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Abstract
We generalize Murai’s conjecture on an upper bound for the number of irreducible p-Brauer

characters in the principal block to an arbitrary block. We prove that the new conjecture has
an affirmative answer for tame blocks and blocks with cyclic defect groups. In addition we
confirm Murai’s conjecture for symmetric and alternating groups.

1. Introduction

1. Introduction
Throughout the paper p is always a prime and G a finite group. Let |G|p′ denote the p′-part

of |G| and

Gp′ = {g | g ∈ G, g is a p′-element}
the set of p-regular elements in G. By IBrp(G) and IBrp(B) we denote the set of irreducible
p-Brauer characters of G, resp. of a p-block B of G with respect to a sufficiently large field
K of characteristic p. Moreover, by CB we always denote the Cartan matrix of a p-block B.

Let l(B) = | IBrp(B)|, k(B) = | IrrC(B)| and let B0 be the principal p-block of G.

In [14], Murai conjectured that always l(B0) ≤ |Gp′ |
|G|p′ .

As Maurai carried out in his paper, an affirmative answer has many interesting conse-
quences. For instance, Brauer’s conjecture k(B) ≤ |D|, where D is the defect group of B,
holds for principal p-blocks ([14], Proposition 1.2). In particular, Brauer’s conjecture holds
true for any p-block of a p-solvable group ([14], Proposition 1.3).

To be brief we put m(G) = mp(G) = |Gp′ |
|G|p′ . Note that p � mp(G), by ([6], Lemma 15.14).

Proposition 1.1. If P ∈ Sylp(G), then

m(G) ≡ m(NG(P)) � 0 mod p.

Proof. We may assume that N = NG(P) < G and proceed by induction on the order |G| of
G. Suppose that Z ≤ Z(G) is a p-group. By ([14], Lemma 2.1), we have m(G) ≥ m(G/Z).
On the other hand, a direct calculation shows that m(G/Z) ≥ m(G). Hence m(G/Z) = m(G).
So we may assume that Z(G) is a p′-group.

Let {xi | i ∈ I} ⊆ P be a complete set of representatives of the conjugacy classes in G
consisting of p-elements. Then, by ([14], Formula (1.2.2)), we have
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0 ≡ |G|p =
∑

i
|G|p
|CG(xi)|p m (CG (xi))

≡ m(G) +
∑

1�xi∈Z(P) m (CG (xi)) mod p.

Similarly, let
{
y j | j ∈ J

}
⊂ P be a complete set of representatives of the conjugacy classes

in N consisting of p-elements. Then

0 ≡ |N|p ≡ m(N) +
∑

1�y j∈Z(P) m
(
CN

(
y j

))
mod p.

An application of Burnside’s Lemma ([19], Lemma 10.20) shows that Z(N) is a p′-group
and that those xi and y j in Z(P) can actually be chosen to be the same. Thus

m(G) +
∑

1�xi∈Z(P)

m (CG (xi)) ≡ m(N) +
∑

1�xi∈Z(P)

m (CN (xi)) mod p.

Note that

P ≤ CN(xi) = N ∩CG(xi) = NCG(xi)(P).

Hence, by induction, we get

m(CN(xi)) = m(NCG(xi)(P)) ≡ m(CG(xi)) mod p,

from which the assertion follows. �

2. A generalization of Murai’s conjecture.

2. A generalization of Murai’s conjecture.
Let B be a p-block of G. For {β1, β2, . . . , βl} = IBrp(B) we put

γi j = 〈βi, β j〉◦ = 1
|G|

∑
x∈Gp′
βi(x)β j(x−1).

Note that ΓB = (γi j) is the inverse of the Cartan matrix CB of B ([4], Chap. IV, Lemma 3.7).
If B = B0 is the principal block, then β1 = 1G will always denote the trivial Brauer character.

Lemma 2.1. We have γ11|G|p = m(G).

Proof. This follows immediately by

γ11 = 〈1G, 1G〉◦ = 1
|G|

∑
x∈Gp′

1G(x) =
|Gp′ |
|G| .

�

Example 2.2. Now let G = SL(2, 5) and p = 2. Then the principal 2-block B0 of G has 3
irreducible Brauer characters, and

CB0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
8 4 4
4 4 2
4 2 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(see for instance ([6], Example 13.9)). For its inverse one easily computes
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C−1
B0
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3
8 − 1

4 − 1
4

− 1
4

1
2 0

− 1
4 0 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Thus, by Lemma 2.1, we have

l(B0) = 3 =
3
8
· 8 = γ11|G|2 = m2(G) = m(G).

Let pa(β) denote the Hilbert divisor of β ∈ IBrp(G) (for the definition and facts on Hilbert
divisors we refer to [11]). If IBr2(G) = {1G = β1, β2, β3}, then a(β1) = 3 and a(βi) = 2 for
i = 2, 3. Thus

γii2a(βi) =
1
2
· 4 = 2 < l(B0)

for i = 2, 3. However, in general γββ · pa(β) < l(B) for a(β) < d, where d is the defect of B,
does not always hold true.

Note that, by the proof of ([11], Theorem 2.1 a)), we always have pa(β)γββ ∈ N for
β ∈ IBrp(G). Based on many examples we conjecture the following.

Conjecture 2.3. Let B be a p-block of defect d. Then

l(B) ≤ pdγββ

for all β ∈ IBrp(B).

Conjecture 2.3 means that if B0 is the principal p-block, then

l(B0) ≤ |G|pγ11 = mp(G)

by Lemma 2.1. So this is Murai’s conjecture. Furthermore, by Example 2.2, we have
|G|2γ22 = |G|2γ33 = 23 · 1

2 = 4 > l(B0) = 3.

Question 2.4. We may ask here the question: Is there always a β ∈ IBrp(B) with γββ ≤ 1?
Suppose that β ∈ IBrp(B) is liftable to χ ∈ Irr(B). Then

1 = 〈χ, χ〉 = γβ,β + 1
|G|

∑
g p-singular

χ(g)χ(g).

Since both parts are real and non-negative, we get γβ,β ≤ 1. Thus, in this case (in particular,
if G is p-solvable or if B is principal), Conjecture 2.3 implies l(B) ≤ |D|.

Remark 2.5. In general, the smallest value pdγββ is not always reached by a height zero
character β. As an example the non-principal 2-block of A9 of defect 3 may serve. It has 3
irreducible Brauer characters, say βi of degree 8, 48 and 160 and of height 0, 1 resp. 2. The
corresponding Hilbert divisors are 8, 4, 2. One easily computes that 23γβiβi = 5, 4, 8.

We would like to mention here that Malle and Robinson conjectured in [12] the upper
bound

l(B) ≤ ps(B),
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where s(B) denotes the sectional p-rank of a defect group of B.

For lower bound of l(B), in [8] Holm and the second author asked the question whether
l(B) ≥ tr CB

pd always holds true, where tr stands for the trace. In [16] Navarro and Sambale
presented as counterexamples the principal 2-block of Sz(32).5 and PSp4(4).4. However, for
p-solvable groups, we have indeed l(B) ≥ tr CB

pd , since cββ ≤ pd for β ∈ IBrp(B), by [7].

Proposition 2.6. Let G be a p-solvable group and let B be a p-block of G with defect d.
Then tr CB = l(B)pd if and only if l(B) = 1.

Proof. The assertion is clear if l(B) = 1. Now suppose that l(B) > 1 and∑
β∈IBrp(B)

cββ = l(B)pd.

This forces cββ = pd for all β, since cββ ≤ pd. By ([11], Lemma 2.8), there exists β ∈ IBrp(B)
such that cββ < pa(β) ≤ pd, a contradiction. �

For the reader’s convenience we recall a result on positive definite symmetric matrices
which seems to be well known.

Lemma 2.7. Let A = (ai j)1≤i, j≤l be a positive definite symmetric matrix over the real
numbers of type (l, l). Then

det A ≤
l∏

i=1

aii.

Proof. We may assume that l ≥ 2. Let

A =
(

A1 v

vt all

)

where v = (a1l, a2l, . . . , a(l−1)l)t and A1 is of type (l − 1, l − 1). Since A is positive definite,
A1 as a principal minor of A is positive definite as well. In particular, det A1 > 0 and A1 is
invertible. Hence

det A = det A1 · det
(

E A−1
1 v

vt all

)

= det A1 · det
(

E A−1
1 v

0 all − vtA−1
1 v

)

= (det A1)(all − vtA−1
1 v).

Now vtA−1
1 v ≥ 0, since A1 is positive definite. Thus det A ≤ (det A1)all and by an inductive

argument we obtain the assertion. �

Corollary 2.8. Let B be a p-block of G with Cartan matrix CB = (cαβ), where α, β ∈
IBrp(B). Then det CB ≤∏

β∈IBrp(B) cββ.

Proof. Since CB is positive definite ([10], Lemma 2.3), we may apply Lemma 2.7. �
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Theorem 2.9. Let B be a p-block of defect d. Then tr C−1
B ≥ l(B)

pd with equality if and only
if l(B) = 1.

Proof. Let C = CB. The first statement follows by

pd tr C−1 =
∑

β∈IBrp(B)

pdγββ ≥
∑

β∈IBrp(B)

1 = l(B),

since pdγββ ∈ N.
Clearly, if l(B) = 1, then tr C−1 =

l(B)
pd . For the converse, we write l = l(B) and denote by

pd1 , . . . , pdl the elementary divisors of C, where d1 ≤ · · · ≤ dl−1 < dl (for the last inequality,
see ([4], Chap. IV, Theorem 4.16)). Thus det(C) = pd1 · · · pdl . As already mentioned, we
furthermore have pdγββ ∈ N.

Suppose that tr C−1 =
l(B)
pd . Thus γββ = 1

pd for all 1 ≤ i ≤ l. Note that C−1 is also positive
definite. Thus, by Lemma 2.7, we get det(C−1) ≤ ( 1

pd )l. However, this is not possible unless
l = 1, since det(C−1) =

∏l
i=1

1
pdi

. This finishes the proof. �

Observe that an affirmative answer of Conjecture 2.3 will provide a new lower bound for
tr C−1

B .

Remark 2.10. If Conjecture 2.3 holds true, then tr C−1
B ≥ l(B)2

pd , since pdγββ ∈ N for all
β ∈ IBrp(B).

Clearly, tr C−1
B ≥ ρ(C−1

B ) where ρ(C−1
B ) denotes the Frobenius eigenvalue of C−1

B . Thus we
may ask whether

ρ(C−1
B ) ≥ l(B)

pd

which is equivalent to

μ(CB)l(B) ≤ pd,

where μ(CB) is the smallest eigenvalue of CB. Note that there are examples in which ρ(CB) �
l(B)pd as shown in [16].

Examples 2.11. a) Let p = 2 and G = PSL(2, 8) so that the inverse of the Cartan matrix
of the principal 2-block is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7/8 −1/4 −1/4 −1/4 −1/2 −1/2 −1/2
−1/4 3/2 −1/2 −1/2 1 −1 0
−1/4 −1/2 3/2 −1/2 0 1 −1
−1/4 −1/2 −1/2 3/2 −1 0 1
−1/2 1 0 −1 2 0 0
−1/2 −1 1 0 0 2 0
−1/2 0 −1 1 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Conjecture 2.3 leads to l(B0) ≤ 7 since γii =
7
8 , 3/2 or 2. According to the Malle-Robinson

conjecture we only get l(B0) ≤ 8. Actually l(B0) = 7.
b) Let G = A4 and p = 2. For the principal 2-block we have
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l(B0) = 3 and pdγii = 4 · 3
4
= 3

for all i. Thus the bound in Conjecture 2.3 is reached for all i. Note that the Malle-Robinson
conjecture only leads to l(B0) ≤ 4.
c) Let B be a p-block of defect d ≥ 2 with cyclic defect group and suppose that the Brauer
tree is a star with exceptional vertex in the center. Let e = l(B) ≥ 2 and m = pd−1

e . For all i
we have in this case

γii pd = (e − 1)m + 1 = pd − m =
e − 1

e
pd +

1
e
>

e − 1
e

pd ≥ pd

2
≥ p,

since e, d ≥ 2. Note that the sectional p-rank of a cyclic p-group is one. Thus the Malle-
Robinson conjecture is stronger than our Conjecture 2.3.

3. Relations between the Cartan matrix and its inverse

3. Relations between the Cartan matrix and its inverse
Recall that the Schur product of matrices, denoted by ∗, is defined as the componen-

twise multiplication, i.e., if A = (ai j) and B = (bi j), then A ∗ B = (ai jbi j). Now let
CB = (cαβ)α,β∈IBrp(B) be the Cartan matrix of a p-block B with l = l(B). To be brief we
put C = CB in this section. Since C and C−1 are positive definite, we get that C ∗ C−1 is
positive definite as well by the Schur product theorem ([9], Theorem 5.2.1). If Il denotes the
identity matrix of degree l, then we have the following.

Theorem 3.1. C ∗ C−1 − Il is positive semidefinite; i.e., C ∗ C−1 � Il in the positive
semidefinite partial order.

Proof. By ([9], Theorem 5.4.3), the smallest eigenvalue of C ∗ C−1 is 1. Since C ∗ C−1 is
positive definite, the assertion follows. �

Corollary 3.2. For any β ∈ IBrp(B) we have cββγββ ≥ 1 with equality if and only if
l(B) = 1. In particular, tr (C ∗C−1) ≥ l(B).

Proof. Let x = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is at position β. By Theorem 3.1, we get

cββγββ = x(C ∗C−1)xt ≥ xIlxt = 〈x, x〉 = 1.

Suppose that cββγββ = 1. Since pa(β)γββ ∈ N, we get pa(β) = ncββ for some n ∈ N.
Clearly, if l(B) = 1, then cββγββ = 1. To see the converse, suppose that l := l(B) ≥ 2.

In the following we use C and C1 in Lemma 2.7 instead of A and A1. Since γll =
det C1
det C and

det C = det C1(cll − vtC−1
1 v), we have

cllγll = cll · det C1

det C1

(
cll − vtC−1

1 v
) = cll

cll − vtC−1
1 v
> 1.

(Note that in the proof of Lemma 2.7, we have v � 0 by the indecomposability of C which
follows from the fact that B is a p-block of G. Since C1 is positive definite, vtC1v > 0.) �

Clearly, if m(G) ≥ tr (C ∗ C−1) for the principal block of G, then Murai’s conjecture
holds true for G. Unfortunately, there are examples, even with a cyclic defect group, with
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m(G) ≤ tr (C ∗C−1). As an example the group S4 for p = 3 may serve. Actually, m3(S4) = 2
and tr(C ∗C−1) = 8

3 .

Corollary 3.3. If 1 = 1G is the trivial character, then

c11 ≥ |G||Gp′ | =
|G|p

m(G)

with equality if and only if G is p-nilpotent.

Proof. By Corollary 3.2, we have c11 ≥ 1
γ11

. Lemma 2.1 shows that γ11 =
|Gp′ |
|G|p′ |G|p =

|Gp′ |
|G| .

Thus c11 ≥ |G|
|Gp′ | .

Suppose that c11 =
|G|
|Gp′ | . Since c11γ11 = 1, l(B0) = 1 by Corollary 3.2. Hence G is

p-nilpotent, by ([15], Chap. V, Theorem 8.3). Since the converse is obvious, we are done.
�

4. Some evidence for Conjecture 2.3

4. Some evidence for Conjecture 2.3
In this section we show some evidence for the conjecture.

Remark 4.1. Conjecture 2.3 has an affirmative answer if l(B) = 1. In this case the Cartan
matrix of B is CB = pd where d is the defect of B, since det CB is the product of elementary
divisors. Thus γββ · pd = 1 for IBrp(B) = {β}, and Conjecture 2.3 holds.

Proposition 4.2. Let B be a p-block with a cyclic defect group. Then Conjecture 2.3
holds true.

Proof. By ([4], Chap. VII, Lemma 10.11) we immediately get

l(B) = min
z∈Zl(B)

zpdC−1zt ≤ zi pdC−1zt
i = pdγii,

where C is the Cartan matrix of B, d is the defect of B and zi = (0, . . . , 0, 1, 0, . . . , 0) with
the i-th position 1 and 0 elsewhere. �

Note that the proof of Proposition 4.2 also shows that Murai’s conjecture has an affirma-
tive answer if the Sylow p-subgroup is cyclic.

Proposition 4.3. If B is a 2-block of G having a dihedral, a semidihedral or a generalized
quaternion group as defect group D, then Conjecture 2.3 holds true.

Proof. Note that B is a block of tame representation type, and the Cartan matrices of such
blocks are known by the classification of Erdmann [2]. In particular l(B) ≤ 3. According to
Remark 4.1 we may assume that l(B) ≥ 2. Then the occurring matrices are listed in [8]. If
l(B) = 2, then B has a Cartan matrix C of the form(

4k 2k
2k k + r

)

with natural numbers k and r, where {k, r} = {1, |D|4 } or {k, r} = {2, |D|4 }. Note that |D| ≥ 8,
since a block with Klein four defect group cannot have two simple modules. We have
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det C = 4kr. One easily computes γ11 =
k+r
4kr , γ22 =

1
r . Then in the first case, we have

γ11|D| = k + r = 1 +
|D|
4
≥ 3 and γ22|D| = 1

r
|D| ≥ 4,

and in the second case we have

γ11|D| = k + r
2
= 1 +

|D|
8
≥ 2 and γ22|D| = 1

r
|D| ≥ 4.

Hence we are done for Cartan matrices of blocks B with l(B) = 2.
One of the Cartan matrices for l(B) = 3 is

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
4k 2k 2k
2k k + a k
2k k k + a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where k = |D|4 and a ∈ {1, 2}. Then det C = a2|D| and γ11|D| = 2k+a

a , γ22|D| = γ33|D| = 4k
a . If

a = 1 then

γ11|D| = 2k + 1 ≥ 5 and γ22|D| = γ33|D| = 4k = |D| ≥ 8,

and if a = 2 then

γ11|D| = k + 1 ≥ 3 and γ22|D| = γ33|D| = 2k =
|D|
2
≥ 4.

The remaining cases listed in [8] can be handled in the same way. �

Remark 4.4. We do not intend to prove Conjecture 2.3 or Murai’s conjecture for p-blocks
of p-solvable groups, since both of their proofs seem more difficult than that of the famous
k(GV)-problem (which consists of the work of a series of authors, and was verified affirma-
tively, but needed a period of more than forty years (see [5])).

5. Murai’s conjecture for Sn and An

5. Murai’s conjecture for Sn and An
In this section, we prove that Murai’s conjecture holds true for symmetric and alternating

groups. We start with a result of Babai, Pálfy and Saxl on the proportion of p-regular
elements in the alternating group An.

Theorem 5.1. Let p be a prime number, n ≥ 3 an integer and w = �n/p�. Then the pro-
portion of p-regular elements in the alternating group An is given by the following formulas:

(a) if p = 2:

2
(
1 − 1

p

) (
1 − 1

2p

)
· · ·

(
1 − 1
wp

)
;

(b) if p > 2 and n ≡ 0 or 1 (mod p):

(
1 − 1

p

) (
1 − 1

2p

)
· · ·

(
1 − 1

wp

)
+

(−1)w

wp

(
1 + 1

p

) (
1 + 1

2p

)
· · ·

(
1 + 1

(w−1)p

)
;

(c) if p > 2 and n � 0 or 1 (mod p):
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1 − 1

p

) (
1 − 1

2p

)
· · ·

(
1 − 1
wp

)
.

Proof. This is ([1], Theorem 2.1). �

For integers s, t ≥ 1 let k(s, t) be the number of s-tuples (λ1, . . . , λs) of partitions λi such
that

∑s
i=1 |λi| = t. In particular, k(1, t) is the number of partitions of t.

Lemma 5.2 (Olsson). Let s, t ≥ 1. Then k(s, t) < (s + 1)t. If moreover s ≥ 2, then
k(s, t) ≤ st unless s = 2 and t ≤ 6.

Proof. This is ([12], Lemma 5.1). �

Lemma 5.3. Let p be an odd prime number and w′ ≥ 2. Then pw
′−1 ≥ 6w′ unless

(i) p = 5, 7, 11 and w′ = 2, or
(ii) p = 3 and w′ = 2, 3.

Proof. Suppose that p ≥ 13. For w′ = 2, it is clear that pw
′−1 = 13 > 12 = 6w′. By

induction on w′, we have

pw
′−1 = p · pw′−2 ≥ p · 6(w′ − 1) > 6w′,

and so the lemma holds for p ≥ 13 and w′ ≥ 2. For either p = 5, 7, 11 and w′ ≥ 3, or p = 3
and w′ ≥ 4, the lemma similarly holds by induction on w′, which finishes the proof. �

Proposition 5.4. Let G be the symmetric group Sn or the alternating group An. Then G
satisfies Murai’s conjecture for any prime p.

Proof. Denote by B0 the principal p-block of G. Write n = wp + r with 0 ≤ r < p. We
may assume that n ≥ 5, since for n ≤ 4 the assertion is well known to be true, and can be
verified easily.

We first let G = Sn. In this case, by ([18], Proposition 11.14) we have �(B0) = k(p− 1, w).
Note that the proportion of p-regular elements in G has been obtained by Erdős and Turán
([3], Lemma I) as

|Gp′ |
|G| =

(
1 − 1

p

) (
1 − 1

2p

)
· · ·

(
1 − 1
wp

)
.

Furthermore we have

|G|p = p
⌊

n
p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+··· ≥ pw · p

⌊
n

p2

⌋
+
⌊

n
p3

⌋
+···
.

Hence, for p > 3 or p = 3 and w > 6, we have

mp(G) = |Gp′ |
|G| · |G|p ≥

(
1 − 1

p

)
· · ·

(
1 − 1

wp

)
· pw

= (p − 1)
(
p − 1

2

)
· · ·

(
p − 1

w

)
≥ (p − 1)w

≥ k(p − 1, w) (by Lemma 5.2)
= l(B0).

Similarly, for p = 2 and w ≥ 4, we have
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m2(G) ≥
[(

1 − 1
2

) (
1 − 1

4

)
· · ·

(
1 − 1

2w

)
· 2w

]
· 2

⌊
n

22

⌋
+
⌊

n
23

⌋
(∗)

≥
(

3
2

)w−1 · 2 w2 +1

> 2w ≥ k(1, w) = l(B0).

The small cases where either p = 2 and w ≤ 3 or p = 3 and w ≤ 6 can be checked directly
with MOC [13] and the formula (∗)

mp(Sn) =
(
1 − 1

p

) (
1 − 1

2p

)
· · ·

(
1 − 1
wp

)
|Sn|p.

Doing this, note that mp(Sn) and l(B0) do not depend on the rest r = n − pw. Consequently
we only have to check the cases
(1) p = 2, w ≤ 3 and n = 6 and
(2) p = 3, w ≤ 6 and n = 6, 9, 12, 15 and 18.
In the case (1) we have l(B0) = 3 < m2(S6) = 5.
In the cases (2) we obtain for
n = 6: l(B0) = 5 = m3(S6),
n = 9: l(B0) = 10 < 40 = m3(S9),
n = 12: l(B0) = 20 < 110 = m3(S12),
n = 15: l(B0) = 36 < 308 = m3(S15),
n = 18: l(B0) = 65 < 2618 = m3(S18).

We now let G = An. It is well known that any p-block of Sn is parameterized by its p-core
(i.e., the p-core of a partition of n corresponding to an irreducible character of the block) and
its weight (see [18]). We write B̃0 for the principal p-block of Sn and μ(B̃0) for the p-core of
B̃0.

Suppose that p = 2. By Theorem 5.1, we get m2(An) = m2(Sn). If we assume that n ≥ 16,
then by adding the factor � n

24 � in the above formula (∗) we get

m2(An) ≥ 2w+1 ≥ 2(k(1, w)) ≥ l(B0),

since by [18, Proposition 12.9], we have

l(B0) =

⎧⎪⎪⎨⎪⎪⎩k(1, w) if w is odd

k(1, w) + k(1, w′) if w = 2w′.

It remains to check seperately the cases n = 6, 8, 10, 12 and 14. Note that l(B0(A2m)) =
l(B0(A2m+1)) and m2(A2m) = m2(A2m+1). Here we get for
n = 6 : l(B0) = 3 and m2(A6) = 5,
n = 8 : l(B0) = 7 and m2(A8) = 35,
n = 10 : l(B0) = 7 and m2(A10) = 63,
n = 12 : l(B0) = 14 and m2(A12) = 231,
n = 14 : l(B0) = 15 and m2(A14) = 429.

Finally, we suppose that p is odd. If μ(B̃0) is not self-conjugate, then n � 0 or 1 (mod p)
and l(B0) = l(B̃0) = k(p − 1, w) by ([18], Proposition 12.8 (i)). Furthermore, the proportion
of p-regular elements is the same as for the corresponding symmetric group, by Theorem
5.1 (c). Thus the result follows as for Sn.

So we may assume that μ(B̃0) is self-conjugate and the weight w of B̃0 is positive. In



A Generalization ofMurai’s Conjecture 117

particular, n ≡ 0 or 1 (mod p). By ([17], Proposition 2.13) or ([18], Proposition 12.8 (ii)),
we get

l(B0) =

⎧⎪⎪⎨⎪⎪⎩
1
2 k(p − 1, w) if w is odd,
1
2

(
k(p − 1, w) + 3k

(
1
2 (p − 1), w′

))
if w = 2w′.

We first suppose that w is odd. Since (p−1)(2p−1) · · · (wp−1) ≥ 2(p+1)(2p+1) · · · ((w−
1)p + 1), we have

1
2

(
1 − 1

p

)
· · ·

(
1 − 1
wp

)
≥ 1
wp

(
1 +

1
p

)
· · ·

(
1 +

1
(w − 1)p

)
.

Hence, by Theorem 5.1 (b), we get similar as for Sn

mp(G) ≥ 1
2

(
1 − 1

p

)
· · ·

(
1 − 1
wp

)
· pw

≥ 1
2

(p − 1)w

≥ 1
2

k(p − 1, w) = l(B0) (by the latter part of Lemma 5.2)

except possibly p = 3 and w = 3, 5. For these cases we have
n = 9, 10: l(B0) = 5 and m3(A9) = m3(A10) = 26,
n = 15, 16: l(B0) = 18 and m3(A15) = m3(A16) = 217.

Thus we are left with the case that w is even. If w = 2, then by Theorem 5.1 (b),

mp(G) ≥
[(

1 − 1
p

) (
1 − 1

2p

)
+

1
2p

(
1 +

1
p

)]
· p2

= (p − 1)
(
p − 1

2

)
+

1
2

(p + 1) = p2 − p + 1

and

l(B0) =
1
2

[
k(p − 1, 2) + 3k

(
p − 1

2
, 1

)]

=
1
2

[
2(p − 1) +

(p − 1)(p − 2)
2

]
+

3
4

(p − 1) (by [18, (3.11)])

=
p2

4
+ p − 5

4
.

Hence we obtain mp(G) ≥ l(B0).

So we may finally assume that w = 2w′ ≥ 4. By Theorem 5.1 (b), the proportion |(An)p′ |
|An | of

p-regular elements in the alternating group An is(
1 − 1

p

) (
1 − 1

2p

)
· · ·

(
1 − 1
wp

)
+

1
wp

(
1 +

1
p

) (
1 +

1
2p

)
· · ·

(
1 +

1
(w − 1)p

)
.

Since |An|p = |Sn|p ≥ pw, we get as for Sn

mp(An) ≥ k(p − 1, w) +
1
w

(p + 1)(p +
1
2

) · · · (p +
1
w − 1

).
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So we are done if
1
w

(p + 1)(p +
1
2

) · · · (p +
1
w − 1

) ≥ 3k(
p − 1

2
, w′).

According to Lemma 5.2 we have
(

p+1
2

)w′ ≥ k( p−1
2 , w

′). Also, by Lemma 5.3, we have
pw
′−1 ≥ 6w′ and so

1
w

(p + 1) · · · (p +
1
w − 1

) ≥ 1
2w′

p2w′−1 ≥ 3
(

p + 1
2

)w′
≥ 3k(

p − 1
2
, w′)

unless (i) p = 5, 7, 11 and w′ = 2; or (ii) p = 3 and w′ = 2, 3.
For the possible exception (i) p = 5, 7, 11 and w′ = 2, we also have

1
w

(p + 1) · · · (p + 1
w−1 ) = 1

4 (p + 1) · (p + 1
2 ) · (p + 1

3 )
> 3(p − 1) + 3(p−1)(p−3)

8
= 3k( p−1

2 , 2)
= 3k( p−1

2 , w
′),

and so we are done in this case. For (ii) p = 3 and w′ = 2, 3, i.e., n = 12, 13, 18 and 19, we
get
n = 12, 13 : l(B0) = 13 and m3(A12) = m3(A13) = 145
n = 18, 19 : l(B0) = 37 and m3(A18) = m3(A19) = 3346,
which completes the proof. �

Remark 5.5. In ([12], Proposition 5.2) Malle and Robinson proved l(B) ≤ pw in the case
that B is a p-block of a symmetric group, an alternating group or their covering groups and
w is the weight of B. If B0 is the principal 2-block of Sn (n ≤ 7), then m2(Sn) ≤ pw. But
m2(S8) = 35 > pw = 24 = 16. If B0 is the principal 3-block of Sn (n ≤ 8), then m3(Sn) ≤ pw,
but m3(S9) = 40 > pw = 33 = 27.
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