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ABSTRACT Recent advances in adaptive immune receptor repertoire sequencing have 
provided abundant B cell receptor (BCR) sequences under various conditions, including 
vaccination and disease. However, determining target antigen and epitope specificity of 
the corresponding antibodies is a major challenge due to their exceptional sequence 
diversity. Here, we introduce a novel method to cluster antibodies sharing antigenic 
targets based on their complementarity determining region (CDR) sequences. Using 
the proposed method, we demonstrate that SARS-CoV-2 spike protein receptor-binding 
domain (RBD) binders and non-RBD binders from publicly available BCR data were 
classified correctly, with a cluster purity of 95%. These clusters were then leveraged 
for annotating unlabeled COVID-19 patient BCR data, enabling the discovery of novel 
anti-RBD antibodies. We further validated the method by clustering BCR repertoires 
obtained from single-cell immune profiling of diphtheria-tetanus-pertussis (DTP)-vacci­
nated donors. Antibody expression and antigen-binding assays demonstrated that the 
clusters exhibited 96% antigen purity, surpassing the apparent 82% purity achieved 
by assigning antigens to the same B cells using fluorescently labeled DTP antigen 
probes. Moreover, antibodies within certain clusters were found to possess neutralizing 
activity, suggesting that CDR clusters contain epitope-level information. Together, this 
study offers a simple approach for antigen- and epitope-specific BCR discovery that is 
reproducible, inexpensive, and applicable to a wide range of antigen targets.

IMPORTANCE Determining antigen and epitope specificity is an essential step in the 
discovery of therapeutic antibodies as well as in the analysis adaptive immune responses 
to disease or vaccination. Despite extensive efforts, deciphering antigen specificity solely 
from BCR amino acid sequence remains a challenging task, requiring a combination 
of experimental and computational approaches. Here, we describe and experimentally 
validate a simple and straightforward approach for grouping antibodies that share 
antigen and epitope specificities based on their CDR sequence similarity. This approach 
allows us to identify the specificities of a large number of antibodies whose antigen 
targets are unknown, using a small fraction of antibodies with well-annotated binding 
specificities.

KEYWORDS antibody, antigen-specific, B cell receptor, clustering, diphtheria, pertussis, 
tetanus, repertoire, SARS-CoV-2, single-cell immune profile

A daptive immune responses, which include activation of B and T cells, provide 
specific and long-lasting protection against various pathogens (1). This remarkable 

ability is due to the extraordinary diversity of B cell receptors (BCRs) and T cell receptors 
(TCRs), which are generated combinatorically from V, D, and J gene fragments (1–3). Due 
to the nature of V(D)J recombination, adaptive immune responses are highly variable 
among individuals. However, at present, there is no consensus about the best way to 
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assess adaptive immune responses across donors using immune receptor repertoires. 
Meanwhile, adaptive immune receptor repertoire (AIRR) sequencing has revealed a 
broad range of immune responses to specific pathogenic antigens by sampling the BCRs 
or TCRs from circulating blood or disease-related tissues. Classifying AIRRs by their target 
antigens and epitopes could be a promising approach to compare adaptive immune 
response of different donors.

As the volume of immune receptor sequence data continues to increase, there 
have been numerous attempts to infer antigen specificities computationally. In the 
case of TCRs, sequence-based clustering has been extensively employed in order to 
define peptide-major histocompatibility (pMHC) specificity groups (4–7). In contrast, 
deciphering antigen specificity of BCRs (denoted as antibodies in their soluble form) has 
been more challenging. Unlike TCRs, which recognize pMHCs in a structurally restricted 
manner, antibodies recognize antigen surface patches, resulting in a greater range of 
possible conformational epitopes. On the antibody side, residues that interact with 
epitopes are known as paratopes, and these primarily occur in or near three complemen­
tarity-determining regions (CDRs 1–3) (8, 9). Current BCR clustering methods predomi­
nantly rely on the concept of a “clonotype,” which is a group of receptors that share 
the same V and J genes as well as possess highly similar CDR3 amino acid sequences 
(10–15). While clonotypes are expected to target the same antigen and epitope, mature 
antibodies from distinct genetic origins can also converge to target the same antigen 
and epitope (16, 17). Moreover, during the affinity maturation process, BCRs undergo 
extensive somatic hypermutation in the variable regions, including CDRs 1–3 (1, 18). For 
these reasons, clonotyping alone may be less sensitive in functional clustering of BCRs 
into antigen-specific groups.

Previously, we found that BCRs targeting the same or similar conformational epitopes 
could be clustered by their CDR sequences (19). Another study has similarly reported that 
the use of predicted paratope sequences resulted in more sensitive antibody clustering 
than clonotyping (20). CDR sequences have also been found to facilitate the elucidation 
of antibody-antigen binding modes by docking (21, 22). These observations suggest that 
clusters of CDR sequences may be the preferred way of defining BCR specificity groups.

Here, we introduce a CDR sequence-based clustering approach that is simple, 
intuitive, and easy to implement using established sequence analysis tools (23). We 
validate the specificity of this approach using antibodies with known binding specifici-
ties to SARS-CoV-2 spike protein from CovAbDab (24). We then leverage these antibodies 
to assign the specificities of previously published BCR sequence data from COVID-19 
patients. We also applied the clustering method to new BCR sequence data obtained 
from diphtheria-tetanus-pertussis (DTP)-vaccinated donors and discover novel neutraliz­
ing antibodies clusters. Our study demonstrates that the CDR cluster is sensitive and 
reliable method for assigning antigen specificity to antibody repertoire data.

RESULTS

Representing BCRs by paratope pseudo sequences

Since paratopes are primarily composed of residues within CDRs (21), we can describe 
BCRs by using a pseudo sequence composed of the three concatenated CDRs. Typical 
pseudo sequences are long enough to provide sufficient alignment coverage at rigorous 
sequence identity thresholds, thereby providing pairwise scores that are statistically 
significant, which is not the case for CDR3 sequence alignments, in general. Here, the 
InterClone code base was used to prepare pseudo sequences and to call the MMseqs2 
cluster method (23) in order to group the pseudo sequences efficiently (Fig. 1), as 
described in Materials and Methods.

Validation of coronavirus antigen domain-specific antibody clusters

To validate the effectiveness of the CDR clustering approach, we utilized the publicly 
available BCR database, CovAbDab, which contains a vast collection of BCRs with known 
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specificity to coronavirus antigens (24). From this data set, we excluded non-human 
antibodies and focused on 6,412 antibodies recognizing the SARS-CoV-2 spike protein 
receptor-binding domain (RBD), as well as 3,702 “non-RBD” antibodies targeting other 
regions of the spike protein (Fig. 2A). Following pseudo sequence preparation, we 
performed clustering using several sequence identity and coverage thresholds. To 
understand how well the sequences within a cluster match a particular annotation (in 
this case, either RBD or non-RBD), we calculated the “cluster purity,” which is defined as 
the fraction of members annotated with the most frequent assignment (RBD, non-RBD) 
within the cluster (26). As shown in Fig. 2B; Table S1, the mean cluster purity was sensitive 
to both coverage and sequence identity. Coverage threshold was set to a value of 90% in 
order to reduce the possibility of alignment across CDR boundaries. Sequence identity 
threshold was then adjusted to achieve a cluster purity of 95% or higher. By using 90% 
coverage and 80% sequence identity threshold, we obtained a cluster purity of 95.3% 
among 1,074 non-singleton clusters, 25 of which are shown in Fig. 2C. Alignment of the 
CDRH sequences among the top three largest clusters indicates that CDRH3 sequences 
were the least conserved, as expected, but that there was variation even in CDRs 1–2 (Fig. 
2D). We note that the mean pairwise CDRH3 sequence identities within clusters are 
approximately 10% lower than the typical lower bound for clonotyping (80%) suggesting 
that the CDR clusters can group antibodies from different clonal groups sharing paratope 
antigen specificity.

Identification of novel anti-RBD antibodies by co-clustering unlabeled 
antibody sequences from COVID-19 patients with CovAbDab data

Next, we assessed the efficacy of the CDR clustering method to identify novel anti-RBD 
antibodies within unlabeled BCR sequence data (Fig. 3A). To this end, we clustered the 
validated SARS-CoV-2-specific antibodies from CovAbDab with unlabeled single-cell BCR 
sequence data obtained from a previous study of COVID-19 patients (28). Using the same 
sequence identity and coverage thresholds established above, we found that 1,863 out 
of 52,799 unlabeled BCR sequences from COVID-19 patients clustered with validated 
anti-SARS-CoV-2 antibodies from CovAbDab, resulting in 602 clusters. The top 25 largest 
clusters that include unlabeled BCRs are shown in Fig. 3B. The co-clustering of labeled 
and unlabeled data indicates that CDR clustering can detect “public” antibody responses 
after SARS-CoV-2 infection. We then expressed five unlabeled antibodies belonging to 
four clusters including those from RBD Clusters 1 and 3 and from non-RBD Clusters 4 and 
6. We evaluated the binding specificity of the unlabeled antibodies to SARS-CoV-2 full-
length spike protein and RBD-expressing Expi293F cells. All antibodies tested bound to 
the spike protein. Antibodies from Clusters 1 and 3, but not Cluster 4 or 6, exhibited 

FIG 1 CDR clustering approach (modified from reference 25). CDRH1, CDRH2, and CDRH3 amino acid sequence were retrieved and sequence identity cutoff was 

determined. Antibodies that have coverage and sequence identity above threshold will be clustered.
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FIG 2 CDR cluster antigen specificity in validated BCR database. (A) Collecting BCR data from CovAbDab. (B) Cluster purity score comparison among various 

coverage and sequence identity thresholds. Square indicates the chosen cluster purity (95.3%), obtained by 80% and 90% of sequence identity and coverage 

thresholds, respectively. The detail cluster purity scores are also shown in Table S1. (C) The 25 largest clusters of CovAbDab data, colored by the antigen 

specificity, for which the cluster purity score was 95%. (D) Multiple sequence alignments of CDRHs among top three biggest clusters made by WebLogo (27). The 

cluster size (n) and sequence identities for CDRs1–3 are also shown.
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binding to the RBD, confirming the predicted assignment of their binary (RBD, non-RBD) 
labels (Fig. 3C). Alignment of the CDRHs among the validated clusters indicated highly 
but not perfectly conserved CDRH1 and CDRH2 sequences, and much greater variability 
in CDRH3 (Fig. 3D). This finding demonstrated that CDR clustering is effective in assign­
ing target antigens of unlabeled human BCR repertoires using a limited set of labeled 
antibody data.

FIG 3 CDR cluster of validated and non-validated (unlabeled) BCR data. (A) Study design of CDR clustering to annotate unlabeled antibodies. (B) Clustering 

of validated CovAbDab data with unlabeled antibody data from COVID-19 patients in Osaka University (OU) identified potential RBD and non-RBD binding 

antibodies (dark gray presents in the same cluster with red or light gray). (C) Experimental binding assay of unlabeled antibody representatives from Cluster 

OUCov 1, 3, 4, and 6. Values represent percent population (mean ± SD) of spike protein or RBD-expressing cells that positively bound to antibody, detected by 

APC-conjugated anti-human IgG. (D) CDRHs sequence alignment of OUCov1, 3, 4, and 6, made by WebLogo (27). The cluster size (n) and sequence identities for 

CDRs1–3 are also shown.
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CDR clustering of BCRs derived from vaccinated donors identifies poly-clonal 
clusters

The unprecedented breadth and depth of CovAbDab make COVID-19 the exception 
rather than the rule among infectious diseases in terms of antigen-labeled BCR sequence 
data. We next aimed to assess the utility of the CDR clustering method in the anno­
tation of antigens associated with other diseases. We choose the DTP vaccine as an 
immune perturbation model because of its proven efficacy to provide robust and broad 
protection to three highly lethal pathogens: diphtheria, tetanus, and pertussis. To this 
end, we collected BCR repertoire data from four healthy donors vaccinated with the 
trivalent DTP vaccine. All donors were adult volunteers with a childhood history of 
DTP vaccination (Table 1) and received a single DTP booster shot. We collected periph­
eral blood mononuclear cells (PBMCs) 7 days after booster administration (Fig. S1A). 
We sorted CD19+CD27+ antigen-experienced B cells and further isolated four distinct 
subgroups of B cells by employing fluorescently labeled DTP toxins/toxoids as antigen 
probes. Three B cell subgroups consisted of those that bound to diphtheria toxin 
(DT), tetanus toxin (TT), or pertussis toxin (PT), respectively. The fourth subgroup (NB) 
consisted of those that did not bind to any of these antigens (Fig. S1B). The four groups 
of cells were then subjected to 10× Genomics single-cell immune profiling. Following 
quality control procedures, we obtained a total of 13,847 paired antibody sequences, 
comprising both heavy and light chains, for further analyses (Fig. 4A).

We then conducted both clonotype and CDR clustering of the paired BCR sequences, 
resulting in a total of 11,636 clonotype and 10,802 CDR clusters. CDR clustering yielded 
more non-singleton clusters compared to clonotyping as shown in Fig. 4B; Table S2 (P 
< 0.0001). Of the 4,243 BCR sequences belonging to 1,198 non-singleton clusters, we 
found 69 clusters with members assigned to multiple V genes, 46 clusters with multiple J 
genes, and 1 cluster with members assigned to multiple V and J genes (Fig. 4A). In total, 
116 (9.68%) clusters were poly-clonal, that is, composed of multiple VDJ clonotypes. 
These results highlight the difference between clonotyping and CDR-based clustering, 
with the latter revealing the convergence from distinct clonotypes to functionally similar 
paratopes in antibody response after DTP vaccination. Nevertheless, clonotype- and 
CDR-based clusters showed a comparable proportion of public clusters (28.6% and 
32.72%, respectively) (Fig. 4C; Table S3, P <0.0001), suggesting that the use of CDRs did 
not result in over-clustering.

Experimental validation of new bacterial-toxin specific antibodies

To validate antigen specificity, we analyzed the 25 largest DTP clusters. We provisionally 
assigned antigens to the BCRs based on the antigen probe (DT, TT, PT, or NB) they 
bound to during the cell sorting process. Unexpectedly, we observed the presence of 
clusters whose members bound to different antigen probes (Fig. 5A). The mean antigen 
cluster purity using these provisional assignments was only 82%, much lower than the 
95% observed in the COVID-19 data analysis. Possible explanations for the disagreement 
between the CDR clustering and probe-based antibody assignment include (i) non-spe­
cific binding of fluorophores, streptavidin, or antigen purification tags causing a lenient 
gating strategy and high false-positive rate; (ii) sticky or polyreactive BCRs; (iii) and 
decreased cluster purity when applied to raw BCR data without any validated antibodies.

To experimentally address these three scenarios, we selected 1–4 non-identical 
antibody sequences with different provisional antigen assignments from each of the 25 

TABLE 1 Subject demographics

ID Sex Age (years old) Ethnicity

Donor 1 Female 30 Asian
Donor 2 Female 29 Asian
Donor 3 Female 27 Asian
Donor 4 Male 34 Asian
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largest clusters (Fig. 5B). A total of 52 naturally paired BCR sequences were expressed as 
human IgG1 monoclonal antibodies. Indirect ELISA was performed to assess the binding 
of these antibodies to each DTP toxoid (DT, TT, PT), as well as to the SARS-CoV-2 spike 
protein as an unrelated antigen. Post-vaccination serum was employed as a positive 
control in these experiments. Out of the 52 recombinant antibodies derived from the top 
25 largest clusters, 10 antibodies did not exhibit reactivity toward any of the three 
antigens, while 16, 2, and 24 antibodies exhibited specific binding to DT, TT, or PT, 
respectively (Fig. 5C). Although a few antibodies within Clusters 9 and 13 tested nega­
tives, none of the clusters contained members that tested positive to more than one 
antigen. Thus, the corrected cluster purity was, in fact, found to be 96% within the 
limitations of the sampling performed (Fig. 5C and D), which is consistent with the 
COVID-19 assessment above. In total, we identified 7, 1, and 8 clusters with binding 
specificity to DT, TT, and PT, respectively. These results validated the antigen-specificity of 
the CDR clusters and further identified novel DTP-binding antibodies, potentially 
possessing neutralizing activities. By mapping back to all members of the 25 largest 

FIG 4 Frequency of polyclonal cluster. (A) Proportion of singleton and clustered antibodies. A total of 4,243 antibody sequences were clustered into 1,198 

distinct groups. Among 1,198 clusters, 116 (9.68%) were polyclonal clusters where 69, 46, and 1 cluster have more than one V, J, and V/J gene assignment, 

respectively. (B) Comparison of non-singleton group appearance in CDR cluster and clonotype. Statistical difference was analyzed by Chi Square test (see Table 

S2). (C) Observation of public clones and public paratope clusters, defined as total number of public clone or cluster divided by total number of clone or cluster, 

respectively. Statistical difference was analyzed by chi square test (see Table S3).
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clusters, the assessment of 52 recombinant antibodies enabled the specificities of over 
800 previously uncharacterized antibodies to be elucidated.

FIG 5 CDR clustering of DTP-vaccinated repertoire. (A) Visualization of top-25 biggest clusters with provisional antigen assignment based on cell-sorting probes. 

One small circle represents one BCR sequence. Cluster purity score was 82%. Some clusters have members that bound to different antigen probes during the 

cell-sorting process. (B) Representative sequences were selectively chosen for validation, with a particular emphasis on those exhibiting provisional antigen 

assignments from diverse antigen probes. In total, we tested 52 non-identical sequences from Clusters 1–25. (C) Heatmap of ELISA-binding assay to DT, TT, 

PT, and SARS-CoV-2 spike protein. Value represents OD450 from duplicated wells. (D) Corrected network graph after validation. Cluster purity score was 96%. 

Network figure in A, B, and D was generated using Gephi Software.
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Additionally, by examining the DTP antigen specificities on a per-donor basis (Fig 
S2), it was readily apparent that all of the donors except Donor 3 produced antibod­
ies in response to all three antigens. These results were qualitatively consistent with 
serum-level assays, which indicated that all donors except Donor 3 showed an increase 
in antibody responses to all three antigens (Fig S3). Indeed, among the expressed 
antibodies from Clusters 1–25, Donor 3 only contributed to clusters that did not bind to 
DTP antigen (Cluster 3, 7, 20), indicating that Donor 3 is a weak responder to the vaccine. 
These results suggested that CDR clustering not only identified numerous antigen-spe­
cific clones, including ones representing public antibody responses to a multivalent 
vaccine, but also provided an efficient roadmap for assigning the antigen specificities of 
these BCRs experimentally as well as comparing the adaptive immune responses across 
multiple donors.

FIG 6 Neutralization assay of DTP-binding antibodies. (A) VERO cell cytotoxicity assay. To test the antibody inhibition effect on VERO cell death, 5 × 103 cells/well 

were incubated with DT in the presence or absence of antibodies. After 24 h incubation, cell death was quantified as detailed in Materials and Methods. Values 

represent the mean ± SD from duplicated wells. (B) TT-GT1b receptor binding inhibition assay by ELISA. Values represent mean ± SD of normalized OD450 in 

duplicated wells. (C) CHO-K1 cell clustering assay. To score each well: 0, very minor cells clustered (<30%); 1, equivocal; 2, majority of cells clustered. Visual score 

was obtained from total score of duplicated wells. Five observers gave score independently and the mean ± SD was determined and plotted. Total visual score 

less than 3 was considered a positive neutralization effect of antibodies.
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In vitro assays identified novel DTP-neutralizing antibodies within the same 
cluster

To further assess the functional specificity of the DTP-specific clusters, we conducted 
three distinct in vitro neutralization assays. We performed a cytotoxicity assay to evaluate 
the inhibitory effect of DT-binding antibodies on VERO cell death induced by DT (29, 
30). Notably, 3 out of 7 DT-binding clusters (comprising 8 out of 16 DT-binding antibod­
ies) exhibited a reduction in cell death (Fig. 6A). Subsequently, we employed an ELISA 
assay to investigate the ability of TT-binding antibodies to inhibit TT binding to the 
GT1b receptor (31, 32). No significant impact on TT binding to the GT1b receptor was 
observed for the antibodies in Cluster 1. We then expanded the search for TT-binding 
and neutralizing antibodies to smaller DTP clusters and found a TT binding antibody, 
mAb61, in Cluster 40 that inhibited TT binding to the receptor at a comparable level 
to the positive control, TT0067 (33) (Fig. 6B). Finally, to examine neutralization by 
PT-binding antibodies, we utilized the CHO-K1 cell line, which undergoes morphological 
changes upon exposure to PT (34) (Fig. 6C). Remarkably, four out of eight PT-binding 
clusters (encompassing 11 out of 24 PT-binding antibodies) neutralized the toxin’s effect 
on CHO-K1 cells (Fig. 6C). Overall, we observed functional consistency (neutralizing or 
non-neutralizing) within a given cluster. This indicates that the clusters contain epitope-
level information in addition to antigen specificity.

DISCUSSION

Assessing the antibody and epitope specificity of antibodies elicited by a particular 
immune perturbation is of paramount importance for the development of therapeutic 
antibodies and the study of immune responses to disease or vaccination (35). However, 
this is a non-trivial task due to the diverse nature of antibody responses across donors 
(1–3). Here, we presented a novel approach to decipher the antigen specificities of B cell 
responses to vaccination or infection by clustering antibodies by their CDR sequences. 
CDR clustering using a panel of annotated antibodies against SARS-CoV-2 spike protein 
resulted in high antigen cluster purity in terms of two categories of spike binders (RBD 
vs non-RBD). We further showed that the clusters could be used to assign domain-level 
specificities of new unlabeled BCR data from COVID-19 patients, which highlights the 
ability of the clustering method to leverage annotated BCR repertoire data.

Compared to clonotyping, where highly similar CDR3 amino acid sequences and 
identical V-J assignments are used to group antibodies (10–15), CDR clustering at a 
pseudo sequence identity threshold of 80% resulted in clusters with mean pairwise CDR3 
sequence identities less than 80%, suggesting that the CDR clusters represent a degree 
of convergence of different antibody clonal groups that target the same antigen and 
epitope (16, 17). This finding is also supported by DTP data analysis where CDR clustering 
defined public antibodies and non-singleton clusters at a higher rate than clonotype 
clustering, resulting in more sequences that belong to different clones to converge 
into shared clusters. We also note that, by using paratope rather than clonotype as 
representation of BCRs, we can include the effects of somatic hypermutation changes 
in the clusters. Therefore, features based on paratopes may allow prediction of antibody-
antigen affinity. For this reason, CDR clustering can be used in tandem with clonotyping 
in order to improve clustering across clones and across donors.

By using CDR clustering along with minimal antigen screening assays, we elucidated 
the antigen specificities of dominant B cell responses to DTP vaccination in multiple 
donors. Interestingly, the distribution of CDR cluster frequencies was unique for each 
donor in spite of the overall similarity in their serum-level responses. Moreover, we were 
able to identify a weak responder to the vaccine, highlighting the heterogeneity of 
human antibody responses to the same immune perturbation. It will be interesting to 
examine the cluster frequencies of larger number of donors in order to obtain robust 
signatures of vaccination and disease. This results also highlight the potential of CDR 
cluster to compare and evaluate the adaptive immune responses to a given vaccine 
among different donors.
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It is a common practice to evaluate B cell responses to antigens using fluorescence-
activated cell sorting (FACS). However, the DTP analysis suggested that provisional 
assignment of antigen specificities using FACS can itself be a source of error. Although 
antigen sorting could differentiate between positive and negative B cells, antigen 
specificities were less reliable, probably due to the non-specific binding of fluorophores, 
streptavidin, or antigen purification tags (35, 36). Double-fluorescent antigen-tagging 
techniques (37) or conjugation with sequencing-readable barcodes, as demonstrated 
in LIBRA-seq (38), have the potential to increase the confidence in antigen-specificity. 
However, even with such techniques, the possibility of obtaining false-positive sorted 
cells is not insignificant. Along with these experimental techniques, CDR clustering can 
help mitigate cell sorting errors by grouping receptors with highly similar paratopes 
resulting in antigen-specific clusters.

Clustering also assisted in the identification of neutralizing antibodies. Paratope 
clustering may potentially be used to identify antibody clusters that target antigens 
associated with different viral or bacterial strains. In the future, it will be interesting 
to examine whether such antibody clusters can serve as biomarkers for broad neu­
tralization upon vaccination. By performing neutralizing assays for a small subset of 
cluster representatives, we efficiently identified and characterized potentially therapeutic 
antibodies against DTP infection from human PBMCs. Not all DTP-binding antibodies 
exhibited neutralizing properties, presumably due to the presence of non-neutralizing 
epitopes within clusters of antigen-positive BCRs. However, neutralizing activities were 
consistent within particular clusters, suggesting that the CDR clusters themselves were 
not merely antigen specific but also contained epitope-level information. While further 
investigations are needed to determine the exact epitopes targeted by these antibod­
ies, the current approach of grouping by CDRs followed by verifying representatives 
for antigen reactivity and function is an efficient strategy for investigating antibody 
responses under any conditions. This approach will have applications to the study of 
adaptive immunity states associated with health and disease as well as for screening 
functional antibodies from a large number of candidates.

MATERIALS AND METHODS

Collecting COVID-19 BCR data from public database

Labeled human antibodies that known to bind spike protein (RBD or non-RBD) 
were downloaded from CovAbDab Database (24) with inclusion and exclusion criteria 
explained in Fig. 2A. Unlabeled COVID-19 antibody data were obtained from previ­
ous study in Osaka University (28). Raw sequencing data of that study are available 
at the Japanese Genotype-phenotype Archive (JGA) with accession codes JGAS00059/
JGAD000722.

Obtaining human samples of DTP vaccinated repertoires

This study was approved by Osaka University Institutional Review Board. Informed 
consent was obtained from the participants after providing detailed information about 
the research objectives and potential implications. Four healthy adults, aged between 
25 and 35 years, were recruited and received a 0.5-mL intramuscular boost of DTP 
vaccine (TRIBIK, BIKEN). Blood samples were collected on 7 days after the vaccine shot. 
PBMCs were isolated from the blood samples using Histopaque-1077 (Sigma Aldrich) 
and 50-mL-Leucosep Tube (Greiner-BioOne) following the manufacturer’s instruction and 
cryopreserved in CellBanker1 (Zenogen Pharma) until further use. The blood serum 
samples were also collected before and 7 days after shot and stored in 2× dilution with 
PBS.
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Serum IgG level measurement by ELISA

Capture antigens (DT, TT, PT [BIKEN]) were coated onto half-area 96-wells microplates 
and incubated overnight at 4°C. After two washes, the plate was blocked with 1% BSA 
in PBS. Following two washes, plates were then incubated with blood serum diluted 
1,000 times in PBS. After three times washing, HRP-conjugated anti-human IgG (Jackson 
ImmunoResearch) were added and incubated for 40 min. After two washes, substrate 
in TMBZ (Bakelite Sumitomo) was added to each well for 10 min, and the reaction was 
stopped using H2SO4 solution (Bakelite Sumitomo). The experiments were performed in 
duplicates, and the OD450 was measured using GloMax Explorer Multimode Microplate 
Reader (Promega).

Generation of fluorescent-labeled antigen probes

The DT CRM-197 gene, a non-toxic mutant of DT, was amplified from a plasmid (a gift 
from Professor Eisuke Mekada) and cloned into the pCold II expression vector with 6× 
His-Tag at the N-terminal. The gene encoding the TT-binding domain was amplified from 
Clostridium tetani genomic DNA (a gift from Professor Tetsuya Iida) and cloned into the 
same expression system. These plasmids were then transformed into Escherichia coli BL21 
and induced with IPTG at a final concentration of 0.5 mM for expression. The toxins 
were purified using AKTA Pure HisTrap Ni2+ affinity chromatography (Cytiva). The His-Tag 
is preserved and used to label the toxins by using APC-conjugated anti-His antibody 
(BioLegend). Purified PT (BIKEN) was stained using Alexa Fluor 647 Protein Labeling Kit 
(Invitrogen) according to manufacturer’s protocol.

Cell sorting to get toxin-binding and DTP non-binding B cells

Cryopreserved PBMCs were rapidly thawed in a 37°C water bath for 1 min and then 
washed with 10 mL cold PBS. After centrifugation, the supernatant was removed, and 
the PBMCs were resuspended in PBS supplemented with 2% FBS (Cytiva). PBMCs were 
incubated with Fc-blocker (BioLegend) followed by staining with an antibody cocktail 
containing anti CD19-AF488 (BioLegend), anti CD3-BV421 (BioLegend), anti CD27-PE 
(BioLegend), and anti CD38-APC.Cy7 (BioLegend) for 30 min together with fluorescence-
labeled antigen probes. Additionally, four different Total-Seq C anti-human hashtag 
antibodies (BioLegend) were used to label the donor. After three washes, cells from 
different donors were combined in FACS buffer (2% FBS in PBS) and sorted using BD Aria 
II Cell Sorter, with the gating strategy described in Fig. S1B. Antigen-experienced B cells 
(CD19+CD27+) were sorted, and double negative controls were utilized to gate the toxin- 
and non-binding cells: unlabeled toxin and the non-conjugated anti-His APC (BioLegend) 
for DT and TT, or non-conjugated Alexa Fluor 647 (Invitrogen) for PT.

Sequence data collection of DTP repertoire

The library construction and sequencing of DTP-vaccinated repertoire were carried out 
at the Osaka University Genome Informatic Research Center Facility. The VDJ library 
was prepared using the 10× Chromium System (10× Genomics). In brief, we have four 
samples annotated as DT, TT, PT-sorted B cells, and NB (not bound to DTP), each of 
which contains mixture of samples from four different donors labeled by Total Seq 
C anti-human Hashtag antibody. Raw data processing and initial quality control were 
performed using Cell Ranger 6. The AIRR file outputs from Cell Ranger were used as an 
input file for the CDR-clustering.

CDR clustering

The CDR pseudo sequence definition (Fig. 1A) employed in this study is similar to 
that described previously (19, 25). In brief, the BCR sequences in AIRR formatted file 
were subjected to annotation and quality control. The resulting sequences were then 
processed to extract the CDRH1, CDRH2, and CDRH3 amino acid sequences, which 
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were subsequently concatenated as a single paratope pseudo sequence. These pseudo 
sequences were grouped using predetermined thresholds of coverage and sequence 
identity using the MMseqs2 software (23). Here, the coverage threshold was set to 0.9 
using coverage mode 0, which requires the alignment to include at least 90% of both 
aligned sequences. We used a high threshold in order to preserve CDR boundaries. 
The sequence identity cutoff was 0.8. After clustering the sequence based on these 
thresholds, the clusters were sorted based on size and visualized using GraphPad Prism 9 
for the COVID-19 data and Gephi for DTP data.

Antibody expression

The antibody variable regions, including the heavy and light chain pairing genes, were 
synthesized by Integrated DNA Technologies. Recombinant antibodies were generated 
using established protocols as previously described (25). Antibodies were purified using 
protein A spin column (CosmoBio), and their concentrations were determined by ELISA 
using hIgG standard curve.

COVID-19 antigen-binding assay by flow cytometry

To assess antibody binding to the SARS-CoV-2 antigen, we followed the methodology 
described in a previous study (25). The binding of antibodies to the SARS-CoV-2 
antigen-expressing cells was analyzed using flow cytometry (Attune NxT, Thermo).

DTP-antigen-binding assay by ELISA

Capture antigens (DT, TT, PT [BIKEN]), including SARS-CoV-2 spike protein (a gift from 
Professor Masato Okada) as a control, were coated onto half-area 96-wells plate and 
incubated overnight at 4°C. The subsequent steps followed the same procedure as the 
assessment of serum IgG response with one difference in the sample application step. 
In this case, 25 µL/well of a 1-µg/mL solution of recombinant antibody was applied and 
incubated for 2 h at room temperature. Post-vaccination serum was used as the positive 
control.

VERO cell-DT antibody neutralization assay

The VERO cell line (a gift from Professor Eisuke Mekada) was cultured in DMEM 
(Wako) supplemented with MEM non-essential amino acid (Wako), 10% FBS (Cytiva), 
and penicillin-streptomycin (Wako) at 37°C with 5% CO2. To assess DT-cytotoxicity, 
5,000 freshly trypsinized cells were seeded into each well of a 96-well microplate and 
incubated for 3 h. The medium was then replaced with DT-containing medium (DT 
BioAcademia, 01-517) or a mixture of DT and antibodies, followed by incubation for 
48 h. The DT-antibody mixture was prepared by preincubating 500 ng/mL of antibody 
with 25 ng/mL of DT in room temperature for 1 h. Cell viability was measured using 
Cell Counting Kit 8 (Wako), and the OD450 of each well was recorded using the GloMax 
Explorer Multimode Microplate Reader (Promega). The rate of cell death was calculated 
following previous publication (39).

TT-GT1b receptor-binding inhibition assay

TT neutralization assay was done based on previously described protocol with slight 
modification (31, 32). TT0067 was used as a positive control (33). Twenty-five microliters 
per well of 20 µg/mL GT1b (Sigma Aldrich) diluted in methanol was coated on half-area 
96-well plate and incubated for 1.5 h. After two times washing with 75 µL/well PBS-T, 
the plate was blocked using 50 µL/well Protein-Free Pierce Blocking Solution (Thermo) 
and then incubated for 1 h. Twenty micrograms per milliliter of His-Tag conjugated 
TT-binding domain were preincubated with same volume of 100 µg/mL TT-binding 
antibody for 1 h before being put on the well and incubated for 2 h. After three washes, 
HRP-conjugated anti-His Tag (BioLegend) was used as secondary antibody, and the 
detection was done in the same way as ELISA for antigen-binding assay.
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CHO-K1 cell-PT antibody neutralization assay

CHO-K1 cell line (Molecular Bacteriology Lab’s stock) was cultured in Ham’s F12K (Wako) 
supplemented with 10% FBS (Cytiva) and penicillin-streptomycin (Wako) at 37°C with 5% 
CO2. Neutralization activity was assessed by using a modified visual clustering assay (40). 
Freshly trypsinized cells (10,000 cells/well) were seeded in a 96-well tissue culture plate 
and incubated overnight. The medium was then replaced with Ham’s F12K supplemen­
ted with 1% FBS containing PT (Molecular Bacteriology Lab) or PT-antibody mixture. 
After 24 h of incubation, cell clustering morphology was evaluated by 5 independ­
ent observers using an Olympus U-TV2XC Microscope, assigning scores of 2 (mostly 
clustered), 1 (equivocal or partially clustered), or 0 (not clustered) per well. Duplicate 
wells were scored, and the mean and standard deviation (SD) were calculated. A score 
greater than 2 indicated a positive clustering response.

Statistical analysis

Statistical analysis and data visualization were performed using Python, R, Gephi, or 
GraphPad Prism 9. Significance is determined by P-values <0.01.

Source code

Methods to generate CDR annotations from AIRR-formatted files and to cluster the 
resulting pseudo sequences are available as part of the InterClone source code 
repository (https://gitlab.com/sysimm/interclone/).
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