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Abstract

This paper proposes a novel general-purpose graphic-processing-units (GPGPU) parallel

computing approach to an extrinsic cohesive zone model (ECZM) - based combined finite-

discrete element method (FDEM) for simulating rock fracturing. The proposed GPGPU-

parallelized ECZM-FDEM incorporates a master-slave algorithm as an alternative to the

complex adaptive remeshing process, which is usually used in ECZM but has prevented it from

being parallelized using GPGPU. Numerical experiments of the Brazilian test and uniaxial

compression test of rocks are conducted to compare the proposed ECZM-FDEM with a

GPGPU-parallelized FDEM using the intrinsic cohesive zone model (ICZM-FDEM). Results

show that the proposed method can not only overcome the accuracy degradation of calculated

stresses and deformations that is inevitable in ICZM-FDEM but also reasonably simulate rock

fracturing. Moreover, the proposed GPGPU-parallelized ECZM-FDEM achieves a maximum

relative speed-up of 13 times over GPGPU-parallelized ICZM-FDEM due to efficient contact

calculations and larger stable time steps. Thus, the proposed ECZM-FDEM is more physically

sound and more computationally efficient compared with ICZM-FDEM, which may contribute

to the further developments of FDEM.

Keywords:

Rock fracturing, 2-D FDEM, Extrinsic Cohesive Zone Model (ECZM), Intrinsic Cohesive Zone

Model (ICZM), GPGPU parallel computation
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1. Introduction

Reasonable numerical modelling of rock fracturing process is necessary for a variety of

geotechnical applications in civil, mining, and energy fields. Recently, hybrid numerical

methods that incorporate the advantages of both continuous-based and discontinuous-based

methods have received significant attention. The combined finite-discrete element method

(FDEM) (Munjiza, 2004) is one of the most popular hybrid methods, which combines the finite

element method (FEM) and the discrete element method (DEM), and has been applied to various

rock fracture problems (e.g. An et al., 2017; Elmo and Stead, 2010; Fukuda et al., 2019; Guo et

al., 2016; Hamdi et al., 2014; Knight et al., 2020; Lisjak et al., 2014; Lisjak et al., 2018;

Mahabadi et al., 2012; Rock field, 2023; Vlachopoulos and Vazaios, 2018; Yan et al., 2022a).

FDEM is based on the explicit time integration scheme and can simulate the deformation

process of continuous rocks, the transition process from a continuum to a discontinuum (i.e.,

fracture initiations and propagations in rocks), and the contact process between material surfaces

including newly created macroscopic fracture surfaces (i.e., discontinuous deformation process).

Thus, FDEM is suitable for the simulations of various engineering applications involving in

highly non-linear problems which are characterized by the series of complex rock fracturing

processes. Historically, two representative FDEM codes, i.e., open-source “Y-code" (Munjiza,
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2004) and commercial "ELFEN code" (Rock field, 2023) were developed. Since then, various

FDEM codes have been developed including "HOSS" code (e.g. Knight et al., 2020; Rougier et

al., 2014), "Irazu" code (e.g. Geomechanica, 2023; Lisjak et al., 2018), “MultiFracS code” (Yan

et al., 2022a, 2022b), "Solidity" code (e.g. Guo et al., 2016; Latham et al., 2012), "Y-Geo" code

(e.g. Mahabadi etal., 2012; Tatone and Grasselli, 2015), and the authors’ "Y-HFDEM code" (e.g.

Liu et al., 2015; Fukuda et al., 2019, 2020a) in alphabetical order among others, and the

applications of these codes to rock fracture problems have been reported (see Knight et al., 2020

for a comprehensive review on the history of recent FDEM developments).

To model rock fracturing process, almost all the FDEM codes, except for ELFEN, in the

recent literature utilizes the cohesive zone model (CZM) (Barenblatt, 1962; Dugdale, 1960) by

separating the boundaries or inside of continuum elements and inserting cohesive elements at

separated portions. In CZM, rock fracturing is modeled by the softening of cohesive tractions

acting on the initially zero-thickness cohesive elements according to their relative opening and

sliding, i.e., traction-separation law. Note that ELFEN models material softening by degrading

tensile strengths associated with the increments of inelastic extensional strains under the

assumption that quasi-brittle fracture is mainly extensional in nature, and thus does not use CZM

(Klerck, 2000; Klerck et al., 2004). In ELFEN, when the degraded tensile strength reaches zero,

a discrete fracture is introduced. For CZM implementations, there are three main approaches:

Intrinsic CZM (ICZM), Extrinsic CZM (ECZM) (Fukuda et al., 2020b; Pandolfi and Ortiz,
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2002; Papoulia et al., 2003; Zhang et al., 2007), and discontinuous Galerkin-based CZM

(DGCZM) (Nguyen, 2014). Note that the so-called universal CZM (UCZM) has been proposed

and implemented in HOSS code. However, since the details of the UCZM have not been

publicly available in the journal papers, UCZM is not reviewed here. Hereafter, we only focus

on reviewing ICZM, ECZM and DGCZM. Although all these approaches are the same in terms

of the post-peak behavior in the traction-separation law, they are different in terms of the timing

of inserting the cohesive elements and corresponding implementations.

Table. 1. Classification of FDEM codes according to parallelization and CZM scheme.

CZM schemes
Parallelization schemes
ICZM-based ECZM-based
Lukas et al., 2014 (Y-based)
MPI —
CPU-based Leietal., 2014 (HOSS*)
Shared
Xiang et al., 2016 (Solidity) —
Memory
Lisjak et al., 2018 (Irazu)
Fukuda et al., 2019 (Y-HFDEM)
GPGPU-based Liu et al., 2019 (Y-based) —

Liuetal., 2021, 2022(Y-based)

Yan et al., 2019, 2022a (MultiFracS)

X% UCZM is also available.
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In ICZM, cohesive elements are inserted at all boundaries of continuum elements from the

start of the simulation even if no damage has occurred. Since there is no need to update mesh

connectivity (i.e., adaptive remeshing) during the simulation, it is easy to implement parallel

computation schemes to enhance computing performances. In fact, the majority of the existing

FDEM codes are based on ICZM (hereafter, ICZM-FDEM), and have been actively accelerated

by parallel computations. Table. 1 lists the FDEM codes that have incorporated various parallel

computations up to present, including FDEM codes based on ECZM (hereafter, ECZM-FDEM)

which are to be discussed later in this section. As shown in Table 1, various parallel schemes

have been implemented for ICZM-FDEM. Among them, the CPU-based parallelization

schemes are implemented for FDEM using multiple CPUs, which includes FDEM based on

relatively large-scale parallel computations using message-passing interface (MPI) (Lei et al.,

2014; Lukas et al. 2014) and relatively small-scale parallel computations using shared memory

programming such as OpenMP (Xiang et al., 2016). However, since the CPU-based

parallelization requires multiple CPU cores, a massive computing system such as a

supercomputer with enormous resources are needed to achieve high performance parallel

computing. On the other hand, several cases of FDEM parallelization have incorporated general-

purpose graphic-processing-units (GPGPU), which have many cores within a single GPGPU

card and can be installed in a personal computer (PC) or a workstation (e.g., Fukuda et al., 2019;
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Lisjak et al., 2018; Liu et al., 2019; Liu et al., 2021, 2022; Yan et al., 2022a). GPGPU-based

parallelization has the advantages of a relatively lower-cost setup and cheaper energy

consumption as compared to CPU-based parallelization. With this background, the ICZM-

FDEM based on GPGPU parallel computation has been actively developed. However, [CZM-

FDEM has a serious drawback since an artificial elastic response constrained by a finite stiffness

(i.e., cohesive penalty) must be introduced to reasonably handle the continuous deformation

process of rocks before any crack initiations. This drawback makes the stable time step Az in the

ICZM-FDEM analysis become much smaller than that in the explicit FEM without cohesive

elements. Moreover, it causes the problem of increasing the bulk compliance of the modelled

rocks since the cohesive elements can open/slide even in the intact/continuous deformation

regime (see the discussion in Fukuda et al., 2020b in the case of rock dynamics problems).

Furthermore, because the cohesive elements are inserted in the whole domain from the

beginning of the simulation, one controversial issue arises: when should the contact processing

(i.e., the contact detection and contact force calculation) by DEM be initiated for the continuum

elements located inside the solid body? One of the solutions is the brute-force contact activation

approach (BCAA), in which the contact is processed for all separated continuum elements from

the start of the simulation and which is used in many ICZM-FDEM codes. However, Fukuda et

al. (2021) and Mohammadnejad et al. (2020) pointed out BCAA was not only physically

unreasonable but also required enormous computational costs, which may still be too much even
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with the parallel computation. On the contrary, the adaptive contact activation approach

(ACAA) utilized by Guo (2014) and semi-ACAA (Fukuda et al., 2021) only activate the contact

processing at locations where the cohesive elements are completely/partially broken (i.e.,

physical cracks appear). Through this way, the shortcomings of BCAA mentioned above are

solved, and ACAA and semi-ACAA can succeed in reducing the computational cost

significantly compared to BCAA. In summary, [CZM-FDEM has the extremely attractive aspect

of easy parallelization but also suffers from the drawbacks mentioned above.

One solution to these problems inherent in I[CZM-FDEM is ECZM-FDEM, in which, the

cohesive elements are inserted on the boundaries of the continuum elements only when and

where the given failure criteria are satisfied. In this sense, ECZM-FDEM is simply a pure FEM

without any cohesive elements at the intact/continuous deformation regime of rocks. Therefore,

the problems of too small stable time step and increasing bulk compliance inherent in ICZM-

FDEM never occur. Moreover, because the contact calculations are unnecessary inside the solid

body before the cohesive elements are inserted, the concept of BCAA does not appear in ECZM-

FDEM, while only ACAA or semi-ACAA is applicable. Thus, the excessive computation costs

inherent in ICZM-FDEM are overcome in ECZM-FDEM. However, the developments and

applications of ECZM-FDEM are extremely limited to present and most of them are based on

the complex adaptive remeshing required when inserting cohesive elements during the

calculation in ECZM-FDEM (e.g. Fukuda et al., 2020b; Rock field, 2023) including ECZM-
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based pure FEM (Fukuda et al., 2020b; Pandolfi and Ortiz, 2002; Papoulia et al., 2003; Zhang

et al., 2007). For example, Fukuda et al. (2020b) implemented a three-dimensional (3-D)

ECZM-FDEM and applied it to model the dynamic tensile fracture tests of rocks utilizing

sequential Fortran 90. However, the remeshing algorithm used in that code is sequential and it

has been challenging or impossible to directly extend it to the GPGPU parallelization. Even in

the reported cases of ECZM-based pure FEM, only MPI parallel implementations (Espinha et

al., 2013; Dooley et al., 2009) have been reported. In sum, as shown in Table. 1, there are no

applications of GPGPU parallel computation to ECZM-FDEM till this moment.

In addition to ECZM for the possible solution to the inherent issues in ICZM-FDEM,

DGCZM "weakly enforces the continuity of the displacements across cohesive elements at the

undamaged state which are active in ICZM-FDEM" using two control parameters pc and a

(refer to Nguyen, 2014 for the explanation of these two parameters), and thus the GPGPU

parallel implementation of DGCZM is very easy as that of ICZM. However, there has been no

research on the application of DGCZM to FDEM, and thus further research is needed. Besides,

as implied by the point "weakly enforce the continuity", a slight reduction in the precision of

modelling the continuous deformation process using DGCZM is inevitable compared to ECZM

although DGCZM may bring about a significant improvement over ICZM for the modelling of

the continuous behavior.

In view of the literature review above, it should be significantly valuable if GPGPU-
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parallel ECZM-FDEM can be developed with any relative ease. To achieve it, this study

attempts to extend the concepts proposed in Cai et al. (2023), Dooley et al. (2009), Maeda et al.

(2022) and Woo et al. (2014 & 2019) to GPGPU parallel computation. Dooley et al. (2009)

proposed a 2-dimentional (2-D) ECZM-based pure FEM in MPI parallel computing framework,

in which all boundaries of continuum elements are physically separated as those in ICZM at the

onset of the simulation. In this method, all nodes at the same location (hereafter “detached

nodes”) are conceptually tied with each other, which includes not only the initial FEM nodes

but also these nodes generated from the insertion of cohesive elements. Suppose a FEM node

ITER 2]

i” before the insertion of any cohesive elements is detached into a group of N detached nodes
“lo”"~"in-1” (hereafter “node group”) generated after the insertion of cohesive elements. One
detached node is then considered as the representative node, i.e. master node (M-node) while
the all other detached nodes are set as copy nodes, i.e. slave nodes (S-nodes) in each node group.
After that, pure FEM simulation can be achieved by assembling the masses and nodal forces of
all S-nodes in the same node group into the corresponding M-node and solving the equations of
motion for this M-node. In this way, the cohesive elements can be completely dormant before
any crack initiation. Dooley et al. (2009) further demonstrated that the cohesive elements could
be adaptively inserted/activated by updating the relation between M-node and S-node (M-S

relation) “7o”’~"in-1” in the same node group. Unfortunately, the updating algorithm of the M-S

relation (hereafter M-S algorithm) was not sufficiently described in Dooley et al. (2009)

10



181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

although it was the most crucial part of the proposed method. Later, Woo et al. (2014 & 2019)

proposed a method very similar to ECZM, which was called as the selective activation of [CZM.

As in Dooley et al. (2009), this method constrains the detached nodes belonging to the same

node group to a representative node (multi-point constraints, i.e., MPCs) to realize a calculation

accuracy equivalent to pure FEM. Then, the MPCs surrounding the continuum element

boundary where fracture is "likely" to occur are released. However, this method has not been

parallelized. In addition, neither Dooley et al. (2009) nor Woo et al. (2014 & 2019) focused on

FDEM. More recently, Cai et al. (2023) and Maeda et al. (2022) extended the M-S algorithm

originally proposed by Dooley et al. (2009) to FDEM to develop ECZM-FDEM for rock

mechanics applications. However, only sequential computations are implemented in both Cai et

al. (2023) and Maeda et al. (2022) while a GPGPU parallel implementation of ECZM-FDEM

based on the M-S algorithm has not been achieved yet. In view of the background reviewed

above, this paper proposes a GPGPU-parallelized ECZM-FDEM on the basis of the M-S

algorithm in Cai et al. (2023), Dooley et al. (2009) and Maeda et al. (2022) without adaptive

remeshing and implements it in Y-HFDEM code to simulate rock fracturing process.

The remaining of this paper is organized as follows. Section 2 describes the methodology

and numerical implementation of GPGPU-parallelized ECZM-FDEM with the M-S algorithm.

Section 3 verifies the GPGPU-parallelized ECZM-FDEM by applying it to simulate the rock

fracturing process in the conventional laboratory tests. The obtained results are discussed

11
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through various comparative studies between the GPGPU implementations of both 2-D ICZM-

FDEM (Fukuda et al., 2019) and 2-D ECZM-FDEM with M-S algorithm. Section 4 concludes

the achievements of this study and points out the issues for future study.

2. GPGPU-based ECZM-FDEM with Master-Slave Algorithm

2.1. ECZM-FDEM with Master-Slave Algorithm

In this study, the GPGPU-parallelized ECZM-FDEM is realized in Y-HFDEM code (Liu et

al., 2015; Fukuda et al., 2019) by newly incorporating the powerful algorithm that can fully

consider the features of ECZM without complicated adaptive remeshing. This is achieved by

utilizing the GPGPU-parallelized ICZM-FDEM utility which is already available in Y-HFDEM

code (Fukuda et al., 2019). This paper only focuses on 2-D problems and its 3-D extension is

considered as our future task. Although all simulations in this paper are conducted under the

plane strain condition, it should be emphasized that the proposed M-S algorithm is applicable

under both the plane strain and the plane stress conditions. The tensile and compressive stresses

are regarded as positive and negative, respectively, which holds true throughout the paper unless

otherwise stated.

FDEM has to deal with the following three important processes in order to simulate rock

fracturing, (i) continuous deformation of the intact rock, (ii) transition from continuum to

discontinuum (i.e. fracture initiation and propagation) and (ii1) contact between solid surfaces

12
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including newly generated discontinuities upon rock fracturing. FDEM models the three

processes (i)~(iii) through continuum mechanics, non-linear fracture mechanics based on CZM

(Barenblatt, 1962; Dugdale, 1960) and contact mechanics (Munjiza, 2004), respectively. The

difference between the traditional ICZM-FDEM and the proposed ECZM-FDEM with M-S

algorithm (hereafter, MS-ECZM-FDEM) lies mainly in the handling of CZM and the process

of assembling nodal forces from S-nodes to their M-nodes, which will be explained below.

In MS-ECZM-FDEM, the nodal masses and nodal forces are calculated through the

computation of the aforementioned processes (i)~(iii) in each time step. The core idea of MS-

ECZM-FDEM is that the all the continuum elements (which are 3-node triangle elements

(TRI3s) in this study) are already detached by the insertion of initially zero-thickness 4-node

cohesive elements (CE4s) at the onset of the simulation which is exactly same as the I[CZM-

FDEM (see Figs. 1 and 2). Thus, the proposed developments can be easily implemented into

any existing ICZM-FDEM codes such as open source Y-code (Munjiza, 2004) and GPGPU-

based Y-HFDEM code (Fukuda et al., 2019). The nodes generated upon the insertion of CE4s

are “detached nodes” as mentioned in Section 1. In addition, Fig. 3 shows the concept of “node

group” mentioned in Section 1, which consists of the detached nodes originally belonging to the

same FEM node before the insertion of CE4.

13
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Fig. 3. The concept of node groups and M-S relation.

With these concepts in mind, we first explain how the aforementioned processes (i) and

(iii) are modelled in the framework of MS-ECZM-FDEM while the treatment of the process (ii)

is provided later. Let us first explain the case that the target problem only consists of multiple

discrete bodies “without any fractures”, in which each discrete body is purely continuous and

only the continuous deformation of TRI3s in each discrete body (process (i)) and the contact

between the discrete bodies (process (iii)) are involved. Since all nodes are detached in the MS-

ECZM-FDEM, let Ngetach be the total number of detached nodes in the target system. It should

be noted that Ngetach 1S the same as the total number of nodes in the case of ICZM-FDEM. Let

us consider a single node group “ig (= 0,1,2, -, Nng-1)" where Nyg is the total number of node

groups in the system, and N, is exactly same as the total number of FEM nodes before the

insertion of CE4s. The node group ig consists of Ngetacn(ig) detached nodes where Neetacn(ig) can

be readily available from any existing ICZM-FDEM codes. To realize the pure continuous

deformation within each discrete body, we apply the following M-S algorithm. In each node

group ig, a single detached node is considered as the M-node while all other detached nodes in

the same node group ig are assigned as the S-nodes to the M-node of ig (see Fig. 3). In terms of

implementations, we first introduce a key data structure for the M-S node relation named

“GetMaster|i]” for each detached node i (= 0,1,2, -, Ndetach-1) Which literally stores the

15
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information of the M-node of the detached node i (see Fig. 3). The following rules are then

assigned. If a detached node i satisfies the condition “GetMaster[i]= i”, i is the M-node.

Otherwise, if a detached node i satisfies the condition “GetMaster[i]=j (j#i)”, i is the S-node

whose M-node is j. The construction of “GetMaster” is the key to the successful implementation

of MS-ECZM-FDEM. For the stage involving with no fracturing, “GetMaster” can be readily

constructed using the existing ICZM-FDEM code. In addition, at the onset of the FDEM

simulation, initial and current nodal coordinates as well as initial nodal velocities are set to be

same between a M-node and their S-nodes in each node group. For the aforementioned process

(1), this study assumes that each TRI3 obeys the isotropic hyper-elastic solid with viscous

damping (see. Egs. (2) and (3) in Fukuda et al., 2020a) under plane-strain condition and Cauchy

stress tensor g;; is computed in each TRI3. Then, o; is converted to the equivalent nodal force

fine [N], and finc is assembled to each detached node in the TRI3. When each TRI3 is processed,

lumped nodal mass M [kg] is also computed and is assembled to detached nodes in the TRI3. It

must be noted that, at this stage, the assembling of nodal force is processed on the basis of each

detached node and we can directly utilize the existing ICZM-FDEM code without any

modification. For the aforementioned process (iii), the contact between two discrete bodies are

handled by that between the elements, i.e., TRI3s in this study, used to discretize the two discrete

bodies based on the potential contact force theory proposed by Munjiza (2004). When any

overlap between two TRI3s is detected, the exact overlapping shape is computed.
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Correspondingly, the repulsive normal contact forces are computed based on the contact
potential, which is determined from the overlapping area (see Munjiza (2004) for full detail),
along with the contact friction force based on the Coulomb type friction law. Then, the computed
contact force is converted to the equivalent nodal force fecon [N], which is assembled to each
detached node by directly utilizing the existing ICZM-FDEM code without any modification. If
any external load (such as water pressure or gravity) is involved in the target problem, the
equivalent nodal force fex: [N] is assembled to each detached node in the same way.

Finally, using the aforementioned M-S relation “GetMaster”, M, fin, fext and feon of
detached nodes are assembled to their M-nodes, and the resultant equation of motion only for

each M-node is solved in the explicit time integration scheme as given by Eq. (1):

M ZTZU _f —f +f_ )
where u [m] is the nodal displacement and ¢ [s] is the time. After the update of nodal information
for M-nodes, the updated nodal velocity and current nodal coordinates of each M-node are
copied to their S-nodes for the following timesteps to utilize the existing ICZM-FDEM code
without any modification. In this way, the processes (1) and (iii) can be simulated as if no active
CE4s exist in the system and each discrete body behaves as pure continuum as that in pure FEM.
Using this approach, the issue of the increase of the bulk artificial compliance in the ICZM-

FDEM can be completely overcome. Moreover, since the CE4s become completely dormant at

this stage (Hereafter, these dormant CE4s before the onset of crack initiations are simply called

17
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“dormant CE4s”), we only need to consider TRI3s on the surface of each discrete body as
potential contact candidates subjected to the contact detection. Thus, the concept of BCAA
utilized in FDEM literature can be completely avoided. As long as each discrete body is intact
without any fracturing, the M-S relation “GetMaster” does not need to be updated. The
important remaining tasks are “how the dormant CE4s are activated to model the crack
initiation”, “how the M-S relation GetMaster is updated upon crack initiation” and “how the
ECZM is implemented in FDEM” in the framework of GPGPU computing, which are explained
in the remainder of this section.

The activation timing of the dormant CE4s is determined based on the normal and shear
tractions acting on the boundary of two TRI3s where the target dormant CE4 is located. Note
that the dormant CE4 is exactly the line element coinciding with the boundary of the TRI3s.
Thus, we interpolate the Cauchy stress tensor ¢ on the boundary of TRI3 by taking the average
of those in the surrounding two TRI3s. Let n denote the outward unit normal vector of the
boundary of TRI3, the normal traction (¢n= (on) * n) and shear traction (z, = ||en — onn||) acting
on the boundary can be calculated. When these values reach either the given tensile strength or
Mohr-Coulomb shear strength set at the boundary of TRI3, tensile or shear failures occur,

respectively, and the dormant CE4 is activated. The failure criteria are presented as follows:

F=o, —f, 2)
F, =|r,|—(c—o, tang)

where f; [Pa], c [Pa] and ¢ [degree] are tensile strength, cohesion, and internal friction angle of
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a CEA4, respectively. Through Eq. (2), crack initiation, i.e., the activation of the dormant CE4, is

assumed to occur when either >0 or F»>0 is satisfied.

Once any dormant CE4s are activated, the M-S relation “GetMaster” must be adaptively

updated. We follow the M-S algorithm introduced by the authors (Maeda et al., 2022). As

depicted in Fig. 4, the counterclockwise search around the reference axis pointing the positive

x direction is performed for the node group ig (=0,1,2, -, Nye-1). The detached nodes in each

node group are sorted counterclockwise based on the geometric center of TRI3s to which each

detached node member in the same node group belongs. Starting the search from one of the

dormant CE4s (CE4_0 in Fig. 4) which has just satisfied the aforementioned failure criteria, the

first encountered detached node immediately after passing across the CE4 0 is considered as

the first M-node (MO in Fig. 4). Then, before the searching passes across the other activated

CE4 (CE4 1 in Fig. 4), all the encountered detached nodes are assigned to S-nodes (SO in Fig.

4) to MO. Then, in the similar manner to MO, the first encountered detached node immediately

after passing across the CE4 1 is considered as the second M-node (M1 in Fig. 4). In this way,

any number of activations of the dormant CE4s which satisfy the failure criteria in the

corresponding time step can be handled with ease. Besides, this computation can be localized

to each node group. Thus, by updating the M-S relation in each node group, very complex

topological change due to fracturing can be automatically traced without using complex

adaptive remeshing as in Fukuda et al. (2020b) (see Fig. 3 therein) and corresponding data
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338  structure for manipulating remeshing, which makes the parallelization of the algorithm very
339  easy. Thus, the advantage of the applied M-S algorithm is not only limited to the localization of

340  processing by avoiding remeshing but also its ease of implementation and saving memory usage.

Reference
axis

<+ : Geometric center

341 (@) (b)

342  Fig. 4. M-S relation construction by counterclockwise search. (a) before failure (b) after failure.

343
B ICZM
O.coh Tcoh
i c
S " | -o%Mtan(p)
Op 6‘t 0] SP St |S|
(a) Tensile (b) Shear
B ECZM
acoh Icoh
C
| :;C‘)htan((p)
0 St |9
344 (c) Tensile (d) Shear

345  Fig. 5. Tensile/Shear traction-separation law. (a)(b) ICZM (c)(d) ECZM.
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346
347  Fig. 6. Tensile/Shear traction-separation law of a conventional ECZM in case only the shear
348  failure criterion is met (F1<0 and F>>0).

349
The final important task for the successful implementation of the MS-ECZM-FDEM is

350
how the ECZM is implemented. Before explaining that, one technical challenge must be pointed

out. Figure 5 (a)(b) and (c)(d) show the traction-separation laws for CE4 in the case of ICZM

351
352
353  and ECZM, respectively, where ¢°" [Pa] and 7°°" [Pa] are normal and shear cohesive tractions,
354  respectively, according to the relative displacements of the two faces constituting a CE4 (o [m]:
opening amount of CE4 in which opening is positive and |s| [m]: sliding amount of CE4) (Fig.

1). On one hand, in the case of ICZM, pure mode I, pure mode II and mixed mode I-II fracturing

355
356
357  can be modeled with ease (see Mahabadi et al., 2012; Fukuda et al., 2019) although the artificial
358  compliance increase becomes the issue due to the existence of artificial elastic regime, i.e. 0<op
and |s|<sp where op and s, [m] are the “artificial” elastic limits of o and |s|, respectively (Munjiza

359
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etal., 1999). On the other hand in the case of ECZM, Fig. 5 (c)(d) can be correct only when the

dormant CE4 is activated with both F1>0 and F>>0 being simultaneously satisfied in Eq. (2).

However, depending on the loading type in each target problem and due to the nature of

unstructured mesh utilized in almost all the modern FDEM codes, the simultaneous satisfaction

of the conditions F1>0 and F>>0 is very rare, and the cases “F1>0 and F><0” and “F1<0 and

F>»>0” are rather encountered frequently. In fact, in most of the previous research using ECZM-

based FEM (Cai et al., 2023; Dooley et al., 2009; Zhang et al., 2007), the cohesive tractions at

the activation on a CE4 are set to the input strength values regardless of the failure modes.

Figure 6 shows the softening curves of a conventional ECZM where only the shear failure

criterion is met by m = 7o (#1<0 and F2>0). In such a case, as shown in Fig. 6, although the

normal traction o, = oo upon the CE4 activation is less than the tensile strength, the normal

cohesive traction starts from the tensile strength, and thus a time-discontinuity in the stress state

before and after CE4 activation should occur. This time-discontinuity should also occur in the

case where only the tensile failure criterion is met (F1>0 and F»<0). Particularly, the time-

discontinuity may be significant in the case that the normal traction oo is a compressive stress

when CE4 is activated due to shear failure only. Dooley et al. (2009) assume that shear failure

does not occur in such a compressive stress field, which, however, is not a reasonable

assumption for the rock engineering applications targeted in this study. Note that Fig. 5 (a)(b)

and (c)(d) in this paper are similar to Fig. 1(d) and (e), respectively in Cai et al. (2023). However,
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Cai et al. (2023) did not consider this time-discontinuity in their ECZM-FDEM at all. Based on
this consideration, the following approach is taken as a remedy for alleviating this time-
discontinuity issue although further study is needed for completely solving this issue. To this
end, the traction-separation law (Fig. 5 (a)(b)) utilized in the ICZM-FDEM implementation is
utilized. In the ICZM, to calculate 6" and 7°°", the constitutive laws based on the tensile and
shear softening laws, i.e. tensile/shear softening curves, are applied according to Egs. (3) ~ (9)
(e.g., Fukuda et al. (2019)). Note that in this traction-separation law, three integration points are
adopted in each CE4 and the contribution of the integration points to the nodal forces is set

according to Munjiza (1999) (See Egs. (19) and (20) therein):

204 if 0<0
0]
p
2 2
o = [—"—[Enf(o)ft if 0<o<o, (3)
Op Op
f (D) f, if o,<0< o

2
E_LHJ x(f(D)c—o™"tang) if 0<ls|<s,
)

(f(D)c-o™"tang) if s, <[s|<s,

f(D):{l—Lﬁ_lexp(D( a+ip )Hx[a(l—D)w(l—D)q (5)

a+f a+p)(l-a-p
o = 2N (6)
PP
2hc
Sp:? (7
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G, = j o™ (0)do ®)

Gy + W = [ L= (s )}l ©)
where ot [m] and st [m] are the critical values of 0 and |s|, respectively; < is Macaulay brackets;
h [m] is the representative length of a CE4; P [Pa] is the cohesive penalty; Gr1 [J/m?] and Grn
[J/m?] in Egs. (8) and (9) are the Mode I and Mode II fracture energies consumed during the
generation of tensile and shear failures, respectively; Wres [J/m?] is the amount of work per area
of CE4 given by the residual stress term in the Mohr-Coulomb shear strength model illustrated
in Eq. (9); (D) [-] (0< f'<1) is the softening function that determines the softening curve and
approximates the experimental stress-displacement curves obtained from the literature (Evans
and Marathe, 1968); D (0<D<1) [-] is the damage variable indicating the damage degree of CE4;
a, B, v [-] are the parameters that determine the curve shape of softening curves. Note that the
states with 0o<op or 0<|s|<sp represent the artificial elastic state with D = 0, those with op<o=<ot,
sp<|s|<st represent the damaged state (strain softening state with 0<D<1) where a CE4 can be
regarded as a micro fracture, and the state with o<o or s<|s| indicates the CE4 is broken with D
= 1, deactivated, and turned into a macro fracture, and TRI3s surrounding the CE4 are treated
as the surface of the discrete bodies. Besides, when the above-mentioned damage variable D is

computed, the tension-induced damage Do [-] and the shear-induced damage Ds [-], are

computed as follows:
D:min(1,4/D02+D52) (10)
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_(,0-0). .
D, =m|n[1, > "j if o, <o<o, ,otherwise 0 (11)
t

. S|—S . .
D, = mm(l,”—pj if s, <|s|<s, ,otherwise 0 (12)
st
No damage recovery is assumed to occur, and the damage variable D adopts the maximum value
between the previous steps and the current step. In addition, the unloading process (decrease in

0, |s|) and reloading process (increase in o, |s|) during material softening (op<o0=<ot, sp<|s|<st) are

also modeled by the following equations (Camacho and Ortiz, 1996; Fukuda et al., 2019).

dmzag—HDﬁtW0£03qmamh%M>% (13)

max

o = ﬂ< f (D)c—o™" tan ¢> if 0<s|<s,, and s, >S, (14)
where 0max [m] and smax [m] are the maximum values of o and |s|, respectively, which the CE4
experiences during the FDEM simulation.

Based on the above ICZM-based formulation, the countermeasure adopted by Maeda et al.

(2022) is applied in this study. The boundary tractions (on, ) = (00 (Eq. (15)), 70 (Eq. (16)))

acting on the dormant CE4 upon the activation timing, when the failure criterion (Eq. (2)) is
satisfied, are stored as shown in Eqgs. (15) and (16), respectively:

o, =min(c,, f,) (15)

7, =min(z,|,(c—o, tan¢)) (16)

Next, we define the following nominal opening/sliding displacements for the newly activated

CE4 based on the boundary tractions (oo, 70) as follows:

- 2ho;
Onomlnal — 0 17
5 (17)
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Snominal — 2hTo

18
S (18)

Then, the effective opening/sliding (o, s) of the activated CE4 used in softening functions of

cohesive tractions are defined as the sum of the nominal opening/sliding displacements (o"™na!

9

coh

sominaly and actual geometrical opening/sliding displacements (0°°", s°°") which occur after the

CE4 activation as shown in Egs. (19) and (20):
0= Onominal +Ocoh (19)

‘S‘ — Snominal _l_scoh (20)

It should be noted that the values of (0", s°°") at the activation timing of the dormant CE4 are
zero because the CE4 has no gap. Then, these (o, |s|) are used in the above Eqgs. (3) ~ (14). This
approach is expected to alleviate the time-discontinuity issue to some extent and a similar
concept has been used in the literature (e.g. Woo et al., 2019 and Fig.4 therein). However, with
this approach, it must be noted that, upon the activation of CE4s, the effect of cohesive penalty
P takes part in the FDEM simulation and thus the stabile time step becomes almost same as that
in ICZM-FDEM since then while the time step can be taken relatively larger before the first
CE4’s activation. Furthermore, it is essential to emphasize that the complete elimination of the
time-discontinuity in local nodal forces before and after the activation of CE4s remains a
challenge. As discussed by Chen et al. (2019), the core issue lies in the reliance on failure
judgments based on the stress states extrapolated from bulk elements (TRI3s in the present
implementation), while the nodal forces contributed by the interpolated stresses and cohesive

tractions remain independent. In their comprehensive review, Chen et al. (2019) examined the
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existing methods aimed at mitigating or resolving this time-discontinuity issue and concluded
that these methods are too exceedingly complex to implement. Correspondingly, they proposed
a promising node-based approach aiming to achieve continuous transitions, in which, both the
failure judgment and cohesive force calculation are performed directly at each node. However,
it is worth noting that the application of the node-based approach is limited to simple crack
patterns, e.g., progressive debonding or delamination in composite structures and thus cannot
be readily applied to address the complex fracture problems involving with shear failures under
compressions within the framework of the Mohr-Coulomb shear failure model. Consequently,
the resolution of this problem within our model is a subject for future research. Additionally,
another time-discontinuity issue arises when a cohesive element reaches complete damage (D
= 1) under a compressive stress field, i.e., transitioning from a state governed by the penalty of
the cohesive elements to one governed by the contact penalty associated with contact interaction.
This challenge is encountered in all CZM-based FDEM in spite of ICZM or ECZM. As a
potential solution of to address this issue, Deng et al. (2021) proposed a smooth transition
approach by assigning individual normal stiffness to each contact couple. However, our current
paper only focuses on the implementation of MS-ECZM in the framework of GPGPU although
we appreciate the time-discontinuity issue, which is regarded as a top priority of our future

coh
9

development. The computed cohesive tractions (¢°°", 7°°") are converted to the equivalent nodal

force feon [N], which is assembled to each detached node by utilizing the existing ICZM-FDEM
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code with very minor modification according to Egs. (15) ~ (20), and further assembled to their
M-nodes. Thus, upon fracturing, the resultant equation of motion for M-nodes is given as Eq.
(21):
MZ—Z‘;' f,f, 4, +f, @1)
After the nodal information is updated for M-nodes, the nodal velocity and current nodal
coordinates are copied to their S-nodes for the following timesteps to fully utilize the existing
ICZM-FDEM code.
2.2. GPGPU parallel implementation

As mentioned in Section 2.1, the proposed MS-ECZM-FDEM can utilize the existing
ICZM-FDEM code including the ICZM-based GPGPU-parallelized Y-HFDEM code with very
minor modification. The only notable differences lie in the treatment of the judgement of the
failure (Eq. (2)) and resultant update in the M-S relation (Fig. 4 (b)). Moreover, the processing
of the update in the M-S relation is highly localized and suitable for parallel computation while
it is challenging to parallelize the adaptive remeshing used in Fukuda et al. (2020b), Pandolfi
and Ortiz (2002) and Yamamoto et al. (1999) especially in terms of GPGPU parallelization. This
section implements the proposed algorithm through the GPGPU parallel computation using
computing unified device architecture (CUDA) C/C++. The GPGPU parallel computing uses

the following abstractions: threads, blocks, and grids (Fig. 7). In the GPGPU devices, parallel

processing is performed in many threads using kernel functions. The threads are just execution
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units of kernel functions, and each thread performs operations similar to sequential computation.

The blocks are the groups that manage several threads and allow memory sharing and

synchronization among the threads within a block. Furthermore, the grids are the groups of

blocks. This hierarchical management of threads enables parallel processing. Figure 8 shows

the flow chart of the proposed MS-ECZM-FDEM with GPGPU parallel computing. In Fig. 8,

the blue letters are the specific processes for the MS-ECZM-FDEM while the rest processes are

the same as those used in the ICZM-based GPGPU-parallelized 2-D Y-HFDEM code. Therefore,

the proposed MS-ECZM-FDEM can be realized by simply adding the processes shown in blue

in Fig. 8 to the existing ICZM-FDEM codes. For the part which is common with the ICZM-

FDEM, the interested readers are referred to the detailed explanations in Fukuda et al. (2019)

and only the newly implemented portions are explained here. In Fig. 8, the process enclosed by

the dashed line is the parallel computation in the GPGPU device. First, before entering the

parallel computation by the GPGPU devices, the angle 6 between the reference axis and the

vector connecting each detached node and the geometric center of the TRI3, to which it belongs,

are calculated for all the detached nodes, which in each group is sorted in the counterclockwise

manner in order of decreasing 6 (Fig. 4 (a)). After this sorting, the initial M-S relation

“GetMaster” (Fig. 3) is constructed by simply selecting the detached node with the smallest &

as M-node while other detached nodes as S-nodes to this M-node in each node group. Note that

these processes are handled in a host computer and processed by sequential computations only
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once at the onset of the simulation, which takes negligible computational time. The information
of the relation between the sorted detached node IDs in each node group and GetMaster are
transferred to the global GPGPU memory, and the subsequent computations are completely
processed on GPGPU except for the output timing when the computed data from the GPGPU
are transferred back to the host computer to generate the output files for visualization by the
opensource software Paraview (Ayachit, 2015).

Grid

Sequential Sequential Sequential
operation operation operation

Thread index: Nypg-3 || Thread index: Nypg-2 | Thread index: Nypg-1

Sequential Sequential Sequential
operation operation operation

Nrpg : Number of threads per block

Fig. 7. The concept of GPGPU programming. (Fukuda et al., 2019).
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nodes : Assemble M, f;; and f,,, from S-nodes to the M-node
I

Kernel for all TRI3s (contact detection)
I

Kernel for all contact couples (contact force calculation)

component nodes : compute f.,, and assemble f.., from S-nodes to the M-node
I

Kernel for all nodes (solving equations of motion)

M-nodes : update nodal positions / velocity and copy them to S-nodes

+ At No

End of analysis?

Fig. 8. Flow chart of proposed MS-ECZM-FDEM with GPGPU parallel computing.

As shown in Fig. 9, after calculating the Cauchy stress tensor o;; (for computing fint) from

the parallel processing of each TRI3s, the boundary stress tractions (on,7a) acting on all the

dormant CE4s are computed in parallel by assigning each CUDA thread to each dormant CE4

and failure judgment based on the boundary tractions (Eq. (2), Fig. 9 (a)). Note that, during the

computations, an 1-dimentional (1-D) integer array “i/CE4IDs” and an 1-D Boolean array

“blCE4states™ are prepared to store all the dormant and active CE4 IDs and state (active or

dormant) of the CE4s, respectively. When any newly activated CE4s are identified, i/ CE4IDs

is sorted using b1CE4states as key in parallel following the parallel radix soring algorithm
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(Satish et al., 2009) in the way that all the dormant CE4s’ IDs are placed in the heading part of
the i/ CE4IDs array. In this way, the load balance between each CUDA thread in each CUDA
block can be maximized for judging the failure of dormant CE4s and computation of cohesive

tractions (¢°°", 7°°") for active CE4s.

CE4 index : 0 CE4 index : 2

(b)

3 . . _ CE4 index : 0 Newly activated

Node group 3
Dormant CE4

M-node
S-node

© ©)

Fig. 9. The GPGPU parallel computation processes for CE4s in MS-ECZM-FDEM. (a) failure
judgement, (b) M-S relation update, (c) before failure judgement, (d) after failure judgement

and (e) after M-S relation update.

For the update in the M-S relations “GetMaster”, each CUDA thread is assigned to each
newly activated CE4s that has just satisfied the failure judgement in this step. Note that each

newly activated CE4 consists of two node groups and thus each thread partially updates the M-
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S relations in each node group. Figure 9 (b)(d)(e) shows the updating process of the M-S

relations when two adjacent CE4s (CE4 0 and CE4 1 in Fig. 4 (b)) sharing the node group (ig

= 3 in Fig. 3) are newly activated, which is the same as shown in Fig. 4 (b). For the node group

No. 3, the threads for CE4 0 and CE4 1 partially update the M-S relation of the node group No.

3. For the thread processing CE4 0 when processing the node group No. 3, the first detached

node, i.e., the right red node in the node group No. 3 is considered as an M-node and the

counterclockwise search registers all the detached nodes until passing over other newly and

already activated CE4s (CE4 1 in this case). Likewise, for the thread processing CE4 1 when

processing the node group No. 3, the first detached node, i.e., the left red node in the node group

No. 3 is considered as an M-node and the counterclockwise search registers all the detached

nodes until passing over other newly and already activated CE4s (CE4_0 in this case). Therefore,

the M-S update can be processed completely in parallel.

After computing the nodal masses and nodal forces for each detached node based on

ICZM-FDEM manner, they are assembled from the S-nodes to their M-node through GetMaster,

which is processed by assigning CUDA thread to each node group. Then, the nodal coordinates

and nodal velocities of the M-nodes are updated based on the equations of motion (Eq. (1) for

intact regime and Eq. (21) after fracture initiation) by assigning CUDA thread to each M-node.

Finally, the updated information is copied from the M-nodes to their S-nodes through GetMaster

by assigning CUDA thread to each node group.
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3. Validation of GPGPU-parallelized MS-ECZM-FDEM

Numerical experiments of the fundamental laboratory rock mechanics tests, i.e., Brazilian

tensile strength (BTS) and uniaxial compressive strength (UCS) tests under quasi-static loading,

are conducted to validate the GPGPU-parallelized 2-D MS-ECZM-FDEM code developed in

Section 2. In the remainder of this section, the MS-ECZM-FDEM is simply called as ECZM-

FDEM. The results from the modellings of the BTS and UCS tests using GPGPU parallelized

ECZM-FDEM and ICZM-FDEM codes are compared in terms of (I) accuracy of continuous

deformation, (II) stable time step and (III) contact activation timing. It is important to note that

this paper is not intended to delve into the evaluation of computational efficiency comparison

between GPGPU parallelization and sequential computation since it has already been

extensively discussed in our former publication (Fukuda et al., 2019). Instead, this paper focuses

on the comparison between the GPGPU-based 2-D ECZM-FDEM and ICZM-FDEM codes,

which should provide sufficient insights into their computational performance.

3.1. Overview of numerical models for BTS and UCS tests

Figure 10 shows the 2-D FDEM models for modelling the BTS and UCS tests. The

diameter and height of the models are 30 [mm] x 30 [mm] for the BTS test and 30 [mm] X 60

[mm] for the UCS test, respectively. These FDEM models are discretized by TRI3s using

unstructured mesh and average element size / for both models is 90 [um]. The number of TRI3s
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included in the BTS and UCS tests are 187,061 and 475,810, respectively. Siliceous mudstone
is considered as a target rock. The input parameters for the FDEM simulations for the BTS and
UCS tests are set as shown in Table. 2 assuming this rock is isotropic and homogeneous. The
density, Young’s modulus, Poisson’s ratio, tensile strength, cohesion, and internal friction angle
are set based on Aoyagi et al. (2018) while other parameters are determined based on trial and
error. Dynamic relaxation scheme (Munjiza, 2004) is used to approximately achieve the quasi-
static condition and correspondingly damping coefficient 77 = Zh\/ﬁ (see. Egs. (2) and (3) in
Fukuda et al. (2020b)) is assigned to each TRI3. The constant velocity of 0.05 [m/s] is assigned
to each of the upper and lower platen and apparent strain rates are 3.3 [1/s] for BTS test and 1.7
[1/s] for UCS test. The time step At is set to be 1.0 [x10™ s/step]. It is known that a higher
loading rate has a significant effect on the simulation results under quasi-static conditions such
as the BTS and UCS tests (Mohammadnejad et al. (2020)). However, the loading rate set in this
study has been confirmed to be appropriate because the stress-strain curve for the UCS test in
Fig. 15, which is described below, does not show any fluctuation observed in Mohammadnejad
et al. (2020). Furthermore, as a method of determining whether the loading rate setting can
reasonably simulate quasi-static loading conditions, it is widely accepted that, if the ratio of total
kinetic energy to total strain energy of a rock specimen is less than 0.05 at intact regime, the
response obtained from the analysis does not include dynamic effects (Rojak et al., 2021;

Siswanto et al., 2016). From the preliminary simulation, we confirmed that the above energy
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597  ratio through all the simulations in this analysis is much smaller than 0.05 and thus we

598  considered that the loading rate is adequately small (Maeda et al., 2022).

bt t LLLLILLLLL | 005ms

FDEM mesh

A 0.05mis

0.05 m/s

(a) BTS test (b) UCS test

599
600  Fig. 10. Numerical models for FDEM simulations of (a) BTS and (b) UCS tests.
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Table. 2. Input parameters for FDEM simulations of BTS and UCS tests.

Parameter Value
Density p [kg/m?] 1840
Young’s modulus E[GPa] 1.82
Poisson’s ratio v [-] 0.17
Tensile strength fi[MPa] 1.83
Cohesion c [MPa] 4.81
Internal friction angle o [°] 26
Mode I fracture energy Gr1 [J/m?] 16
Mode II fracture energy Gru [J/m?] 160
Cohesive penalty P [GPa] 182
Normal contact penalty Pr con [GPa] 18.2
Friction coefficient of rock-platen surfaces Usic [-] 0.1
Friction coefficient of rock fracture surfaces Ui [-] 0.5

3.2. Verification and validation of GPGPU-parallelized ECZM-FDEM through comparative

study

For comparison purpose, three different types of FDEM simulations, i.e., “ECZM-FDEM?”,

“ICZM-FDEM?”, and “FDEM without CZM”, are considered using the same numerical model

set up in Section 3.1. The reason why “FDEM without CZM” is also considered is that each

discrete body (rock and loading plates in the current case) behaves as purely continuum without

any fracturing and thus can be considered as a benchmark for checking the precision of the

FDEM computation for the continuous deformation of the rock at the intact regime, in which

the rock behaves purely in FEM manner. Note that “FDEM without CZM” is achieved by

deactivating the failure judgement (see Secion 2.1 and Eq. (2)) in the ECZM-FDEM to verify
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that the developed GPGPU-based ECZM-FDEM code works well without the activation of

dormant CE4s by setting extremely large strength parameters.

In addition, different contact activation schemes, i.e., BCAA and (semi-)ACAA, are

possible for ICZM-FDEM as mentioned in Section 1 while (semi-)ACAA is only possible for

“ECZM-FDEM”. To facilitate a fair comparison between ICZM-FDEM and ECZM-FDEM, a

case of ICZM-FDEM with semi-ACAA is considered. It is worth noting that, in the literature

related to FDEM developments and applications, ICZM-FDEM with BCAA, not semi-ACAA,

is currently the most widely used approach. In this section, four cases in Table. 3 are considered

for the following investigations. Figure 11 shows the difference between Case 2 (BCAA) and

Cases 1, 3 and 4 for the case of BTS and UCS test models at the beginning of the FDEM

simulations. The red area in Fig. 11 is the activated area for contact calculations (i.e. contact

detection and contact force calculations), and the blue area is the part in which the contact

calculations are initially deactivated. As shown in Fig. 11, the difference between the cases with

BCAA (Case 2) and the semi-ACAA (Cases 1 and 3) is that the all the TRI3s are subjected to

the contact calculations from the onset of the simulations in the BCAA while only the TRI3s on

the rock-platen surfaces and those surrounding the CE6s just entering the shear softening regime

are subjected to the contact calculations in the case of semi-ACAA. Please refer to Fukuda et al.

(2021) for the detailed discussion of the BCAA and semi-ACAA. Since the ECZM does not

involve with fracturing until first crack initiation occurs, it is evident that the BCAA concept is
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just unreasonable and not needed at all. Note that the because of no fracturing involved in Case
4, no adaptive contact activation is needed. The GPGPU-parallelization is applied in all cases.
Table. 3. Definition of four cases considered for the comparison.
Contact activation | TRI3s subjected to contact
FDEM Type .
scheme detection
. TRI3s on the rock-platen surfaces
Casel | ECZM-FDEM Semi-ACAA
and newly created fractures
Case2 | ICZM-FDEM BCAA All the TRI3s in the system
. TRI3s on the rock-platen surfaces
Case3 | ICZM-FDEM Semi-ACAA
and newly created fractures
FDEM without | Activated at the onset of
Case 4 TRI3s on the rock-platen surfaces

CZM

the FDEM simulation

BTS test

UCS test

Case 2

Case 1

1
1

3.4

Platen

—

boundary between
platen and rock

pajeAIlldR 10BJU0D

Platen

boundary between
platen and rock

pajeAl)dRUIl 10BIU0D

\‘\ Rock
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Fig. 11. Illustration explaining the different contact activation scheme in four cases in Table. 3.

Figure 12 shows the fracture process simulated from the BTS tests in the Cases 1, 2 and 3,
which shows the spatial distribution of the damage state D in Eq. (10) at each loading stage with
respect to nominal axial strain. The nominal axial strain & is defined by the total axial
displacement of both platens divided by the diameter of the rock disc. The contours in Fig. 12
represent the logarithm of the damage variable D, i.e. logioD, and logioD > -3 is visualized. A
common trend observed in all cases is that microcracks of the order of -3 =logioD=-2 occur
near the loading platens, and the macroscopic fractures (logioD =0) that lead to the failure of the
specimen progress vertically in the central part of the specimen. Although the final failure
patterns are slightly different in each case, the characteristics of the resultant failure trends are
consistent with those from the typical BTS tests of rocks. Thus, the GPGPU-implementation of
adaptively activating dormant CE4s in the framework of MS-ECZM-FDEM is verified, and the
result of Case 1 shows the almost similar fracture process as the conventional ICZM-FDEM
(Cases 2 and 3). From the results of the Case 2 (ICZM-FDEM with BCAA), it is noticeable that
more microcracks are observed near the loading platens compared to those of the Case 3 (ICZM-
FDEM with semi-ACAA). The difference between the two cases may be due to the dual-force
(i.e., the combination of cohesive traction and contact force) in the BCAA, which acts on the

inside of the rock part even in the intact regime as discussed by Fukuda et al. (2021). This may
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656  enhance the micro-cracking. In contrast, Case 1 (ECZM-FDEM with semi-ACAA), which can

657  avoid this dual-force issue, shows similar microcracks as Case 3.
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659  Fig. 12. Comparisons of fracture processes in BTS test for Cases 1, 2 and 3 in Table. 3.
660
661 Figure 13 plots the stress distribution along the loading diametrical line at a time when the

662  nominal axial strain (contraction: positive) is small with the level of 0.2 % for Cases 1-4. Figure
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13 (a) shows the observation line for stress monitoring. Figure 13 (b) plots the o and g,, along

the observation line while Fig. 13 (c) shows an enlarged view of Fig. 13 (b). Since this stage

corresponds to intact rock well before the failure stage, the stress distribution in Cases 1-3

should agree that in Case 4 (FDEM without CZM). In fact, the results of Case 1 (ECZM-FDEM)

in Fig. 13 (b) clearly show that both oy and g,, are in perfect agreement with the benchmark

Case 4 (FDEM without CZM). On the other hand, the results of ICZM-FDEM, i.e., Cases 2 and

3, show some deviation from FDEM without CZM. This deviation is clearly due to the

deterioration of the accuracy in computing continuous deformation and stress calculation by

inserting active CE4s at the onset of the simulation in the [ICZM. To quantitively evaluate these

deviations, the average values of g, for the TRI3s existing within a range of £5 mm from the

center of the specimen, and the average values of g,, for the TRI3s existing within a range of +1

mm from the center of the specimen are calculated for Cases 1~4, and the deviation of the

average stress [%] of Cases 1~3 against the benchmark Case 4 is investigated. For Cases 2 and

3,1i.e., ICZM-FDEM, this deviation for oy is found to be 1.6 % for BCAA and 2.0 % for semi-

ACAA, respectively, while 1.4 % for BCAA and 1.8 % for semi-ACAA for gy,. In contrast, Case

1 (ECZM-FDEM) shows no deviation for both o, and g,,. Thus, it can be concluded that the

ICZM-FDEM involves with approximately 1.4~2 % deterioration of stress calculation accuracy,

and the advantage of ECZM-FDEM is evident.
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Fig. 13. Comparisons of stress distributions along the loading diametrical line of the specimen
in FDEM simulations of BTS test between Cases 1, 2, 3 and 4 defined in Table. 3. (a) Schematic
of loading diametrical line, (b) Stress distribution along the loading diametrical line, (c)

Enlarged view of g,, (left) and oy, (right) in (b).

Figures 14 and 15 show the fracture process and axial stress-strain curve for Cases 1, 2 and
3 in UCS test for selected axial strain levels. In Fig. 15 (contraction: positive), dotted line
indicates the stress-strain line for benchmark Case 4 to verify the initial continuous behavior of
Cases 1~3 at intact regime. Note that the apparent axial strain €, in these figures is obtained by

dividing the total displacement at the upper and lower platens by the height of the specimen.
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The contour in Fig. 14 represents the spatial distribution of logioD for logioD > -3. For the intact

deformation regime before the commencement of non-linear behavior near the peak in the

stress-strain curve (Fig. 15), Cases 1-3 show more or less good agreement with FDEM without

CZM. However, if these three cases are compared in terms of tangent modulus at the 50 % peak

strength, the corresponding deviations of Cases 1 (ECZM), 2 (ICZM with BCAA) and 3 (ICZM

with semi-ACAA) against Case 4 are 0 %, 1.2 % and 1.7 %, respectively, which again shows

the advantage of ECZM-FDEM in improving the precision of continuous deformation at the

intact regime. In addition, to check the precision of continuous deformation at the intact regime

from the viewpoint of the stress distribution, Fig. 16 shows the stress distribution for oy, along

the loading line at a time when the apparent axial strain &, is small with the level of 0.67 % for

Cases 1-4. Figure 16 (a) shows the observation line for stress monitoring. Figure 16 (b) plots

the a,, along the observation line. The figure shows that, as in the stress-strain curve, Case 1

(ECZM-FDEM) is in perfect agreement with the benchmark Case 4 (FDEM without CZM),

while Cases 2 and 3, i.c., ICZM-FDEM, deviate from the benchmark Case 4. Furthermore, an

obvious difference in curve shape is observed between ECZM-FDEM and ICZM-FDEM: while

the curve shape of ECZM-FDEM is smooth, that of ICZM-FDEM is highly fluctuated,

indicating a clearly discontinuous stress distribution, even at intact regime. This can be due to a

geometrical inconsistency in the mesh, in other words, a physical gap caused by the relative

displacement of CE4s between TRI3s even for the continuous deformation regime in the ICZM.
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The geometric inconsistency causes local numerical instability. These results for stress-strain

curve and stress distribution confirm the high accuracy of the calculations in ECZM-FDEM at

intact conditions. These results for stress-strain curve and stress distribution confirm the high

precision of the calculations in ECZM-FDEM at intact regime. To the best of knowledge of the

authors, there are not any valid theoretical solutions or benchmark analyses available for

delineating any arbitrary fracture initiation, propagation, and interaction in heterogeneous rocks.

Consequently, it is very challenging, if not impossible, to compare the accuracy between the

simulations from ECZM-FDEM and ICZM-FDEM after the onset of fracturing. However, it is

anticipated that the less noisy stress distribution from ECZM-FDEM should result in more

rational crack initiation and propagation.
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Fig. 16. Comparisons of stress distributions for oy, along the observation line of the specimen
in FDEM simulations of UCS test between Cases 1, 2, 3 and 4 defined in Table. 3. (a) Schematic

of observation line, (b) Stress distribution for 7, along the observation line.

In the pre-peak stage of Fig. 15, it can be observed that all Cases 1-3 show a nonlinear
behavior accompanied by a decrease in slope near the peak, which is due to the transition from
continuum to discontinuum by the commencement of softening of CE4s, which is evident from
Fig. 14 when &, = 0.92 [%]. Similar to the trend observed in the BTS test, the amount of
generated microcracks at the same level of €, varies between each case, and only ICZM (BCAA)
shows more significant number of microcracks (see the results of ea=0.92 [%] ~1.00[%]). Again,
this could also be attributed to the effect of dual-force, which may enhance the local
noise/fluctuation in stress, and much rapid decrease in the stiffness of bulk rock. For the failure

process in Fig. 14, at the third axial strain level from the left, Cases 2 and 3, i.e., ICZM-FDEM
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show localized fracture growth from a single location, while Case 1 (ECZM-FDEM) shows

fracture growth from multiple locations. Again, since CE4s can open/slide even at intact regime

in the ICZM-FDEM, if a CE4 is softened, the CE4’s deformation in ICZM can strongly

enhances the deformation direction of surrounding CE4s than the case of ECZM. Consequently,

fracturing around the softened CE4 may easily occur, propagate, and localize, along the

deformation direction of the softened CE4s in the ICZM. On the other hand, in ECZM-FDEM,

dormant CE4s cannot open/slide at the intact regime and the failure criteria for the

commencement of softening (Eq. (2)) are based on the stress fields. Thus, if a CE4 is softened,

stress concentration occurs in the surrounding TRI3s, leading to the satisfaction of the failure

criteria in surrounding TRI3s’ boundary (i.e., dormant CE4). In this process, the normal/shear

stresses on surrounding dormant CE4s due to stress concentration does not necessarily

correspond to the deformation direction of the softened CE4. In other words, the deformation

direction of the softened CE4 does not directly affect the surrounding CE4s. Therefore, the

deformability or localization along the direction of the softening CE4 is less likely to occur

compared to ICZM-FDEM. This explanation is also supported by the fact that, at the peak stage

of Fig. 15, the peak strength and the strain at that time in Case 1 (ECZM-FDEM) are higher than

in Cases 2 and 3. ICZM-FDEM can be considered as a model in which the failure progresses

more easily than ECZM-FDEM, due to the aforementioned numerical instability caused by

geometric inconsistency and localization of fracturing. In contrast, the ECZM-FDEM has more
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stable nature, the rock model based on ECZM-FDEM behaves much stronger than ICZM-
FDEM. For the resultant failure patterns, all Cases 1~3 in Fig. 14 show the formation of a shear
band, and its inclination is of the same degree, which also verifies the developed ECZM-FDEM
code and validates its applicability. However, it is evident that the calibrated input parameters
in the ICZM-FDEM cannot be directly used in the ECZM-FDEM.

Furthermore, the computational speeds among Cases 1, 2 and 3 are compared, although it
is difficult to simply compare because of the different timing of the fracturing in each case. To
this end, by keeping the time step Af = 1.0 [x10 s], the concept of #2s0, which indicates the
runtime required for completing every 250 [us] (=250,000 timesteps) of the above FDEM
simulation of the UCS model, is introduced and it is monitored for these three cases. Since the
t250 for Case 2 (ICZM-FDEM (BCAA)) is the longest, it is used as the reference. Then, transient
relative speed-up is defined as (z250 for ICZM-FDEM (BCAA)/(t250 for ECZM-FDEM (semi-
ACAA)) and (t250 for ICZM-FDEM (BCAA)/(t250 for ICZM-FDEM (semi-ACAA)) for Cases
1 and 3 against Case 2, respectively. Figure 17 shows the comparison of transient relative speed-
up with respect to the simulation progress in analysis time, in which 0 % and 100 % is adjusted
to t =0 us and ¢ = 7000 ps, respectively. To check how the damage state D in the rock part in
the above UCS model affects the computational performance, this figure also shows the
evolution of the maximum damage D, i.e. (max(logioD)), among all the CE4s for each case.

Firstly, the ICZM-FDEM (semi-ACAA) shows approximately six times relative-speed up
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against ICZM-FDEM (BCAA) during the early stages of the FDEM simulation of UCS model

before the onset of damaging. Then, this relative speed-up ratio reduces close to 1 when

max(logioD) = 0 is satisfied which is due to significant number of TRI3s newly added to the

contact force calculation. This behavior is very similar to what is reported to dynamic UCS

modelling in Fukuda et al. (2021). On the other hand, the ECZM-FDEM (semi-ACAA) shows

approximately four times relative speed-up against [CZM-FDEM (BCAA) before the onset of

damaging. Therefore, ECZM-FDEM (semi-ACAA) is less computationally efficient than the

ICZM-FDEM (semi-ACAA). This is attributed to the unique processing in the MS-ECZM-

FDEM such as the failure judgement, update of M-S relation and assembling the information of

S-nodes to their M-nodes. The ECZM-FDEM (semi-ACAA) code has still the potential for

improvements in terms of the computational efficiency. For instance, there is room to enhance

the performance of the current code in the context of failure judgment. Currently, this judgment

is conducted against all TRI3 boundaries, irrespective of the stress levels. It is possible to further

enhance the computational performance by implementing an algorithm of processing the failure

judgment only for the boundaries whose stress levels are closer to satisfy the failure criteria.

This is regarded as another task for future study. With the increase in the number of activated

CE4s due to damaging, the computational efficiency of ECZM-FDEM (semi-ACAA) becomes

closet to that of ICZM-FDEM (semi-ACAA) since less failure judgement is needed and more

contact force calculation becomes the most computationally demanding part of the FDEM
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calculations. Then, the performance of the ECZM-FDEM (semi-ACAA) becomes closer to that
of ICZM-FDEM (BCAA) after the point of maximum (logioD) = 0. Therefore, it can be
concluded that the ECZM-FDEM (semi-ACAA) is slightly slower than that I[CZM-FDEM
(semi-ACAA) as long as the same time step At is used. The total runtime is identified as 17,209
[s], 13,141 [s] and 67,976 [s] for ECZM-FDEM (semi-ACAA), ICZM-FDEM (semi-ACAA)
and ICZM-FDEM (BCAA), respectively. However, since the ECZM-FDEM (semi-ACAA)
does not involve in any CE4s before the onset of the fracturing, the stable time step for the
ECZM-FDEM (semi-ACAA) can be taken larger than that for the ICZM-FDEM (semi-ACAA).

Thus, this factor is investigated in Section 3.3 in more detail.

Relative speed-up against

Max(logiD)
ICZM-FDEM (BCAA) =
ECZM-FDEM (semi-ACAA) — — ECZM-FDEM (semi-ACAA)
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Fig. 17. Transient relative speed-up of ECZM-FDEM (semi-ACAA) and ICZM-FDEM (semi-

ACAA) against ICZM-FDEM (BCAA), and change of max(logioD) using UCS test model.
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3.3. Effect of stable time step on computing performance

According to our estimation of the maximum stable time step based on the material
properties and mesh geometries (Mohammadnejad et al., 2020) and preliminary analyses using
various values of time step A¢, it was identified that the stable time step Ateic for the ICZM-
FDEM (semi-ACAA) and ICZM-FDEM (BCAA) can be taken approximately 2.0 [x10 s/step]
for the entire simulation. On the other hand, Azt for the ECZM-FDEM (semi-ACAA) can be
taken approximately 6.0 [x10 s/step] as long as no CE4s are activated by the crack initiation,
i.e., in the intact regime. Note that in the preliminary analyses of this study, it was confirmed
that, if the values of A¢ were set larger than At..it for each case, the FDEM calculations showed
the spurious mode soon after the onset of the simulation, resulting in unrealistic stress level (>
GPa) at various locations. However, to deal with time-discontinuity due to the activation of
dormant CE4s in the ECZM-FDEM (semi-ACAA), cohesive penalty’s effect takes part in the
FDEM simulation, which results in the stable time step becomes more or less same as that in
the ICZM-FDEM with semi-ACAA and BCAA since the crack initiation occurs. By taking this
advantage of larger stable time step of ECZM-FDEM (semi-ACAA) in the intact regime, the
comparison of transient relative speed-up is made similar to Fig. 17. To that end, ECZM-FDEM
(semi-ACAA) simulation is conducted using At =6.0 [x10” s] and A =2.0 [x10 s] before and
after the first activation of CE4, respectively, while the constant Az =2.0 [x10™ s] is used for

ICZM-FDEMs with semi-ACAA and BCAA. Here, the runtime #1390 required to calculate for
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every 180 [us] is considered in the above-mentioned UCS model and is monitored. In the case
of ECZM-FDEM (semi-ACAA) before the first activation of CE4, #1g0 is equivalent to 6.0 [x 10
? 5] x 30,000 timesteps. On the other hand, #150 is equivalent to 2.0 [x10™ s] x 90,000 timesteps
for ICZM-FDEMs with semi-ACAA and BCAA as well as for ECZM-FDEM (semi-ACAA))
after the first activation of CE4. Note that the first activation of CE4 is observed between
720,000 steps and 750,000 steps in the case of ECZM-FDEM (semi-ACAA). Since the 130 for
Case 2 (ICZM-FDEM (BCAA)) is the longest, it is again used as the reference. Then, transient
relative speed-up is defined as (¢130 for ICZM-FDEM (BCAA)/(t130 for ECZM-FDEM (semi-
ACAA)) and (#1380 for ICZM-FDEM (BCAA)/(t1s0 for ICZM-FDEM (semi-ACAA)) for Cases
1 and 3 against Case 2, respectively, which is shown in Fig. 18. The horizontal axis in Fig. 18 is
the simulation progress in analysis time, in which 0 % and 100 % is adjusted to # =0 ps and ¢ =
7000 ps, respectively. Figure 18 clearly shows that the relative speedup of ECZM-FDEM (semi-
ACAA) against ICZM-FDEM (BCAA) is about 13 times before the first activation of CE4. This
relative speed-up of ECZM-FDEM (semi-ACAA) against ICZM-FDEM (BCAA) is about 3
times faster than the case in which the constant Af is used in ECZM-FDEM (semi-ACAA) as
shown in Fig. 17 since the value of Az used in ECZM-FDEM (semi-ACAA) is taken to be 3
times larger than that used in ICZM-FDEM. After the first activation of CE4 and the reduction
in At, the relative speed-up of the ECZM-FDEM (semi-ACAA) decreased to about 4 times

against ICZM-FDEM (BCAA), which is lower than that of I[CZM-FDEM (semi-ACAA) against
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850 ICZM-FDEM(BCAA) and similar to the trend in Fig. 17. Then, the total simulation time is
851 identified as 4,527 [s], 5,246 [s] and 29,953 [s] for ECZM-FDEM (semi-ACAA), ICZM-FDEM
852 (semi-ACAA) and ICZM-FDEM (BCAA), respectively. Thus, the total runtime of ECZM-
853 FDEM (semi-ACAA) with variable At becomes the smallest among the three cases. Thus, if the
854  simulation time for the intact regime occupies relatively larger part of the entire simulation,
855  which tends to be true for many quasi-static loading scenarios especially for hard rocks such as
856  granite, ECZM-FDEM (semi-ACAA) can achieve better performance than ICZM-FDEM
857  thanks to the larger stable time step. Therefore, not only the improvement of the calculation
858  precision in the intact deformation regime but also the improvement of the computational
859 efficiency is achieved by introducing the proposed GPGPU-based ECZM-FDEM while the

860  obtained fracture pattern can be still reasonable.

Relative speed-up against ICZM-FDEM (BCAA)

ECZM-FDEM (semi-ACAA)

ICZM-FDEM (semi-ACAA)

15 ‘

change in
time steps
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3 ‘\_A}(
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. - )
specimen failure
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Transient relative speed-up

) e ——
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861 Simulation progress in analysis time [%]

862  Fig. 18. Transient relative speed-up of ECZM-FDEM (semi-ACAA) with variable time step and
863 ICZM-FDEM (semi-ACAA) against ICZM-FDEM (BCAA), and change of max(logioD) using

864  UCS test model.
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4. Conclusions

In this study, GPGPU-parallelized 2-D ECZM-FDEM was proposed by applying the M-S

algorithm as an alternative method for the complex adaptive remeshing traditionally adopted in

ECZM-FDEM. The proposed MS-ECZM-FDEM algorithm was explained in detail and

implemented in the GPGPU-parallelized Y-HFDEM code. Then, the developed code was

applied to numerically model the BTS and UCS tests of siliceous mudstone under quasi-static

loading for verification and validation. Furthermore, the results from the numerical modellings

of the BTS and UCS tests using GPGPU-parallelized ECZM-FDEM and ICZM-FDEM were

compared against each other in terms of several aspects, which are summarized below:

*  During the continuous deformation stage, the accuracy of ICZM-FDEM is compromised

against FDEM without cohesive elements by 1.6 % ~ 2.0 % and 1.4 % ~ 1.8 % for the

distribution of normal stresses (o, 0,y), respectively, inside the specimen in the BTS

modelling, and by 1.2 % ~ 1.7 % for the tangent modulus in the stress-strain curve in the

UCS modelling. However, ECZM-FDEM showed no degradation in accuracy compared

with FDEM without cohesive elements. Moreover, for the spatial stress distribution before

fracturing in the UCS modelling, ECZM-FDEM showed a smooth distribution while

ICZM-FDEM showed a noisy and disturbed distribution.

* In terms of the stable time step, ECZM-FDEM can set the time step in the intact regime
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about three times larger compared to ICZM-FDEM with the cohesive penalty being 100

times of Young’s modulus of the rock. Furthermore, by taking advantage of larger stable

time step in ECZM-FDEM, the total runtime of ECZM-FDEM became smaller than that of

ICZM-FDEM in the case of modelling the UCS test. This study targeted at the soft rock

and the relative speed-up in the total runtime was about 6 times faster. It is expected, if hard

rock is modelled, a much more significant times of relative speed-up can be achieved the

runtime spent in modelling the intact regime of the hard rock is much longer.

As for the contact activation, ECZM-FDEM removes the need for the BCAA, which has

been prevalent in the ICZM-FDEM community but extremely computationally intense.

Instead, ECZM-FDEM implements the more computationally efficient semi-ACAA and

ACAA for the contact activation. It is confirmed that a relative speed-up of about 13 times

of ECZM-FDEM based on the semi-ACAA can be achieved against ICZM-FDEM based

on BCAA in the intact regime together with the improvement about the aforementioned

stable time step. Howevver, after the clack initiation, the stable time step of ECZM-FDEM

becomes more or less same as that of ICZM-FDEM due to the effect of larger cohesive

penalty to deal with time-discontinuity issue inherent in ECZM.

Thus, the proposed GPGPU-parallelized ECZM-FDEM with the M-S algorithm is

confirmed to provide effective and valuable improvements over the conventional GPGPU-

parallelized ICZM-FDEM for the numerical modelling of rock fracturing process. However,
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only 2-D model is considered in this study and further study is need to extended the proposed
GPGPU-parallelized ECZM-FDEM with the M-S algorithm to 3-D model in order to reasonably
model rock fracture problems. Although the proposed counter-clockwise searching around each
node group cannot be directly used in the 3-D case, the M-S algorithm adopted this study is
expected to pave the way to realize the 3-D implementation of GPGPU parallelized ECZM-

FDEM.
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1074 FDEM combined finite-discrete element method

1075 CZM cohesive zone model

1076 ICZM intrinsic cohesive zone model

1077 ECZM extrinsic cohesive zone model

1078 DGCZM Galerkin-based cohesive zone model

1079 UCZM universal cohesive zone model

1080 ICZM-FDEM intrinsic cohesive zone model - based combined finite-discrete
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1082 ECZM-FDEM extrinsic cohesive zone model - based combined finite-discrete
1083 element method

1084 BCAA brute-force contact activation approach
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1087  S-node slave node
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1089 M-S algorithm updating algorithm of the M-S relation
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