at a critical slope angle
[17,31]. Furthermore, fractal basin boundaries appear
even without period-doubling [1,31,34]. To under-
stand the dynamics that generate walking, it is impor-
tant to elucidate the mechanism for these characteris-
tics.

The change in the attractor by the slope angle and its
mechanism have been clarified in previous studies [10–
12,17–19],whereas the change in the basin of attraction
and its mechanism remain largely unclear. In our previ-
ous studies [31,32], we showed that the basin of attrac-
tion is produced through iterative stretching and bend-
ing deformation by the inverse image of the Poincaré
map. As a result, the basin boundaries become fractal
when the slope angle exceeds a critical value. However,
other characteristics of the basin of attraction remain
unclear.

In this study, we focused on the size, fractality, and
disappearance of the basin of attraction. Because the
basin of attraction is the set of initial states that converge
to an attractor, the basin size indicates the robustness of
walking and is thus an important feature for walking.
The fractal basin boundary has a final state sensitiv-
ity [13,26]. This means that even when the system is
deterministic, unpredictability exists for the attractor or
final statewhen the initial condition contains uncertain-
ties. Although the unpredictability of chaotic attractors
has been investigated based on the initial-state sensi-
tivity [11,12], the final state sensitivity in fractal basin
boundaries has not been investigated thoroughly. The
final state sensitivity makes the prediction of walking
easily affected by inevitable noise and is thus also an
important feature for walking. The disappearance of
the chaotic attractor and its basin of attraction indicates
that the system cannot produce stable walking and falls
down regardless of the initial state. While the disap-
pearance of the chaotic attractor can be explained by a

Fig. 1 Simplest walking model for analysis of passive dynamic
walking

boundary crisis [17,31], the mechanism for the disap-
pearance of the basin of attraction remains unclear.

The stretching-bending deformation revealed in our
previous study [32] creates horseshoes [35] that cause
complex phenomena, such as chaos and fractals, and
is an important property in nonlinear dynamics. It is
expected to play an important role in determining the
size, fractality, and disappearance of the basin of attrac-
tion in passive dynamic walking. In the present study,
we first calculated the size and fractality of the basin
of attraction for passive dynamic walking depending
on the slope angle using the simplest walking model,
which is useful for the analysis of passive dynamic
walking, and found sharp changes in these parameters
at specific slope angles. We then clarified the mecha-
nism for the sharp changes and disappearance of the
basin of attraction based on stretching-bending defor-
mation in the basin of attraction by improving our pre-
vious analysis [32].

2 Passive dynamic walking

2.1 Model

In this study, we analyzed passive dynamic walking
using the simplest walking model [11] (Fig. 1). This
model has two legs, swing and stance legs, connected
by a frictionless hip joint and walks down a slope of
angle γ without any control. The leg length is l. The tip
of the stance leg is fixed on the slope, and the stance leg
rotates around the leg tip without friction. The angles
between the stance leg and slope normal and between
the stance and swing legs are denoted by θ and ϕ,
respectively. The hip mass and leg tip mass are M and
m, respectively.We assumedm/M → 0 as in [11]. The
gravitational acceleration is g.
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2.2 Governing equations

Thismodel is governed by hybrid dynamics that consist
of continuous dynamics generated by the equations of
motion when the swing leg is in motion and discontin-
uous dynamics generated by the impact when the foot
makes contact with the ground.

The equations of motion are given by

θ̈ − sin(θ − γ ) = 0 (1)

(cosϕ − 1)θ̈ + ϕ̈ − θ̇2 sin ϕ + sin(ϕ − θ + γ ) = 0.

(2)

The equations aremade dimensionless by the timescale√
l/g. The swing leg tip touches the slope (touchdown)

when the following conditions are satisfied:

2θ − ϕ = 0 (3)

θ < 0 (4)

2θ̇ − ϕ̇ < 0. (5)

We utilized the condition (4) to ensure that touchdown
takes place exclusively in front of the model to move
forward, and condition (5) to disregard the scuffing of
the leg tip on the slope when the swing leg moves for-
ward. We considered the touchdown as a completely
inelastic collision, where no slip or bounce occurs, and
assumed that the stance leg lifts off without interaction
just after touchdown. Because the roles of the swing
and stance legs are reversed just after touchdown, we
obtain⎡
⎢⎢⎣

θ+
θ̇+
ϕ+
ϕ̇+

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−θ−
θ̇− cos 2θ−

−2θ−
cos 2θ− (

1 − cos 2θ−)
θ̇−

⎤
⎥⎥⎦ (6)

where the notations ∗− and ∗+ indicate the state of ∗
just before and after touchdown, respectively. The key
aspect of this relationship is that the state just after
touchdown, denoted by (θ+, θ̇+, ϕ+, ϕ̇+), depends
solely on (θ−, θ̇−) and is not influenced by (ϕ−, ϕ̇−).

2.3 Structure of phase space by hybrid dynamics

The structure of the phase space is determined by the
hybrid dynamic system, as shown in Fig. 2A. The
section H is defined by the touchdown conditions
(3)–(5) and forms a three-dimensional space in four-
dimensional phase space. The jump T in the phase
space from the state just before touchdown to the

Fig. 2 Schematic diagram of the structure of phase space. A
Hybrid dynamics composed of the section H , jump T , map U ,
and Poincaré map S. B Relationship among the regions Dn and
S(Dn), and the range R of S on T (H)

state just after touchdown is defined by (6). There-
fore, the image of T , T (H), represents all states just
after touchdown, and a new step starts from T (H).
The map U is defined by the equations of motion (1)
and (2) from the start of a step to the next touchdown
instance, i.e., from T (H) to H . The Poincaré section
is defined as T (H) and the Poincaré map S is defined
by S = T ◦U : T (H) → T (H), which represents one
step. T (H) is two-dimensional in the simplest walking
model as shown in (6), which is useful for analyzing
S. S is parameterized only by the slope angle γ and an
attractor of S represents stable walking. In particular,
S has an attracting fixed point at 0 < γ < 0.015,
and there is a period-doubling cascade to chaos for
0.015 < γ < 0.019 [11]. While the basin of attrac-
tion of S has smooth boundaries for γ < 0.0075, it has
fractal boundaries for γ > 0.0075 [32].

3 Characteristics of basin of attraction

3.1 Basin size

Because the basin of attraction is the collection of ini-
tial conditions on T (H) from which the model keeps
walking, we computed the basin using the governing
equations (1)–(6). Specifically, we used 1560 bins for
0.1 < θ ≤ π/2with increments of 0.001 and 1500 bins
for −1.5 < θ̇ ≤ 0 with increments of 0.001 for the ini-
tial conditions on T (H); that is, we used 2.34 × 106
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Fig. 3 Basin of attraction for γ . A Basin of attraction for
γ = 0.01, 0.012, and 0.016. Blue and orange lines show
the boundaries of the basin of attractions and the lower
edge of range R, respectively. Black lines show the regions
used to calculate the uncertainty exponent α: (θ + θ̇ × θ −
θ̇ ) = [0.00133, 0.00633] × [0.4233, 0.5233] for γ = 0.010,

[0.00266, 0.00766] × [0.4366, 0.5366] for γ = 0.012, and
[0.00533, 0.01033] × [0.4633, 0.5633] for γ = 0.016. B Basin
size versus γ . C Proportion of uncertainty box fε versus ε for
various γ values. Dotted lines represent corresponding linear
regression lines. D Uncertainty exponent α versus γ . E Number
of non-R-penetrating slits versus γ

initial conditions in total. This range of θ and θ̇ was
sufficient to contain the basin of attraction irrespective
of γ . We approximated the basin of attraction by the
set of initial states from which the model can walk at
least 50 steps, and determined the size of the basin of
attraction by counting the number of initial conditions
within it.

Figure3A shows the basins of attraction for γ =
0.01, 0.012, and 0.016, where θ + θ̇ and θ − θ̇ are
used for the axes to clarify the geometric characteristics
as in [30–32]. Because γ > 0.0075 in these figures,
the basins have an infinite number of slits and fractal

boundaries [32]. The size of the basin decreases as γ

increases, as shown in Fig. 3B. In particular, it abruptly
decreases around γ = 0.0103, 0.0135, and 0.019.

3.2 Fractality of basin boundary

We evaluated the fractality of the basin boundary based
on the uncertainty exponent [13,26], which is defined
as follows:

α = dim(B) − dim(∂B) (7)
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where α is the uncertainty exponent, B is the basin of
attraction, ∂B is the basin boundary, and dim(ξ) is the
dimension of set ξ . If 0 < α < 1, the basin boundary
has a non-integer dimension and is fractal.

We calculated the uncertainty exponent α using a
previously reported method [13,26]. First, we placed
many squares with a length ε, which is sufficiently
larger than the bin size in the initial conditions, ran-
domly on a limited range of the Poincaré section. We
calculated the proportion fε of the squares that touch
the basin boundary. When the square is coarse-grained
as a single point, it is “uncertain” whether the point is
inside or outside the basin. Therefore, α describes not
only the fractality but also the final state sensitivity. The
following relationship between α and ε holds:

fε ∝ εα. (8)

Therefore, we can obtain α by calculating the slope of
the linear regression line for fε versus ε using a log-log
plot.

We placed 30, 000 squares randomly in a limited
region to calculate α, as shown in Fig. 3A. Because the
basin of attraction moves depending on γ , the limited
regionmoves in the sameway as the basin of attraction.
However, the area of the limited region is identical for
all γ . Figure3C shows fε versus ε for γ = 0.01, 0.012,
0.016, and 0.01925, and linear regression lines using
a log-log graph. We obtained the uncertainty exponent
α from the coefficient for this regression. Figure3D
shows a plot of α versus γ . When γ < 0.008, the basin
boundary is not fractal because α ≈ 1. When γ >

0.008, the basin boundary becomes fractal because 0 <

α < 1. We can find dramatic changes in α at certain
values of γ , which include γ ≈ 0.0103, 0.0135, and
0.019, where the basin size shows remarkable changes
in Fig. 3C.

4 Mechanism for sharp changes in the basin of
attraction

4.1 Formation of basin of attraction through
stretch-bending deformation by S−1

We introduce the notation Dn (n = 1, 2, . . .) to denote
the set of initial conditions on the Poincaré section
T (H) from which the model walks at least n steps.
As n increases to infinity, Dn approximates the basin
of attraction. Furthermore, this set satisfies Dn+1 ⊆ Dn

(Fig. 2B), which means that if the initial condition is
in Dn but not in Dn+1, the model will fall down at the
(n + 1)th step. In our previous study [32], we showed
that S(Dn) represents the state on T (H) after themodel
walked one step starting from Dn , which is in Dn−1

(Fig. 2B) because the Poincaré map S represents walk-
ing one step. Moreover, S(Dn) is also in the range R
of S, which is given by R = S(D1) because D1 is
the domain of S. Therefore, the following condition is
satisfied: S(Dn) = Dn−1 ∩ R, which gives

Dn = S−1(S−1(· · · (S−1(D1 ∩ R) ∩ R) · · · ∩ R) ∩ R). (9)

This indicates that the basin of attraction is obtained by
iterative processes to extract the intersection with R of
S and to apply the inverse image S−1 starting from D1.
Because saddle instability due to the inverted pendulum
induces a stretching-bending effect in S−1 [31,32], D1

is stretched and bent many times to create many slits
(Fig. 4).

Suppose that a slit (red) in Dn penetrates the lower
edge of R for the first time at n = N , as shown in
Fig. 5A. By applying S−1 to DN ∩ R (Fig. 5B) in the
same manner as in Fig. 4, the slit penetrates the U-
shaped DN+1 along and near the outer edge (Fig. 5C).
When a slit penetrates Dn , we call it a Dn-penetrating
slit. When it does not, we call it a non-Dn-penetrating
slit. The Dn-penetrating slit in DN+1 corresponds to
two slits near the left and right edges in DN+1 ∩ R
(Fig. 5D). The right slit penetrates DN+2 along and
near the inner edge and surrounds the slit (blue) gen-
erated by the inner edge (Fig. 5E). Because these slits
do not penetrate R, they remain in DN+2 ∩ R (Fig. 5F)
and DN+3 (Fig. 5G). However, these two slits in DN+3

penetrate R and one of them (red) corresponds to two
slits in DN+3 ∩ R (Fig. 5H). The number of slits
increases at an accelerated rate as n increases, and
some slits are surrounded bymany Dn-penetrating slits
(Fig. 5I). Through these procedures, the basin bound-
aries become fractal in γ > 0.0075.

4.2 Comparison of basin state before and after sharp
changes in its characteristics

Figure 6A and B show the basin of attraction at γ =
0.0134 (before the sharp changes in the basin char-
acteristics at γ ≈ 0.0135) and γ = 0.0136 (after
the sharp changes), respectively. In the specific region
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Fig. 4 Schematic diagram of process to deform D1 to D2, to
D3, · · · , to D∞ and generate slits. D1 ∩ R (B) is extracted from
D1 (A) and stretched and bent by S−1 to form U-shaped D2
with one slit (C). In the same way, D2 ∩ R is extracted (D) and
stretched and bent by S−1 to form D3 with two slits (E). D3 ∩ R
is extracted (F) and stretched and bent by S−1 to form D4 with
three slits (G). D∞ has many slits through this process (H)

of each figure, we used at least 1500 × 1500 initial
conditions to obtain accurate boundaries, which was
confirmed by investigating if the boundary remained
unchanged evenwhenwe used 3000×3000 initial con-
ditions (we used the same conditions to calculate Dn

in the following sections). As shown in the enlarged
figures, a purple non-Dn-penetrating slit is surrounded

Fig. 5 Formation process for fractal basin of attraction. When
a red slit in DN penetrates the lower edge of the range R for
the first time (A), DN ∩ R is separated into two regions (B).
DN+1 has a red Dn-penetrating slit near the outer edge (C) and
it is separated into two red slits in DN+1 ∩ R (D). DN+2 and
DN+2 ∩ R have a red Dn-penetrating slit, which surrounds the
center blue slit (E, F). DN+3 has a red Dn-penetrating slit, which
surrounds a blue slit and penetrates the lower edge of R (G), and
it is also separated into two red slits in DN+3∩ R (H). These slits
produce new penetrating slits, and the number of slits increases
at an accelerated rate as n increases after DN+4 (I)

by Dn-penetrating slits. While these slits do not reach
the lower edge of the range R in Fig. 6A, many slits
reach and penetrate the lower edge of R in Fig. 6B. This
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Fig. 6 Penetration of the
lower edge of the range R
by Dn-penetrating slits in
the basin of attraction at
γ ≈ 0.0135. A γ = 0.0134
(before penetration). B
γ = 0.0136 (after
penetration). The orange
and blue regions are R and
the basin of attraction D∞,
respectively. The orange,
blue, and red lines are the
boundaries of R, D∞, and
D1∞, respectively

Fig. 7 Regions and slits when basin boundaries become fractal.
A Dn is separated into Di

n (i = 1, 2, . . . ,∞) by Dn-penetrating
slits, where D1

n contains the attractor. B R-penetrating and non-
R-penetrating slits in D1

n . A R-penetrating slit reaches and pen-
etrates the lower edge of R and a non-R-penetrating slit does not

difference could cause the sharp changes in the basin
characteristics.

When the basin boundaries become fractal (γ >

0.0075), non-Dn-penetrating slits are surrounded by
Dn-penetrating slits through the formation process for
the basin of attraction, as shown in Fig. 5E and G. For
large enough n, Dn has many such Dn-penetrating slits
and consists of an infinite number of regions separated
by the Dn-penetrating slits. We define Dn = ⋃∞

i=1 D
i
n

as shown in Fig. 7A, where Di
n (i = 1, 2, . . . ) is the

separated region and D1
n contains the attractor. If a non-

Dn-penetrating slit in D1
n reaches and penetrates the

lower edgeof R,we call it a R-penetrating slit (Fig. 7B).
If it does not penetrate the lower edge, we call it a non-
R-penetrating slit.

In Fig. 3A, we can find three non-R-penetrating slits
in D1

50(≈ D1∞) for γ = 0.01, two for γ = 0.012, and
one for γ = 0.016, which means that the number of
non-R-penetrating slits decreases as they penetrate R
through the increase of γ . Figure3E shows the number
of non-R-penetrating slits versus γ and confirms that
it decreases as γ increases. There could be an infinite
number of non-R-penetrating slits for γ ≈ 0.0075,
where fractal basin boundaries appear. By comparing
Fig. 3C–E, we can find that when the number of non-
R-penetrating slits changes, the basin characteristics
sharply change.

4.3 Mechanism for sharp changes in basin
characteristics based on the number of
non-R-penetrating slits

Because the basin of attraction is the set of initial states
that asymptotically converge to an attractor, any state
in the basin of attraction moves toward the attractor by
repeated application of S. That is, the basin of attraction
is obtained by the iterative application of the inverse
image S−1 to the proximity of the attractor. Therefore,
the formation process for the basin of attraction can be
explained by the iterative application of S−1 not only
to Dn as in Figs. 4 and 5, but also to D1

n that contains
the attractor.
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We investigated the relationship between the sharp
change in the basin characteristics with γ and the
change in the number of non-R-penetrating slits in D1∞.
First, we examined how the number of slits increases
in the formation process for the basin of attraction
by focusing on the deformation of D1

n with n when
the basin boundary is not fractal, when it is fractal
with one non-R-penetrating slit, and when it is fractal
with two non-R-penetrating slits. Second, we investi-
gated the mechanism for the sharp changes in the basin
characteristics when the number of non-R-penetrating
slits decreases from 2 to 1. Finally, we determined
that this mechanism is applicable when the number
of non-R-penetrating slits decreases from k + 1 to k
(k = 1, 2, . . . ).

4.3.1 Increase of number of slits in formation process
for basin of attraction for n

First, we investigated how the number of slits increases
in the formation process for the basin of attractionwhen
no slit reaches the lower edge of R and the basin bound-
ary is not fractal as in Fig. 4 (γ < 0.0075). Although a
red slit in D2 in Fig. 4C is stretched and bent by S−1,
it never reaches the lower edge of R and there is only
one red slit in both D3 in Fig. 4E and D4 in Fig. 4G.
Nomatter howmany times S−1 is applied, there is only
one red slit in Dn (n ≥ 2).

Second, we investigated how the number of slits
increases when the basin boundary is fractal and there
is one non-R-penetrating slit in D1∞ (0.0135 < γ <

0.019). Because the formation process for the basin of
attraction is explained by D1

n , Fig. 5 explains the basin
formation for one non-R-penetrating slit by replacing
DN by D1

N in Fig. 5A. We define D̂1
n (n ≥ N + 1)

as the region obtained by applying S−1 to D1
N . Fig-

ure 5A shows one red R-penetrating slit and one yellow
non-R-penetrating slit in D1

N . The red R-penetrating

slit generates red Dn-penetrating slits in D̂1
N+1, D̂

1
N+2,

and D̂1
N+3 in Fig. 5C, E, and G, respectively. Because

these Dn-penetrating slits also reach and penetrate the
lower edge of R, these slits are divided into two slits
in D̂1

N+1 ∩ R, D̂1
N+2 ∩ R, and D̂1

N+3 ∩ R in Fig. 5D,
F, and H, respectively. Therefore, the number of red
Dn-penetrating slits increases one by one in D̂1

N+1 →
D̂1

N+2 → D̂1
N+3 (one red slit in D̂1

N+1, two red slits in

D̂1
N+2, and three red slits in D̂1

N+3). In addition, D̂
1
N+3

has a red Dn-penetrating slit, which surrounds a blue

R-penetrating slit and penetrates the lower edge of R
as shown in Fig. 5G. This red slit is also divided into
two slits in D̂1

N+3 ∩ R, as shown in Fig. 5H. There-
fore, while the number of red slits increases one by one
in D̂1

N+1 → D̂1
N+2 → D̂1

N+3, it increases by two in

D̂1
N+3 → D̂1

N+4. In addition, the red slits divided in

D̂1
N+3 ∩ R generate two Dn-penetrating slits in D̂1

N+4
(Fig. 5I), each of which is also divided into two slits in
D̂1

N+4 ∩ R. These findings indicate that the number of
red slits increases at an accelerating rate by two effects:
a Dn-penetrating slit at the left of D̂1

n is divided into two
slits in D̂1

n ∩ R and a Dn-penetrating slit surrounding
a R-penetrating slit is divided into two slits in D̂1

n ∩ R.
Figure8 shows the formation process for the basin of
attraction for γ = 0.018, where the basin boundary is
fractal and there is one non-R-penetrating slit. A non-
Dn-penetrating slit penetrates the lower edge of R in D4

(N = 4, D1
4 = D4). A Dn-penetrating slit surrounds

the R-penetrating slit in D7 (N + 3 = 7, D̂1
7 = D7),

which penetrates the lower edge of R and is divided
into two slits in D7 ∩ R.

Finally, we investigated how the number of slits
increases when the basin boundary is fractal and there
are two non-R-penetrating slits in D1∞ (0.0103 < γ <

0.0135). Figure9 explains the basin formation process
for two non-R-penetrating slits. Figure 9A shows one
red R-penetrating slit and one blue and one purple
non-R-penetrating slits in D1

N . The red R-penetrating

slit generates red Dn-penetrating slits in D̂1
N+1, D̂

1
N+2,

D̂1
N+3, and D̂1

N+4 in Fig. 9C, E, G, and I, respectively.
Because these Dn-penetrating slits also reach and pen-
etrate the lower edge of R, these slits are divided into
two slits in D̂1

N+1 ∩ R, D̂1
N+2 ∩ R, D̂1

N+3 ∩ R, and

D̂1
N+4 ∩ R in Fig. 5D, F, H, and J, respectively. There-

fore, the number of red Dn-penetrating slits increases
one by one in D̂1

N+1 → D̂1
N+2 → D̂1

N+3 → D̂1
N+4

(one red slit in D̂1
N+1, two red slits in D̂1

N+2, three red

slits in D̂1
N+3, and four red slits in D̂1

N+4). In addition,

D̂1
N+4 has a red Dn-penetrating slit, which surrounds a

yellow R-penetrating slit and penetrates the lower edge
of R, as shown in Fig. 9I. This red slit is divided into
two slits in D̂1

N+4 ∩ R, as shown in Fig. 9J. In addi-

tion, the red slits divided in D̂1
N+4 ∩ R generate two

Dn-penetrating slits in D̂1
N+5, each of which is also

divided into two slits in D̂1
N+5 ∩ R. The number of red

slits increases at an accelerating rate in the same way
as that when there is one non-R-penetrating slit in D1∞.
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Fig. 8 Formation process
for basin of attraction from
D3 to D7 (A–F) for
γ = 0.018, where there is
one non-R-penetrating slit
in D1∞. The red slits
correspond to those for
N = 4 in Fig. 5. A
non-Dn-penetrating slit
penetrates the lower edge of
the range of R in D4 and a
Dn-penetrating slit
surrounding the
R-penetrating slit penetrates
R in D7

Figure10 shows the formation process for the basin of
attraction for γ = 0.013, where the basin boundary
is fractal and there are two non-R-penetrating slits. A
non-Dn-penetrating slit penetrates the lower edge of
R in D5 (N = 5, D1

5 = D5). A Dn-penetrating slit
surrounds the R-penetrating slit in D9 (N + 4 = 9,
D̂1
9 = D9), which penetrates the lower edge of R and

is divided into two slits in D9 ∩ R.

4.3.2 Mechanism for sharp changes in basin
characteristics when number of
non-R-penetrating slits decreases from 2 to 1

In the comparison of the basin formation processes
when one non-R-penetrating slit exists in D1∞ and
when two exist, it is common that the number of slits
in D1

n increases at an accelerating rate to generate frac-
tal basin boundaries. However, how the number of slits

increases in the basin formation processes is different.
Specifically, it takes three applications of S−1 to sur-
round the R-penetrating slit by a Dn-penetrating slit
and to be divided into two slits in D̂1

n ∩ R for one non-
R-penetrating slit. In contrast, it takes four applications
for two non-R-penetrating slits. This implies that one
non-R-penetrating slit has a faster rate of increase than
two non-R-penetrating slits. This difference is due to
the formation process for Dn-penetrating slits. Specif-
ically, D̂1

N+1 has a red Dn-penetrating slit near the

outer edge, as shown in Figs. 5C and 9C. D̂1
N+2 also

has another red Dn-penetrating slit, which surrounds
the non-R-penetrating slit at the middle, as shown in
Figs. 5Eand9E.For twonon-R-penetrating slits, D̂1

N+3
has another red Dn-penetrating slit, which surrounds
the non-R-penetrating slit left of the middle non-R-
penetrating slit, as shown in Fig. 9G. Finally, D̂1

N+3 for

one non-R-penetrating slit and D̂1
N+4 for two non-R-
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Fig. 9 Formation process for fractal basin of attraction when
there are two non-R-penetrating slits. When a red slit in DN pen-
etrates the lower edge of the range R for the first time (A), DN ∩R
is separated into two regions (B). DN+1 has a red Dn-penetrating
slit near the outer edge (C), and it is separated into two red slits in
DN+1 ∩ R (D). DN+2 and DN+2 ∩ R have a red Dn-penetrating
slit, which surrounds the center, yellow non-R-penetrating slit
(E, F). DN+3 and DN+3 ∩ R have a red Dn-penetrating slit,
which surrounds the non-R-penetrating slit at the left of the cen-
ter, yellow non-R-penetrating slit (G, H). DN+4 has a red Dn-
penetrating slit, which surrounds a yellow R-penetrating slit and
penetrates the lower edge of R (I), and it is also separated into
two red slits in DN+4∩R (J). While it takes three applications of
S−1 to surround the R-penetrating slit by a Dn-penetrating slit
for one non-R-penetrating slit (Fig. 5), it takes four applications
for two non-R-penetrating slits

penetrating slits have a red Dn-penetrating slit, which
surrounds a R-penetrating slit, as shown in Figs. 5G
and 9I. Thismeans that the surrounding Dn-penetrating
slits appear one by one from D1

N+2 to D1
N+k+2, where

k is the number of non-R-penetrating slits. As a result,
one non-R-penetrating slit forms a larger number of
slits and more complex boundaries in Dn for any n
than two non-R-penetrating slits, which leads to a
smaller basin size and a lower uncertainty exponent for
basin boundaries. This mechanism induces the sharp
changes in the basin characteristics at γ ≈ 0.0135,
where the number of non-R-penetrating slits decreases
from 2 to 1.

4.3.3 Mechanism for sharp changes in basin
characteristics when number of
non-R-penetrating slits decreases
from k + 1 to k

The mechanism for the sharp change in the basin char-
acteristics described in the previous section is appli-
cable when the number of non-R-penetrating slits
decreases from k + 1 to k (k = 1, 2, . . . ). Suppose that
there are (k + 1) non-R-penetrating slits. When D̂1

N

has an R-penetrating slit, D̂1
N+1 has a Dn-penetrating

slit near the outer edge in the same way for one and
two non-R-penetrating slits in Figs. 5C and 9C, respec-
tively. D̂1

N+2 has a Dn-penetrating slit,which surrounds

the center non-R-penetrating slit. D̂1
N+n (3 ≤ n ≤

k + 2) has a Dn-penetrating slit, which surrounds the
non-R-penetrating slit at the (n − 2)th slit left from
the center non-R-penetrating slit. Finally, D̂1

N+k+3 has
a Dn-penetrating slit that surrounds an R-penetrating
slit. Thismeans that it takes k+3 applications of S−1 to
generate the Dn-penetrating slit that surrounds the R-
penetrating slit. Therefore, when the number of non-R-
penetrating slits decreases from k + 1 to k, the number
of iterations changes from k+3 to k+2. The rate of this
change is k+2

k+3 , which is
3
4 for k = 1 for γ ≈ 0.0135 and

4
5 for k = 2 at γ ≈ 0.0105. It is almost 1 for k 
 1 for
0.0075 < γ < 0.01. Therefore, the change in the basin
of attraction is most remarkable for γ ≈ 0.0135 with
k = 1, and is less significant for smaller γ with larger
k, as shown in Fig. 3C and D. In particular, the changes
for 0.0075 < γ < 0.01 are difficult to recognize.
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Fig. 10 Formation process
for basin of attraction from
D4 to D9 (A–G) for
γ = 0.013, where two
non-R-penetrating slits exist
in D1∞. The red slits
correspond to those for
N = 5 in Fig. 9. A
non-Dn-penetrating slit
penetrates the lower edge of
the range of R in D5 and a
Dn-penetrating slit
surrounding the
R-penetrating slit penetrates
R in D9

4.4 Mechanism for disappearance of basin of
attraction

The mechanism for the sharp changes in the basin
characteristics described in the previous section is
applicable when the number of non-R-penetrating slits
decreases from k + 1 to k for k = 1, 2, . . . . In this sec-
tion, we investigate the formation process for the basin
of attraction when the number of non-R-penetrating
slits decreases from 1 to 0 and all non-Dn-penetrating
slits penetrate the lower edge of R.

Figure11 explains the basin formation processwhen
all non-Dn-penetrating slits penetrate the lower edge of
R. Suppose that all non-Dn-penetrating slits penetrate
R at n = N in D1

N (Fig. 11A). Then, a Dn-penetrating

slit is generated in D̂1
N+1, which penetrates the lower

edge of R (Fig. 11C) and is divided into two slits in
D̂1

N+1 ∩ R (Fig. 11D). Moreover, each divided slit also

penetrates the lower edge of R in D̂1
N+2 (Fig. 11E) and

is divided into two slits in D̂1
N+2 ∩ R (Fig. 11F). Each

application of S−1 produces this penetration of R and
subsequent division into two slits. This formation pro-
cess for the basin of attraction can be assumed as a one-
dimensional Cantor set [36]. Therefore, the area of D̂1

n
decreases as n increases and it finally disappears. That
is, the basin of attractiondisappearswhen thenumber of
non-R-penetrating slits decreases from1 to0.However,
note that we cannot observe that the number of non-R-
penetrating slits is 0 as in Fig. 3E. This is because we
cannot calculate the number of non-R-penetrating slits
when the basin of attraction disappears. (Actually, D1

n
does not exist when all non-Dn-penetrating slits pene-
trate R because there is neither an attractor nor a basin
of attraction. However, we used it only in the basin
formation process to simply explain the disappearance
mechanism for the basin of attraction.)
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Fig. 11 Formation process for basin of attraction when all non-
Dn-penetrating slits penetrate lower edge of range R. When the
last non-R-penetrating slit penetrates R at n = N (A), D1

N ∩ R

has one red slit (B). D̂1
N+1 has one red Dn-penetrating slit inside

the U-shaped region (C). D̂1
N+1 ∩ R has two red slits (D). D̂1

N+2
has two red Dn-penetrating slits inside the U-shaped region (E).
D̂1

N+2 ∩ R has four red slits (D). D̂1
n ∩ R (n = N , N + 1, . . . )

can be assumed as a one-dimensional Cantor set

Figure12 shows the disappearance process for the
basin of attraction for γ = 0.021, where all non-Dn-
penetrating slits penetrate the lower edge of R. A non-
Dn-penetrating slit penetrates R in D1

6 (N = 6) and
non-R-penetrating slits disappear in Fig. 12B. As a
result, D7 has one red Dn-penetrating slit (Fig. 12C),
as shown in Fig. 11C. Furthermore, D8 and D9 have
two and four red Dn-penetrating slits (Fig. 12D and
E), respectively. Dn becomes thinner as n increases.

By repeating these processes, the basin of attraction
disappears.

5 Conclusion

In this study, we showed that sharp changes in the
size and fractality of the basin of attraction for pas-
sive dynamic walking depends on the slope angle γ .
In addition, we clarified the mechanism for the sharp
changes based on the formation process by improving
our previous analysis. We also proposed a mechanism
for the disappearance of the basin of attraction, which
was previously explained by a boundary crisis [17,31],
based on the formation process for the basin of attrac-
tion. These mechanisms are commonly based on the
stretching-bending deformation caused by the inverse
image of the Poincaré map. Specifically, abrupt alter-
ations of the overlap between region Dn and the range
R of the Poincaré map in the formation process for the
basin of attraction induce these sharp changes in the
basin of attraction.

We used a computational resolution that allowed
us to identify sharp changes in fractal dimension at
γ = 0.0103, 0.0135, and 0.019. However, even at
higher resolution, two technical difficulties prevented
us from finding sharp changes for 0.0075 < γ < 0.01.
The first difficulty is the regional dependence of the
fractal dimension, since different parts of the basin of
attractionhavedifferent fractal dimensions. In addition,
the basin of attraction moves in phase space depending
on γ . Because we cannot necessarily calculate the frac-
tal dimension in the same region of the basin boundary
for each γ , this region-dependent effect is a serious
problem. The second difficulty is the accuracy of the
calculation for the basin of attraction. To determine if
an initial state is inside or outside the basin of attraction,
we determined whether or not the model fell within 50
steps, as described in Sect. 3.1. Near the fractal basin
boundary, it takes an extremely long time for the model
to fall, which affects the fractality of the basin bound-
ary.

Our model is a hybrid system. The boundaries of
the domain and the range of the Poincaré map for our
model are mainly obtained from touchdown conditions
(Eqs. (4) and (5), respectively), as previously described
[31,32]. Because the basin boundary is obtained from
the inverse image of the Poincaré map of these bound-
aries, it can be considered to have the sameproperties as
the boundaries for the domain and the range. Therefore,
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Fig. 12 Formation process
for basin of attraction from
D5 to D9 (A–E) for
γ = 0.021, where all
non-Dn-penetrating slits
penetrate lower edge of
range R. The red slits
correspond to the red slits
for N = 6 in Fig. 11. D7
has one red Dn-penetrating
slit inside the U-shaped
region. D8 and D9 have two
and four red Dn-penetrating
slits, respectively

the basin boundary in our model is dominated by the
touchdown conditions and does not correspond to a sta-
ble manifold as in continuous systems. In future stud-
ies, we intend to investigate the relationship between
manifolds and basin boundaries.

Sharp changes in the basin of attraction are also
observed in the Hénon map, which is a well-studied
example of a nonlinear dynamical system exhibiting
chaotic attractors [14]. Because the inverse image of the
Hénon map also induces a stretching-bending effect, a
common mechanism is expected for the sharp changes
in the basin of attraction between passive dynamic
walking and the Hénon map. However, sharp changes
occur countless times during passive dynamic walking,
whereas they occur only twice in the Hénon map [14].
Furthermore, the Poincaré map for passive dynamic
walking is neither surjective nor injective because
the system is a hybrid system, whereas the Hénon

map is bijective. Therefore, different mechanisms are
expected for the Hénon map. Clarifying common and
specific features of the basin of attraction for dynamical
systems is a subject for future study.

Tounderstand the stabilizationmechanism for bipedal
walking, not only the simplest walking model used in
this study, but also more general models with knees
and an upper body have been considered [7,8,10]. To
carry out a stability analysis of these models, a method
for designing an explicit expression for the Poincaré
map has been proposed [40–42]. The disappearance of
attractors in these models is not solely attributed to the
boundary crisis, but also to other bifurcations, such as
flip bifurcation and saddle-node bifurcation [8,15,16].
However, the basin characteristics for these models
remain largely unclear. The principal dynamic char-
acteristic of bipedal walking is saddle instability due to
the inverted pendulum, which induces the stretching-
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bending effect in the inverse image of the Poincaré map
[31]. Therefore, the formation process for the basin
of attraction clarified in this study is expected to be
applicable to the formation mechanisms for the basin
of attraction of other models, and for clarifying their
basin characteristics.
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