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Abstract
In this paper, we study the anabelian geometry of hyperbolic polycurves of dimension 2

over sub-p-adic fields. In 1-dimensional case, Mochizuki proved the Hom version of the
Grothendieck conjecture for hyperbolic curves over sub-p-adic fields and the pro-p version
of this conjecture. In 2-dimensional case, a naive analogue of this conjecture does not hold
for hyperbolic polycurves over general sub-p-adic fields. Moreover, the Isom version of the
pro-p Grothendieck conjecture does not hold in general. We explain these two phenomena and
prove the Hom version of the Grothendieck conjecture for hyperbolic polycurves of dimension
2 under the assumption that the Grothendieck section conjecture holds for some hyperbolic
curves.
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0. Introduction

0. Introduction
Let K be a field, K a separable closure of K, and Y, X normal varieties (cf. Definition 1.3)

over K. Write YK (resp. XK) for the scheme Y ×Spec K Spec K (resp. X ×Spec K Spec K) and
GK for the absolute Galois group Gal (K/K). Take a geometric point ∗Y (resp. ∗X) of YK
(resp. XK). A morphism f : Y → X over K induces a homomorphism

f∗ : π1(Y, ∗Y)→ π1(X, ∗X)

over GK between the étale fundamental groups of Y and X which is uniquely determined up
to inner automorphisms induced by elements of π1(XK , ∗X). Hence, we obtain a natural map

MorK(Y, X)→ HomGK (π1(Y, ∗Y), π1(X, ∗X))/Inn π1(XK , ∗X),
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92 I. Nagamachi

where we write MorK(Y, X) (resp. HomGK (π1(Y, ∗Y), π1(X, ∗X)); Inn π1(XK , ∗X)) for the set of
morphisms from Y to X over K (resp. the set of continuous homomorphisms over GK from
π1(Y, ∗Y) to π1(X, ∗X); the group of inner automorphisms of π1(XK , ∗X)).

In anabelian geometry, the following questions have been studied:

Question 0.1. 1. Write IsomK(Y, X) (resp. IsomGK (π1(Y, ∗Y), π1(X, ∗X))) for the sub-
set of MorK(Y, X) (resp. HomGK (π1(Y, ∗Y), π1(X, ∗X))) consisting of isomorphisms. Is
the map

IsomK(Y, X)→ IsomGK (π1(Y, ∗Y), π1(X, ∗X))/Inn π1(XK , ∗X)

bijective?
2. Write Mordom

K (Y, X) for the subset of MorK(Y, X) consisting of dominant morphisms
and Homopen

GK
(π1(Y, ∗Y), π1(X, ∗X)) for the subset of HomGK (π1(Y, ∗Y), π1(X, ∗X)) con-

sisting of open homomorphisms. Is the map (cf. [4] Lemma 1.3)

Mordom
K (Y, X)→ Homopen

GK
(π1(Y, ∗Y), π1(X, ∗X))/Inn π1(XK , ∗X)

bijective?
3. Suppose that Y = Spec K. (Hence, we have MorK(Y, X) = X(K)). Write

SectGK (π1(X, ∗X)) for the set of sections of the natural surjective homomorphism
π1(X, ∗X)→ GK . Is the map

X(K)→ SectGK (π1(X, ∗X))/Inn π1(XK , ∗X)

bijective?

In the case where K is finitely generated overQ and X is a hyperbolic curve (cf. Definition
1.1.1), Grothendieck conjectured that the maps discussed in Questions 0.1.1, 0.1.2, and a
modified version of the map discussed in Question 0.1.3 (see Conjecture 2.1 for this modified
version) are bijective [2]. Question 0.1.1 (resp. 0.1.2; 0.1.3) is called the Isom version of
the Grothendieck conjecture (resp. the Hom version of the Grothendieck conjecture; the
Grothendieck section conjecture).

Suppose that X is a hyperbolic curve. In the case where K is finitely generated overQ, Y is
also a hyperbolic curve, and at least one of X and Y is affine, Question 0.1.1 was affirmatively
answered by Tamagawa [13]. In the case where K is a sub-p-adic field (i.e., a subfield of a
field finitely generated overQp (cf. Definition 1.4)) and Y is a smooth variety, Question 0.1.2
was affirmatively answered by Mochizuki (cf. [7] Theorem A). Also, the injectivity portion
of Question 0.1.3 was proved in [7] (cf. Lemma 2.2).

Suppose that X is a hyperbolic polycurve (cf. Definition 1.1), that is, a variety X over K
which admits a structure of successive smooth fibrations

(1) X = Xn
fn→ Xn−1

fn−1→ · · · f2→ X1
f1→ Spec K

whose fibers are hyperbolic curves. A hyperbolic polycurve is regarded as a higher dimen-
sional analogue of a hyperbolic curve, and has been studied in anabelian geometry. In the
case where K is sub-p-adic and n ≤ 4, Question 0.1.2 was affirmatively answered by Hoshi
under some conditions (cf. [4] Theorem A). Then he solved Question 0.1.1 as a corollary.
Moreover, in the case where X is a strongly hyperbolic Artin neighborhood ([12] Definition
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6.1) and K is finitely generated over Q, Question 0.1.1 was affirmatively answered by Stix
and Schmidt [12].

Suppose that X is a hyperbolic polycurve of dimension 2. [4] Theorem 3.14, which is a
sort of the Hom version of the Grothendieck conjecture, states that every element of the set

Homopen
GK

(π1(Y, ∗Y), π1(X, ∗X))/Inn π1(XK , ∗X)

with topologically finitely generated kernel arises from an element of the set Mordom
K (Y, X).

(See [6] Theorem B for a generalization of this theorem.) On the other hand, since there
exists a K-morphism f : Y → X which is not dominant and induces an open outer homo-
morphism between the étale fundamental groups, we cannot expect that Question 0.1.2 is
affirmative (cf. [1] XII Corollaire 3.5). However, we can expect that any open outer group
homomorphism from π1(Y, ∗Y) to π1(X, ∗X) over GK arises from a nonconstant K-morphism
from Y to X.

One of the main results of this paper is as follows:

Theorem 0.2 (cf. Theorem 3.4). Suppose that K is a sub-p-adic field and Y is a normal
variety over K. Let X2 → X1 → Spec K be a hyperbolic polycurve of dimension 2 over K
(cf. Definition 1.1.2) and suppose that X = X2. Moreover, suppose that the Grothendieck sec-
tion conjecture (cf. Question 0.1.3 and Conjecture 2.1) holds for every hyperbolic curve over
a field which is finitely generated extension of K with transcendental degree 1 (cf. Remark
3.5). Then each element of

Homopen
GK

(π1(Y, ∗Y), π1(X2, ∗X))/Inn π1(X2,K , ∗X)

arises from an element of Mornonconst
K (Y, X2). Here, Mornonconst

K (Y, X2) denotes the subset of
MorK(Y, X2) consisting of nonconstant morphisms.

In [7], the Isom and Hom versions of the pro-p Grothendieck conjecture for hyperbolic
curves over sub-p-adic fields were studied. Sawada studied the Isom and Hom versions of
the pro-p Grothendieck conjecture for hyperbolic polycurves over sub-p-adic fields under
some conditions on their fundamental groups [11]. In Section 4, we give examples of hy-
perbolic polycurves over sub-p-adic fields which show that the Isom and Hom versions of
the pro-p Grothendieck conjecture for hyperbolic polycurves over sub-p-adic fields do not
hold generally.

The content of each section is as follows:
In Section 1, we give a review of properties of the étale fundamental groups of hyperbolic

polycurves. In Section 2, we review the Grothendieck section conjecture for hyperbolic
curves over sub-p-adic fields. In Section 3, we give a proof of Theorem 0.2. In Section 4,
we give examples of hyperbolic polycurves which show that the anabelianity of hyperbolic
polycurves is weaker than that of hyperbolic curves in some sense.

Terminologies for outer homomorphisms of groups: Let G1 and G2 be profinite groups.
An outer homomorphism G1 → G2 is defined to be an equivalence class of continuous
homomorphisms G1 → G2, where two such homomorphisms are considered equivalent if
they differ by composition with an inner automorphism of G2. Let φ : G1 → G2 be an outer
group homomorphism. Note that the kernel of φ is uniquely determined and the image of φ
is determined uniquely up to conjugation. We shall say that φ is open (or, alternatively, φ is
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an outer open homomorphism) if the image of φ is open.

1. Notation and basic properties of the étale fundamental groups of hyperbolic
curves

1. Notation and basic properties of the étale fundamental groups of hyperbolic
curves

In this section, we fix some notations and definitions. We also prove some properties of
inertia subgroups of the étale fundamental groups of hyperbolic curves (cf. Proposition 1.5).

We start with the definition of hyperbolic curves.

Definition 1.1. Let S be a scheme.
1. We shall say that a scheme X is a hyperbolic curve over S if the following conditions

are satisfied:
• X is a scheme over S.
• There exists a scheme X proper smooth over S with connected 1-dimensional

geometric fibers of genus g.
• There exists an effective Cartier divisor D of X which is finite étale over S of

rank r.
• The open subscheme X \ D of X is isomorphic to X over S.
• 2g + r − 2 > 0.

2. We shall say that X2 → X1 → S is a hyperbolic polycurve of relative dimension 2
over S if X2 → X1 and X1 → S are hyperbolic curves.

Remark 1.2. Let S be a normal scheme and X a hyperbolic curve over S. Then a pair of
schemes (X,D) which satisfies the conditions in Definition 1.1.1 is uniquely determined by
X up to canonical isomorphism from the argument given in the discussion entitled“Curves”
in [9] §0. We shall refer to D as the divisor of cusps of the hyperbolic curve X → S.

Definition 1.3. Let K be a field. We shall say that a scheme X over K is a variety if the
morphism X → Spec K is separated and of finite type with geometrically connected fibers.

Definition 1.4. Let p be a prime number. We shall say that a field K is a sub-p-adic field
if there exist a finitely generated extension field L over Qp and an injective homomorphism
from K to L.

Proposition 1.5. Let S be a connected locally Noetherian separated normal scheme over
Q and X → S a hyperbolic curve. Write D for the divisor of cusps of X → S.

1. The divisor D is a disjoint union of finitely many normal schemes which are étale
over S.

2. Let D0 be an irreducible component of D. Take a geometric point ∗ of X. Choose a
decomposition group Gd of D0 in π1(X, ∗) and write Gd for the image of Gd in π1(S, ∗).
Then we have the following natural commutative diagram of profinite groups with
exact horizontal lines and injective vertical arrows:
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(2) 1 ��
̂Z(1) ��

��

��

Gd��

��

�� Gd
��

��

��

1

1 �� ΔX/S �� π1(X, ∗) �� π1(S, ∗) �� 1.

Here, we write ΔX/S for the kernel of the homomorphism π1(X, ∗) → π1(S, ∗). More-
over, Gd is isomorphic to the étale fundamental group of D0 in a canonical way up to
inner automorphism of π1(S, ∗).

3. Let S′ be another connected locally Noetherian separated normal scheme and S′ → S
a dominant morphism. Suppose that ∗ → X factors through ∗ → X ×S S′ → X. Write
D′0 for the irreducible component of the divisor of cusps of X ×S S′ → S′ over D0

determined by Gd and G′d for the decomposition group of D′0 in π1(X ×S S′, ∗) over
Gd. Then we have a natural isomorphism G′d � Gd ×π1(S,∗) π1(S′, ∗).

Proof. Since the morphism D → S is étale, the assertion 1 holds. Next, we show the
assertion 2. We may assume that ∗ is a geometric generic point. Let K(S) be the function
field of S and GK(S) the absolute Galois group of K(S) determined by ∗. Write XK(S) for the
scheme X ×S Spec K(S). Then D0 ×S Spec K(S) is an irreducible component of the divisor of
cusps of the hyperbolic curve XK(S) → Spec K(S). Choose a decomposition group GK(S)

d of

D0 ×S Spec K(S) in π1(XK(S), ∗) over Gd and write Gd
K(S)

for the image of GK(S)
d in GK(S). We

obtain the following diagram of profinite groups with exact horizontal lines by [13] Lemma
(2.2) and [4] Proposition 2.4 (i)(ii):

1 ��
̂Z(1) ��

��

��

GK(S)
d��

��

�� Gd
K(S) ��
��

��

1

1 �� ΔX/S �� π1(XK(S), ∗)

����

�� GK(S) ��

����

1

1 �� ΔX/S �� π1(X, ∗) �� π1(S, ∗) �� 1.

Note that D0 ×S Spec K(S) is the spectrum of a finite separable extension field of K(S) and,
by [13] Lemma (2.2), Gd

K(S)
is isomorphic to the absolute Galois group of this field. Since

the homomorphism GK(S)
d → Gd is surjective and D0 is finite étale over S, the assertion 2

holds. The assertion 3 follows from the assertion 2 and [4] Proposition 2.4 (i)(ii). �

2. The Grothendieck section conjecture

2. The Grothendieck section conjecture
In this section, we recall the Grothendieck section conjecture for hyperbolic curves over

sub-p-adic fields.
Let K be a field of characteristic 0, K an algebraic closure of K, GK the absolute Galois

group Gal (K/K), X a hyperbolic curve over K, and D the divisor of cusps of the hyperbolic
curve X. Write XK for the scheme X ×Spec K Spec K. Take a geometric point ∗ of XK . Write
SectGK (π1(X, ∗)) for the set of continuous sections of the homomorphism π1(X, ∗)→ GK .

First, we state “the Grothendieck section conjecture” in a general setting.
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Conjecture 2.1 (cf. Question 0.1.3). 1. Suppose that X is a proper hyperbolic curve
over K. Then the natural map

(3) X(K)→ SectGK (π1(X, ∗))/Inn π1(XK , ∗)
is bijective.

2. Write SectCD
GK

(π1(X, ∗)) for the subset of SectGK (π1(X, ∗)) consisting of sections whose
images are contained in a decomposition group of some closed point of D. Then the
map (3) induces a map

(4) X(K)→ (SectGK (π1(X, ∗)) \ SectCD
GK

(π1(X, ∗)))/Inn π1(XK , ∗)
and this map is bijective (cf. Example 2.4.1).

Lemma 2.2. Suppose that K is a sub-p-adic field. The map (4) is well-defined and injec-
tive.

Proof. The well-definedness portion follows from the proof of [10] Theorem 1.3 (iv) and
[7] Theorem C. The injectivity portion follows from [7] Theorem C. �

Remark 2.3. 1. Suppose that K is a generalized sub-p-adic (not necessarily sub-
p-adic) field. In this case, as written in [3] Introduction, the injectivity portion of
Lemma 2.2 also holds (cf. the proof of [7] Theorem C and [8] Theorem 4.12 and Re-
mark following Theorem 4.12). Moreover, the well-definedness portion of Lemma
2.2 also holds by its proof.

2. There exist (generalized) sub-p-adic fields such that the Grothendieck section con-
jecture does not hold for hyperbolic curves over them. Let p be a prime number and
suppose that K is the field of fractions of a henselization of Z(p). Write ̂K for the

completion of the field K. Let ̂K be an algebraic closure of ̂K and fix an embed-

ding K ↪→ ̂K over K. Then we have Gal(K/K) � Gal(̂K/̂K). Suppose that X(̂K)
has uncountably infinitely many ̂K-rational points. (For example, suppose that X
has a K-rational point x and a finite morphism X → P1

K étale at x. Then, by the
theory of locally analytic manifolds and the implicit function theorem, X has un-
countably infinitely many ̂K-rational points.) Since the cardinality of the set X(K) is
at most countable, the induced map X(K) → X(̂K) is not surjective. Therefore, the
Grothendieck section conjecture for X does not hold.

Example 2.4. Suppose that D has a K-rational point x.
1. We show that, in the case where X is affine, the map (3) is not surjective in general.

The decomposition group of x in the fundamental group π1(X, ∗) is isomorphic to the
absolute Galois group GK((T )) of the field of Laurent series over K by [13] Lemma
(2.2). Since the characteristic of K is 0, there exists a continuous section of the ho-
momorphism GK((T )) → GK . (Indeed, we can construct such a section by considering
a compatible system (T 1/n)n≥1.) Therefore, we obtain a section GK → π1(X, ∗) which
is not defined by a rational point of X by Lemma 2.2.

2. Here, we give an example of outer homomorphism over GK between the étale fun-
damental group of hyperbolic curves over K. We do not fix geometric points and do
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not write base points of étale fundamental groups. The morphism Spec K((T )) →
Spec K[T, 1/T ] induces an outer isomorphism

(GK((T )) = ) π1(Spec K((T )))→ π1(Spec K[T,
1
T

])

between their fundamental groups. By composing the surjective outer homomor-
phism π1(P1

K \ {0, 1,∞}) → π1(Spec K[T, 1
T ]) induced by the open immersion P1

K \
{0, 1,∞} → Spec K[T, 1

T ], the inverse of the above outer isomorphism, and an outer
isomorphism from GK((T )) to a decomposition group of x in π1(X), we obtain an outer
homomorphism φ : π1(P1

K \ {0, 1,∞}) → π1(X) whose image is a decomposition
group of x. Therefore, Im φ neither is open in π1(X) nor determines a section of the
homomorphism π1(X)→ GK .

3. Sections for hyperbolic polycurves of dimension 2

3. Sections for hyperbolic polycurves of dimension 2
In this section, we prove the Hom version of the Grothendieck conjecture for morphisms

from regular varieties to hyperbolic polycurves of dimension 2 over sub-p-adic fields under
the assumption that the Grothendieck section conjecture for hyperbolic curves holds.

Let K be a field of characteristic 0, X2 → X1 → Spec K a hyperbolic polycurve of
dimension 2 over K, K1 the function field of X1, K1 an algebraic closure of K1, and K the
algebraic closure of K in K1. Write GK (resp. GK1 ) for the absolute Galois group Gal(K1/K1)
(resp. Gal(K/K)) and X2,K1 for the scheme X2 ×X1 Spec K1. In this section, for any normal
variety W over K or K1, we consider a geometric point of W ×Spec K Spec K or W ×Spec K1

Spec K1 and write ΠW (resp.ΔW) for the étale fundamental group of W (resp. W ×Spec K

Spec K or W ×Spec K1 Spec K1). We omit base points of étale fundamental groups in this
notation, because we only consider outer homomorphisms unless otherwise noted. Write
Δ2,1 for the kernel of the homomorphism ΠX2 → ΠX1 induced by the structure morphism
X2 → X1. Since the profinite group ΠX2,K1

is isomorphic to the profinite group ΠX2 ×ΠX1
GK1

by [4] Proposition 2.4 (ii), we have the following commutative diagram of profinite groups
with exact horizontal lines:

1 �� Δ2,1 �� ΠX2,K1

��

�� GK1

��

�� 1

1 �� Δ2,1 �� ΠX2
�� ΠX1

�� 1.

We write SectΠX1
(ΠX2 ) for the set of continuous sections of the homomorphism ΠX2 → ΠX1 .

Let (X2,D) be the smooth compactification of the hyperbolic curve X2 → X1 (cf. Remark
1.2). Since X1 is normal, we have a decomposition D = �

1≤i≤n
Di by Proposition 1.5.1, where

each Di is a normal scheme. Write θi for the generic point of Di. We shall write SectCD
ΠX1

(ΠX2 )
for the set of continuous sections of the homomorphism ΠX2 → ΠX1 whose images are
contained in a decomposition group of some θi in ΠX2 .

Lemma 3.1. There exists a natural injective map

SectΠX1
(ΠX2 )/Inn (Δ2,1)→ SectGK1

(ΠX2,K1
)/Inn (Δ2,1)

which induces a map
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SectCD
ΠX1

(ΠX2 )/Inn (Δ2,1)→ SectCD
GK1

(ΠX2,K1
)/Inn (Δ2,1)

and a map

(SectΠX1
(ΠX2 ) \ SectCD

ΠX1
(ΠX2 ))/Inn (Δ2,1)

→(SectGK1
(ΠX2,K1

) \ SectCD
GK1

(ΠX2,K1
))/Inn (Δ2,1).

Proof. Since the group ΠX2,K1
is isomorphic to the group ΠX2 ×ΠX1

GK1 by [4] Proposition
2.4 (ii), we obtain a natural map

SectΠX1
(ΠX2 )/Inn (Δ2,1)→ SectGK1

(ΠX2,K1
)/Inn (Δ2,1).

The injectivity of this map follows from the surjectivity of the homomorphism GK1 → ΠX1 .
Let sX : ΠX1 → ΠX2 be a section of the homomorphism ΠX2 → ΠX1 and θ an element of

{θi | 1 ≤ i ≤ n}. Write GXK
d for a decomposition group of θ in ΠX2,K1 and GX

d for the image
of GXK

d in ΠX2 . Note that GX
d coincides with a decomposition group of θ in ΠX2 . Write sXK

for the section of the homomorphism ΠX2,K1
→ GK1 determined by sX . It suffices to show

that the image of the homomorphism sXK is contained in GXK
d if and only if the image of

the homomorphism sX is contained in GX
d . This follows from Proposition 1.5.3. Hence, we

finish the proof of Lemma 3.1. �

Theorem 3.2. Let X2 → X1 → Spec K be a hyperbolic polycurve of dimension 2 over
K. Suppose that the Grothendieck section conjecture holds for the hyperbolic curve X2,K1 →
Spec K1. Then the natural map

(5) SectX1 (X2)→ (SectΠX1
(ΠX2 ))/Inn (Δ2,1)

factors through

(6) SectX1 (X2)→ (SectΠX1
(ΠX2 ) \ SectCD

ΠX1
(ΠX2 ))/Inn (Δ2,1)

and the homomorphism (6) is bijective.

Proof. Consider the following diagram:

SectX1 (X2) ��
��

��

��
(Π \CD)

��

��

� � �� (Π)
��

��
X2,K1 (K1) �� (G \CD) � � �� (G),

where we write (Π \ CD) (resp.(Π); (G \ CD); (G)) for the set
(SectΠX1

(ΠX2 ) \ SectCD
ΠX1

(ΠX2 ))/Inn (Δ2,1) (resp. (SectΠX1
(ΠX2 ))/Inn (Δ2,1); (SectGK1

(ΠX2,K1
) \

SectCD
GK1

(ΠX2,K1
))/Inn (Δ2,1); (SectGK1

(ΠX2,K1
))/Inn (Δ2,1)). The right rectangle is discussed in

Lemma 3.1. The first vertical arrow is induced by base change, and hence injective. The
curved arrow in the first horizontal line is (5) and the biggest rectangle of the diagram is
commutative. The left homomorphism of the second horizontal line is bijective by the as-
sumption of Theorem 3.2. By using these discussion and Lemma 3.1, (6) is induced and
injective. Moreover, each element of
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(SectΠX1
(ΠX2 ) \ SectCD

ΠX1
(ΠX2 ))/Inn (Δ2,1)

is defined by a section of the morphism X2 → X1 by [4] Lemma 2.10 and the surjectivity
of the first homomorphism of the second horizontal line. Hence, we finish the proof of
Theorem 3.2. �

Corollary 3.3. Suppose that the morphism X2 → X1 is proper and the Grothendieck sec-
tion conjecture holds for the hyperbolic curve X2,K1 → Spec K1. Then the map SectX1 (X2)→
SectΠX1

(ΠX2 )/Inn (Δ2,1) is bijective.

Proof. Since the morphism X2 → X1 is proper, we have SectCD
ΠX1

(ΠX2 ) = ∅. Therefore,
Corollary 3.3 follows from Theorem 3.2. �

Theorem 3.4. Suppose that K is a sub-p-adic field. Let Y be a normal variety over K.
Suppose that the Grothendieck section conjecture holds for every hyperbolic curve over a
field which is finitely generated over K of transcendental degree 1 (cf. Remark 3.5). Then, for
any outer open homomorphism φ ∈ Homopen

GK
(ΠY ,ΠX2 )/Inn(ΔX), there exists a nonconstant

morphism Y → X inducing φ.

Proof. Write φ1 for the composite outer homomorphism

ΠY
φ→ ΠX2 → ΠX1 .

Then the outer homomorphism φ1 is induced by a unique dominant K-morphism f1 : Y →
X1 by [4] Theorem 3.3. Write K′1 for the normalization of K1 in the function field of Y , η for
the scheme Spec K′1, X′1 for the open subscheme of the normalization of X1 in K′1 determined
by the image of Y , Yη for the scheme Y ×X′1 η, and GK′1 for the étale fundamental group of
η (, which is isomorphic to the absolute Galois group of K′1). Then we have the following
commutative diagram of profinite groups:

Ker (ΠYη → GK′1 ) ��

��

ΠYη

����

�� GK′1

ΠY

φ
������������� ΠX2 ×ΠX1

GK′1
��

��

GK′1

��
Δ2,1 �� ΠX2

�� ΠX1 .

If the image of the induced outer homomorphism

(7) Ker (ΠYη → GK′1 )→ Δ2,1

is nontrivial, φ arises from a morphism Y → X2 over K by [4] Lemma 3.4 (iv). Sup-
pose that the outer homomorphism (7) is trivial. Note that we have natural isomorphisms
ΠX2×X1η

� ΠX2 ×ΠX1
GK′1 and Ker(ΠX2×X1η

→ GK′1 ) � Δ2,1 by [2] Proposition 2.4 (ii) and the
outer homomorphism ΠYη → GK′1 is surjective. Hence, the image of the induced outer ho-
momorphismΠYη → ΠX2×X1η

defines a section s of the outer homomorphismΠX2×X1η
→ GK′1 .

Suppose that
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s ∈ SectCD
GK′1

(ΠX2×X1η
)/Inn(Δ2,1).

Then the group Im(ΠYη → ΠX2 ) is not open inΠX2 by Proposition 1.5.2 and 3. Since the outer
homomorphism ΠYη → ΠY is surjective, the image of φ coincides with Im(ΠYη → ΠX2 ).
Therefore, the image of φ is not open, which contradicts the assumption on φ. By the
Grothendieck section conjecture for the hyperbolic curve X2 ×X1 η → η, we have a K′1-
morphism Yη → X2 ×X1 η inducing the outer homomorphism ΠYη → ΠX2×X1η

. Then by
[4] Lemma 2.10, there exists a K-morphism Y → X2 inducing φ such that the composite
morphism Yη → Y → X2 coincides with the composite morphism Yη → X2 ×X1 η → X2.

�

Remark 3.5. Let Y be as in Theorem 3.4. Suppose that the Grothendieck section con-
jecture holds for every hyperbolic curve over a field which is finitely generated over K of
transcendental degree dim Y and the morphism X2 → X1 is proper. Write η (resp. Gη) for
the spectrum (resp. the absolute Galois group) of the function field of Y . Then we have a
diagram of profinite groups

Gη

�� φη �� ��������������������

��������������������

ΠY

φ ����
��

��
��

�
ΠX2×X1η

��

��

Gη

��
ΠX2

�� ΠX1 ,

where φη is the outer homomorphism induced by using the isomorphism

ΠX2×X1η
� ΠX2 ×ΠX1

Gη.

By Grothendieck section conjecture and [4] Lemma 2.10, we can prove that φ is induced by
a K-morphism Y → X2. Then we can show Theorem 3.4 without using the assumption that
φ is open.

4. Examples of hyperbolic polycurves

4. Examples of hyperbolic polycurves
In this section, we give examples of hyperbolic polycurves which show that the anabelian-

ity of hyperbolic polycurves is weaker than that of hyperbolic curves in some sense.
As we write in Section 0, Mochizuki proved the Hom version of the pro-p Grothendieck

conjecture for hyperbolic curves over sub-p-adic fields (cf. [7]). Moreover, Sawada proved
a pro-p analogue of [4] Theorem A under a certain assumption on the étale fundamental
groups of hyperbolic polycurves (cf. [11]). We construct examples which show that the
Isom version of the pro-p Grothendieck conjecture for hyperbolic polucurves over sub-p-
adic fields does not hold in general in this section.

Let K be a field of characteristic 0, K an algebraic closure of K, and p a prime number.

Notation-Definition 4.1. 1. Let G be a profinite group. We write Gp for the maximal
pro-p quotient of G (i.e., the inverse limit of the inverse system consisting of the
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quotient groups of G by open normal subgroups such that the orders of the quotient
groups are powers of p).

2. For any variety X over K, we write ΠX (resp.ΔX; Π(p)
X ) for the étale fundamental

group of X (resp. the étale fundamental group of X ×Spec K Spec K; the quotient group
ΠX/Ker(ΔX → Δp

X)) in this section.

First, we prove an elementary lemma.

Lemma 4.2. Let

1→ N → G → H → 1

be an exact sequence of profinite groups.

1. We have an exact sequence

(N/[N,Ker(G → Gp)])p → Gp → Hp → 1.

Here, “[−,−]” denotes the topological closure of the commutator subgroup.
2. Suppose that we have a section s : H → G of the homomorphism G → H and

write NKer(H→Hp) for the maximal quotient group of N on which Ker(H → Hp) acts
trivially. Then we have an exact sequence

(NKer(H→Hp))p → Gp → Hp → 1.

Proof. 1. Since the image of [N,Ker(G → Gp)] in Gp is trivial, we obtain an exact
sequence

N/[N,Ker(G → Gp)]→ Gp → Hp → 1

and hence also an exact sequence

(N/[N,Ker(G → Gp)])p → Gp → Hp → 1.

2. Since we have s(Ker(H → Hp)) ⊂ Ker(G → Gp), the assertion follows from 1.
�

We show a lemma for Example 4.4.

Lemma 4.3. Suppose that p � 2. Let H be a hyperelliptic curve over K and ι the
hyperelliptic involution of H. Suppose that there exist K-rational points h, h′ of H which are
fixed by the action of ι. By considering a geometric point over the fixed point h, we obtain
actions of ι on ΔH\{h′} and ΔH. Then we have (ΔH)p

〈ι〉 = {1} and (ΔH\{h′})
p
〈ι〉 = {1}.

Proof. Since the profinite groups ΔH\{h′} and ΔH are topologically finitely generated, it
suffices to show that (ΔH)p,ab

〈ι〉 = {1} and (ΔH\{h′})
p,ab
〈ι〉 = {1}. By [5] Lemma 1.11, the action

of ι on the abelian profinite group (Δp,ab
H\{h′}) � (Δp,ab

H ) is same as the multiplication by −1.
Therefore,

(Δp,ab
H )〈ι〉 = Δ

p,ab
H /2Δ

p,ab
H = {1}.

�
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Example 4.4. Suppose that p � 2 and K is a finite extension field of Qp. We construct a
proper hyperbolic polycurve Z over a field K, such that the natural map

IsomK(Z, Z)→ IsomGK (Π(p)
Z ,Π

(p)
Z )/Inn(Δp

Z)

is not injective. Here, IsomK(Z, Z) is the set of automorphisms of Z over K, and
IsomGK (Π(p)

Z ,Π
(p)
Z ) is the set of automorphisms of Π(p)

Z over GK . This shows that it is impos-
sible to detect an automorphism of a hyperbolic polycurve from the corresponding GK-outer
automorphism of its pro-p fundamental group. In particular, the Isom version of the pro-p
Grothendieck conjecture, which is true for hyperbolic curves ([7]) or hyperbolic polycurves
with suitable conditions up to dimension 4 ([11]), cannot be true for general hyperbolic
polycurves.

Let X1 be a proper hyperbolic curve over K, and assume that there exists a homomor-
phism ΠX1 → Z/2Z which induces a surjection ΔX1 → Z/2Z. We write X′1 → X1 for the
étale covering space of X1 corresponding to Ker (ΠX1 → Z/2Z) and ι1 for a generator of
Aut(X′1/X1). Let X2 be a hyperbolic curve over K whose automorphism group over K has
a subgroup isomorphic to Z/2Z = 〈ι2〉 such that X2 has a fixed point x2 under the action
of Z/2Z(= 〈ι2〉). Moreover, assume that the maximal quotient group (ΔX2 )

p
Z/2Z of (ΔX2 )

p on
which Z/2Z acts trivially via a geometric point over x2 is trivial (cf. Lemma 4.3).

Consider the action of Z/2Z on X2 ×Spec K X′1 induced by (ι2, ι1). Write Z for the quotient
scheme of X2 ×Spec K X′1 by this Z/2Z-action. By construction, we have a Cartesian diagram

X2 ×Spec K X′1 ��

��

X′1

��
Z �� X1.

Since the morphism X′1 → X1 is finite etale, Z → X1 is a hyperbolic curve whose geometric
generic fiber coincides with that of X2 ×Spec K X′1 → X′1. Hence, we obtain exact sequences
of profinite groups

1→ ΔX2 → ΠZ → ΠX1 → 1

and

1→ ΔX2 → ΔZ → ΔX1 → 1

by [4] Proposition 2.4 (i). Since the section X′1 → X2 ×Spec K X′1 of the morphism X2 ×Spec K

X′1 → X′1 determined by the point x2 is compatible with the actions of Z/2Z, we have
a section X1 → Z of the morphism Z → X1 by taking the quotient schemes by Z/2Z.
Therefore, the homomorphism ΠZ → ΠX1 has a section which also determines a section of
the homomorphism ΔZ → ΔX1 . Consider the following restriction (to ΔX1 ) of the action of
ΠX1 on ΔX2 induced by the section:

(8) ΔX1 (⊂ ΠX1 )→ Aut(ΔX2 ).

By the construction of Z, the action (8) coincides with the composite homomorphism
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　 ΔX1 → ΔX1/ΔX′1 � ΠX1/ΠX′1

= 〈ι1〉 � Z/2Z
� 〈ι2〉 ⊂ { f ∈ Aut(X2/Spec K) | f (x2) = x2} → Aut(ΔX2 ).

Since the image of the restriction of the action (8) to the subgroup Ker(ΔX1 → Δp
X1

), i.e.,
the image of the composite homomorphism

Ker(ΔX1 → Δp
X1

) ⊂ ΔX1 (⊂ ΠX1 )→ Aut(ΔX2 ),

is 〈ι2〉 by the assumption 2 � p, the group Ker (Δp
Z → Δp

X1
) is a quotient group of (ΔX2 )

p
〈ι2〉 by

Lemma 4.2.2. Thus, we have

Δ
p
Z � Δ

p
X1

by the assumption that (ΔX2 )
p
〈ι2〉 is trivial. Hence, we have

Π
(p)
Z � Π

(p)
X1
.

It suffices to show that the scheme Z has a nontrivial automorphism over X1, since such
an automorphism induces the trivial outer automorphism of Π(p)

Z (� Π(p)
X1

) (over GK). Since
the automorphism (ι2, idX′1 ) of X2 ×Spec K X′1 over X′1 is compatible with the diagonal action
of Z/2Z, this automorphism defines a nontrivial automorphism of Z over X1.

Even if we change X2 to another hyperbolic curve satisfying the above condition for X2,
the geometrically pro-p étale fundamental group (Π(p) = Π/Ker(Δ → Δp)) of the resulting
polycurve is isomorphic toΠ(p)

Z over GK , since we have the isomorphismΠ(p)
Z � Π

(p)
X1

. There-
fore this example gives a counterexample to the Isom version of the pro-p Grothendieck
conjecture for hyperbolic polycurves. Since we have the isomorphism Δp

Z � Δ
p
X1

, we can-
not even determine the dimension of a hyperbolic polycurve X over K from its pro-p étale
fundamental group Δp

X .

Example 4.5. We give another example of non-isomorphic hyperbolic polycurves over a
mixed characteristic local field K with residual field of characteristic p and of order q, whose
geometrically pro-p étale fundamental groups are isomorphic over GK . This gives another
counterexample to the Isom version of the pro-p Grothendieck conjecture for hyperbolic
polycurves.

Let l be a prime number such that l|q − 1. Let X2 be the hyperbolic curve P1
K \ ({∞} ∪ μl)

over K. Fix a primitive l-th root of unity ζ ∈ μl. Let ι : P1
K → P1

K be the automorphism
z �→ zζ. The morphism ι induces a Z/lZ-action on X2 over K which fixes 0 ∈ X2. Let X1

be a hyperbolic curve over K, and assume that there exists a homomorphism ΠX1 → Z/lZ
which induces a surjection ΔX1 → Z/lZ. We can obtain a scheme Z via the construction
same as that in Example 4.4 by replacing Z/2Z by Z/lZ. Then the fixed point 0 ∈ X2 defines
a section X1 → Z, which determines sections ΔX1 → ΔZ and ΠX1 → ΠZ . Since p � l, we
obtain an exact sequence

(ΔX2 )
p
〈ι〉 → Δp

Z → Δp
X1
→ 1

by using the same argument as that in Example 4.4. The group (ΔX2 )
p,ab
〈ι〉 is generated by

1 element, which shows that the group (ΔX2 )
p
〈ι〉 is an abelian group. Therefore, the kernel
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of the homomorphism Δp
Z → Δp

X1
is a quotient group of (ΔX2 )

ab
〈ι〉. Since we have (ΔX2 )

ab
〈ι〉 =

(ΔX2 )
ab
ΔX1
= (ΔX2/[ΔX2 ,ΔX2 ])ΔX1

= ΔX2/[ΔX2 ,ΔZ], we obtain the commutative diagram with
exact horizontal lines

1 �� ΔX2
��

��

ΔZ ��

��

ΔX1
��

��

1

1 �� (ΔX2 )
ab
〈ι〉 �� ΔZ/[ΔX2 ,ΔZ] �� ΔX1

�� 1.

The second line of this diagram also splits, and thus we have the decomposition

ΔZ/[ΔX2 ,ΔZ] = (ΔX2 )
ab
〈ι〉 × ΔX1 ,

and hence the decomposition (ΔZ/[ΔX2 ,ΔZ])p � (ΔX2 )
p,ab
〈ι〉 × Δp

X1
. Since

(ΔX2 )
p
〈ι〉 � (ΔX2 )

p,ab
〈ι〉 ,

we have the isomorphism Δp
Z � (ΔZ/[ΔX2 ,ΔZ])p, and therefore we obtain the decomposition

Δ
p
Z = (ΔX2 )

p,ab
〈ι〉 ×Δp

X1
. Note that Δab

X2
is isomorphic tôZ(1)⊗Z ( ⊕

z∈μl

Zez) as a ΠX1 -module. This

shows that Π(p)
Z (= ΠZ/Ker(ΔZ → Δp

Z)) is isomorphic to Zp(1)�Π(p)
X1

, which is defined by the
action

Π
(p)
X1

(= ΠX1/Ker(ΔX1 → Δp
X1

))→ GK → Aut(Zp(1)).

Therefore, Π(p)
Z does not depend on l. Moreover, if we consider the étale covering space of

Z corresponding to pnZp(1)�Π(p)
X1
⊂ Zp(1)�Π(p)

X1
, its geometrically pro-p étale fundamental

group is isomorphic to Zp(1) � Π(p)
X1

over GK . However, the Euler characteristic of the étale
covering space is larger than that of Z and therefore it is not isomorphic to Z.

Note that the order of the group Aut(Π(p)
Z )/Inn(Δp

Z) is infinite since it contains Z×p . Also,
note that the group Δp

Z is not center-free.
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[2] A. Grothendieck: Letter to G. Faltings; in Geometric Galois Actions, 1, London Math. Soc. Lecture Note
Ser. 242, Cambridge Univ. Press, Cambridge, 1997, 285–293.



Grothendieck Conjecture for 2-Dimensional Hyperbolic Polycurves 105

[3] Y. Hoshi: Existence of nongeometric pro-p Galois sections of hyperbolic curves, Publ. Res. Inst. Math. Sci.
46 (2010), 829–848.

[4] Y. Hoshi: The Grothendieck conjecture for hyperbolic polycurves of lower dimension, J. Math. Sci. Univ.
Tokyo 21 (2014), 153–219.

[5] Y. Hoshi: Finiteness of the moderate rational points of once-punctured elliptic curves, Hokkaido Math. J.
45 (2016), 271–291.

[6] Y. Hoshi: Homotopy sequences for varieties over curves, Kobe J. Math. 37 (2020), 41–66.
[7] S. Mochizuki: The local pro-p anabelian geometry of curves, Invent. Math. 138 (1999), 319–423.
[8] S. Mochizuki: Topics surrounding the anabelian geometry of hyperbolic curves; in Galois Groups and

Fundamental Groups, Math. Sci. Res. Inst. Publ. 41, Cambridge Univ. Press, Cambridge, 2003, 119–165.
[9] S. Mochizuki: The absolute anabelian geometry of hyperbolic curves; in Galois Theory and Modular

Forms, Dev. Math. 11, Kluwer Acad. Publ., Boston, MA, 2004, 77–122.
[10] S. Mochizuki: Galois sections in absolute anabelian geometry, Nagoya Math. J. 179 (2005), 17–45.
[11] K. Sawada: Pro-p Grothendieck conjecture for hyperbolic polycurves, Publ. Res. Inst. Math. Sci. 54 (2018),

781–853.
[12] A. Schmidt and J. Stix: Anabelian geometry with étale homotopy types, Ann. of Math. (2) 184 (2016),

817–868.
[13] A. Tamagawa: The Grothendieck conjecture for affine curves, Compos. Math. 109 (1997), 135–194.

Research Institute for Mathematical Sciences
Kyoto University
Japan
e-mail: nagamachi.ippei@gmail.com



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.53333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 150
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


