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Abstract 20 

This paper proposes a novel general-purpose graphic-processing-units (GPGPU) parallel 21 

computing approach to an extrinsic cohesive zone model (ECZM) - based combined finite-22 

discrete element method (FDEM) for simulating rock fracturing. The proposed GPGPU-23 

parallelized ECZM-FDEM incorporates a master-slave algorithm as an alternative to the 24 

complex adaptive remeshing process, which is usually used in ECZM but has prevented it from 25 

being parallelized using GPGPU. Numerical experiments of the Brazilian test and uniaxial 26 

compression test of rocks are conducted to compare the proposed ECZM-FDEM with a 27 

GPGPU-parallelized FDEM using the intrinsic cohesive zone model (ICZM-FDEM). Results 28 

show that the proposed method can not only overcome the accuracy degradation of calculated 29 

stresses and deformations that is inevitable in ICZM-FDEM but also reasonably simulate rock 30 

fracturing. Moreover, the proposed GPGPU-parallelized ECZM-FDEM achieves a maximum 31 

relative speed-up of 13 times over GPGPU-parallelized ICZM-FDEM due to efficient contact 32 

calculations and larger stable time steps. Thus, the proposed ECZM-FDEM is more physically 33 

sound and more computationally efficient compared with ICZM-FDEM, which may contribute 34 

to the further developments of FDEM. 35 

Keywords:  36 

Rock fracturing, 2-D FDEM, Extrinsic Cohesive Zone Model (ECZM), Intrinsic Cohesive Zone 37 

Model (ICZM), GPGPU parallel computation 38 
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 40 

1. Introduction 41 

Reasonable numerical modelling of rock fracturing process is necessary for a variety of 42 

geotechnical applications in civil, mining, and energy fields. Recently, hybrid numerical 43 

methods that incorporate the advantages of both continuous-based and discontinuous-based 44 

methods have received significant attention. The combined finite-discrete element method 45 

(FDEM) (Munjiza, 2004) is one of the most popular hybrid methods, which combines the finite 46 

element method (FEM) and the discrete element method (DEM), and has been applied to various 47 

rock fracture problems (e.g. An et al., 2017; Elmo and Stead, 2010; Fukuda et al., 2019; Guo et 48 

al., 2016; Hamdi et al., 2014; Knight et al., 2020; Lisjak et al., 2014; Lisjak et al., 2018; 49 

Mahabadi et al., 2012; Rock field, 2023; Vlachopoulos and Vazaios, 2018; Yan et al., 2022a). 50 

FDEM is based on the explicit time integration scheme and can simulate the deformation 51 

process of continuous rocks, the transition process from a continuum to a discontinuum (i.e., 52 

fracture initiations and propagations in rocks), and the contact process between material surfaces 53 

including newly created macroscopic fracture surfaces (i.e., discontinuous deformation process). 54 

Thus, FDEM is suitable for the simulations of various engineering applications involving in 55 

highly non-linear problems which are characterized by the series of complex rock fracturing 56 

processes. Historically, two representative FDEM codes, i.e., open-source “Y-code" (Munjiza, 57 
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2004) and commercial "ELFEN code" (Rock field, 2023) were developed. Since then, various 58 

FDEM codes have been developed including "HOSS" code (e.g. Knight et al., 2020; Rougier et 59 

al., 2014), "Irazu" code (e.g. Geomechanica, 2023; Lisjak et al., 2018), “MultiFracS code” (Yan 60 

et al., 2022a, 2022b), "Solidity" code (e.g. Guo et al., 2016; Latham et al., 2012), "Y-Geo" code 61 

(e.g. Mahabadi et al., 2012; Tatone and Grasselli, 2015), and the authors’ "Y-HFDEM code" (e.g. 62 

Liu et al., 2015; Fukuda et al., 2019, 2020a) in alphabetical order among others, and the 63 

applications of these codes to rock fracture problems have been reported (see Knight et al., 2020 64 

for a comprehensive review on the history of recent FDEM developments). 65 

To model rock fracturing process, almost all the FDEM codes, except for ELFEN, in the 66 

recent literature utilizes the cohesive zone model (CZM) (Barenblatt, 1962; Dugdale, 1960) by 67 

separating the boundaries or inside of continuum elements and inserting cohesive elements at 68 

separated portions. In CZM, rock fracturing is modeled by the softening of cohesive tractions 69 

acting on the initially zero-thickness cohesive elements according to their relative opening and 70 

sliding, i.e., traction-separation law. Note that ELFEN models material softening by degrading 71 

tensile strengths associated with the increments of inelastic extensional strains under the 72 

assumption that quasi-brittle fracture is mainly extensional in nature, and thus does not use CZM 73 

(Klerck, 2000; Klerck et al., 2004). In ELFEN, when the degraded tensile strength reaches zero, 74 

a discrete fracture is introduced. For CZM implementations, there are three main approaches: 75 

Intrinsic CZM (ICZM), Extrinsic CZM (ECZM) (Fukuda et al., 2020b; Pandolfi and Ortiz, 76 
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2002; Papoulia et al., 2003; Zhang et al., 2007), and discontinuous Galerkin-based CZM 77 

(DGCZM) (Nguyen, 2014). Note that the so-called universal CZM (UCZM) has been proposed 78 

and implemented in HOSS code. However, since the details of the UCZM have not been 79 

publicly available in the journal papers, UCZM is not reviewed here. Hereafter, we only focus 80 

on reviewing ICZM, ECZM and DGCZM. Although all these approaches are the same in terms 81 

of the post-peak behavior in the traction-separation law, they are different in terms of the timing 82 

of inserting the cohesive elements and corresponding implementations. 83 

 84 

Table. 1. Classification of FDEM codes according to parallelization and CZM scheme. 85 

Parallelization schemes 

CZM schemes 

ICZM-based ECZM-based 

CPU-based 

MPI 

Lukas et al., 2014 (Y-based) 

Lei et al., 2014 (HOSS※) 

− 

Shared 

Memory 
Xiang et al., 2016 (Solidity) − 

GPGPU-based 

Lisjak et al., 2018 (Irazu) 

Fukuda et al., 2019 (Y-HFDEM) 

Liu et al., 2019 (Y-based) 

Liu et al., 2021, 2022(Y-based) 

Yan et al., 2019, 2022a (MultiFracS) 

− 

 ※ UCZM is also available.  
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 86 

In ICZM, cohesive elements are inserted at all boundaries of continuum elements from the 87 

start of the simulation even if no damage has occurred. Since there is no need to update mesh 88 

connectivity (i.e., adaptive remeshing) during the simulation, it is easy to implement parallel 89 

computation schemes to enhance computing performances. In fact, the majority of the existing 90 

FDEM codes are based on ICZM (hereafter, ICZM-FDEM), and have been actively accelerated 91 

by parallel computations. Table. 1 lists the FDEM codes that have incorporated various parallel 92 

computations up to present, including FDEM codes based on ECZM (hereafter, ECZM-FDEM) 93 

which are to be discussed later in this section. As shown in Table 1, various parallel schemes 94 

have been implemented for ICZM-FDEM. Among them, the CPU-based parallelization 95 

schemes are implemented for FDEM using multiple CPUs, which includes FDEM based on 96 

relatively large-scale parallel computations using message-passing interface (MPI) (Lei et al., 97 

2014; Lukas et al. 2014) and relatively small-scale parallel computations using shared memory 98 

programming such as OpenMP (Xiang et al., 2016). However, since the CPU-based 99 

parallelization requires multiple CPU cores, a massive computing system such as a 100 

supercomputer with enormous resources are needed to achieve high performance parallel 101 

computing. On the other hand, several cases of FDEM parallelization have incorporated general-102 

purpose graphic-processing-units (GPGPU), which have many cores within a single GPGPU 103 

card and can be installed in a personal computer (PC) or a workstation (e.g., Fukuda et al., 2019; 104 



 

 7 

Lisjak et al., 2018; Liu et al., 2019; Liu et al., 2021, 2022; Yan et al., 2022a). GPGPU-based 105 

parallelization has the advantages of a relatively lower-cost setup and cheaper energy 106 

consumption as compared to CPU-based parallelization. With this background, the ICZM-107 

FDEM based on GPGPU parallel computation has been actively developed. However, ICZM-108 

FDEM has a serious drawback since an artificial elastic response constrained by a finite stiffness 109 

(i.e., cohesive penalty) must be introduced to reasonably handle the continuous deformation 110 

process of rocks before any crack initiations. This drawback makes the stable time step Δt in the 111 

ICZM-FDEM analysis become much smaller than that in the explicit FEM without cohesive 112 

elements. Moreover, it causes the problem of increasing the bulk compliance of the modelled 113 

rocks since the cohesive elements can open/slide even in the intact/continuous deformation 114 

regime (see the discussion in Fukuda et al., 2020b in the case of rock dynamics problems). 115 

Furthermore, because the cohesive elements are inserted in the whole domain from the 116 

beginning of the simulation, one controversial issue arises: when should the contact processing 117 

(i.e., the contact detection and contact force calculation) by DEM be initiated for the continuum 118 

elements located inside the solid body? One of the solutions is the brute-force contact activation 119 

approach (BCAA), in which the contact is processed for all separated continuum elements from 120 

the start of the simulation and which is used in many ICZM-FDEM codes. However, Fukuda et 121 

al. (2021) and Mohammadnejad et al. (2020) pointed out BCAA was not only physically 122 

unreasonable but also required enormous computational costs, which may still be too much even 123 
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with the parallel computation. On the contrary, the adaptive contact activation approach 124 

(ACAA) utilized by Guo (2014) and semi-ACAA (Fukuda et al., 2021) only activate the contact 125 

processing at locations where the cohesive elements are completely/partially broken (i.e., 126 

physical cracks appear). Through this way, the shortcomings of BCAA mentioned above are 127 

solved, and ACAA and semi-ACAA can succeed in reducing the computational cost 128 

significantly compared to BCAA. In summary, ICZM-FDEM has the extremely attractive aspect 129 

of easy parallelization but also suffers from the drawbacks mentioned above. 130 

One solution to these problems inherent in ICZM-FDEM is ECZM-FDEM, in which, the 131 

cohesive elements are inserted on the boundaries of the continuum elements only when and 132 

where the given failure criteria are satisfied. In this sense, ECZM-FDEM is simply a pure FEM 133 

without any cohesive elements at the intact/continuous deformation regime of rocks. Therefore, 134 

the problems of too small stable time step and increasing bulk compliance inherent in ICZM-135 

FDEM never occur. Moreover, because the contact calculations are unnecessary inside the solid 136 

body before the cohesive elements are inserted, the concept of BCAA does not appear in ECZM-137 

FDEM, while only ACAA or semi-ACAA is applicable. Thus, the excessive computation costs 138 

inherent in ICZM-FDEM are overcome in ECZM-FDEM. However, the developments and 139 

applications of ECZM-FDEM are extremely limited to present and most of them are based on 140 

the complex adaptive remeshing required when inserting cohesive elements during the 141 

calculation in ECZM-FDEM (e.g. Fukuda et al., 2020b; Rock field, 2023) including ECZM-142 
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based pure FEM (Fukuda et al., 2020b; Pandolfi and Ortiz, 2002; Papoulia et al., 2003; Zhang 143 

et al., 2007). For example, Fukuda et al. (2020b) implemented a three-dimensional (3-D) 144 

ECZM-FDEM and applied it to model the dynamic tensile fracture tests of rocks utilizing 145 

sequential Fortran 90. However, the remeshing algorithm used in that code is sequential and it 146 

has been challenging or impossible to directly extend it to the GPGPU parallelization. Even in 147 

the reported cases of ECZM-based pure FEM, only MPI parallel implementations (Espinha et 148 

al., 2013; Dooley et al., 2009) have been reported. In sum, as shown in Table. 1, there are no 149 

applications of GPGPU parallel computation to ECZM-FDEM till this moment. 150 

In addition to ECZM for the possible solution to the inherent issues in ICZM-FDEM, 151 

DGCZM "weakly enforces the continuity of the displacements across cohesive elements at the 152 

undamaged state which are active in ICZM-FDEM" using two control parameters θDG and α 153 

(refer to Nguyen, 2014 for the explanation of these two parameters), and thus the GPGPU 154 

parallel implementation of DGCZM is very easy as that of ICZM. However, there has been no 155 

research on the application of DGCZM to FDEM, and thus further research is needed. Besides, 156 

as implied by the point "weakly enforce the continuity", a slight reduction in the precision of 157 

modelling the continuous deformation process using DGCZM is inevitable compared to ECZM 158 

although DGCZM may bring about a significant improvement over ICZM for the modelling of 159 

the continuous behavior. 160 

In view of the literature review above, it should be significantly valuable if GPGPU-161 
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parallel ECZM-FDEM can be developed with any relative ease. To achieve it, this study 162 

attempts to extend the concepts proposed in Cai et al. (2023), Dooley et al. (2009), Maeda et al. 163 

(2022) and Woo et al. (2014 & 2019) to GPGPU parallel computation. Dooley et al. (2009) 164 

proposed a 2-dimentional (2-D) ECZM-based pure FEM in MPI parallel computing framework, 165 

in which all boundaries of continuum elements are physically separated as those in ICZM at the 166 

onset of the simulation. In this method, all nodes at the same location (hereafter “detached 167 

nodes”) are conceptually tied with each other, which includes not only the initial FEM nodes 168 

but also these nodes generated from the insertion of cohesive elements. Suppose a FEM node 169 

“i” before the insertion of any cohesive elements is detached into a group of N detached nodes 170 

“i0”~”iN-1” (hereafter “node group”) generated after the insertion of cohesive elements. One 171 

detached node is then considered as the representative node, i.e. master node (M-node) while 172 

the all other detached nodes are set as copy nodes, i.e. slave nodes (S-nodes) in each node group. 173 

After that, pure FEM simulation can be achieved by assembling the masses and nodal forces of 174 

all S-nodes in the same node group into the corresponding M-node and solving the equations of 175 

motion for this M-node. In this way, the cohesive elements can be completely dormant before 176 

any crack initiation. Dooley et al. (2009) further demonstrated that the cohesive elements could 177 

be adaptively inserted/activated by updating the relation between M-node and S-node (M-S 178 

relation) “i0”~”iN-1” in the same node group. Unfortunately, the updating algorithm of the M-S 179 

relation (hereafter M-S algorithm) was not sufficiently described in Dooley et al. (2009) 180 
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although it was the most crucial part of the proposed method. Later, Woo et al. (2014 & 2019) 181 

proposed a method very similar to ECZM, which was called as the selective activation of ICZM. 182 

As in Dooley et al. (2009), this method constrains the detached nodes belonging to the same 183 

node group to a representative node (multi-point constraints, i.e., MPCs) to realize a calculation 184 

accuracy equivalent to pure FEM. Then, the MPCs surrounding the continuum element 185 

boundary where fracture is "likely" to occur are released. However, this method has not been 186 

parallelized. In addition, neither Dooley et al. (2009) nor Woo et al. (2014 & 2019) focused on 187 

FDEM. More recently, Cai et al. (2023) and Maeda et al. (2022) extended the M-S algorithm 188 

originally proposed by Dooley et al. (2009) to FDEM to develop ECZM-FDEM for rock 189 

mechanics applications. However, only sequential computations are implemented in both Cai et 190 

al. (2023) and Maeda et al. (2022) while a GPGPU parallel implementation of ECZM-FDEM 191 

based on the M-S algorithm has not been achieved yet. In view of the background reviewed 192 

above, this paper proposes a GPGPU-parallelized ECZM-FDEM on the basis of the M-S 193 

algorithm in Cai et al. (2023), Dooley et al. (2009) and Maeda et al. (2022) without adaptive 194 

remeshing and implements it in Y-HFDEM code to simulate rock fracturing process. 195 

The remaining of this paper is organized as follows. Section 2 describes the methodology 196 

and numerical implementation of GPGPU-parallelized ECZM-FDEM with the M-S algorithm. 197 

Section 3 verifies the GPGPU-parallelized ECZM-FDEM by applying it to simulate the rock 198 

fracturing process in the conventional laboratory tests. The obtained results are discussed 199 
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through various comparative studies between the GPGPU implementations of both 2-D ICZM-200 

FDEM (Fukuda et al., 2019) and 2-D ECZM-FDEM with M-S algorithm. Section 4 concludes 201 

the achievements of this study and points out the issues for future study. 202 

 203 

2. GPGPU-based ECZM-FDEM with Master-Slave Algorithm 204 

2.1. ECZM-FDEM with Master-Slave Algorithm 205 

In this study, the GPGPU-parallelized ECZM-FDEM is realized in Y-HFDEM code (Liu et 206 

al., 2015; Fukuda et al., 2019) by newly incorporating the powerful algorithm that can fully 207 

consider the features of ECZM without complicated adaptive remeshing. This is achieved by 208 

utilizing the GPGPU-parallelized ICZM-FDEM utility which is already available in Y-HFDEM 209 

code (Fukuda et al., 2019). This paper only focuses on 2-D problems and its 3-D extension is 210 

considered as our future task. Although all simulations in this paper are conducted under the 211 

plane strain condition, it should be emphasized that the proposed M-S algorithm is applicable 212 

under both the plane strain and the plane stress conditions. The tensile and compressive stresses 213 

are regarded as positive and negative, respectively, which holds true throughout the paper unless 214 

otherwise stated. 215 

FDEM has to deal with the following three important processes in order to simulate rock 216 

fracturing, (i) continuous deformation of the intact rock, (ii) transition from continuum to 217 

discontinuum (i.e. fracture initiation and propagation) and (iii) contact between solid surfaces 218 
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including newly generated discontinuities upon rock fracturing. FDEM models the three 219 

processes (i)~(iii) through continuum mechanics, non-linear fracture mechanics based on CZM 220 

(Barenblatt, 1962; Dugdale, 1960) and contact mechanics (Munjiza, 2004), respectively. The 221 

difference between the traditional ICZM-FDEM and the proposed ECZM-FDEM with M-S 222 

algorithm (hereafter, MS-ECZM-FDEM) lies mainly in the handling of CZM and the process 223 

of assembling nodal forces from S-nodes to their M-nodes, which will be explained below. 224 

In MS-ECZM-FDEM, the nodal masses and nodal forces are calculated through the 225 

computation of the aforementioned processes (i)~(iii) in each time step. The core idea of MS-226 

ECZM-FDEM is that the all the continuum elements (which are 3-node triangle elements 227 

(TRI3s) in this study) are already detached by the insertion of initially zero-thickness 4-node 228 

cohesive elements (CE4s) at the onset of the simulation which is exactly same as the ICZM-229 

FDEM (see Figs. 1 and 2). Thus, the proposed developments can be easily implemented into 230 

any existing ICZM-FDEM codes such as open source Y-code (Munjiza, 2004) and GPGPU-231 

based Y-HFDEM code (Fukuda et al., 2019). The nodes generated upon the insertion of CE4s 232 

are “detached nodes” as mentioned in Section 1. In addition, Fig. 3 shows the concept of “node 233 

group” mentioned in Section 1, which consists of the detached nodes originally belonging to the 234 

same FEM node before the insertion of CE4. 235 
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 236 

Fig. 1. Topological relation of TRI3s and CE4 (left) and overview of cohesive tractions with 237 

respect to opening and slip of CE4 in CZM (right). 238 

 239 

Fig. 2. The concept of detached nodes. 240 

 241 
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Fig. 3. The concept of node groups and M-S relation. 243 

 244 

With these concepts in mind, we first explain how the aforementioned processes (i) and 245 

(iii) are modelled in the framework of MS-ECZM-FDEM while the treatment of the process (ii) 246 

is provided later. Let us first explain the case that the target problem only consists of multiple 247 

discrete bodies “without any fractures”, in which each discrete body is purely continuous and 248 

only the continuous deformation of TRI3s in each discrete body (process (i)) and the contact 249 

between the discrete bodies (process (iii)) are involved. Since all nodes are detached in the MS-250 

ECZM-FDEM, let Ndetach be the total number of detached nodes in the target system. It should 251 

be noted that Ndetach is the same as the total number of nodes in the case of ICZM-FDEM. Let 252 

us consider a single node group “ig (= 0,1,2, ∙∙∙∙, Nng-1)" where Nng is the total number of node 253 

groups in the system, and Nng is exactly same as the total number of FEM nodes before the 254 

insertion of CE4s. The node group ig consists of Ndetach(ig) detached nodes where Ndetach(ig) can 255 

be readily available from any existing ICZM-FDEM codes. To realize the pure continuous 256 

deformation within each discrete body, we apply the following M-S algorithm. In each node 257 

group ig, a single detached node is considered as the M-node while all other detached nodes in 258 

the same node group ig are assigned as the S-nodes to the M-node of ig (see Fig. 3). In terms of 259 

implementations, we first introduce a key data structure for the M-S node relation named 260 

“GetMaster[i]” for each detached node i (= 0,1,2, ∙∙∙∙, Ndetach-1) which literally stores the 261 
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information of the M-node of the detached node i (see Fig. 3). The following rules are then 262 

assigned. If a detached node i satisfies the condition “GetMaster[i]= i”, i is the M-node. 263 

Otherwise, if a detached node i satisfies the condition “GetMaster[i]= j (j≠i)”, i is the S-node 264 

whose M-node is j. The construction of “GetMaster” is the key to the successful implementation 265 

of MS-ECZM-FDEM. For the stage involving with no fracturing, “GetMaster” can be readily 266 

constructed using the existing ICZM-FDEM code. In addition, at the onset of the FDEM 267 

simulation, initial and current nodal coordinates as well as initial nodal velocities are set to be 268 

same between a M-node and their S-nodes in each node group. For the aforementioned process 269 

(i), this study assumes that each TRI3 obeys the isotropic hyper-elastic solid with viscous 270 

damping (see. Eqs. (2) and (3) in Fukuda et al., 2020a) under plane-strain condition and Cauchy 271 

stress tensor σij is computed in each TRI3. Then, σij is converted to the equivalent nodal force 272 

fint [N], and fint is assembled to each detached node in the TRI3. When each TRI3 is processed, 273 

lumped nodal mass M [kg] is also computed and is assembled to detached nodes in the TRI3. It 274 

must be noted that, at this stage, the assembling of nodal force is processed on the basis of each 275 

detached node and we can directly utilize the existing ICZM-FDEM code without any 276 

modification. For the aforementioned process (iii), the contact between two discrete bodies are 277 

handled by that between the elements, i.e., TRI3s in this study, used to discretize the two discrete 278 

bodies based on the potential contact force theory proposed by Munjiza (2004). When any 279 

overlap between two TRI3s is detected, the exact overlapping shape is computed. 280 



 

 17 

Correspondingly, the repulsive normal contact forces are computed based on the contact 281 

potential, which is determined from the overlapping area (see Munjiza (2004) for full detail), 282 

along with the contact friction force based on the Coulomb type friction law. Then, the computed 283 

contact force is converted to the equivalent nodal force fcon [N], which is assembled to each 284 

detached node by directly utilizing the existing ICZM-FDEM code without any modification. If 285 

any external load (such as water pressure or gravity) is involved in the target problem, the 286 

equivalent nodal force fext [N] is assembled to each detached node in the same way.  287 

Finally, using the aforementioned M-S relation “GetMaster”, M, fint, fext and fcon of 288 

detached nodes are assembled to their M-nodes, and the resultant equation of motion only for 289 

each M-node is solved in the explicit time integration scheme as given by Eq. (1): 290 

 
2

ext int con2
t




= − +

u
M f f f  (1) 291 

where u [m] is the nodal displacement and t [s] is the time. After the update of nodal information 292 

for M-nodes, the updated nodal velocity and current nodal coordinates of each M-node are 293 

copied to their S-nodes for the following timesteps to utilize the existing ICZM-FDEM code 294 

without any modification. In this way, the processes (i) and (iii) can be simulated as if no active 295 

CE4s exist in the system and each discrete body behaves as pure continuum as that in pure FEM. 296 

Using this approach, the issue of the increase of the bulk artificial compliance in the ICZM-297 

FDEM can be completely overcome. Moreover, since the CE4s become completely dormant at 298 

this stage (Hereafter, these dormant CE4s before the onset of crack initiations are simply called 299 
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“dormant CE4s”), we only need to consider TRI3s on the surface of each discrete body as 300 

potential contact candidates subjected to the contact detection. Thus, the concept of BCAA 301 

utilized in FDEM literature can be completely avoided. As long as each discrete body is intact 302 

without any fracturing, the M-S relation “GetMaster” does not need to be updated. The 303 

important remaining tasks are “how the dormant CE4s are activated to model the crack 304 

initiation”, “how the M-S relation GetMaster is updated upon crack initiation” and “how the 305 

ECZM is implemented in FDEM” in the framework of GPGPU computing, which are explained 306 

in the remainder of this section. 307 

The activation timing of the dormant CE4s is determined based on the normal and shear 308 

tractions acting on the boundary of two TRI3s where the target dormant CE4 is located. Note 309 

that the dormant CE4 is exactly the line element coinciding with the boundary of the TRI3s. 310 

Thus, we interpolate the Cauchy stress tensor σ on the boundary of TRI3 by taking the average 311 

of those in the surrounding two TRI3s. Let n denote the outward unit normal vector of the 312 

boundary of TRI3, the normal traction (σn = (σn)・n) and shear traction (τn = ||σn – σnn||) acting 313 

on the boundary can be calculated. When these values reach either the given tensile strength or 314 

Mohr-Coulomb shear strength set at the boundary of TRI3, tensile or shear failures occur, 315 

respectively, and the dormant CE4 is activated. The failure criteria are presented as follows:  316 

 1 n t

2 n n tan

F f

F c

 −


 − −



 
 (2) 317 

where ft [Pa], c [Pa] and ϕ [degree] are tensile strength, cohesion, and internal friction angle of 318 
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a CE4, respectively. Through Eq. (2), crack initiation, i.e., the activation of the dormant CE4, is 319 

assumed to occur when either F1≥0 or F2≥0 is satisfied. 320 

Once any dormant CE4s are activated, the M-S relation “GetMaster” must be adaptively 321 

updated. We follow the M-S algorithm introduced by the authors (Maeda et al., 2022). As 322 

depicted in Fig. 4, the counterclockwise search around the reference axis pointing the positive 323 

x direction is performed for the node group ig (=0,1,2, ∙∙∙∙, Nng-1). The detached nodes in each 324 

node group are sorted counterclockwise based on the geometric center of TRI3s to which each 325 

detached node member in the same node group belongs. Starting the search from one of the 326 

dormant CE4s (CE4_0 in Fig. 4) which has just satisfied the aforementioned failure criteria, the 327 

first encountered detached node immediately after passing across the CE4_0 is considered as 328 

the first M-node (M0 in Fig. 4). Then, before the searching passes across the other activated 329 

CE4 (CE4_1 in Fig. 4), all the encountered detached nodes are assigned to S-nodes (S0 in Fig. 330 

4) to M0. Then, in the similar manner to M0, the first encountered detached node immediately 331 

after passing across the CE4_1 is considered as the second M-node (M1 in Fig. 4). In this way, 332 

any number of activations of the dormant CE4s which satisfy the failure criteria in the 333 

corresponding time step can be handled with ease. Besides, this computation can be localized 334 

to each node group. Thus, by updating the M-S relation in each node group, very complex 335 

topological change due to fracturing can be automatically traced without using complex 336 

adaptive remeshing as in Fukuda et al. (2020b) (see Fig. 3 therein) and corresponding data 337 
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structure for manipulating remeshing, which makes the parallelization of the algorithm very 338 

easy. Thus, the advantage of the applied M-S algorithm is not only limited to the localization of 339 

processing by avoiding remeshing but also its ease of implementation and saving memory usage. 340 

 341 

Fig. 4. M-S relation construction by counterclockwise search. (a) before failure (b) after failure. 342 

 343 

 344 

Fig. 5. Tensile/Shear traction-separation law. (a)(b) ICZM (c)(d) ECZM. 345 
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 346 

Fig. 6. Tensile/Shear traction-separation law of a conventional ECZM in case only the shear 347 

failure criterion is met (F1<0 and F2≥0). 348 

 349 

The final important task for the successful implementation of the MS-ECZM-FDEM is 350 
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et al., 1999). On the other hand in the case of ECZM, Fig. 5 (c)(d) can be correct only when the 360 

dormant CE4 is activated with both F1≥0 and F2≥0 being simultaneously satisfied in Eq. (2). 361 

However, depending on the loading type in each target problem and due to the nature of 362 

unstructured mesh utilized in almost all the modern FDEM codes, the simultaneous satisfaction 363 

of the conditions F1≥0 and F2≥0 is very rare, and the cases “F1≥0 and F2<0” and “F1<0 and 364 

F2≥0” are rather encountered frequently. In fact, in most of the previous research using ECZM-365 

based FEM (Cai et al., 2023; Dooley et al., 2009; Zhang et al., 2007), the cohesive tractions at 366 

the activation on a CE4 are set to the input strength values regardless of the failure modes. 367 

Figure 6 shows the softening curves of a conventional ECZM where only the shear failure 368 

criterion is met by τn = τ0 (F1<0 and F2≥0). In such a case, as shown in Fig. 6, although the 369 

normal traction σn = σ0 upon the CE4 activation is less than the tensile strength, the normal 370 

cohesive traction starts from the tensile strength, and thus a time-discontinuity in the stress state 371 

before and after CE4 activation should occur. This time-discontinuity should also occur in the 372 

case where only the tensile failure criterion is met (F1≥0 and F2<0). Particularly, the time-373 

discontinuity may be significant in the case that the normal traction σ0 is a compressive stress 374 

when CE4 is activated due to shear failure only. Dooley et al. (2009) assume that shear failure 375 

does not occur in such a compressive stress field, which, however, is not a reasonable 376 

assumption for the rock engineering applications targeted in this study. Note that Fig. 5 (a)(b) 377 

and (c)(d) in this paper are similar to Fig. 1(d) and (e), respectively in Cai et al. (2023). However, 378 
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Cai et al. (2023) did not consider this time-discontinuity in their ECZM-FDEM at all. Based on 379 

this consideration, the following approach is taken as a remedy for alleviating this time-380 

discontinuity issue although further study is needed for completely solving this issue. To this 381 

end, the traction-separation law (Fig. 5 (a)(b)) utilized in the ICZM-FDEM implementation is 382 

utilized. In the ICZM, to calculate σcoh and τcoh, the constitutive laws based on the tensile and 383 

shear softening laws, i.e. tensile/shear softening curves, are applied according to Eqs. (3) ~ (9) 384 

(e.g., Fukuda et al. (2019)). Note that in this traction-separation law, three integration points are 385 

adopted in each CE4 and the contribution of the integration points to the nodal forces is set 386 

according to Munjiza (1999) (See Eqs. (19) and (20) therein): 387 
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where ot [m] and st [m] are the critical values of o and |s|, respectively; <> is Macaulay brackets; 395 

h [m] is the representative length of a CE4; P [Pa] is the cohesive penalty; Gf I [J/m2] and Gf II 396 

[J/m2] in Eqs. (8) and (9) are the Mode I and Mode II fracture energies consumed during the 397 

generation of tensile and shear failures, respectively; Wres [J/m2] is the amount of work per area 398 

of CE4 given by the residual stress term in the Mohr-Coulomb shear strength model illustrated 399 

in Eq. (9); f(D) [-] (0≤ f ≤1) is the softening function that determines the softening curve and 400 

approximates the experimental stress-displacement curves obtained from the literature (Evans 401 

and Marathe, 1968); D (0≤D≤1) [-] is the damage variable indicating the damage degree of CE4; 402 

α, β, γ [-] are the parameters that determine the curve shape of softening curves. Note that the 403 

states with o≤op or 0≤|s|≤sp represent the artificial elastic state with D = 0, those with op≤o≤ot, 404 

sp≤|s|≤st represent the damaged state (strain softening state with 0<D<1) where a CE4 can be 405 

regarded as a micro fracture, and the state with ot≤o or st≤|s| indicates the CE4 is broken with D 406 

= 1, deactivated, and turned into a macro fracture, and TRI3s surrounding the CE4 are treated 407 

as the surface of the discrete bodies. Besides, when the above-mentioned damage variable D is 408 

computed, the tension-induced damage Do [-] and the shear-induced damage Ds [-], are 409 

computed as follows: 410 

 ( )2 2

o smin 1,D D D= +  (10) 411 
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No damage recovery is assumed to occur, and the damage variable D adopts the maximum value 414 

between the previous steps and the current step. In addition, the unloading process (decrease in 415 

o, |s|) and reloading process (increase in o, |s|) during material softening (op≤o≤ot, sp≤|s|≤st) are 416 

also modeled by the following equations (Camacho and Ortiz, 1996; Fukuda et al., 2019). 417 
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where omax [m] and smax [m] are the maximum values of o and |s|, respectively, which the CE4 420 

experiences during the FDEM simulation. 421 

Based on the above ICZM-based formulation, the countermeasure adopted by Maeda et al. 422 

(2022) is applied in this study. The boundary tractions (σn, τn) = (σ0 (Eq. (15)), τ0 (Eq. (16))) 423 

acting on the dormant CE4 upon the activation timing, when the failure criterion (Eq. (2)) is 424 

satisfied, are stored as shown in Eqs. (15) and (16), respectively:  425 

 
0 n tmin( , )f =   (15) 426 

 
0 n nmin( , tan )c= −     (16) 427 

Next, we define the following nominal opening/sliding displacements for the newly activated 428 

CE4 based on the boundary tractions (σ0, τ0) as follows: 429 

 nominal 02h
o

P
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=  (17) 430 
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 nominal 02h
s

P


=  (18) 431 

Then, the effective opening/sliding (o, s) of the activated CE4 used in softening functions of 432 

cohesive tractions are defined as the sum of the nominal opening/sliding displacements (onominal, 433 

snominal) and actual geometrical opening/sliding displacements (ocoh, scoh) which occur after the 434 

CE4 activation as shown in Eqs. (19) and (20): 435 

 nominal coho o o= +  (19) 436 

 
nominal cohs s s= +  (20) 437 

It should be noted that the values of (ocoh, scoh) at the activation timing of the dormant CE4 are 438 

zero because the CE4 has no gap. Then, these (o, |s|) are used in the above Eqs. (3) ~ (14). This 439 

approach is expected to alleviate the time-discontinuity issue to some extent and a similar 440 

concept has been used in the literature (e.g. Woo et al., 2019 and Fig.4 therein). However, with 441 

this approach, it must be noted that, upon the activation of CE4s, the effect of cohesive penalty 442 

P takes part in the FDEM simulation and thus the stabile time step becomes almost same as that 443 

in ICZM-FDEM since then while the time step can be taken relatively larger before the first 444 

CE4’s activation. Furthermore, it is essential to emphasize that the complete elimination of the 445 

time-discontinuity in local nodal forces before and after the activation of CE4s remains a 446 

challenge. As discussed by Chen et al. (2019), the core issue lies in the reliance on failure 447 

judgments based on the stress states extrapolated from bulk elements (TRI3s in the present 448 

implementation), while the nodal forces contributed by the interpolated stresses and cohesive 449 

tractions remain independent. In their comprehensive review, Chen et al. (2019) examined the 450 
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existing methods aimed at mitigating or resolving this time-discontinuity issue and concluded 451 

that these methods are too exceedingly complex to implement. Correspondingly, they proposed 452 

a promising node-based approach aiming to achieve continuous transitions, in which, both the 453 

failure judgment and cohesive force calculation are performed directly at each node. However, 454 

it is worth noting that the application of the node-based approach is limited to simple crack 455 

patterns, e.g., progressive debonding or delamination in composite structures and thus cannot 456 

be readily applied to address the complex fracture problems involving with shear failures under 457 

compressions within the framework of the Mohr-Coulomb shear failure model. Consequently, 458 

the resolution of this problem within our model is a subject for future research. Additionally, 459 

another time-discontinuity issue arises when a cohesive element reaches complete damage (D 460 

= 1) under a compressive stress field, i.e., transitioning from a state governed by the penalty of 461 

the cohesive elements to one governed by the contact penalty associated with contact interaction. 462 

This challenge is encountered in all CZM-based FDEM in spite of ICZM or ECZM. As a 463 

potential solution of to address this issue, Deng et al. (2021) proposed a smooth transition 464 

approach by assigning individual normal stiffness to each contact couple. However, our current 465 

paper only focuses on the implementation of MS-ECZM in the framework of GPGPU although 466 

we appreciate the time-discontinuity issue, which is regarded as a top priority of our future 467 

development. The computed cohesive tractions (σcoh, τcoh) are converted to the equivalent nodal 468 

force fcoh [N], which is assembled to each detached node by utilizing the existing ICZM-FDEM 469 
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code with very minor modification according to Eqs. (15) ~ (20), and further assembled to their 470 

M-nodes. Thus, upon fracturing, the resultant equation of motion for M-nodes is given as Eq. 471 

(21): 472 

 
2

ext int con coh2
t




= − + +

u
M f f f f  (21) 473 

After the nodal information is updated for M-nodes, the nodal velocity and current nodal 474 

coordinates are copied to their S-nodes for the following timesteps to fully utilize the existing 475 

ICZM-FDEM code. 476 

2.2. GPGPU parallel implementation  477 

As mentioned in Section 2.1, the proposed MS-ECZM-FDEM can utilize the existing 478 

ICZM-FDEM code including the ICZM-based GPGPU-parallelized Y-HFDEM code with very 479 

minor modification. The only notable differences lie in the treatment of the judgement of the 480 

failure (Eq. (2)) and resultant update in the M-S relation (Fig. 4 (b)). Moreover, the processing 481 

of the update in the M-S relation is highly localized and suitable for parallel computation while 482 

it is challenging to parallelize the adaptive remeshing used in Fukuda et al. (2020b), Pandolfi 483 

and Ortiz (2002) and Yamamoto et al. (1999) especially in terms of GPGPU parallelization. This 484 

section implements the proposed algorithm through the GPGPU parallel computation using 485 

computing unified device architecture (CUDA) C/C++. The GPGPU parallel computing uses 486 

the following abstractions: threads, blocks, and grids (Fig. 7). In the GPGPU devices, parallel 487 

processing is performed in many threads using kernel functions. The threads are just execution 488 
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units of kernel functions, and each thread performs operations similar to sequential computation. 489 

The blocks are the groups that manage several threads and allow memory sharing and 490 

synchronization among the threads within a block. Furthermore, the grids are the groups of 491 

blocks. This hierarchical management of threads enables parallel processing. Figure 8 shows 492 

the flow chart of the proposed MS-ECZM-FDEM with GPGPU parallel computing. In Fig. 8, 493 

the blue letters are the specific processes for the MS-ECZM-FDEM while the rest processes are 494 

the same as those used in the ICZM-based GPGPU-parallelized 2-D Y-HFDEM code. Therefore, 495 

the proposed MS-ECZM-FDEM can be realized by simply adding the processes shown in blue 496 

in Fig. 8 to the existing ICZM-FDEM codes. For the part which is common with the ICZM-497 

FDEM, the interested readers are referred to the detailed explanations in Fukuda et al. (2019) 498 

and only the newly implemented portions are explained here. In Fig. 8, the process enclosed by 499 

the dashed line is the parallel computation in the GPGPU device. First, before entering the 500 

parallel computation by the GPGPU devices, the angle θ between the reference axis and the 501 

vector connecting each detached node and the geometric center of the TRI3, to which it belongs, 502 

are calculated for all the detached nodes, which in each group is sorted in the counterclockwise 503 

manner in order of decreasing θ (Fig. 4 (a)). After this sorting, the initial M-S relation 504 

“GetMaster” (Fig. 3) is constructed by simply selecting the detached node with the smallest θ 505 

as M-node while other detached nodes as S-nodes to this M-node in each node group. Note that 506 

these processes are handled in a host computer and processed by sequential computations only 507 
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once at the onset of the simulation, which takes negligible computational time. The information 508 

of the relation between the sorted detached node IDs in each node group and GetMaster are 509 

transferred to the global GPGPU memory, and the subsequent computations are completely 510 

processed on GPGPU except for the output timing when the computed data from the GPGPU 511 

are transferred back to the host computer to generate the output files for visualization by the 512 

opensource software Paraview (Ayachit, 2015). 513 

 514 

Fig. 7. The concept of GPGPU programming. (Fukuda et al., 2019). 515 
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 517 

Fig. 8. Flow chart of proposed MS-ECZM-FDEM with GPGPU parallel computing. 518 
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(Satish et al., 2009) in the way that all the dormant CE4s’ IDs are placed in the heading part of 528 

the i1CE4IDs array. In this way, the load balance between each CUDA thread in each CUDA 529 

block can be maximized for judging the failure of dormant CE4s and computation of cohesive 530 

tractions (σcoh, τcoh) for active CE4s. 531 

 532 

Fig. 9. The GPGPU parallel computation processes for CE4s in MS-ECZM-FDEM. (a) failure 533 

judgement, (b) M-S relation update, (c) before failure judgement, (d) after failure judgement 534 

and (e) after M-S relation update. 535 
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S relations in each node group. Figure 9 (b)(d)(e) shows the updating process of the M-S 540 

relations when two adjacent CE4s (CE4_0 and CE4_1 in Fig. 4 (b)) sharing the node group (ig 541 

= 3 in Fig. 3) are newly activated, which is the same as shown in Fig. 4 (b). For the node group 542 

No. 3, the threads for CE4_0 and CE4_1 partially update the M-S relation of the node group No. 543 

3. For the thread processing CE4_0 when processing the node group No. 3, the first detached 544 

node, i.e., the right red node in the node group No. 3 is considered as an M-node and the 545 

counterclockwise search registers all the detached nodes until passing over other newly and 546 

already activated CE4s (CE4_1 in this case). Likewise, for the thread processing CE4_1 when 547 

processing the node group No. 3, the first detached node, i.e., the left red node in the node group 548 

No. 3 is considered as an M-node and the counterclockwise search registers all the detached 549 

nodes until passing over other newly and already activated CE4s (CE4_0 in this case). Therefore, 550 

the M-S update can be processed completely in parallel. 551 

After computing the nodal masses and nodal forces for each detached node based on 552 

ICZM-FDEM manner, they are assembled from the S-nodes to their M-node through GetMaster, 553 

which is processed by assigning CUDA thread to each node group. Then, the nodal coordinates 554 

and nodal velocities of the M-nodes are updated based on the equations of motion (Eq. (1) for 555 

intact regime and Eq. (21) after fracture initiation) by assigning CUDA thread to each M-node. 556 

Finally, the updated information is copied from the M-nodes to their S-nodes through GetMaster 557 

by assigning CUDA thread to each node group. 558 
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 559 

3. Validation of GPGPU-parallelized MS-ECZM-FDEM 560 

Numerical experiments of the fundamental laboratory rock mechanics tests, i.e., Brazilian 561 

tensile strength (BTS) and uniaxial compressive strength (UCS) tests under quasi-static loading, 562 

are conducted to validate the GPGPU-parallelized 2-D MS-ECZM-FDEM code developed in 563 

Section 2. In the remainder of this section, the MS-ECZM-FDEM is simply called as ECZM-564 

FDEM. The results from the modellings of the BTS and UCS tests using GPGPU parallelized 565 

ECZM-FDEM and ICZM-FDEM codes are compared in terms of (I) accuracy of continuous 566 

deformation, (II) stable time step and (III) contact activation timing. It is important to note that 567 

this paper is not intended to delve into the evaluation of computational efficiency comparison 568 

between GPGPU parallelization and sequential computation since it has already been 569 

extensively discussed in our former publication (Fukuda et al., 2019). Instead, this paper focuses 570 

on the comparison between the GPGPU-based 2-D ECZM-FDEM and ICZM-FDEM codes, 571 

which should provide sufficient insights into their computational performance. 572 

3.1. Overview of numerical models for BTS and UCS tests 573 

Figure 10 shows the 2-D FDEM models for modelling the BTS and UCS tests. The 574 

diameter and height of the models are 30 [mm] × 30 [mm] for the BTS test and 30 [mm] × 60 575 

[mm] for the UCS test, respectively. These FDEM models are discretized by TRI3s using 576 

unstructured mesh and average element size h for both models is 90 [µm]. The number of TRI3s 577 
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included in the BTS and UCS tests are 187,061 and 475,810, respectively. Siliceous mudstone 578 

is considered as a target rock. The input parameters for the FDEM simulations for the BTS and 579 

UCS tests are set as shown in Table. 2 assuming this rock is isotropic and homogeneous. The 580 

density, Young’s modulus, Poisson’s ratio, tensile strength, cohesion, and internal friction angle 581 

are set based on Aoyagi et al. (2018) while other parameters are determined based on trial and 582 

error. Dynamic relaxation scheme (Munjiza, 2004) is used to approximately achieve the quasi-583 

static condition and correspondingly damping coefficient 2h E = (see. Eqs. (2) and (3) in 584 

Fukuda et al. (2020b)) is assigned to each TRI3. The constant velocity of 0.05 [m/s] is assigned 585 

to each of the upper and lower platen and apparent strain rates are 3.3 [1/s] for BTS test and 1.7 586 

[1/s] for UCS test. The time step Δt is set to be 1.0 [×10-9 s/step]. It is known that a higher 587 

loading rate has a significant effect on the simulation results under quasi-static conditions such 588 

as the BTS and UCS tests (Mohammadnejad et al. (2020)). However, the loading rate set in this 589 

study has been confirmed to be appropriate because the stress-strain curve for the UCS test in 590 

Fig. 15, which is described below, does not show any fluctuation observed in Mohammadnejad 591 

et al. (2020). Furthermore, as a method of determining whether the loading rate setting can 592 

reasonably simulate quasi-static loading conditions, it is widely accepted that, if the ratio of total 593 

kinetic energy to total strain energy of a rock specimen is less than 0.05 at intact regime, the 594 

response obtained from the analysis does not include dynamic effects (Rojak et al., 2021; 595 

Siswanto et al., 2016). From the preliminary simulation, we confirmed that the above energy 596 
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ratio through all the simulations in this analysis is much smaller than 0.05 and thus we 597 

considered that the loading rate is adequately small (Maeda et al., 2022).  598 

 599 

Fig. 10. Numerical models for FDEM simulations of (a) BTS and (b) UCS tests. 600 
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Table. 2. Input parameters for FDEM simulations of BTS and UCS tests. 602 

Parameter Value 

Density ρ [kg/m3] 1840 

Young’s modulus E [GPa] 1.82 

Poisson’s ratio ν [-] 0.17 

Tensile strength ft [MPa] 1.83 

Cohesion c [MPa] 4.81 

Internal friction angle φ [°] 26 

Mode I fracture energy Gf I [J/m2] 16 

Mode II fracture energy Gf II [J/m2] 160 

Cohesive penalty P [GPa] 182 

Normal contact penalty Pn_con [GPa] 18.2 

Friction coefficient of rock-platen surfaces μfric [-] 0.1 

Friction coefficient of rock fracture surfaces μfric [-] 0.5 

3.2. Verification and validation of GPGPU-parallelized ECZM-FDEM through comparative 603 

study 604 

For comparison purpose, three different types of FDEM simulations, i.e., “ECZM-FDEM”, 605 

“ICZM-FDEM”, and “FDEM without CZM”, are considered using the same numerical model 606 

set up in Section 3.1. The reason why “FDEM without CZM” is also considered is that each 607 

discrete body (rock and loading plates in the current case) behaves as purely continuum without 608 

any fracturing and thus can be considered as a benchmark for checking the precision of the 609 

FDEM computation for the continuous deformation of the rock at the intact regime, in which 610 

the rock behaves purely in FEM manner. Note that “FDEM without CZM” is achieved by 611 

deactivating the failure judgement (see Secion 2.1 and Eq. (2)) in the ECZM-FDEM to verify 612 
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that the developed GPGPU-based ECZM-FDEM code works well without the activation of 613 

dormant CE4s by setting extremely large strength parameters. 614 

In addition, different contact activation schemes, i.e., BCAA and (semi-)ACAA, are 615 

possible for ICZM-FDEM as mentioned in Section 1 while (semi-)ACAA is only possible for 616 

“ECZM-FDEM”. To facilitate a fair comparison between ICZM-FDEM and ECZM-FDEM, a 617 

case of ICZM-FDEM with semi-ACAA is considered. It is worth noting that, in the literature 618 

related to FDEM developments and applications, ICZM-FDEM with BCAA, not semi-ACAA, 619 

is currently the most widely used approach. In this section, four cases in Table. 3 are considered 620 

for the following investigations. Figure 11 shows the difference between Case 2 (BCAA) and 621 

Cases 1, 3 and 4 for the case of BTS and UCS test models at the beginning of the FDEM 622 

simulations. The red area in Fig. 11 is the activated area for contact calculations (i.e. contact 623 

detection and contact force calculations), and the blue area is the part in which the contact 624 

calculations are initially deactivated. As shown in Fig. 11, the difference between the cases with 625 

BCAA (Case 2) and the semi-ACAA (Cases 1 and 3) is that the all the TRI3s are subjected to 626 

the contact calculations from the onset of the simulations in the BCAA while only the TRI3s on 627 

the rock-platen surfaces and those surrounding the CE6s just entering the shear softening regime 628 

are subjected to the contact calculations in the case of semi-ACAA. Please refer to Fukuda et al. 629 

(2021) for the detailed discussion of the BCAA and semi-ACAA. Since the ECZM does not 630 

involve with fracturing until first crack initiation occurs, it is evident that the BCAA concept is 631 
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just unreasonable and not needed at all. Note that the because of no fracturing involved in Case 632 

4, no adaptive contact activation is needed. The GPGPU-parallelization is applied in all cases. 633 

 634 

Table. 3. Definition of four cases considered for the comparison. 635 

 FDEM Type 
Contact activation 

scheme 

TRI3s subjected to contact 

detection 

Case 1 ECZM-FDEM Semi-ACAA 
TRI3s on the rock-platen surfaces 

and newly created fractures 

Case 2 ICZM-FDEM BCAA  All the TRI3s in the system 

Case 3 ICZM-FDEM Semi-ACAA 
TRI3s on the rock-platen surfaces 

and newly created fractures 

Case 4 
FDEM without 

CZM 

Activated at the onset of 

the FDEM simulation 
TRI3s on the rock-platen surfaces 
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Fig. 11. Illustration explaining the different contact activation scheme in four cases in Table. 3.  637 

 638 

Figure 12 shows the fracture process simulated from the BTS tests in the Cases 1, 2 and 3, 639 

which shows the spatial distribution of the damage state D in Eq. (10) at each loading stage with 640 

respect to nominal axial strain. The nominal axial strain εa is defined by the total axial 641 

displacement of both platens divided by the diameter of the rock disc. The contours in Fig. 12 642 

represent the logarithm of the damage variable D, i.e. log10D, and log10D ≥ -3 is visualized. A 643 

common trend observed in all cases is that microcracks of the order of -3≦log10D≦-2 occur 644 

near the loading platens, and the macroscopic fractures (log10D =0) that lead to the failure of the 645 

specimen progress vertically in the central part of the specimen. Although the final failure 646 

patterns are slightly different in each case, the characteristics of the resultant failure trends are 647 

consistent with those from the typical BTS tests of rocks. Thus, the GPGPU-implementation of 648 

adaptively activating dormant CE4s in the framework of MS-ECZM-FDEM is verified, and the 649 

result of Case 1 shows the almost similar fracture process as the conventional ICZM-FDEM 650 

(Cases 2 and 3). From the results of the Case 2 (ICZM-FDEM with BCAA), it is noticeable that 651 

more microcracks are observed near the loading platens compared to those of the Case 3 (ICZM-652 

FDEM with semi-ACAA). The difference between the two cases may be due to the dual-force 653 

(i.e., the combination of cohesive traction and contact force) in the BCAA, which acts on the 654 

inside of the rock part even in the intact regime as discussed by Fukuda et al. (2021). This may 655 
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enhance the micro-cracking. In contrast, Case 1 (ECZM-FDEM with semi-ACAA), which can 656 

avoid this dual-force issue, shows similar microcracks as Case 3. 657 

 658 

Fig. 12. Comparisons of fracture processes in BTS test for Cases 1, 2 and 3 in Table. 3. 659 

 660 

Figure 13 plots the stress distribution along the loading diametrical line at a time when the 661 

nominal axial strain (contraction: positive) is small with the level of 0.2 % for Cases 1-4. Figure 662 

➣Case 2

➣Case 3

➣Case 1

0.73 0.80

Axial strain, εa [%]

lo
g

1
0 D

When axial stress ≦
0.9 ×peak strength

εa : 0.85

εa = 0.89

εa = 0.93 Macroscopic 

fracture



 

 42 

13 (a) shows the observation line for stress monitoring. Figure 13 (b) plots the σxx and σyy along 663 

the observation line while Fig. 13 (c) shows an enlarged view of Fig. 13 (b). Since this stage 664 

corresponds to intact rock well before the failure stage, the stress distribution in Cases 1-3 665 

should agree that in Case 4 (FDEM without CZM). In fact, the results of Case 1 (ECZM-FDEM) 666 

in Fig. 13 (b) clearly show that both σxx and σyy are in perfect agreement with the benchmark 667 

Case 4 (FDEM without CZM). On the other hand, the results of ICZM-FDEM, i.e., Cases 2 and 668 

3, show some deviation from FDEM without CZM. This deviation is clearly due to the 669 

deterioration of the accuracy in computing continuous deformation and stress calculation by 670 

inserting active CE4s at the onset of the simulation in the ICZM. To quantitively evaluate these 671 

deviations, the average values of σxx for the TRI3s existing within a range of ±5 mm from the 672 

center of the specimen, and the average values of σyy for the TRI3s existing within a range of ±1 673 

mm from the center of the specimen are calculated for Cases 1~4, and the deviation of the 674 

average stress [%] of Cases 1~3 against the benchmark Case 4 is investigated. For Cases 2 and 675 

3, i.e., ICZM-FDEM, this deviation for σxx is found to be 1.6 % for BCAA and 2.0 % for semi-676 

ACAA, respectively, while 1.4 % for BCAA and 1.8 % for semi-ACAA for σyy. In contrast, Case 677 

1 (ECZM-FDEM) shows no deviation for both σxx and σyy. Thus, it can be concluded that the 678 

ICZM-FDEM involves with approximately 1.4~2 % deterioration of stress calculation accuracy, 679 

and the advantage of ECZM-FDEM is evident. 680 

 681 
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 682 

Fig. 13. Comparisons of stress distributions along the loading diametrical line of the specimen 683 

in FDEM simulations of BTS test between Cases 1, 2, 3 and 4 defined in Table. 3. (a) Schematic 684 

of loading diametrical line, (b) Stress distribution along the loading diametrical line, (c) 685 

Enlarged view of σyy (left) and σxx (right) in (b). 686 

 687 

Figures 14 and 15 show the fracture process and axial stress-strain curve for Cases 1, 2 and 688 

3 in UCS test for selected axial strain levels. In Fig. 15 (contraction: positive), dotted line 689 

indicates the stress-strain line for benchmark Case 4 to verify the initial continuous behavior of 690 

Cases 1~3 at intact regime. Note that the apparent axial strain εa in these figures is obtained by 691 

dividing the total displacement at the upper and lower platens by the height of the specimen. 692 
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The contour in Fig. 14 represents the spatial distribution of log10D for log10D ≥ -3. For the intact 693 

deformation regime before the commencement of non-linear behavior near the peak in the 694 

stress-strain curve (Fig. 15), Cases 1-3 show more or less good agreement with FDEM without 695 

CZM. However, if these three cases are compared in terms of tangent modulus at the 50 % peak 696 

strength, the corresponding deviations of Cases 1 (ECZM), 2 (ICZM with BCAA) and 3 (ICZM 697 

with semi-ACAA) against Case 4 are 0 %, 1.2 % and 1.7 %, respectively, which again shows 698 

the advantage of ECZM-FDEM in improving the precision of continuous deformation at the 699 

intact regime. In addition, to check the precision of continuous deformation at the intact regime 700 

from the viewpoint of the stress distribution, Fig. 16 shows the stress distribution for σyy along 701 

the loading line at a time when the apparent axial strain εa is small with the level of 0.67 % for 702 

Cases 1-4. Figure 16 (a) shows the observation line for stress monitoring. Figure 16 (b) plots 703 

the σyy along the observation line. The figure shows that, as in the stress-strain curve, Case 1 704 

(ECZM-FDEM) is in perfect agreement with the benchmark Case 4 (FDEM without CZM), 705 

while Cases 2 and 3, i.e., ICZM-FDEM, deviate from the benchmark Case 4. Furthermore, an 706 

obvious difference in curve shape is observed between ECZM-FDEM and ICZM-FDEM: while 707 

the curve shape of ECZM-FDEM is smooth, that of ICZM-FDEM is highly fluctuated, 708 

indicating a clearly discontinuous stress distribution, even at intact regime. This can be due to a 709 

geometrical inconsistency in the mesh, in other words, a physical gap caused by the relative 710 

displacement of CE4s between TRI3s even for the continuous deformation regime in the ICZM. 711 
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The geometric inconsistency causes local numerical instability. These results for stress-strain 712 

curve and stress distribution confirm the high accuracy of the calculations in ECZM-FDEM at 713 

intact conditions. These results for stress-strain curve and stress distribution confirm the high 714 

precision of the calculations in ECZM-FDEM at intact regime. To the best of knowledge of the 715 

authors, there are not any valid theoretical solutions or benchmark analyses available for 716 

delineating any arbitrary fracture initiation, propagation, and interaction in heterogeneous rocks. 717 

Consequently, it is very challenging, if not impossible, to compare the accuracy between the 718 

simulations from ECZM-FDEM and ICZM-FDEM after the onset of fracturing. However, it is 719 

anticipated that the less noisy stress distribution from ECZM-FDEM should result in more 720 

rational crack initiation and propagation. 721 

 722 
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 723 

Fig. 14. Comparisons of fracture processes in UCS test for Cases 1, 2 and 3 in Table. 3. 724 

 725 

Fig. 15. Comparisons of axial stress-axial strain curve in UCS test for Cases 1, 2, 3 and 4 in 726 
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Table. 3. 727 

 728 

Fig. 16. Comparisons of stress distributions for σyy along the observation line of the specimen 729 

in FDEM simulations of UCS test between Cases 1, 2, 3 and 4 defined in Table. 3. (a) Schematic 730 

of observation line, (b) Stress distribution for σyy along the observation line. 731 

 732 

In the pre-peak stage of Fig. 15, it can be observed that all Cases 1-3 show a nonlinear 733 

behavior accompanied by a decrease in slope near the peak, which is due to the transition from 734 

continuum to discontinuum by the commencement of softening of CE4s, which is evident from 735 

Fig. 14 when εa = 0.92 [%]. Similar to the trend observed in the BTS test, the amount of 736 

generated microcracks at the same level of εa varies between each case, and only ICZM (BCAA) 737 

shows more significant number of microcracks (see the results of εa = 0.92 [%] ~1.00[%]). Again, 738 

this could also be attributed to the effect of dual-force, which may enhance the local 739 

noise/fluctuation in stress, and much rapid decrease in the stiffness of bulk rock. For the failure 740 

process in Fig. 14, at the third axial strain level from the left, Cases 2 and 3, i.e., ICZM-FDEM 741 
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show localized fracture growth from a single location, while Case 1 (ECZM-FDEM) shows 742 

fracture growth from multiple locations. Again, since CE4s can open/slide even at intact regime 743 

in the ICZM-FDEM, if a CE4 is softened, the CE4’s deformation in ICZM can strongly 744 

enhances the deformation direction of surrounding CE4s than the case of ECZM. Consequently, 745 

fracturing around the softened CE4 may easily occur, propagate, and localize, along the 746 

deformation direction of the softened CE4s in the ICZM. On the other hand, in ECZM-FDEM, 747 

dormant CE4s cannot open/slide at the intact regime and the failure criteria for the 748 

commencement of softening (Eq. (2)) are based on the stress fields. Thus, if a CE4 is softened, 749 

stress concentration occurs in the surrounding TRI3s, leading to the satisfaction of the failure 750 

criteria in surrounding TRI3s’ boundary (i.e., dormant CE4). In this process, the normal/shear 751 

stresses on surrounding dormant CE4s due to stress concentration does not necessarily 752 

correspond to the deformation direction of the softened CE4. In other words, the deformation 753 

direction of the softened CE4 does not directly affect the surrounding CE4s. Therefore, the 754 

deformability or localization along the direction of the softening CE4 is less likely to occur 755 

compared to ICZM-FDEM. This explanation is also supported by the fact that, at the peak stage 756 

of Fig. 15, the peak strength and the strain at that time in Case 1 (ECZM-FDEM) are higher than 757 

in Cases 2 and 3. ICZM-FDEM can be considered as a model in which the failure progresses 758 

more easily than ECZM-FDEM, due to the aforementioned numerical instability caused by 759 

geometric inconsistency and localization of fracturing. In contrast, the ECZM-FDEM has more 760 
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stable nature, the rock model based on ECZM-FDEM behaves much stronger than ICZM-761 

FDEM. For the resultant failure patterns, all Cases 1~3 in Fig. 14 show the formation of a shear 762 

band, and its inclination is of the same degree, which also verifies the developed ECZM-FDEM 763 

code and validates its applicability. However, it is evident that the calibrated input parameters 764 

in the ICZM-FDEM cannot be directly used in the ECZM-FDEM. 765 

Furthermore, the computational speeds among Cases 1, 2 and 3 are compared, although it 766 

is difficult to simply compare because of the different timing of the fracturing in each case. To 767 

this end, by keeping the time step Δt = 1.0 [×10-9 s], the concept of t250, which indicates the 768 

runtime required for completing every 250 [μs] (=250,000 timesteps) of the above FDEM 769 

simulation of the UCS model, is introduced and it is monitored for these three cases. Since the 770 

t250 for Case 2 (ICZM-FDEM (BCAA)) is the longest, it is used as the reference. Then, transient 771 

relative speed-up is defined as (t250 for ICZM-FDEM (BCAA)/(t250 for ECZM-FDEM (semi-772 

ACAA)) and (t250 for ICZM-FDEM (BCAA)/(t250 for ICZM-FDEM (semi-ACAA)) for Cases 773 

1 and 3 against Case 2, respectively. Figure 17 shows the comparison of transient relative speed-774 

up with respect to the simulation progress in analysis time, in which 0 % and 100 % is adjusted 775 

to t = 0 μs and t = 7000 μs, respectively. To check how the damage state D in the rock part in 776 

the above UCS model affects the computational performance, this figure also shows the 777 

evolution of the maximum damage D, i.e. (max(log10D)), among all the CE4s for each case. 778 

Firstly, the ICZM-FDEM (semi-ACAA) shows approximately six times relative-speed up 779 
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against ICZM-FDEM (BCAA) during the early stages of the FDEM simulation of UCS model 780 

before the onset of damaging. Then, this relative speed-up ratio reduces close to 1 when 781 

max(log10D) = 0 is satisfied which is due to significant number of TRI3s newly added to the 782 

contact force calculation. This behavior is very similar to what is reported to dynamic UCS 783 

modelling in Fukuda et al. (2021). On the other hand, the ECZM-FDEM (semi-ACAA) shows 784 

approximately four times relative speed-up against ICZM-FDEM (BCAA) before the onset of 785 

damaging. Therefore, ECZM-FDEM (semi-ACAA) is less computationally efficient than the 786 

ICZM-FDEM (semi-ACAA). This is attributed to the unique processing in the MS-ECZM-787 

FDEM such as the failure judgement, update of M-S relation and assembling the information of 788 

S-nodes to their M-nodes. The ECZM-FDEM (semi-ACAA) code has still the potential for 789 

improvements in terms of the computational efficiency. For instance, there is room to enhance 790 

the performance of the current code in the context of failure judgment. Currently, this judgment 791 

is conducted against all TRI3 boundaries, irrespective of the stress levels. It is possible to further 792 

enhance the computational performance by implementing an algorithm of processing the failure 793 

judgment only for the boundaries whose stress levels are closer to satisfy the failure criteria. 794 

This is regarded as another task for future study. With the increase in the number of activated 795 

CE4s due to damaging, the computational efficiency of ECZM-FDEM (semi-ACAA) becomes 796 

closet to that of ICZM-FDEM (semi-ACAA) since less failure judgement is needed and more 797 

contact force calculation becomes the most computationally demanding part of the FDEM 798 
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calculations. Then, the performance of the ECZM-FDEM (semi-ACAA) becomes closer to that 799 

of ICZM-FDEM (BCAA) after the point of maximum (log10D) = 0. Therefore, it can be 800 

concluded that the ECZM-FDEM (semi-ACAA) is slightly slower than that ICZM-FDEM 801 

(semi-ACAA) as long as the same time step Δt is used. The total runtime is identified as 17,209 802 

[s], 13,141 [s] and 67,976 [s] for ECZM-FDEM (semi-ACAA), ICZM-FDEM (semi-ACAA) 803 

and ICZM-FDEM (BCAA), respectively. However, since the ECZM-FDEM (semi-ACAA) 804 

does not involve in any CE4s before the onset of the fracturing, the stable time step for the 805 

ECZM-FDEM (semi-ACAA) can be taken larger than that for the ICZM-FDEM (semi-ACAA). 806 

Thus, this factor is investigated in Section 3.3 in more detail.  807 

 808 

Fig. 17. Transient relative speed-up of ECZM-FDEM (semi-ACAA) and ICZM-FDEM (semi-809 

ACAA) against ICZM-FDEM (BCAA), and change of max(log10D) using UCS test model. 810 
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3.3. Effect of stable time step on computing performance 812 

According to our estimation of the maximum stable time step based on the material 813 

properties and mesh geometries (Mohammadnejad et al., 2020) and preliminary analyses using 814 

various values of time step Δt, it was identified that the stable time step Δtcrit for the ICZM-815 

FDEM (semi-ACAA) and ICZM-FDEM (BCAA) can be taken approximately 2.0 [×10-9 s/step] 816 

for the entire simulation. On the other hand, Δtcrit for the ECZM-FDEM (semi-ACAA) can be 817 

taken approximately 6.0 [×10-9 s/step] as long as no CE4s are activated by the crack initiation, 818 

i.e., in the intact regime. Note that in the preliminary analyses of this study, it was confirmed 819 

that, if the values of Δt were set larger than Δtcrit for each case, the FDEM calculations showed 820 

the spurious mode soon after the onset of the simulation, resulting in unrealistic stress level (> 821 

GPa) at various locations. However, to deal with time-discontinuity due to the activation of 822 

dormant CE4s in the ECZM-FDEM (semi-ACAA), cohesive penalty’s effect takes part in the 823 

FDEM simulation, which results in the stable time step becomes more or less same as that in 824 

the ICZM-FDEM with semi-ACAA and BCAA since the crack initiation occurs. By taking this 825 

advantage of larger stable time step of ECZM-FDEM (semi-ACAA) in the intact regime, the 826 

comparison of transient relative speed-up is made similar to Fig. 17. To that end, ECZM-FDEM 827 

(semi-ACAA) simulation is conducted using Δt =6.0 [×10-9 s] and Δt =2.0 [×10-9 s] before and 828 

after the first activation of CE4, respectively, while the constant Δt =2.0 [×10-9 s] is used for 829 

ICZM-FDEMs with semi-ACAA and BCAA. Here, the runtime t180 required to calculate for 830 



 

 53 

every 180 [μs] is considered in the above-mentioned UCS model and is monitored. In the case 831 

of ECZM-FDEM (semi-ACAA) before the first activation of CE4, t180 is equivalent to 6.0 [×10-832 

9 s] × 30,000 timesteps. On the other hand, t180 is equivalent to 2.0 [×10-9 s] × 90,000 timesteps 833 

for ICZM-FDEMs with semi-ACAA and BCAA as well as for ECZM-FDEM (semi-ACAA)) 834 

after the first activation of CE4. Note that the first activation of CE4 is observed between 835 

720,000 steps and 750,000 steps in the case of ECZM-FDEM (semi-ACAA). Since the t180 for 836 

Case 2 (ICZM-FDEM (BCAA)) is the longest, it is again used as the reference. Then, transient 837 

relative speed-up is defined as (t180 for ICZM-FDEM (BCAA)/(t180 for ECZM-FDEM (semi-838 

ACAA)) and (t180 for ICZM-FDEM (BCAA)/(t180 for ICZM-FDEM (semi-ACAA)) for Cases 839 

1 and 3 against Case 2, respectively, which is shown in Fig. 18. The horizontal axis in Fig. 18 is 840 

the simulation progress in analysis time, in which 0 % and 100 % is adjusted to t = 0 μs and t = 841 

7000 μs, respectively. Figure 18 clearly shows that the relative speedup of ECZM-FDEM (semi-842 

ACAA) against ICZM-FDEM (BCAA) is about 13 times before the first activation of CE4. This 843 

relative speed-up of ECZM-FDEM (semi-ACAA) against ICZM-FDEM (BCAA) is about 3 844 

times faster than the case in which the constant Δt is used in ECZM-FDEM (semi-ACAA) as 845 

shown in Fig. 17 since the value of Δt used in ECZM-FDEM (semi-ACAA) is taken to be 3 846 

times larger than that used in ICZM-FDEM. After the first activation of CE4 and the reduction 847 

in Δt, the relative speed-up of the ECZM-FDEM (semi-ACAA) decreased to about 4 times 848 

against ICZM-FDEM (BCAA), which is lower than that of ICZM-FDEM (semi-ACAA) against 849 
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ICZM-FDEM(BCAA) and similar to the trend in Fig. 17. Then, the total simulation time is 850 

identified as 4,527 [s], 5,246 [s] and 29,953 [s] for ECZM-FDEM (semi-ACAA), ICZM-FDEM 851 

(semi-ACAA) and ICZM-FDEM (BCAA), respectively. Thus, the total runtime of ECZM-852 

FDEM (semi-ACAA) with variable Δt becomes the smallest among the three cases. Thus, if the 853 

simulation time for the intact regime occupies relatively larger part of the entire simulation, 854 

which tends to be true for many quasi-static loading scenarios especially for hard rocks such as 855 

granite, ECZM-FDEM (semi-ACAA) can achieve better performance than ICZM-FDEM 856 

thanks to the larger stable time step. Therefore, not only the improvement of the calculation 857 

precision in the intact deformation regime but also the improvement of the computational 858 

efficiency is achieved by introducing the proposed GPGPU-based ECZM-FDEM while the 859 

obtained fracture pattern can be still reasonable. 860 

 861 

Fig. 18. Transient relative speed-up of ECZM-FDEM (semi-ACAA) with variable time step and 862 

ICZM-FDEM (semi-ACAA) against ICZM-FDEM (BCAA), and change of max(log10D) using 863 

UCS test model. 864 
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 865 

4. Conclusions 866 

In this study, GPGPU-parallelized 2-D ECZM-FDEM was proposed by applying the M-S 867 

algorithm as an alternative method for the complex adaptive remeshing traditionally adopted in 868 

ECZM-FDEM. The proposed MS-ECZM-FDEM algorithm was explained in detail and 869 

implemented in the GPGPU-parallelized Y-HFDEM code. Then, the developed code was 870 

applied to numerically model the BTS and UCS tests of siliceous mudstone under quasi-static 871 

loading for verification and validation. Furthermore, the results from the numerical modellings 872 

of the BTS and UCS tests using GPGPU-parallelized ECZM-FDEM and ICZM-FDEM were 873 

compared against each other in terms of several aspects, which are summarized below: 874 

 During the continuous deformation stage, the accuracy of ICZM-FDEM is compromised 875 

against FDEM without cohesive elements by 1.6 % ~ 2.0 % and 1.4 % ~ 1.8 % for the 876 

distribution of normal stresses (σxx, σyy), respectively, inside the specimen in the BTS 877 

modelling, and by 1.2 % ~ 1.7 % for the tangent modulus in the stress-strain curve in the 878 

UCS modelling. However, ECZM-FDEM showed no degradation in accuracy compared 879 

with FDEM without cohesive elements. Moreover, for the spatial stress distribution before 880 

fracturing in the UCS modelling, ECZM-FDEM showed a smooth distribution while 881 

ICZM-FDEM showed a noisy and disturbed distribution. 882 

 In terms of the stable time step, ECZM-FDEM can set the time step in the intact regime 883 
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about three times larger compared to ICZM-FDEM with the cohesive penalty being 100 884 

times of Young’s modulus of the rock. Furthermore, by taking advantage of larger stable 885 

time step in ECZM-FDEM, the total runtime of ECZM-FDEM became smaller than that of 886 

ICZM-FDEM in the case of modelling the UCS test. This study targeted at the soft rock 887 

and the relative speed-up in the total runtime was about 6 times faster. It is expected, if hard 888 

rock is modelled, a much more significant times of relative speed-up can be achieved the 889 

runtime spent in modelling the intact regime of the hard rock is much longer. 890 

 As for the contact activation, ECZM-FDEM removes the need for the BCAA, which has 891 

been prevalent in the ICZM-FDEM community but extremely computationally intense. 892 

Instead, ECZM-FDEM implements the more computationally efficient semi-ACAA and 893 

ACAA for the contact activation. It is confirmed that a relative speed-up of about 13 times 894 

of ECZM-FDEM based on the semi-ACAA can be achieved against ICZM-FDEM based 895 

on BCAA in the intact regime together with the improvement about the aforementioned 896 

stable time step. Howevver, after the clack initiation, the stable time step of ECZM-FDEM 897 

becomes more or less same as that of ICZM-FDEM due to the effect of larger cohesive 898 

penalty to deal with time-discontinuity issue inherent in ECZM. 899 

Thus, the proposed GPGPU-parallelized ECZM-FDEM with the M-S algorithm is 900 

confirmed to provide effective and valuable improvements over the conventional GPGPU-901 

parallelized ICZM-FDEM for the numerical modelling of rock fracturing process. However, 902 



 

 57 

only 2-D model is considered in this study and further study is need to extended the proposed 903 

GPGPU-parallelized ECZM-FDEM with the M-S algorithm to 3-D model in order to reasonably 904 

model rock fracture problems. Although the proposed counter-clockwise searching around each 905 

node group cannot be directly used in the 3-D case, the M-S algorithm adopted this study is 906 

expected to pave the way to realize the 3-D implementation of GPGPU parallelized ECZM-907 

FDEM. 908 
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