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Abstract

The string theory in background fields is firstly reviewed
in the context of the non-linear o¢-model. The conformal
invariance of the o¢-model requires equations of motion for
background fields. Secondly the geometry independent cubic action
of the string field theory is studied. The well known action of
the string field +theory arises by the expansion around a
classical solution to the cubic action. In the main part of the
thesis, the solutions that generate the string field theory in
curved space are investigated. It is shown that the cubic action
theory determines the equations of motion for background fields
which are the same as those obtained in the context of the
conformal invariant g-model. A field theory in curved space can
be formulated associated with each of these solutions. The cubic
action theory is, therefore, qualified as a geometry independent
and self-contained field theory of string. In the ¢-model
analysis the dimensional regularization is used and a consistent

b

extension of antisymmetric tensor %P on a curved world sheet

from two to 72 dimensions is shown to exist.



§1. Introduction

Superstring theoryl[1] is a promising candidate for a
consistent quantum theory which wunifies all fundamental
interactions including gravity. In the framework of local field
theory the gravitational field is prepared from the outset as the
metric field of space-time. When it is quantized, it 1inevitably
generates unrenormalizable divergences, which destroys the
theory. In the string theory the gravitational field arises as a
result of quantization of closed string. The theory has much
higher symmetries than the former. It 1is known that the
divergences can be eliminated if the symmetries are kept when the
system 1is quantized. This makes the theory mathematically well
defined.

The other distinctive feature in string theory is the fact
that +the consistency of +the quantum theory imposes severe
restrictions over model constructions and singles out only few
possibilities. It is, for instance, the <closure property of
Lorentz algebra in the 1light-cone quantization, and the
nilpotency of BRST charge operator in the covariant quantization
that determine the dimensions of space-time to be 10 for the
superstring and 26 for the bosonic string, which are called
critical dimensions of respective theories. The latter condition
is needed to guarantee the unitarity of theory. Furthermore, the
anomalyless condition for the conformal symmetry requires that
the internal symmetry of the heterotic string should be either
0(32) or EgxEg.

In order to make these theories realistic, one needs to

compactify +the high dimensional space-time to the one having a



four dimensional Lorentz space and a some compact space. The
string theory should allow the compactification and tell what
sorts of the space-time are realizable. Recent extensive
researches enable us to undertake these interesting problems.

Two different approaches have been proposed to study the
compactification. One of them has been made in the framework of
the first-quantized Polyakov's approach. The Polyakov action can
be viewed as a two-dimensional field theory ( a linear o¢-model)
where the D-component string coordinates X* are regarded as D
scalar fields. The action can be extended to a non-linear ¢-model
field theory which can be explained as a string theory
interacting with a set of background fields in the D-dimensional
space. The theory is required to be conformal invariant when it
is quantized, hence to have vanishing trace anomaly or conformal
anomaly. The conformal invariance requires the vanishing of g-
functions for the coupling of string with background fields. The
vanishing condition of p-functions is able to be shown to derive
the equations of motion for background fields, which determine
the structure of space-time[2-4].

Those equations of motion are also derivable from the
effective action for local component fields which is obtained by
the S-matrix calculation in the zero - slope limit of +the string
theory[5]. As a result background fields in the conformal
invariant o¢-model <can be identified with +the condensate of
massless modes of the string. In the g-model approach another way
of imposing the conformal invariance is to require the nilpotency

of BRST charge associated with the non-1linear c-model



action[6,7]. The condition derives the same equations of motion
for background fields as those obtained from the vanishing
condition of B-functions.

Although the o¢-model approach is supposed to determine
correct geometry of space-time, it cannot be regarded as a self-
contained theory. If a solution to the -equations of motion
required by the conformal invariance is chosen, a ¢-model
associated with the solution is specified. If another is chosen,
a different o¢-model defines the theory. The o¢-model approach
lacks the idea to look for the most stable ground state solution
among many allowed solutions and to handle the phase transition
from a solution to a different one. This motivates us to consider
the second-quantized string field theory.

Another approach to understand the compactification of
space-time is indebted to the recent progress and outcome in the
covariant string field theory which has been studied by
Witten[8], Hata, Itoh, Kugo, Kunitomo and Ogawa(HIKKO)[9,10] and
Neveu and West[1l1]. From the knowledge of the ordinary 1local
field theory, one hopes to be able to deal with a non-
perturbative effect in string theory by the use of the covariant
string field theory.

The covariant and gauge invariant string field theory can be
classified into two types according to how the interaction term
is introduced. The one which 1is ©based on the mid-point
interaction has been formulated by Witten[8]. The theory
reproduces open string dual amplitudes and correctly covers the
full moduli space of corresponding Riemann surfaces[12]. In spite

of the fact that the theory incorporates +the closed string



exchange in the open string 1loop amplitudes, the theory
consisting of only closed strings is not yet formulated in the
framework of Witten's string field theory.

On the other hand, there exists the string field theory
consisting of the open and/or <closed string formulated by
HIKKO[9,10] and Neveu and West[11]. In the formalism the
unphysical width parameter is introduced to reproduce correct
string tree amplitudes. Although its dependence is decoupled at
the string tree level, the infinite covering of moduli space
occurs at the loop level due to the wunphysical parameter and
causes the violation of unitarity. According to Neveu and West
and others[13], covariantized 1light-cone formalism seems to
resolve the width parameter problems. We will have to wait
further investigations along these lines.

The advantage of HIKKO's formalism, however, is the
existence of the closed string field +theory that reproduces
correct tree amplitudes. Since the closed string contains gravity
in its spectrum, one expects that the spontaneous
compactification will ©be caused by the string condensate. The
compactification may be studied by finding the solutions to the
equations derived from the action in the covariant string field
theory. However, the kinetic energy term in the action consists
of BRST operator defined on 26-dimensional Minkowski space and
hence it seems to be difficult to consider the string in curved
space.

On the contrary, the cubic action theory which is

independent of background geometry has been proposed by HIKKO[ 14]



and also by Horowitz, Lykken, Rohm and Strominger[15]. The action
consists of the only cubic term without the kinetic energy term.
The cubic term is essentially given by the overlapping condition
of three strings and hence formally geometry independent. The
cubic action is an interesting model which provides +the string
field theory in curved space. The familiar form in the string
field theory can arise by the expansion around some classical
solution derived from the cubic action. In this approach the
solution determines the geometry of space-time. In other words,
the space-time 1is generated by the string field condensation.
They looked for general conditions that the solution should
satisfy to generate the ordinary form of field theory. Except for
some delicate regularization problems about operator products,
they found that the crucial point is the existence of BRST
operators associated with some background fields. As a special
case they demonstrated that a solution constructed with the
ordinary BRST charge for a flat Minkowski space does generate the
well known string field theory.

In this thesis, we look for what sort of background fields
would be allowed as solutions to the equation derived from the
cubic action[16]. We find a set of equations of motion for
background fields and construct the string field theory in curved
space. These equations agree with those obtained by the conformal
invariance of the o-model. The advantage of our method over the
6-model approach consists in the fact that all allowed solutions
are contained in a space which a single theory covers. In the o-
model analysis a particular attention is paid to the treatment of

CLb(

antisymmetric tensor ¢ g) in the dimensional regularization



when the world sheet has a non-vanishing curvature. Although the
extension of 5ab from two to 72 dimensions has been studied, it
has been always restricted in the case of that on flat world
sheet. It is shown that there exists a consistent extension of
eab on curved world sheet from two to 7 dimensions.

The present paper is organized as follows. In sec. 2 the
conformal invariance and the nilpotency of BRST charge in the
non-linear g-model are reviewed in the case of the bosonic closed
string on a world sheet having spherical topology. In sec. 3 we
give a brief review of HIKKO's cubic action theory and prove the
general conditions that the solution of the cubic action should
satisfy to generate the familiar form of the string field theory.
Taking advantage of the g-model as an auxiliary tool, we look for
the solutions that generate the string field theory in curved
space 1n sec. 4. In the g-model analysis the extension of eab on
a curved world sheet is determined by the Bianchi identities for
background fields so that consistent relations among background
fields follow. Sec. 5 is devoted to summary and discussion. In

appendix B the effective action in the non-linear ¢-model 1is

calculated.



§2. String Theory in Background Fields
82.1 Conformal Invariance in Non-Linear g-Model

We will give a review of conformal invariant o¢-model. The
string theory 1in curved space is described by a non-linear o-
model in two dimensions. In the g-model approach, many authors[2-
41 have clarified that the condition of conformal invariance of
the o¢-model requires the equations of motion for background
fields that correspond to massless excitations of the string.
These equations are equivalent to those obtained by the string S-
matrix calculation in zero slope limit[5].

Throughout the present paper we shall consider the closed
bosonic string which contains graviton, antisymmetric tensor and
dilaton as massless states in its spectrum and restrict ourselves
to the string tree level. In a similar way the open string,
superstrings and the heterotic string in background fields has
been studied by many authors. One of the interesting developments
in the ¢g-model approach is the fact that equations of motion for
background fields are modified by a renormalization due to the
effect of small handles of string loop amplitudes[17]. On these
subjects no discussion will be presented here.

The action of the non-linear g-model on a fixed curved world

sheet is given by

1 2 ab . v . ab v
4M,Jd 6[\/59 Gy (X) 8 XM0 XY + i697B, (X)8,X"8,X
+ a'var %) a(x) ] (2.1.1)
’
where a&:(r,g), 9ab and R(z) are coordinates, the metric
tensor*) and the scalar curvature on the world sheet,



respectively. Here X* is the string coordinate in space-time M.
In (2.1.1) a' is the slope parameter which is the inverse of the
string tension. In the context of the s-model, GMV is the metric
tensor on M, BHV is the antisymmetric tensor field whose field
strength provides the torsion on M and ® represents the dilaton
field.

If we look at the classical action, first two terms in

(2.1.1) are invariant under a Weyl (conformal) transformation

dap > €Pa,p (2.1.2)

that is a local rescaling of the metric tensor. On the contrary,
the last term, which is referred to as dilaton coupling, violates
the invariance under (2.1.2) at the classical level. The dilaton
coupling, however, is necessary for the renormalizability of the
c-model in two dimensions[2]. Another interpretation of the role
of the dilaton coupling is to cancel the conformal anomaly of
dilaton vertex which arises from the trace part of the metric
tensor of space-time[18]. Thus the dilaton coupling guarantees
the conformal invariance of the quantized theory, hence the last

term in (2.1.1) is higher by a factor ' in comparison with other

terms. If one wants a more general form of the classical action
that is allowed by the invariance under two-dimensional
reparametrization, one may add the term proportional to +/gT(X)

with T(X) being a scalar function of X¥., Tt has been shown that
the coupling is a background consisting of a condensate of a

tachyonic mode[19].

*) The metric is taken to be Euclidean here.



We require that the conformal invariance should be kept at
the quantum level. The requirement guarantees that the g-model 1is
consistent 1in the quantum theory. To discuss the quantum theory

of the o-model, we shall consider the effective action W defined

by

W= - ln[ j@y e ™5 ] (2.1.3)
The invariance of W under the transformation (2.1.2) indicates
that

- 208 g 20 = <y = 0, (2.1.4)

Vg °¢ Vg sg%

Hence the conformal invariance is equivalent to the vanishing of
the trace anomaly of the energy momentum tensor. The dimensional
analysis and the invariance under reparametrization lead us to

express as

a _ s(2) G _ab 1 v B 1 _ab a7 v
T ¢ = PR + B9 XM, X + By 5878 KMo (2.1.5)

As a result, the conformal invariance of the g-model requires the
vanishing of pg-functions which are defined by independent
coefficients of the trace anomaly. The vanishing condition will
impose restrictions on background fields.

Let us find the vanishing condition of g-functions. Assuming
that @' is small, we shall first make a perturbative expansion
with respect to @¢'. It is convenient to use the background field
expansion[20-22] in Riemann normal coordinate system which will
be explained below. The quantum fluctuations [I¥ around a

classical solution of (2.1.1) are defined by

10



X4 o= xgt o+ (e (2.1.6)

Note that Hﬂ is no more a contravariant vector under the general
coordinate transformation of space-time. Normal coordinates &#
are defined by the tangent vector at XBM along the geodesic
passing through XB” and X, Solving the geodesic equation

iteratively, one finds that

1
x# o= xpgM o+ gM - Erpg(xg)gﬂgd - e, (2.1.7)

which defines a transformation from IT¥ to 5”. The advantage Dby
the wuse of the Riemann normal coordinate &¥ is the manifest
covariance of the dependence on background fields.

The background field expansions of relevant quantities are

given by
. 1 R .
9% = G XpH + DogM + SRM | (Xp)EVEPS XS + 0(&), (2.1.8)
o 1 00 3
Gy (X) = G (Xp) = 5R,0,s(Xp) EPET + 0(87), (2.1.9)
B (X) = B, (Xp) + V,B, (Xg) &P + v V_B,  (Xp)&PES
MV uv°B p v B p o uv' B
1lnA A |:0:0
h G{R puc (XB) By (Xp) - E pVG(XB)BAu(XB)jS <
21
+ O(&%), (2.1.10)
= M M’V o 3
O(X) = B(Xp) + V,O(Xp & + 1V, v, 0(Xp) Y + 0(&7),(2.1.11)
where
Da* = 948" + T, M(xp) &V, Xp", (2.1.12)
is the background field covariant derivative and Rﬂva is Riemann
tensor*) of space-time. Using (2.1.8-11), one finds the expansion

11



of the action around a classical solution

_ 1 2 G, B
S = Z%avjd o (28 +.2P+ 9P (2.1.13)

(Xp) D&MD EY

G . Jzgab | v v
7= V99T Gy (Xp) XG0, Xp" + Gy,

- R

‘a Fel [0} > A -V
'ﬁpvs(AB)é & aa}‘B 6‘bAB

[IVINGY

Azp M e
Rulpc(XB>5 3 Dag abXB

| b=t

B . ab

- J Ky x ¥ v
7 = 1677 By, (Xp)agXglaxpY - 25,5y (Xp) 8,XpHEPD e

- o - v
+ vpsdﬂv(x3>gpg 8, X" 0 Xp

4 . 7 VPO

2
58 4y p(Xp) Do&XDLEY EP
+ %vdsuvp(xg)pasﬂDbévgpﬁa}

1

Ly - r 2
2 = o' vgr'?) {®<XB> + VO(Xp) & + 5V v o(xp) gMEY }

where we have only kept terms which are relevant for the
perturbative calculation up to ¢(a’') and the field strength of

Buv 1s

1
Suyp = 3(0,B 8, B, +9,B, ), (2.1.14)

which 1s gauge invariant form under 6£BﬂV:a[ﬂ£V]’ In order to
obtain the background field expansion of the action (2.1.13) in

the case of the antisymmetric tensor Bﬂv, we have performed

. A _ A _ pA
¥)Notations are R _aVF wpT and Ryv‘R

MV P MAV '

12



partial integration and dropped non-gauge invariant total
derivative terms[22].

Let us now proceed to study the quantum theory of the o¢-
model. For a while, the ghost contribution to the effective
action will be neglected. Since the ghost field does not interact
with background fields and remains free, its contribution to the
effective action can be dealt with independently. The effective

action is given by the path integral
W g,p Xl = - ln[ﬁ@é e”St9gpr Xpl || (2.1.15)
which presents the sum of the contributions of connected graphs.

The expectation value of the energy-momentum tensor is given by

_ 2 oW
(Typ> = =

Vg 8§9%P

(2.1.16)

b

The contraction of <Typ> with respect to g%° gives rise to the
trace anomaly from which g-functions are obtained.

To simplify the discussion, the antisymmetric tensor field
Buv and dilaton ® are disregarded for the time being. The terms

of ¢(&%) and higher orders are also disregarded here. We shall

use the dimensional regularization and add the mass term to get

rid of infrared divergences. The action, up to (&%), 1is
s = L a% vag?? e (xpa. x40, x5Y + D_&yDy e
T2 c Vg9 uv'\+B'%a“B 9°b°B asM”b

' M-N M v
- 27« R#MVN(XB)S £70 ,Xg"0,Xp }
1 7 — M
+§Jd6«/gm2§Mg , (2.1.17)

where n=2+2¢& and dimensionless fields have been defined by the

13



replacement X*5V2xza"X* in (2.1.13). Here we have introduced the
vielbein field eﬂM(XB) and defined §MgeuM(XB)§”. Since the
functional measure in (2.1.15) is invariant under the coordinate
transformations, the variables in (2.1.15) can be transformed
from &* to QM without considering the contribution which arises
from the Jacobian factor of the functional measure. The advantage
of coordinate transformations from &# to §M is to simplify the
perturbative calculation, where one can easily extract the free
part of the kinetic term in the action.

Instead of the use of Riemann normal coordinate on curved
world sheet, we shall here make weak field expansion of

gabzaab+hab around the flat world sheet. It is of wuse to

introduce

_— 1

hab—}lab— gé\abh’ (2.1.18)

h=h?, (2.1.19)
as 1independent variables[23]. Using (2.1.18) and (2.1.19), one
obtains that

Vag*P=59b_ 7y (1 2), (2.1.20)

—{72) _ —ab 1.a
VgR —aaé‘bh - 56 aah

loab.c, + 1. +ca, +b €. .a o 3
+ Zh 6 achab + ~2~6’sz ab;l a - gha aah + (J(hab),
(2.1.21)
where 1indices are raised and lowered with Kronecker delta. The

(72)

weak field expansion of VgR is given here for later use.

The free propagator is given by

14



7/2 ; ’
A(G—G')=u"25j d’p 1L ,iplo-o") (2.1.22)
(

b
27) 7 p2+m2

where g« 1s an arbitrary mass scale. It is easy to calculate
graphs contributing to the effective action. The graphs
associated the following amplitudes A, B and C are given 1in

fig. 1. The results are as follows:

7 2y1-n/2
A= - g B(n/2+1én/2+1) r(2-7/2) J d"p {55]
(47) ™21 (2) (22)” 'p
> [ (pgPi®P(p)- $p%h(p))?
o2
8 L-ab 2
+ 72(2_72){— 1 (p)p g p(=p)
1 _
+ R (p) pap L(-p) + gh(p)pzh(—p)} ]
(2.1.23)
2
_al b -2 1 m

B =4 Jdnmféga )’ ‘ER“V(XB)aaXBﬂabXBV[ e T in(g) - 'V]

(2.1.24)
7 2y1-n/2
C = na’B(n/z’ngz) C(2-7/2) J 4P (%]
(47)™ (2)” 'p
(pappi®P(p)- §p°(p)) o
x . B, (Xp) o Xg o xpY (- p)

(2.1.25)

where Yy is the FEuler constant. The ¢-model action will Dbe
renormalized in the minimal subtraction scheme. The counterterms

can be read off from the above results to cancel the one-loop

divergences:

1 D
S = - — A d%gr(™
c.t. 2¢ 24nj V9

15



- %EJdnGdggabRﬂv(XB>6aXBM6bXBV (2.1.26)

Taking account of the contribution of counterterms, one finds the

one-loop renormalized effective action

W= szmdzy[ - 55; Vg(z)R(x) G(x, »)Vg(») R(»)

- 1]
vgg R,u.v

: <XB>aaXB“abXBV<m>G(azy)vf"—g(.y)ze(.y)}

v 2 -
+ szm[ + & [ln( & 2>—w(1>]ngabRMV(XB)aaXB#abXBV

Ao
+ Zgé[ln(ig)—w(l)—llR(z) } (2.1.27)
where
1 ab - _ 1.2, -
Vgaa(V§g 8y) Gla, )= v55 (-»). (2.1.28)

The trace anomaly can be found out from (2.1.27) and (2.1.16) by

contracting with respect to 9ab:

a — (2) 1 ' - ab ye Vv
<TG > =+ 51; R + aa RMV(XB)Q SGXB 6bXB (2.1.29)

Local terms in (2.1.27) do not contribute to (2.1.29) because the
variations of W give rise to contributions proporﬁional to (&),
In particular, to find the trace anomaly, non-local terms in the
effective action are of importance. Comparing (2.1.5) and
(2.1.29), one obtains leading terms of some pB-functions.

The ghost contribution to the trace anomaly has been derived

by Polyakov([24]. The result is

- 26 p(2) (2.1.30)

<t %>
[ a ghost 247

which arises from the Faddeev-Popov determinant.

16



In a similar way, one can calculate the contribution to the
effective action including higher order terms in § and also 1in

the presence of BM and ®. The results calculated by many authors

4

are as follows:

a. _ H,(2) G _ab v B 1 _ab )7 -V
<r, % = ¥R + By 0, Xg"0,Xp +Bmﬂ§ 8, Xg40, xgY + ...
(2.1.31)
where
g2 = L [p-g6- 30" (RE VMY O-4VHOY - ls SKVPY+O ((a')?)
247 2 7. o, 3 uvp
(2.1.32)
G g' _ PO 1y 2
By = z(Ruv+2Vqu® SﬂpGSV )+ ((a')?) (2.1.33)
gB = giv SP_25  TPO)+@((a')?) (2.1.34)
v 2" p7 uv oy 7% th

Thus the vanishing of pg-functions requires a set of equations for
background fields. These equations of motion are precisely those
of gravity coupled to antisymmetric tensor field and dilaton. In
(2.1.31) dots mean non-local terms constructed with powers of D_l
and R(z). Insofar as we stick +to this method followed by
calculations of the effective action, non-local terms arise 1in
(2.1.31), so that it is generally complicated to extract the
condition over background fields imposed by the requirement of
the conformal invariance. On other methods we will comment later.

It 1is worthwhile to emphasize that the linear combinations
of these equations are derivable from a single effective action

for background fields. In fact, the effective action turns out to

be

S = Jd26XV59"2®5® , (2.1.35)

17



where we have set D=26. The equations of motion for background
fields can be derived from (2.1.35). These 1linear combinations

are nothing but the vanishing conditions of @B-functions, i.e.,

CYS - 26?—2@18@

5% - , (2.1.36)
95 o208 (2.1.37)
5BMY K

dS 1 58 -2 ,G
—_— - =G = = - g . 2.1.38
sy e By ( )
Let wus summarize the above discussion. In the oc-model
approach, one requires that the conformal invariance should be

kept at the quantum level. The condition of conformal invariance

requires the vanishing of B-functions which are defined by the

independent coefficients of trace anomaly. The vanishing
condition of g-functions requires equations of motion for
background fields. These equations are derivable from an
effective action for background fields. Thus, the conformal

invariant o¢-model provides a consistent string theory in curved
space.

On the other hand, the effective action for local component
fields and equations derived from it are also obtained by the
string S-matrix calculation in zero slope 1limit[5]. Comparing the
equations of +the former with the latter, one finds +that the
equations of motion obtained by the conformal invariance of the
c-model are equivalent to those for massless excitations of the
string.

The method reviewed here is able to be extended to higher

'

orders in ¢@'. In particular, it should be noted that the

effective action in (2.1.35) is proportional to B® in the first

18



two orders in «'. It is expected that (2.1.35) may be true to all
orders in a'[25].

In another method of perturbative calculation[26] one might
make wuse of a weak field expansion of background fields around
flat space-time instead of ' expansion. Although in the weak
field expansion the results includes information of all orders in

3

a' and the effects of massive modes in addition to massless modes
can be treated, the covariance of space-time is not manifest. The
connection between the conformal invariance and the equations of
motion which are derivable from the effective action 1in the
string S-matrix calculation will be more transparent in weak
field expansion than ' expansion.

Finally, we remark on renormalization group(RG) g-functions.

Since the renormalized one-loop effective action was found in

(2.1.27), the renormalized metric tensor of space-time results in
R _ a' m2
Gm' = Gm’ + 5 1n(—47w2)+y R/-W . (2.1.39)

The RG gG-function is given by

(RG) .G _ 8 R

G = -a'R ) (2.1.40)

5ﬁv T Mau T uv ©v

which 1is also derivable from % divergent term in (2.1.23-25) by

the use of renormalization group equation. In particular, (RG) 2}
(RG) ,B

LV

B

and

B

are calculated with ease because it is enough to find
ultraviolet properties in the g-model on flat world sheet. Since
renormalization group equation for effective action gives a

(RG)

relation between RG gS-functions, B® can be more easily

obtained without calculating non-local terms in the effective

19



action on curved world sheet. The results[4,20,27,28] already

known for RG p-functions are as follows:

(RG) 4@ - l[0—26— ga'(ZV“Vﬂ®+ %S S“Vp)+@((a')2)] (2.1.41)

6 MV P
(RG)Bﬁv = —a' (Ry=8,,,:5,P7)+0((a')?) (2.1.42)
(RG) B = 2 a'V,SP +o((a')?) (2.1.43)

The RG B-functions are ambiguous because they depend on the
choice of coordinates of space-time as is seen from its tensor
structure. In general, they are affected by the diffeomorphism in

such a way as

(RG) s® 5 (RG) 50 oHV @, (2.1.44)
(RG) G (RG) oG

By 2 Buy * VytVyv (2.1.45)
(RG)Bﬁy N (RG)ﬁﬁv + ZUpS#Vp, (2.1.46)

if string coordinates transform as XHsxMroM, In the leading order
of «' the vanishing of g-functions in (2.1.32-34) is equivalent
to +the wvanishing of (RG)B in (2.1.41-43) up to diffeomorphism
ambiguity.

The relation between the conformal invariance and RG g-
functions has been studied 1in refs.[4,23,27,29]. One might
renormalize composite operators in the g-model by the use of
normal products developed for quantum field theories in curved
space[30]. In this method the conformal anomaly in (2.1.5) is
regarded as the operator equation in terms of normal products.
The implications of the conformal invariance in the ¢-model and

the relation to RG B-functions will be more transparent by the
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use of normal products rather than effective action approach

reviewed here.
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8§2.2 Nilpotency of BRST Charge

Another way of imposing the conformal invariance in the o-
model is to require the nilpotency of BRST charge which
guarantees the existence of the Virasoro algebra. We give a
review of +the nilpotency of BRST charge studied by Banks,
Nemeschansky and Sen[6]. It is interpreted as a generalization
from the nilpotency constraint studied by Kato and Ogawal[31] in
flat space-time to that in curved space-time. In two dimensions
one can choose a coordinate system on world sheet at 1least
locally such that the metric takes the form gab:e¢6ab with ¢
being a conformal factor. Since we are interested 1in local
properties, it 1is +the most general metric. In the following
analysis of the nilpotency, ¢ is taken to be zero from the outset
because the conformal factor is decoupled when the nilpotency of
BRST charge is satisfied.

When the conformal factor vanishes, the action in the o¢-

model is given by

21 2 ab . oy v ; .ab - M 4
+2b,,8_c’ + 2b__8,c” ], (2.2.1)
where complex coordinates
t_ 1 o, 1 -_ 1, o ;1
= = + z = = - 2.2.2
z ﬁ(c ic'), v,.2(6 ic') ( )

have been introduced. In the following the replacement XM 2o XM

will be made. The action is invariant under BRST transformations

SpX* = ~(cta,xM+cTa_xM), (2.2.3)
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§Bc+ = —(c+6+c +c_8_c+), (2.2.4)
4 o7
Spbyy = Tf++T§f, (2.2.5)
where
2 &8
T = £ (2.2.6)
++ T =
Vg sg*t
is the energy-momentum tensor which is given by
X - VvV '
Tyy = G0y X99, XY - a'6,0,0, (2.2.7)
and
9% = b, 8,0+ ta,b, . (2.2.8)
++ ++%+ 394 P44C R

The superscripts X and g/& of T++ in (2.2.5) stand for the string
coordinate and ghost parts of T,,, respectively. By Noether's

method, BRST current turns out to be

J,

1
. = ot (i e 219, (2.2.9)

where the complex conjugate of J, is also conserved. The other
independent conserved current is obtained by the replacement of
ztez".

BRST charge is defined by

_ ld=
Q= bote g, (2.2.10)
where the contour 1is taken around the origin circling
counterclockwise. Instead of computing anti-commutators of BRST
operator @, we shall make use of the method of +the operator

product expansion[32]. Consider the operator product of BRST
current J;(Z)J;(Z') where the operator product is defined by the

radial ordering. When Qz is evaluated, the contour integral 1in
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(2.2.10) picks up the singularities of J;(Z)J;(Z') in the 1limit
z2'9z. To calculate the nilpotency of BRST charge is, therefore,
equivalent to picking up the singularities of J,(z)J,(2') in the

limit z'-=z.

The operator product expansion of Tf;(z)Tf;(z’) satisfies
X ()1 (2 - <, 2 X, (EEEL
++ ++ 2 (z+—z'+)4 (z+—z’+)2 2
+ non-singular terms]
(2.2.11)
where ¢ 1is the central charge of the Virasoro algebra. Let us

look at a matrix element of the operator product of BRST current

as follews;

T (z)d,(2") = eyt iz iz i (2)
+ stz e e 1, () + get () 1z etz ) T (2
+ ret (@) 19 (2) e ) 192
= c+(z)c+(z')[<Tf+(z)Tf+(z')> ) 43{2 ( +13’+)4] (2.2.12)

where (2.2.9) and the operator product expansion of ghost fields

[y

(2.2.13)
z' -z

have been used. Substituting (2.2.11) into (2.2.12), one obtains

, _ c 13 1 oy
J+(6)J+(/~ ) = - or - A2 (Z+—Z'+)4 c (z)ec (z2'). (2.2.14)

In D-dimensional Minkowski space, <T§;(Z)Tf;(z')> yields

D 1
CTE2) TE (2> = g2z — . (2.2.15)
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where T%+=6+Xﬂa+X’ and

7’
(X(2)X(z2')> = - *1n|z-z' |2 (2.2.16)
) In .2,
have been used. Substituting (2.2.15) into (2.2.12), one finds
that
. o _ 1 D-26 +, 4+ ,
Jy(z)Jd (g") = oy (Z+—z'+)4 c (z)e (2'). (2.2.17)

The nilpotency of BRST charge requires that the singularities in
(2.2.17) should vanish, so that the dimension of space-time is
restricted to being D=26.

Next let us calculate the singularities of <T;+(Z)T;+(Z')>
in the 1limit =2Z'-z in the presence of background fields. The
bracket indicates path integral average with the weight of the
action (2.2.1) discarding ghost part. Assuming that ' is small,
we use the Dbackground field expansion. The background field
expansion of the bosonic part of action is given by (2.1.13) with
the world sheet metric being flat. The background field expansion

of the energy-momentum tensor is given by

- M v M ' o - M -V
¥, = 2G,,,0,Xp"D, &Y + D EyD, & 2’ R, EPE00, X0, X

2ro!
3 R

8! Jol
#ﬂVGg €

P
3 RﬂpVGS £

G 7. v o T Y
8, x5 D, &Y - D, gD &

_a'{zvﬂvv®a+XBuD+5v * Vu®D+D+5# * %VMVVQD+D+(5M£V)}
(2.2.18)
where (2.2.7) and (2.1.8-11) have been used and irrelevant terms
have been disregarded.
Straightforward calculation of graphs which contribute to

the terms proportional to 0,Xp0_Xp in the matrix element of
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<T,,(2)T,,(2")> results in
aQ 7 v_z =z’
o7 0+4p 0_4p PESSE
7 - felo) Yol _ 0
. [ Ry 2V, 9,0-5, 08 PO4v s 25 . V00 ]’ (2.2.19)

which should vanish by the requirement of the nilpotency of BRST
charge. In the course of the calculation no divergences arise, so
that the renormalization of +the action 1s not needed. The

vanishing of (2.2.19) gives rise to
R, +2V .V, &S .8 PS = 0, (2.2.20)
v.sP -25 VPH = 0, (2.2.21)

corresponding to the symmetric and antisymmetric part of
(2.2.19), respectively.
The calculation of graphs which lead to the terms

proportional to 8+XBG+XB turns out to be

1
L (2.2.22)
+_Z.+)? .

#
_alyg
7T (Z

PO ] v
ips Sy 00, X51a, Xp

which is the anomalous term in the operator product expansion in
(2.2.11). The anomalous term arises when the antisymmetric tensor
field Buv exists. The term can be removed by a finite

renormalization to the energy-momentum tensor, i.e. ,

s - ' o {4
Thy = Tyy - @' 8,559,008, 548, XV, (2.2.23)

The redefinition does not affect the results of (2.2.19).
Finally, we focus on the contribution to the central charge.

In Appendix B the effective action W is calculated in detail.

Note that
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{Taplz) Togle')> = - 2 i 2 d5 W (2.2.24)
Vg 69%P(z) Vg §9°%z")
To find +the matrix element <T;+(Z)T;+(Z')>, we can use the

results of the calculation given in Appendix B. Taking account of
the relation (2.2.24), we set Eab=5a+6b+, £2=0 and multiply it by
-8 and finally take a Fourier component of eip(Z_Z') in the
calculation in Appendix B, so that <T,,(2)T,,(z2')> is obtained.
In the case of the vanishing background fields, for example, oﬂe

finds that

2 4 . .
Ty (2) Ty (27 )> = 2| TP Py oiplz=2") (2.2.25)
127) ;6 12 2
(27)° p
which 1s read from the result in (B.12). In a similar way, the
calculation shows that
KT (z)TL . (z')y> = 1
++ ++ 87;2(Z+_Z,+)4

clpe 2,0 Mo @ 4ok _ 1 LV P

X [D ga' (R+4AVIV O-AVEQV @~ =S, ,5777)

(2.2.26)
Note that +the finite renormalization in (2.2.23) affects the
coefficient proportional to SﬂVpS“Vp. Taking account of the ghost

contribution in (2.2.12), one eventually finds that the

nilpotency of BRST charge requires

D-26-~ %a'(R+4V“VM®—4Vﬂ®VM®— %sﬂvpsﬂvﬂ):o. (2.2.27)

Summarizing the above argument, by the requirement of the
nilpotency of BRST charge one finds the equations of motion for
background fields. These equations are the same as those obtained

from the vanishing condition of pg-functions.
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8§3. Cubic Action in String Field Theory

In this section we give a brief review of the cubic action
in the string field theory. At the present stage the string field
theory formulated by HIKKO[10] and also Neveu and West[11] is the
only available covariant theory for the closed string which
provides correct tree amplitudes. Here we adopt HIKKO's closed
string model.

The cubic action in the bosonic closed string theory[14] is

given by*)

S e (PRE) , (3.1)

3g?

which consists of the only cubic term without the kinetic energy
term. The cubic action is formally invariant under a coordinate
transformations X2Y=Y(X), if a string ¥ transforms as a half-
density[33]. Here ¥ 1is +the closed string field which 1is a
functional of bosonic coordinate X, ghost(anti-ghost) coordinate
C(€) and the string width parameter a. The Faddeev-Popov ghost
number of ¥ 1is NFP:_l‘ Although the formalism contains the
unphysical width parameter and makes loop amplitudes
problematical, the discussions are restricted to the string tree
level, hence no problem happen. In (3.1) the ¥-product is defined

by using the three string vertex operator ]V) as follows;

| (U xT,) 31> :JOL“i(l)|<\If2(2)]|V(1,2,3)>d1d2, (3.2)
where
dr = dw,dol") 9% (3.3)
- r€o og )
¥)Notations are the same as those used in ref.[14]. They are

listed in Appendix A for convenience.
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is the integration with respect to zero-mode variables of #r-th
string. The vertex is given by the overlapping condition and 1is
expressed 1in terms of oscillator modes with Neumann function
coefficients. The oscillator representation of V is given in
Appendix A. The +-product stands for the inner product.

One finds that the cubic action (3.1) is invariant under the

local gauge transformation

SY=2¥xA, (3.4)
with N%PAz—ZA, where (i) the Jacobi identity

o (WrA) + (=) DT Mg (axp) + () MO s (grwy =0, (3.5)
which holds only when D=26, (ii) cyclicity

@+ (wxA) = () DT M) g, (Axa) (3.6)

and (iii) commutativity
ox = (-) P Ly (3.7)

have been used. Here (—)®:1(0) when ® is Grassmann odd(even).

The equation of motion which follows (3.1) is
Xy = 0, (3.8)

Assuming that a classical solution Wb which satisfies (3.8) is

found, one expands ¥ around ¥;:
"I’:'\Po"'gq)y (3.9)

where @ is a quantum fluctuation. Substituting (3.9) back into

(3.1) and (3.4), one finds that the familiar form of the string
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field theory which consists of both the kinetic energy term and

interaction term
2

S = ¢.-p + §Q®'(®*®), (3.10)
and its local gauge transformation

5O = TQA+2PEA, (3.11)
where @ is a linear operator defined by

kD = QD (3.12)

0 Y .

for an arbitrary field &. Here (3.8) with ¥ being ¥, has Dbeen
used. It should be emphasized that a classical solution +to the
equation of motion (3.8) determines a geometry of space-time
which 1is specified by the operator @ in (3.12). As a result the
action (3.10) defines a new string action for certain background
fields whose information is supposed to be contained in .

Let wus now proceed to find a solution to (3.8). As was
constructed by HIKKO, one can find a string field T' which obeys

the equations

CX® = |Npptl- 20 - o2

= 3.13
] as d ( )

and

Nppl' = -2T (3.14)
for arbitrary &, where @ is the width parameter of . The
construction of [' is given in Appendix A. Note that an explicit
form of T is independent of background geometry. Suppose that
there exists an operator @ which satisfies all +the properties

that BRST operator does, i.e., (i) the nilpotency
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@ = 0 (3.15)
and (ii) the distribution law
Qoxw) = Qoxw + (-)Poxeu. (3.16)

If the operator Q@ which satisfies (3.15) and (3.16) is found, the

solution to (3.8) is given by
Ty = 1QF (3.17)
0 - o : :

It is rather easy to show that (3.17) satisfies (3.8) and (3.12);

1 1
VXV = 7QIXQI) = Q| Npp+l- L

< QT = 0, (3.18)

where the nilpotency (3.15) the distribution law (3.16) have been

used, and
Vo*d =- lf@([‘*@)'-F*QFI
A\ J
1 1
= Q[NFP’Q]Q = 5@@; (3.19)

where [NFP,QJ:Q and (3.16) have been used.

Although there are many [''s which satisfy (3.13) and (3.14),
the solution formed by (3.17) is unique as will be seen below.
For a given [, ¥, given by (3.17) satisfies (3.19) for an
arbitrary &. Since (3.19) is satisfied for an arbitrary &, one
chooses another string field f which satisfies (3.13) and (3.14)

as ® in (3.19), i.e. ,

VoX[= QT | (3.20)
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The left hand side of (3.20) is rewritten as

VoxI'= STXQr

1 « a

= —[Npp+tl- — - a—| QT
2| 'FP | aa) ©
1
= Z@r, (3.21)
where commutativity (83.7) and (3.13) for I have been used. In

passing the last equality in (3.21), [NFP,Q]=Q and TI'*I'=0 have
been used. Comparing (3.21) with (3.20), one finds that @QI' 1is
unique.

Let us summarize above arguments. If an operator & that
satisfies (3.15) and (3.16) 1is found, one <can construct a
solution ¥y to (3.8). The solution formed by (3.17) defines a
string field theory (3.10) associated with the geometry specified
by the operator @.

If @& happens to be the usual BRST operator defined on 26-
dimensional Minkowski space, BRST operator @ satisfies (3.15)
and (3.16) with QzQB. In this case the solution sz— %QBF

generates the well-known string field theory in flat space-time.
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84. Curved Space-Time Solutions in Cubic Action Theory

We look for the solutions that generate the string field
theory in curved space[l6]. As was reviewed in sec. 3, if an
operator @ which satisfies the nilpotency (3.15) and distribution
law (3.16) 1is found, one can construct a string field theory
associated with the geometry specified by &. Thus instead of
solving the equation (3.8) derived from the cubic action, we
solve (3.15) and (3.16).

To seek the operator @ associated with a non-trivial curved
space, we first prepare a test operator Q[GﬂV,BﬂV,Q] as a

function of yet unspecified fields Guv’ B and . In the

mry?
following we look for the operator Q[Gﬂv’Buv’®] which satisfies
(i) nilpotency

Q“1 G

,u.'v’B,uv’@]:O’ (4.1)

and (ii) distribution law
: (r)

;ng [Glyr By @1 V(1,2,3)>=0, (4.2)
where the superscript r refers the channels 1, 2 and 3. In (4.2)
the vertex operator |V> is given from the outset by the
overlapping condition, hence (4.2) requires conditions over

background fields Gﬂv, B ®. The relation (4.2) means that the

y7A7

vertex should transform as a conformal tensor under the operation
Q.
In choosing the test operator @ we take advantage of the

non-linear g-model as an auxiliary tool:

S = Sy + Sgp» | (4.3)
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where

1
Sy = szm@‘ [ =8 5Mab5 37 ' ByrniE Kelyg gMa 5 ]

_ N 1

+deGVQR(2)[ 4za VM®£M>+ Za'VMVN®€MEN]
1

+Jd20' {z§«/2mx' S ane Peba gMa, gV

1T, 4
+ zina VKSLMNeabEESLSQSMébéN]

1

1 — _ _
Sqn = 3] d% s[eto105000)+ 0(5)0,0(5) |

’

M)

where gMée ) ¥ with Q#Mrbeing a vielbein. Assuming that @' 1is

7
small, we have made the normal coordinate expansion of

XMzxMe/2ra” E#  around a constant classical solution x¥. The test

operator @ can be read from (4.3) and is given by

", B,0]= J dsi (o)

7Ca~ g
=J { ) (Ty 4t TGh+C()(T&&%ﬁﬁ)}, (4.4)
O .

where C(C) stands for the ghost(anti-ghost) field and Tub is the

two dimensional stress tensor defined by

2
Typ(6)= ik (4.5)

Vg 69%P(s)

The superscripts X and gih of T in (4.4) represent the string
coordinate and ghost parts of T, respectively.

As far as the nilpotency condition (4.1) is concerned, Banks
et al.[6] studied its implication in the context of non-linear o¢-

model and obtained the same equations of motion for background
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fields as those required by the conformal invariance of the o¢o-
model (see sec. 2.2).

Here we address ourselves to the condition (4.2), which has
a straightforward connection with the cubic theory. In the
Hamiltonian operator formalism, the test operator & should be
written in terms of the normal coordinate SN(G) and its canonical
momentum pN(G)=§S/6éN(G) together with ghost fields. The formula
(4.2) implies that @ should be operated at 7=0 on each channel of
the vertex shown in fig. 2. In order to make the operation
definite, we operate the charge density Jj(p=7+i5) along the
contour Cb in fig. 2., and then take the limit 0. The effect of

this operation can be equivalently estimated by the use of

Lagrangian formalism, i.e., by calculating
J do 7(s)| v = lim J PXD OB C J dp i(ple D|V>, (4.6)
-0 Co

where SD stands for the action (4.3) defined over the strip
domain D in fig. 2. The equivalence in (4.6) is known as
Matthews's theorem[34].

Readers might wonder that the shift of j-operation by 7=%J
with the background dependent action SD could not be legitimate
in the cubic theory because all information about background
fields should be contained in 7 only. This is, however, allowed.
As one sees in the following calculation, the corrections due to
SD appears only along the contour Cb. The role of exp[—SD],
therefore, can be considered to take care of background
corrections to the canonical momenta, which no more be é, as it

should be.
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The calculation of (4.6) is performed on the complex z-plane

instead of p-plane after making the Mandelstam mapping

3
plz)= Zarln(z—zr) ) (4.7)
r=1
It 1s important to note the role of the vertex operator |V>. As
is well known, |V> is determined from the overlapping condition

and is best defined in terms of oscillators with Neumann function
coefficients(see Appendix A). 1In particular in the zero-th
approximation where the space is flat, the following relation

holds in operator formalism,

27 7
112)3(0' HS(pZ)lVQ> :EHN(Zr- ’ZI" )y (4-8)
i=1 r=1 Ltz
where [Vb> is ]V> in which ghost parts are factored out,
N(Zrl,zrz) is the Neumann function on z-plane, and the summation

in the right-hand-side covers all possible partitions of 2n
indices into »n pairs of (rl,rz).

The relation (4.8) seems to keep the conformal invariance
under the transformation p-»z. If, however, some of p's coincide,
the conformal factor dependence remains unvanished in the right
hand side when a certain regularization is made. The dimensional
regularization will be used later. In our calculation, 7 1is a
composite field with some derivatives, and it transforms no more
as a conformal tensor under (4.7) and some conditions over
background fields are required to recover the covariance. This is
the essential feature in our calculation.

Let us look at typical matrix elements of (4.2) as follows;
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3 =)
2,00 ¥ @) v(1,2,3)>

r=1

yy-1
Jd [ (2 ] [ —<r¥, (z)>c(z) elzg)

NL%

-1
] 1,2,3<o|0(z>{—Tf+<z>+za c<z>5<z>}lv>

ivm
2

Y

and

3
1,2,3<0|5ﬂ(1)§y(2) Z?(f)|V(1,2,3)>
r=

N7 dp(z
:+~—7z dz[gi)

-1

] <&, (1)&,(2)T1,(2)>C(2)Clzg),  (4.10)
where (4.6) and (4.8) have been used. In passing the first
equality in (4.9) and (4.10), we transformed the variable p to =z,
hence the integration contour CO to C‘ in fig. 3. Here the ghost

fields C and C are

c(2)=C(p), (4.11)
Clz)= 92205 (p), (4.12)

which are those defined in refs.[9,10]. To see the relation to
the ordinary conformal ghost fields, see ref.[35].

The bracket in (4.9) and (4.10) indicates path integral
average with the weight of action in (4.3). It 1is crucial to
examine the dependence of the conformal factor:

dp |2

.1
dz (4.13)

$=1n |

37



in gab=e¢6ab in =z-plane. To study the path integral we must
prepare a renormalized g-model action on a fixed curved world
sheet. The o¢-model action is renormalized and the effective
action up to two-loop order is calculated in Appendix B. In the
course of the g-model analysis, we have made weak field expansion

of gabzdab+hab around flat world sheet and

- 1

hab:;l(lb— Eé\ab}i, (4.14)

h:haa, (4.15)
have been introduced as independent variables. A difficulty

arises due to the ambiguity of definition of antisymmetric tensor

ab(

& g) in 7n-dimensional space. In the presence of Byv we look for

a consistent dimensional regularization in the o¢-model where
b

antisymmetric tensor e¢ g) is extended to that on »n-dimensional

curved world sheet. The weak field expansion of aab(g) will Dbe

represented as

& 1 _ N o
eP(g)=e%Pr oone®Pr an (79 ePO-RP %) 10 (h 2 (4.16)

P

where ¢ and d are some constants and will be determined later.

The renormalized action to two-loop level becomes

- (2)
S = SO+ Sint+ Sc.t.+ AS+ Snon—cov+ Sc.t. ’ (4.17)

where

So= 3 |0 (6%agk 0" + mee g™,

1 1
Sint = Jd”c(V§gab—dab)( EaagMabsM) +Jdna(VQ—1)§m2§M5M
3

7n_ — _ab 1 Kolin oMo ~N
+Jd avgg {— —7T RMKNL5 3 aag 6b§ }
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+Jdnm/fc}R(n) [ vara
Az

Ve + %a’ VMVNCDSMSN]

.1
+ | d% [35\/27&!' SLMNaab( g) SLGGSMé‘b&N

1,
v isna vaLMNeab<g)ngLaagMabéN}

?

¢ v, v jdnm/ER( 7)

r

1
+| d"sv/gg?P [— 5% Rypd 4 &0 ng]

.

. [, 1
+ Vg [+ 155 a'RMAmz«SMSN]

X 1
7 ' IJ ab M N
t|d 5[* 1% SMrgSN V998,870 pE

1 K _ab Mo =N
+ Zé’gd’ VKS MNE (Q)é’aS 6b§ jl

b

1 .
AS = ’é‘ Jdno‘a"SMIJSNIJhabaaé'Mang

’

L oe? o 17K [ 7, ~a
Snon-cov = _(48 - 72) 167 SrorS d“chd™a  h
- ey XL s, sTIE [ 5% a0 - ~ho% p
8 e~ 167 TJK G 4 alpt — Ez a ),
(2)y _ , 1 o 1JE {7 = n(72)

The calculation of fig. 4.d4 generates non-local divergent terms
as well as infrared divergent terms. Assuming that the

counterterms should be local, we conclude that d in (4.16) should
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be vanishing. The finite renormalization term AS has been added

to eliminate the anomalous term given by (2.2.22). The extension

(lb(

of ¢ g) given by (4.16) generally violates the invariance under

the reparametrization. We have added the term in S, . .,y Which
is finite local counterterm as it should be. The

reparametrization non-invariant terms disappear in the effective

action as will be seen in Appendix B. The counterterms S, {  and

s . (2)

ot are local and invariant, which are needed at one and

two-loop level, respectively.

The effective action defined by (2.1.15) with XB:w becomes

1 ' 3 1
e - ! M Ryl S MY P
W 967 { D o« (R+4V VM® 4V ®Vﬂ® 3S#vps )}
x [dzdeyv§T57R<m>G(m,y>v§T§TR<y> + ... (4.18)
where
1 — _ab _ 1.2
Je0a(V99 " 8p) B, y) = = =" (2-y) . (4.19)
Here ellipses mean some finite terms proportional to R(z) with
finite coefficient and are irrelevant for our calculations. No

infrared divergences appear in the final expression.
The trace anomaly can be found from (4.18) by taking

derivative and contracting with respect to 9ab? i.e.,

1
247 {

a -
<Ta > =+

3 1
- ot # — 4 7M - MYV O 1 Gple)
D Za ( R+AVFV O-4VHOV D 38 va )J vgRk s

(4.20)
which is proportional to the B® without ghost contribution as 1is
expected. Note, however, (4.20) is independent of the constant ¢
which has been introduced in (4.16).

To calculate the conformal factor dependence of (T

++> and
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<5ﬂ(1)§y(2)T;+> , wWwe set

hap=-8dgp# (4.21)
and

h=(2+2¢)¢. (4.22)

The energy-momentum tensor defined by (4.5) results in

_ 0 int c.t. non-cov 2)c.t.
Ty =Ty, +T, . +T, 4 +AT, +T, +ﬂ+( , (4.23)
where
T++O: a+‘§M6+‘SM’
int_ 1 ' K_L M N
Toa® 73 gER@ By 69,6 0,8
vo! M M M
+ mVMCD(—EG_'_G_l_qu "6+6+§ +8+¢8+«§ )

+ 2y v o(-e0,0,08" 05,0, (£"V) 120, g0, ")

c.t._. D 1, M N o’ M
Tea™ 77 qag0404? — G Byp04€ 0,80 - gy 99,9,9
o IJ. .M. .N
* oESursSy 048 9,6

o IJ, M, N
ATy = —a' SyrgSy "04+878,¢8

non-cov_ (c-1)a’ IJK
Ty =t 217z S1ur° 0,0,9,
(2)e.t._. _ _a' IJK
Tos =T Text1orS T 9,044
0 int .t - 2 .t
where T,,”, T;+1n , T;+C , AT, ., T;+non cov .3 T;+( )c are
terms associated with S, Sint' So.t.r AS, Shon-cov and Sc.th)’

respectively. In (4.23) G(¢?) terms are ignored.
Graphs contributing to <T;+> at U(¢) are given 1in fig. 5.
The straightforward calculations of the individual graphs are

given in Appendix C. All of contributions amount to
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L 3 e u 1 LY P }
sanl D 3@ (RHAVAV 0-4VEQV o= =S, S ) (0,09, (4.24)

which has turned out to be ¢ independent. Graphs connected with
at most two ¢'s contribute to <T;+>. Taking account of them, we

eventually find

{D— Ea'(R+4v“vﬂcb—4v“q>vﬂq>— lg SHV P )}

X -
Tie(2)> = 2 3°uvp

1
ir
$(0,0,6~ 59,69,8), (4.25)

which 1is also derivable from the variation with respect to the
metric of the effective action given by (4.18)(see Appendix C).
Another matrix element which 1is necessary for our
calculation 1is <§#(1)§V(2)T;+>. The relevant graphs are 1listed
in fig. 6 and the result of calculation of each graph is given in
Appendix D. Summing up contributions of all graphs in fig. 6, we

arrive at

HIEF(1)EH(2)+E (1) E (2)1T,, (2)>

1 4 KL
= g’ \Br 42V Y 0 (3- 2C) S xSy }

X Jd2$A(l—m)azA(m—Z)acac¢(m)GZA(Z—Z)

1, 3
¥ ?a'{RIJ“‘ZVIVJ@—(?" §C)SIKLSJKL}A(1_/Z)aZA(Z_Z)aZ¢(Z)
v Larle, ~(3ecrs, 5 K0 o A(1-2)a.A(2-2) (1) (4.26)
60 \Ero 2701 Sg1Sy " [0A(1-2)0002-2)¢ '
+ (12)
and
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GLEL()EH2)-E H1)E(2) 1T, (2)>

1,
= sa {VKSKIJ—szcpsKIJ”dZa:A(1—m)azA(m—z>aCaC¢(m)aZm2—2)
o Lo gk ovhps 1A(1-z)a A(2-2)8.¢4(2)
2% \V K1 KIJ| z 2)dz9(z
v Lo dvEs  _ovlps. -\ o aA(1-z)a.a(2-2)4(1)
2%V °K1J K17 92 z)d, z)¢

- (1e32), (4.27)

where A(x-») is the Green's function defined on a flat world

sheet. The matrix elements including the ghost are given by

NPy L1
KC(z)Cc(z)>= po 262¢, (4.28)
— 1 1 1
<a_Clz)cC(z)> = 7 g(@zazﬂs- gaz¢az¢)’ (4.29)
— 1 1
Tz)Cl20)> = Iz siz (1.30)

One substitutes (4.25-30) into (4.9) and (4.10) and integrates
along the contour C‘.

It should be noted that the perturbation corrections due to
interactions in (4.17) occur only on the line CO in p-plane or Cb
in z-plane. If we look at (4.9), there are potential sources of
non-local corrections, for instance, coming from the diagram
shown in fig. 5. In the amplitude, however, some of propagators

which 1link .# (20) with Tﬁ:)(z) and ¢(x) collapse into delta

int
functions due to derivatives on the propagator. Thus we have
obtained (4.25), leaving a local correction to Ti:)(”). A similar
situation also happens in fig. 6 which occurs in the calculation

of (4.10). Careful inspection of the integrand, in particular

(4.25-27), shows that no singularities appear except at the image
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of interaction point Pps SO that the integration is able to be
shrunken +to a small circle Ci around 20 Singularities at the
image Z of vertex point appear from two sources, one from
(d,o/dz)—1 in (4.9) and (4.10) which comes from the Jacobian and

the transformation factor of 7, and the other from the conformal

factor in gab:e¢6ab in z-plane ( gabzdab in p-plane). Collecting
those singular terms and performing the Cauchy integral, we
obtain

3 2
1y2,3¢<0] Y @) | v(1,2,3)>

r=1
_Vn 3 y " 1 Vo
= &1 [ D-26- S« ( R+4V: Vu®—4V @VM®— 55y 05 )}
'10" ) C b c' z 4,31
<G (40 (40)— az (40)0(40) , (4. )

where (4.13) and the expansion of C(z) and p(z) around the z20;

1 'y
C(2)=C(2)+C" (2g) (2-20)+ 50" ' (2) (2=20) +. .. (4.32)
and
5 2
plz)= Zailn(z—zi)=p0—a(z—zo) —b(z—zo)3—... {4.33)
i=1

have been used with

ol 2 - 1 d%p, -
po—p(ao), a=- ? dZQ(ao) and b= - g a‘é“g(ZO) .

(4.31) should vanish according to the condition (4.2). Thus the
distribution 1law requires the equation for background fields
which agrees with the vanishing condition of B®.

Another matrix element of (4.2) was given by (4.10). We
substitute (4.26) and (4.27) into (4.10) and carry out the

contour integration. Picking up some poles around Zps One finds
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3
112;3<O|€I(1)‘5J(2) ZQ(]’I)IV(lyzye'))
r=1

3/2
(7) ' 4 KL

X Al{l=-z,)8., A(2-2,)C" (25)C(z24H)
b (les2) 07%, 0 0 0

s ) TR s SKel A1z 8. Al2ez)C (20) Clzn)
~~gg ¢ KI1J %9 1JK 2019z, <0 “0/ %0

- (1e2). (4.34)

The last terms in (4.26) and (4.27) do not contribute to (4.34)
because they are regular near Z=Zg. The vanishing condition of
(4.10) requires that both the symmetric and antisymmetric factors
in the square brackets in (4.34) should be zero.

All matrix elements other than <T,,> and <£u(1)£v(2)T;+> are
trivially Zero. The reason 1is as follows. Consider the

contraction of the energy-momentum tensor with more than three

&'s. Up to the ©@(a'), the graphs which contribute to
<§#1(1)§#2(2)---S#n(n)7;+(2)> (724) do not include loop diagrams,

so that no divergent terms arise. Each graph gives rise to a
factor &4 and vanishes in twe dimensions(&-50).

Summarizing the above argument, we find that the
distribution law of BRST charge imposes following conditions over

background fields:

3 1
26— Ky @ 4 TM _ MY P - .
D-26 S« (R+4V Vﬂ® 4v @Vﬂ® 3Suvps )=0 , (4.35)
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4
V V P-(3- — po_
Rgv+2fu V@ (3 3C)Supasv =0, (4.36)

e _ Py=
Vo8P =284, VP0=0 . (4.37)

In (4.36) the constant ¢ remains undetermined. These three
equations, however, should not be independent but be related with
each other by the Bianchi identities which ensure the consistency
of non-vanishing background fields. Taking the covariant

derivative of (4.36), one can show that

4 1
- 74 o _ _ = PO
0= ¥V {R V+ZV VVQ {3 3O)S pGSV J

i v ‘R+4V“V - 4VHOY D- (1 2 ) S
Tz Vv ue” KETUET gy

pgsuﬂa}, (4.38)

where (4.37) and the Bianchi identities

1
AL - =
A% Ruv” 2V,VR, (4.39)
Mo po_ L MPG
8 o V8, 0= EV, (SKP0s, ), (4.40)
have been used. Comparing (4.38) with (4.35), one can conclude
that the parameter ¢ must be %. Thus the extension of the anti-

symmetric tensor aab(g) on a curved world sheet is uniquely
determined by the consistency condition among the equations for
background fields. Substituting c:% into (4.36), we find that
these equations are the same as those obtained from the vanishing
conditions of g-functions. Banks et al. studied the nilpotency
(4.1) in ¢(a') and found that those equations for GMV’ BMV and &
are necessary. It is worthwhile to emphasize that same equations

have been deduced from a new requirement which is linear in @&. )
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Thus the nilpotency (4.1) and the distribution law (4.2) require
the equations of motion for background fields which agree with
those obtained in the context of the conformal invariant g-model.

Summing up the arguments in secs. 3 and 4, one can conclude
that the equation of motion (3.8) derived from the cubic action
determines the equations of motion for background fields. Those
equations are the same as those required by the conformal
invariance of the non-linear g-model. Thus the cubic action
theory generates all allowed conformal independent background
fields as the solutions of the cubic action. The cubic theory,
therefore, can be qualified as a non-trivial, self-contained and
geometry independent field theory of string.

The method developed above is able to be extended to higher

orders 1in «a'. Using the sigma model as an auxiliary tool one
constructs a test operator Q[G#V,Buv,®], then derives the
equations for background fields to any order in a from

conditions of the nilpotency (4.1) and the distribution law
(4.2). Substituting a set of solutions that obey the equations

one determines a BRST operator
Q@=a%+ ooty (o) 0% .. (4.41)
The string action

-

2
S = QD + Sgb- (0K (4.42)

¥)The conformal covariance of the tachyon emission vertex was
studied in ref.[7] and they obtained the same equations for

background fields.
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associated with the geometry specified by (4.41) then provides
the S-matrix theory in the curved space. A practical method for

small « is to develop a perturbation theory in (4.42) where

@Q(O)® is treated as an unperturbed term.
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§5. Summary and Discussion

The cubic action theory has been shown to determine the
equations of motion for background fields which agree with those
required by the conformal invariance of the non-linear o¢-model.
Taking advantage of the s-model as an auxiliary tool, we solved

the equation of motion derived from the cubic action and

constructed the string field theory in curved space. Thus the
cubic action theory generates all conformal independent
background fields as the solutions of the cubic action. The

advantage of our method over the g-model consists in the fact
that all allowed solutions are contained in a space which a
single theory covers. The cubic action theory, therefore, can be
qualified as a non-trivial, self-contained and geometry
independent field theory of string.

In the course of the analysis, it was shown that there
exists a consistent dimensional regularization in the o¢-model
where antisymmetric tensor 5ab(g) is extended to that on 77—
dimensional curved world sheet. The extension of eab(g) from two
to 7 dimensions was determined by the consistency of the
equations of motion for background fields.

To guarantee that the cubic action theory is independent of
the space-time metric, further investigation should be made. In
solving the equation of motion of the cubic action, we chose BRST
operator as a test operator by the use of the non-linear ¢-model
as an auxiliary tool. The BRST operator we have used is expressed
in terms of the normal coordinate variable SMKm), which 1s the

tangent vector at the center of mass @ along the geodesics, and

its canonical momentum. The positions of the center of mass are
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not on the three string overlap, so that the operation of BRST
charge at the vertex may depend on the background geometry. In
order to avoid the geometry dependence, we change variable ngm)
at the center of mass into that at the interaction point[36].

We remark on a renormalization correction to the background
field equations due to string loop amplitudes. As was discussed
by Fischler and Susskind and many others[17], the divergences 1in
amplitudes having non-trivial topology require new counter terms
in the action of the ¢-model on spherical topology and hence the
equations for Dbackground fields are to be modified thereby.
Insofar as we stick to HIKKO's formalism for closed string, our
method should not be applied straightforwardly to this problem,
because the unphysical width parameter seems +to violate the
modular invariance in loop amplitudes. The covariantized light-
cone field theory which has been proposed by Neveu and West and
others[13] seems to resolve the width parameter problems. It is
interesting to include string 1loop corrections in the new
formalism.

To practice our program in the framework of Witten's theory
is of extreme interest. As has been studied by Horowitz and
Strominger[37], however, special care must be paid about the
middle point of string when operators @ and &p are multiplied.
Moreover, the closed string state seems not to be included in the
physical Hilbert space which is annihilated by the BRST charge
for the open string. The closed string field theory has been
proposed by Strominger[38]. We hope that our method developed

here will be so extended that be applicable to Witten's string
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field theory.
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Appendix A

The

construction of I' 1s reviewed here[14]. Notations
followed by HIKKO are listed below:
Oscillator modes:
- 1 X ;
AM = ﬁ”VPV Foxto= - ) a%(i)eizna
- vV n=-co
1 & ;
- v n=-co
= = i 1 X _(4) tine
C+EC+ ZﬂC:,—- LC_Q_ (A.].)
- VT 71=-co
(anti-)Commutation relations:
[, ¥y - n8 im0V (i, 5=1)
(7) (7) 7
tep ™'y o'l S ytm, 09
iy - u(i)¥ () - (O)F — (i) ()
X_% - @y 1 Cop = Cu r Copy )
u(+) _ u(=) _ 1 g =(x) _ 1- - & (£) _ @8 + 1
a0 = ap -2P7 o -20+6—C;’Co -5';;6+‘2“Co
a%(i)lo>zo’

(A.2)

The oscillator representation of three string vertex is given by

3
|vi1,2,3)> = 2(1)a(2)5(3)y [

1—Eérféw%r)]epwl’2’3>l0>1236(1,2,3),
r=1 Ve

(A.3)
where ¢ is the projection operator into the same number of (+)
and (-) modes and
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A a0 e e e e
n>1 r=17
P
=(7r)
- . - —( c
'}’7(2’) = 2720,’1,.07(2]), '}/7(21) = an
r
() i rsws 1 = (+)(s) (=) (s)
() _ ST 1 =S S s -)(s
“r _\/5 Z x N7Z + Qs gNn_m’m (v_ +y_72 )
n21 m=1
s
rs rs Xp_ 1" &ps1q 3 rst
x = 8 "= 7 + E & , £123=1
Ap t=1
S Xy Ag s
Noym = = @iagag |57+ — Ny Ny (72,m21)
WS - x1%9 w7 _ 0 N
70 = ~ Cg o 72 (01’02’03)—(1;‘1; ) (7221)
S
—68 = 79 5rs _ 5r3 _ d33]
ar. a3 a3
S D+1
To= Yapln|a,| , P=ajpy-aspy, 6(1,2,3)=(27)"F d(gar)d(;pr)
r=1 " i
pm a,.
Ny = % fn[“ FELj e % s (ayzay,ag=ay)
r o
_ T( 7x) _ 724+ 1
Fl®) = Oy = () (1) (A.4)

Let us construct a string field [ which satisfies

& a
% = | Npptl- - a— A.b
*o FP Tal aaa]® ( )

for arbitrary & and a is the width parameter of ¢ and

NgpD' = -2T, (A.6)

where Npp is the Faddeev-Popov ghost number operator. Eq.(A.5)
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more explicitly represented as

(3),1_ %3 _ 0 |5
Jd1<f‘ Yl v(1,2,3)>= |Npp'+1 Tas] “3aa3,}R(2’3)>’ (A7)

where

D
d _ d
dl = —-Jg%dcél)§§1
(27) T

is the integration measure with respect to zero-mode variables

and

|R(2,3)>=(27) Do (potpg) 2m8 (antag) (2§21 -343)) | r(2,3)

with

We look for a string field such that IF>:60|%>. To find f, the

following formula is of great use;

—(3 ' i,k () L+ +) = (+
>§(c( ) - 06 ))|r(2,3)>exp Yoy ~ﬂ%m(%nm]é“)~ (£) 172 1) "))J
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where (A.2) and (A.4) have been used and

L [n)7 n o Al A.10
0= T e [sgn(eae)] ) Qngglzn—mhm (4.10)

and 7, Ay and Zn are c-number sources. Here only the terms which
contain one more A than A's have been retained. Since NFPf:_f’
other terms do not contribute to necessary matrix element to find
f. For instance, we choose 1{+), A{+), Aéi) and A§_) as non-

vanishing sources and set

A4 =2l
/’L'§+): —%Qié.}-)' (A']_l)

In that case, the second term in the square bracket in the right

hand side of the formula (A.9) vanishes. It is easy to show that

<r<1>|:agl>1<o|[c§+><1>a§+><1>a§-><1>_ lozo{®) (1g{+) (1)

X 5(p1)éig[6(a1—s)+d(a1+e) (A.12)

satisfies (A.7). There are many other [''s which satisfy (A.5) and

(A.6).
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Appendix B

The effective action in the non-linear oc-model is calculated

here. The o-model action is given by

1 2 ab Y . ab L v
5= | 6[Vo9H0,, (X) 00301 + 17D, (1010, ¥

+ a'var(2)o(x) } (B.1)

By making Riemann’s normal coordinate expansion of Xﬂzm“+v2%a'§”

around a constant solution, the action, up to G(a’), is

S = Jd26¢§gab[ %aagMabgM’— %na'RMKNLgKgLaasMang ]
o 2 vZra' 1
+Jd ovgR! )[ et ¢ e VMVN®£MEN]

4

‘1 o1
+Jd26[z§v2na SLMNeabSLaaéMGbSN

A b KL N
+ igma’ VS yye et e 80, } (B.2)
H
where Ruvpd is the Riemann tensor of space-time and Suvp is the
field strength of B#V, They are all evaluated at a®, The vielbein
field e#M(m) is introduced. The effective action is defined by
Wlg,prxl = - 1n[}@§ e~ Slg @l (B.3)

The weak field expansion of relevant quantities are given by

9ab S abtaps (B.4)
—(72) _ —ab 1_.a
VgR _aaabh - 56 Gah

agb.c, % 1 —ca, =b €, ,a o 3
+ —h a Gcﬁab + ~2—aof2 abh a ~ E}Za a(lh + (J(}Zab),

(B.6)
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& 1 - N
s%P(g) =6 ohePr I (RO ePO-RP 0 40 (h,5) (B.7)

where »=2+2& and

- 1
hab:hab‘ §6abh’ (B.8)

h=h,%, (B.9)
are introduced as independent variables. Indices are raised and
lowered with Kronecker delta.

The renormalized action at one-loop level is

S

Sot Sintt Sc.t.t AS, (B.10)

where

S0= 5 | a0 PagEya g + me e,

.

1
Sint = |do(VogP-8%P) ( 8,8,0,6") +Jdn6(v§—1)%m2€M§M

r

— -1
+Jd”GVanb[— gna'RMKNLiKSLOQSMSbSN ]

Veme'

47

+“d”5v53(”>[ Vel + %a'VMVN®SM§N]

.

L1
+ d”a[z§¢§%&TsLMNe“b<g)gLaasMéng

A ab Keliy sMy 2N
b ioma VS e Do) 67670 150 ]

1 D
S t. S T 5 [dnang(n) +

.

) M 7 {(n)
T60e% ViV @ jd cVgR

- 1
+jdn6vggab[_ 126a'RMNaa§Méb5N}
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1
+Jd720"\r’/§[+ _I_é__‘; a!RMMZQSMEN]

1
7 ' I1J 5 .,ab M N
+Jd G[* 1% SmrgSn TVaaTT0,6 0ps

1 K _ab My =N
e Vi e ®(9) 080 |

1 .
AS = E [dnﬁa'SMIJSNIJ}ZabaG’éMab‘SN

The finite renormalization term AS which is necessary to prove
the nilpotency of BRST charge has been added(see (2.2.23)).
Graphs contributing to the effective action 1is given in

fig. 4. The straightforward calculation of fig. 4.al shows that

al = -

D B(n/2+1,n/2+1)
4

dnp !MZ] 1-n/2
(47) /21(2)

(2-2/2) J 5
(2z)” ‘p

1 D L) 1_ab o
t 3 7in J(zn)” [— 7777 (PY P Ry p(-p)

1 -
§hab(p)papchcb(—p) + gh(p)pzh(—p)
P (B.11)

The ellipses are terms proportional +to R(n) with finite
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2)_

coefficient and the terms of G(m These terms are irrelevant
for our calculations. They will be disregarded hereafter also.
Adding the counterterm in (B.10)(see fig. 4.a2), one obtains the
effective action in flat space-time:

2
al+a2 = -

D J d2p (pgpp%P(p)- $P%h(p))

(B.12)
(27

Next consider the contributions to the effective action 1in
curved backgrounds. The results of calculations of graphs related

to the space-time metric Gﬂv(see fig. 4.bl-bb5) turn out to be

—ab 1.2 2
: 2 (p,pi?°(p)- 5p°h(p))
bl =+GZ Jdpz a’b ; 2 (B.13)
7[ (27) p
b2+b3 = G (m*) (B.14)
b4+b5s = ©(m?) (B.15)

In fig. 4.bl the only finite non-local term contributes to the
effective action without divergent terms. As given by (B.14) and
(B.15), all other graphs cancel out to give the terms of @(mz).

The dilaton contributions(see fig. 4.cl-c4) to the effective

action are given by

« .y a2 p (pap %P (p)- +p?h(p))2
02 = + 1o~ V'V 5 5 (B.16)
T (27) p
c3+cd = (&) (B.17)
& 2p (PgrphP(p)- §pPh(p))?
cl = - —— VOV0 (B.18)
167 (Zn)z p2
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Let wus calculate the effective action in the presence of
Bﬂv(see fig. 4.d41-d7). If d in (B.7) is non-vanishing, the
calculation of fig. 4.d4 generates non-local divergent terms as
well as infrared divergent terms. These terms do not cancel even
if contributions of any other graphs are added. Assuming that the
counterterms should be local, we conclude that d in (B.7) should
be vanishing. With this condition each graph will be calculated
below. The two-loop integral of fig. 4.d1 takes the following
form;

- [ d?p _
dl = + 2za’' Sy 81K J———B;hab(p)th(—p) ¢/ s 9"
(27)

J‘ d?'Eq d?’lk qa(p+q)bqe(q—k)f(p+q)g(q_k)]lkc(p+k)d
X

(27)” (27)7 @ (p+a) 2 (q-k)2 2% (p+k)?
(B.19)

where mass terms are neglected because no infrared divergences

arise in the course of the calculation. Using the rule:

eabeodzdacdbd_aadﬁbc (B.20)
and making transformations of momentum variables, we rewrite
(B.19) as

« [ dp —
dl = + ma’' Spgs’ M [———Bgﬁab(p)th(—p)
(27)

J d?q d’s a,(ptq) pR (Ptk) 4
(27)” (272)7 g% (p+q) 2 (q-k)2R% (p+k)?

9 { (k)20 4 (q-k)2q-k - 2(qtp)2(a-k) -k } (B.21)

Performing the momentum integral, one finds that
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o' o~ d'p 2 (p.p 7ab_ 1pzfz)2
+ SIJ['SIJKJ— {- %[3(72/2,72/2)1“(2—72/2)] a”hb 5 2
(4zm)™ (27) ™ »
+ B(7n,1+n/2)T(3-n)B(n/2,n/2)
1+4¢ 27, (_ 1+¢ - zab, _
{ g (12s) PV PPA(-P)+ o yygsy P hap(P) A7 (- D)
1+4¢ —ab 2-&_ w4 +bc
= Tu PPt AP A=) - P T (P pyh T (- D)
ab
144 (PaPp77)7 1
& p? ] {
(B.22)

In the above result, %2 divergences arise. The fig. 4.d2 gives

the momentum integral of the form;

« [ d?p — _
(27)

. J dq  d%%  9q(Pta) pdpla-k) rag,(q-k) pa.(pta) 4
(

27" (2m) ™ P q? (pra)2(q-r) 22
(B.23)

By using the antisymmetric property with respect to the suffix of

sab, the momentum integral is easily carried out to give
za' 0k [ d"p
+ nSIJKS j-—;— B{rn,n/2+1)Y1(3-n)B(n/2,n/2)
(47m)” (27)"
« | - Ln(p)yprh(-p)- op2h ,BYP
gt\lp)p p 4£2P ab
14+2¢ —ab 2+ sa +—hbe
t e PPy (p) ch(=p) + gomp T (P (- p)
zab
_1+2¢ (PapPp?")?
& P*
(B.24)
which has also %2 divergences. The sum of the contributions given

by (B.22) and (B.24) becomes
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1o o IJK’J d"p [ loab, \ 27
dl1+d2 = + — . o+ : _
! 6 167 ~IJE® (2m) 7 22 (Pl pthgp(-p)
iz < &
+ SEP () pap JiCH(-p) + gmp)pzfz(—p)]
a IJK’J d"p { 5 (papbﬁab(p)- %pzh(p))Z
S7 S _ep g2
IJK
16x (27)7 1 pz

+ é 1“7 p) pgppfi(-p) - %gh(p)pzh(-p) }
(B.25)
It is worthwhile to emphasize that %2 divergent terms in (B.22)
and (B.24) cancel out. The recent results[39] of the calculations
of the g-functions at the two-loop order showed that the correct

prescription is

&
eabsod:(l_ E)(aacabd_aaddbc)' (B.26)
Since %2 divergences appear at the two-loop calculations of g-
functions, the O(&) term in (B.26) contributes to the equations

for background fields derived from the vanishing conditions of g-
functions. However, it is sufficient to use the rule (B.20) in
our calculations, because no %2 divergences arise.

Other graphs can be calculated with ease. The contributions

to the effective action are

2re’ - d?%p _ R
a3 - . SIJ[(’S’IJI{ ankab(p) Eh(_p) eﬁfeg}l
(2m)"
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T JK [ d'p
dd4 = + c*73 Sraxs’ " J?;—;;eh(p)eh(—p) €7 9"

T

J d*q  d"% (a-%-p)parl(a-k-p)g=2kg4}ay
X
(

2m) ™ (2m) 7 q%(q-k-p)2r?

It

c? - d”p
o o Sy psTUE J————; 7 (p) p°h(-p)
(27)""

d5+d6 = OG(m?) (B.29)

' d?p __ _ n 959, (q+p) platp)
ar = + S5y sTK I———B—hab(p)th(—p) J g Ta’c b d
7 2 2
(27) q (g+p)

1 — & A
+ 52D papEip(-p) + £h(p) pPh(-p)

t

zab 1 2 2
PRI /¢ d"p  (PgpPpt~"(P)- 3p"A(p))
a8z SIJK

(27) 7 p2

(B.30)
Note that the results given by (B.27) and (B.28) depend on the
unknown parameter c¢ introduced in (B.7). Adding all contributions

to the effective action, we eventually arrive at

W= - { D- ~a'(R+4V#Vp®—4V#®Vﬂ®" red

uvpo |
2 3 v p” )]

X

1 J d%p (papbﬁgb(p)— %pzh(p))z
(

1 e o IJK d”p 1-ab 2
c 167 “IJK am? U 7% T (P) P hgp(-p)
1_ab c
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1 2 a o [ d"p 2
(= - =5) StIrS h(p)p~ha(-p)
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1 a ror [ d"p
- gleml) 5= SrorS
6 167 (2%)”
1 ” :
>[ AP (p) pgpphi(-p) - Eh(p)pzh(—p) .
(B.31)
No infrared divergences appear in the final expression. If we
loock at (B.31), a new counterterm of order % should be added 1in
the case where the anti-symmetric tensor field exists:
’ 7
(2) _ 1 a gk [ d"p l-ab 24
Se.tt Tt 3% Tex S1uKd 2 U 777 (P P hgp(-p)
T

1_ - &

+ 5200 pap Ai%H(-p) + Gh(P)PPR(-D)
(B.32)

Moreover, a finite local counterterm should be added, so that the

renormalized effective action becomes invariant under the

reparametrization. The term is

t

1 e « ik [ _d"p 2
= (- - %) T =L -
Snon-cov = (75 =~ 73) Tgz SIJKS o7 2(p) P R (-p)

t

1 a d"p
(

6 167 Zn)n
_ 1
X hab(p)papbk(—p) - Eh(p)pzh(-p) )
(B.33)
which 1is finite local counterterm as it should Dbe. By taking
account of (B.32) and (B.33), the two-loop renormalized action is

given by
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- (2)
S = SO+ Sint+ So.t.+ AS+ Snon—oov+ So.t. s (B.34)

where the counterterms So.t. and Sc.t. are local and
invariant.

Taking account of Snon—cov and Sc.t.<2) and combining the
results in (B.31), we finally obtain the two-loop effective
action

W= - | D- Ea'(R+4v”v O-4VHDY, O- is SHVR

9671 | 2 M M 3 %uvp
x jdzazdzy«/—g(wm(mG(a:,yw—g(y)ze(y) + ... (B.35)
where
1 1
00 Va9 Pay) a(a, 312 - —of(a-y). (B.36)
Here ... means some finite terms proportional to R(z).
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Appendix C

Let us calculate the conformal factor dependence of <T;+(Z)>
at ¢(¢). The graphs contributing to <7}+(Z)> has been shown 1in
fig. 5. Since each graph can be calculated straightforwardly, we
shall 1list only the results below. They are represented in

momentum space, i.e. ,
szz KT, (2)> e PP | (C.1)

The sum of all contributions leads to (4.5) in coordinate space.

(1)flat space-time

al = O(e) (C.2)
a2 = - 51— b,p,#(p) (c.3)
(Z)GM’V
bl = 1% R p,p,¢(p) (C.4)
b2 + b6 = G(s) (C.5)
b3 + bb = G(&) (C.6)
b4 + b7 = ¢(e&) (C.7)
(3)0
el = & v 9"0p,p,s(p) (C.8)
c2 = & v v"op,p,s(p) (C.9)
c3 + c4 = O(¢&) (C.10)
5 = - & v vop, p,4(p) (C.11)
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e’ ,

dl = - 35-87,5"% p,p,4(p) (C.12)

dz = - 535, 5" " .o g(p) (C.13)

a3 = + ¢ 55815 p,p,4(p) (C.14)
a’ I

dd = + §%SIJKS JK.p+p+¢(p) (C.15)
' IJK

ds = - Tg%SIJKS p+P+¢(p) (C.16)
a 1JK

d6 = - T@%SIJKS p+p+¢(p) (C.17)

d7 = U(e) (C.18)

dg = (&) (C.19)
a' -

a9 = + MlgnSIJKSIJK p,p,$(P) (C.20)

ato = - tecbalg  gIJK (p) (c.21

= - g1z Srik p,p;¢(p -21)

The expectation value of the energy-momentum tensor is
derivable from the variation with respect to the metric tensor of
the effective action. Using the effective action W obtained 1in

Appendix B, one finds that

67



S | 3 " u L LV P }
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5g%P(
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Vg (ax)

+ VI@E R(2) 29 2) e R ) ] (C.22)

6Qab
with
S(Va(@IR(®)) _ o[ p -1 : V52 (-2
JORT vg(x)l abt®) zgab(x)R(m)Jd (2-2)
+/g(@) 9% @) g o p () VEVES? (- 2)
. ~VG(@ 9, (@) 99 (2) VEVE () 8% (2-2) (C.23)
an

dG{x,y) _ szwG(w,w)Gg{VETQT{‘ %Qab(w>90d(w)+dacabd}52(w—z)
« aga(w,y)} (C.24)

Eq.(C.24) has been derived from (B.36). In the conformal
coordinates gab:e¢5ab one finds that +the conformal factor

dependence of the energy-momentum tensor becomes

1 |
' Mo g 4 oM _ 1 MY 0
a' (R+4V Vﬂ® 4V ®Vﬂ® 3Suvps )I

B} o

2)s = 2+ Ip.
(2)> = ID

% (8,08 ,¢~ %az¢az¢). (C.25)
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Appendix D

Let us look for the conformal factor dependence of
<£I(1)£J(2)T;+(Z)>. The graphs contributing to <§I(1)§J(2)T4+(Z)>
have been given 1in fig. 6. The results listed below are

represented in momentum space, i.e.
Jd21d22dzz CEp(1)EH2)T,,(2)> e iPI-ta2til(ptatk)z (D.1)

The sum of all contributions amounts to (4.22) and (4.23) 1in

coordinate space.

(1)flat space-time

al = G(e) (D.2)
(2)6,,
bl =+ § Ry, g gr |- P iky + pray|8(R) (D.3)
b2 + b3 = ¢(¢) (D.4)
bi= O(e) (D.5)
b5 = - T%'RIJ.%; iﬁ%gli $ (%) (D.6)
b6 = G(e) (D.7)
b7 + b8 = O(e&) (D.8)
b9 + b10 = G(e) (D.9)
b1l + b12 = G(e) (D.10)
b13 + bld = G(e) (D.11)
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dd
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de6
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dil = O(e)

e 5 5 9 LB

- 'S S By Iy gk

- %‘—' SrxrSs " %3 %3 #(%)
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- C“'SIKLSJKL (gzk), %3 (p+?;>;/i§?zk/3) B (k)
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d13 = a' S, S KL (p;§)+ %% piéfzfg $(2)

d16 = J(e&)

d17 = ¢&(e)

el + e9 = U(e)

e2 + el0 = U(e)

ed + ell = ¢(¢)

e5 + el2 = ¢(e&)

e6 = ((¢)

e7 = U(e&)

e8 = ((g)

and Buv

f1 = O(e)

f2 = U(e)

f3 = U(¢)
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Figure Captions

Fig. 1 Graphs contributing to the effective action. The solid
line represents the classical background XB. The wavy
line stands for the weak fields of two-dimensional

metric tensor.

Fig. 2 A half of the world sheet diagram for three closed-
string vertex. The other half, a mirror image of the

figure with respect to the bottom line, is implicit.

Fig. 3 Image of the three string vertex on the complex
Zz-plane.

Fig. 4 Graphs contributing to the effective action.

Fig. 5 Graphs contributing to <T;+(z)>. The cross stands for

the coupling of energy-momentum tensor.

Fig. 6 Graphs contributing to <£I(1)§J(2)T;+(Z)>.
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Fig. 4 (Continued)
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Fig. 6 (continued)
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